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perturbative high order diagrammatic calculation in N = 4 SYM and the leading finite-size

boundary Lüscher correction. We study the ground state energy of the system at finite

coupling by deriving and numerically solving a set of BTBA equations. While the numerics
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energy of the string gets close to zero, possibly indicating that the state turns tachyonic.
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3.2 Y Ȳ system in large volume 11

3.2.1 Boundary asymptotic Bethe Ansatz equations for generic states 13

3.2.2 Asymptotic Y-system for the vacuum state 14
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1 Introduction

Tachyons are ubiquitous in string theory. The ground state of the bosonic string is tachy-

onic, and even for superstrings the tachyons are removed from the spectrum only by a

carefully chosen GSO projection [1]. The understanding of these tachyonic states has un-

dergone a revolution in the last 15 years. The tachyons arise from an expansion around

non-minimal saddle points, and in many instances the instability that the tachyons repre-

sent has been understood and the endpoint of tachyon condensation has been identified.

This is particularly true for tachyons in the open-string spectrum, which represent

instabilities of the D-branes on which they end, rather than of space-time itself. For the

bosonic string, tachyon condensation removes the D-branes and eliminates open strings

altogether from the spectrum, which was shown by using off-shell cubic string field theory

both numerically and analytically [2–4]. Similar considerations led to the understanding

of D-brane charges in superstring theory in terms of K-theory [5, 6]: in addition to the

usual stable BPS Dp-branes in type IIA and IIB string theories, there are unstable ones

“of the wrong dimensionality” (odd p in IIA and even p in IIB). Similarly, the coincident

D-brane–anti-D-brane (henceforth D-D̄) system includes tachyonic states from the strings

connecting the two [7]. Both are examples of open superstring systems undergoing the

wrong GSO projection.

In this paper we study the coincident D-D̄ system within the AdS/CFT correspon-

dence. In flat space, when the two D-branes are coincident, the ground state of the open

string connecting them is tachyonic with a mass-squared −1/(2α′). If the D-branes are

not coincident, this mass squared is increased; and beyond a distance of order the string

length, all states become massive.

Unstable D-brane systems have been studied within the AdS/CFT correspondence

initially in [8]. In certain cases it is possible to match instabilities in the field theory to those

in string theory. Generically, these systems are not amenable to perturbative calculations

in either, let alone both, weak and strong coupling. In special circumstances it has been

possible to take a scaling limit to get a match between weak and strong coupling [9, 10].

Here we study an unstable system beyond such a limit.1

Our study relies on the integrability of the AdS5 × S5 superstring, a property which

is conjectured to hold beyond the classical string limit. Integrability has led to a great

understanding of the spectrum of closed string states in AdS5×S5, as well as certain open-

string sectors which are conjectured to be integrable. These correspond to strings ending

1It is possible in this case too to expand in small angles θ1 and θ2 defined below.
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on different types of D-branes [11–15] as well as macroscopic open strings extending to the

boundary of space and representing Wilson loops in the dual 4d gauge theory [16–18]. The

most studied case is that of a “giant graviton”, which is a D3-brane carrying N units of

angular momentum on S5 [19].

Integrability of the giant graviton systems can be seen from both sides of the AdS/CFT

correspondence. From the gauge theory side, the dilatation matrix — calculated perturba-

tively — coincides with an integrable open spin chain Hamiltonian [12, 13]. From the string

theory side, integrability is a consequence of the fact that the classical two-dimensional

sigma model with boundary admits a Lax pair formulation, which leads to an infinite

number of conserved charges [20, 21].

Instead of a single D-brane we consider here a pair of coincident D-branes with arbitrary

orientation. When the two orientations are identical this is a BPS system, and when

opposite, this is a D-D̄ system. Thanks to integrability, we can compute the asymptotic

spectrum of open strings on these D-branes by solving the Bethe Ansatz equations with

boundaries. To be more specific, let us choose the reference ground state of the Bethe

Ansatz as ZL. There are two important orientations of the D-brane, one carrying the

angular momentum on S5 in the same direction (“Z = 0 giant graviton”), or the other in a

perpendicular direction (“Y = 0 giant graviton”) [13]. The names reflect the fact that the

world-volume of the D3-brane is embedded as S3 ⊂ S5 ⊂ C
3, where C

3 is parameterized

by complex X,Y, Z coordinates satisfying |X|2 + |Y |2 + |Z|2 = 1. In our problem, one

brane satisfies Y = 0 while the other an arbitrary linear equation involving Y , Ȳ , X and

X̄, which we call Ŷ = 0 with

Ŷ = Y cos θ1 cos θ2 −X cos θ1 sin θ2 + X̄ sin θ1 cos θ2 + Ȳ sin θ1 sin θ2 . (1.1)

We will mainly concentrate on the D-D̄ system, which corresponds to θ1 = θ2 = π/2, but

many of the calculations can be generalized to arbitrary angles.

In the next section we discuss the gauge theory dual of these operators. The Y = 0

giant graviton is a determinant operator made of N of the Y scalar fields [22]. An open

string attached to it is obtained by replacing one of the Y fields with an adjoint-valued

word made of other fields (and covariant derivatives). The system studied here should

involve two determinants connected by a pair of adjoint valued words with mixed indices.

A single adjoint valued word can replace one of the letters in one determinant, but not

both, which is why two words are required. The dual statement in string theory is that

a compact D-brane cannot support a single open string, due to the Gauss law constraint,

and must have an even number of strings (with appropriate orientations) attached. In

the planar approximation the two open strings should not interact, which we verify in the

gauge theory calculation in the next section. Hence we can consider the spectral problem

independently for each of the insertions/open strings.

The exact gauge theory description of the D-D̄ system is not known and it requires

solving a mixing problem which is quite complicated, because the operator consists of

more than N fields. At tree level, an orthogonal basis of gauge-invariant scalar operators

is constructed by the Brauer algebra [23] or the restricted Schur polynomial [24] at any N .

At loop level, little is known about how to find dilatation eigenstates in the D-D̄ system

– 2 –
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using these bases [25]. Nevertheless, the mixing problem of our interest seems to simplify

at large N . We expect that the D-D̄ system with or without open strings has the gauge

theory dual closely resembling the double determinant.

The mass of the (potentially tachyonic) open-string state should correspond to the

dimension of the local operator, or more precisely, the contribution to the dimension from

the insertion of the word into the determinant operators as discussed in section 2. In the

case of the Y = 0 brane, the insertion of the word ZL corresponding to the ground state of

the open string gives a protected operator. The system with Y , Ȳ and ZL is not protected,

and we expect that the ground state energy is lifted by ‘wrapping type’ graphs which

involve the interaction between the Y and Ȳ fields at the two boundaries of the word. We

identify a set of such graphs at order λ2L in perturbation theory, which we conjecture to

be the first ones to contribute to the anomalous dimension of these operators. In fact,

the leading non-vanishing wrapping correction coming from the integrability formulation

derived in section 3 is exactly of order λ2L and equal to the UV divergences of the integrals

that arise from these graphs. The UV-divergences of these integrals were recently proven

to agree with our conjecture [26].

In the integrable description we identify how the string excitations scatter off from the

D-branes. Combining these reflection factors from both ends of the open string, we analyze

the finite volume spectrum of excitations via the double-row transfer matrix. Eigenvalues of

this matrix provide the large L anomalous dimensions together with their leading finite-size

Lüscher corrections.

At strong coupling we expect the properties of the open string to be rather similar

to those in flat space, and therefore there should be a tachyon in the spectrum. The

mass-squared of the ground state of the open string in flat space is m2 = −1/(2α′), which

translates to −
√
λ/2 in units of the AdS curvature radius.2 In the case of arbitrary angles

θ1, θ2 [29] the expression becomes3

m2 = −|θ1 + θ2| − |θ1 − θ2|
2π

√
λ . (1.2)

The dimension of the operator inserted in the determinants is dominated by the charge

L at weak coupling, but at strong coupling it should asymptote to m ∝ i 4
√
λ. We therefore

expect the dimension to turn imaginary at a finite value of the coupling. To probe this

transition we employ boundary thermodynamic Bethe ansatz equations (BTBA).

BTBA was derived first in [30] for models with diagonal S-matrices. If the S-matrix is

non-diagonal it is difficult to construct BTBA explicitly by applying the methods of [30].

In specific cases, however, it is possible to overcome the appearing technical problems and

derive a BTBA with non-diagonal S-matrices, as was done for example in [17, 18]. As

our case is more complicated, the approach we take here is to use the Y-system equations

2If we compare to the mass-squared of the Konishi operator 4
√
λ, [27, 28] which matches the first excited

closed string state in flat space, a factor of 4 arises from replacing closed strings by open strings, and another

factor of 2 from taking the wrong GSO projection.
3Note that for θ1 = 0 the rotation in (1.1) mixes only Y and X, so the ground state ZL is still BPS,

hence the mass is zero. Likewise for θ2 = 0.
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together with their analytic properties to derive the BTBA, as was done in [31]. In section 4

we apply this method (following [32]) to derive a set of BTBA for the ground state of the

θ1 = θ2 = π/2 case.

We develop numerical algorithms to solve these equations and evaluate the anomalous

dimensions of ground states with different values of L at finite coupling. In all cases we

find that the anomalous dimension is a monotonously decreasing function of the coupling.

However, when the BTBA energy becomes comparable to 1 − L, namely when the total

energy of the open string gets close to zero, it becomes extremely difficult to obtain the

precise value of the energy from BTBA solutions. As a result, the evolution of the energy

cannot be traced further toward strong coupling.

Such a pathological behavior can arise for states with negative anomalous dimension.

A novel lower bound for the BTBA energy is derived analytically, and the violation of

this bound makes the BTBA solution inconsistent. We expect this breakdown to signal

the transition of the states from massive at weak coupling to tachyonic beyond the critical

value of the coupling. Beyond this singular point another formalism must be employed

to find a continuation of the BTBA equations, whose details are beyond the scope of this

paper.

2 The Y Ȳ brane system in gauge theory

The Y = 0 giant graviton is described in the gauge theory by a determinant operator [22]

OY = detY = ǫa1···aNb1···bN
Y b1
a1 · · ·Y bN

aN
(2.1)

where ai and bi are color indices and ǫ is a product of two regular epsilon tensors ǫa1···aNb1···bN
=

ǫa1···aN ǫb1···bN .

An open string ending on the giant graviton is described by replacing one Y with an

adjoint valued local operator W [33]

OW
Y = ǫa1···aNb1···bN

Y b1
a1 · · ·Y bN−1

aN−1 WbN
aN
. (2.2)

The simplest insertion is the vacuum W = ZL.

One can consider also two giant gravitons by taking the combination OY OY and like-

wise add an open string attached to one or to the other. But with two giant gravitons

we can also consider strings stretched between the two D-branes. Having a single such

string is impossible, though. The endpoint of a string serves as a source of charge on the

D-brane world-volume, which is compact, and there must be another charge source with

the opposite sign. We therefore will consider the case of a pair of open strings with opposite

orientation connecting the two D-branes.

The gauge theory description of this system is the double-determinant operator with

all fields at a single point

OW,V
Y,Y = ǫa1···aNb1···bN

Y b1
a1 · · ·Y bN−1

aN−1 ǫ
c1···cN
d1···dN

Y d1
c1 · · ·Y dN−1

cN−1 WdN
aN

VbN
cN

(2.3)

so one Y was removed from each determinant and then the two words W and V are inserted

with the indices crossed.
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However, we are not interested here in the case with two identical D-branes. That

configuration is BPS and the spectrum of open strings also includes BPS states, which

belong to the multiplet of the non-abelian gauge fields on the pair of D-branes. We want to

study instead the spectrum of strings stretching between a D-brane and an anti D-brane.

The anti D-brane can be realized by replacing all the Y by Ȳ , and we shall call it a

Ȳ = 0 giant graviton, as opposed to the original Y = 0 giant graviton. If we parameterize

the S5 part of the target space by three complex coordinates Y , X and Z subject to

|X|2 + |Y |2 + |Z|2 = 1, then the Y = 0 giant graviton wraps an S3 given by Y = 0. The

Ȳ = 0 brane will wrap the same S3 but with the opposite orientation.

The precise gauge theory dual of the coincident maximal Y Ȳ branes is not known. We

will approximate it by a double determinant, one with Y s and the other with Ȳ s. We think

that the correct state may have other structures involving these Y and Ȳ fields, but should

be similar to the double determinant. Mixing with other fields seems to be suppressed at

large N . This approximation of the state leads to reasonable answers for the anomalous

dimensions of the open strings we want to study.

Under this assumption, an obvious guess for the generalization of (2.3) is then

OW,V
Y Ȳ

= ǫa1···aNb1···bN
Y b1
a1 · · ·Y bN−1

aN−1 ǫ
c1···cN
d1···dN

Ȳ d1
c1 · · · Ȳ dN−1

cN−1 WdN
aN

VbN
cN
. (2.4)

The simplest insertion is W = ZL,V = ZL′
.

It is clear that we can further generalize the construction where instead of the Ȳ = 0

brane we have Ŷ = 0 with Ŷ defined in (1.1). This allows to smoothly interpolate between

Y at θ1 = θ2 = 0 and Ȳ at θ1 = θ2 = π/2. With this we have constructed a two parameter

family of pairs of D-branes interpolating between the pair of identical D-branes and the

D-D̄ systems.

We expect the planar dilatation operator to act on this complicated operator as the

sum of two independent integrable open spin-chain Hamiltonians, one acting on each of

the two words:4

∆[OW,V
Y Ȳ

] = ∆bare[OW,V
Y Ȳ

] + δ∆[WY Ȳ ] + δ∆[VȲ Y ]. (2.5)

We will verify this splitting now at the one loop level in perturbation theory, and then

assume it holds in general. This allows us to study the spectrum of each of these open

strings independently by application of different integrability tools.

2.1 Integrable spin-chain

To calculate the conformal dimension of an operator, we consider the two point function

between two similar operators and find the mixing matrix. We therefore study the pair of

operators OW,V
Y,Ȳ

(0) and OV̄ ′,W̄ ′

Ȳ ,Y
(x).

It is useful to separate the calculation according to how many of the fields Y and Ȳ

from the determinant operators interact with the W and V insertions. In the case when

4The dilatation operator actually mixes also the structure of the Y and Ȳ fields, which is an indication

that this is not the exact state. We assumed that the correct state without insertions to be protected at

large N . Otherwise the first term of (2.5) is a certain function of λ.
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none do, we perform free field contractions between the Y and Ȳ of the two operators.

Using

ǫa1···aN ǫb′1···b′N δ
b′1
a1 · · · δ

b′N−1
aN−1 = (N − 1)! δaN

b′
N

(2.6)

we find

〈OW,V
Y,Ȳ

(0) OV̄ ′,W̄ ′

Ȳ ,Y
(x)〉 = (N − 1)!6〈Tr

[
W(0)W̄ ′(x)

]
Tr
[
V(0)V̄ ′(x)

]
〉 (2.7)

where 〈Y b
a(0)Ȳ (x)b

′

a′〉 is normalized to δb
′

a δ
b
a′ . This is a non-local trace, which is not gauge

invariant, but this is due to the fact that 2(N − 1) contractions were already done in a

specific gauge. The entire correlator is of course gauge invariant.

In the planar approximation the expectation value in (2.7) factorizes and at tree level

we find that W and W̄ ′ are conjugate operators, as are V and V̄ ′. Each trace gives an extra

factor of N . This statement holds as long as the last letter in W and the first one in V
are orthogonal to Y and the other ends of the words are orthogonal to Ȳ . Otherwise there

would be extra planar tree-level contractions beyond (2.6) which will mix these states with

operators made of a sub-determinant and a single trace operator.

There are also interacting graphs contributing to 〈Tr
[
W(0)W̄ ′(x)

]
〉, which by con-

struction do not know about the rest of the determinant operators. These will give the

bulk part of the spin-chain Hamiltonian. At one-loop level in the so(6) sector this is the

same as the usual Minahan-Zarembo Hamiltonian [34].

We should consider separately the boundary interactions, where the beginning and end

of W and V interact with Y and Ȳ from the rest of the determinant. The first boundary

interactions involve just one pair of Y and Ȳ . The trace structure arising from contracting

all the determinant fields except for one Y (0) and one Ȳ (x) is given by (B.2) in appendix B.

The one-loop interactions arising from these graphs are very similar to the boundary

interaction for the giant graviton open spin-chain [12]. Again the interaction between W
and V completely factorizes at large N and for each word one finds the usual one-loop

boundary interaction. The only modification is that the first letter is projected on states

orthogonal to Ȳ and the last letter should be orthogonal to Y . The one-loop Hamiltonian

acting on the word W is

H(2) =
λ

8π2
QȲ

1 Q
Y
L

[
L−1∑

l=1

(
Il,l+1 − Pl,l+1 +

1

2
Kl,l+1

)
+ 2−QY

1 −QȲ
L

]
QY

LQ
Ȳ
1 (2.8)

Here I, P and K are respectively the usual identity, permutation and trace operators on

the spin-chain [34]. Qφ
l is a projector whose kernel are all words with the field φ at location

l. The Hamiltonian acting on the word V can be obtained by exchanging Y ↔ Ȳ .

Although we do not derive here the explicit Hamiltonian at higher loop order, one can

still write down the Bethe ansatz, as we do in the next section.

2.2 Wrapping corrections

One can proceed this way to higher order boundary interactions, but we would like to

study the first wrapping corrections, where interactions are communicated between the

two boundaries and the energy of the ZL ground state is lifted.
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Z(0) Z(0)

Z̄(x) Z̄(x)

Y (0) Y (0)Ȳ (0) Ȳ (0)

Y (x) Y (x)Ȳ (x) Ȳ (x)

(a) (b)

Figure 1. Graphs for insertion of W = Z (the case of L = 1). The fields are ordered according to

the trace structure in (2.9).

Wrapping graphs come from the interaction of the word W with Y on one side and Ȳ

on the other. The leading wrapping corrections will arise by choosing one Y (0) and one

Ȳ (0) from each operator and requiring that they all interact with W. We analyze this in

appendix B and find that we should include connected graphs contributing to

〈Tr[Y (x)W(0)Ȳ (x)Y (0)W̄(x)Ȳ (0)]〉 (2.9)

To be more specific, consider the ground state W = ZL. Since it shares some super-

charges with each of the determinants, the interaction with only one boundary will not

give rise to an anomalous dimension. This is identical to the state attached to two Y

determinants. Only when the interaction involves both a Y and Ȳ determinant will the

ground state energy be lifted.5 To capture this we can consider the difference between the

two cases

〈Tr[Y (x)ZL(0)Ȳ (x)Y (0)Z̄L(x)Ȳ (0)]〉 − 〈Tr[Ȳ (x)ZL(0)Ȳ (x)Y (0)Z̄L(x)Y (0)]〉 (2.10)

In the case of L = 1 there seem to be two types of relevant 2-loop graphs, depicted in

figure 1. The graph (a) exists also in the case where both boundaries are on the Y = 0

brane (i.e., with Ȳ (0) → Y (0) and Y (x) → Ȳ (x)).

We expect wrapping effects to start at order 2L in perturbation theory.6 The gener-

alization of the graph in figure 1a extended to the case of L > 1 is of order L + 1 (see

figure 2a), therefore its contribution must be equal to the case with the BPS boundary

interactions, or the difference should cancel against other graphs.

The graph such as in figure 1b exists for all L at order 2L, see figure 2b and figure 3

for L ≥ 2. For L = 2 there are many other graphs of the same order as this graph. For

example when the box is replaced with a fermionic hexagon. This graph generalizes to

arbitrary L and is of order L + 2, so again it should be the same as for the BPS vacuum

and cancel against other graphs.

5This is true even if we change some of the index structure of the Y and Ȳ in (2.4), so this statement

is quite insensitive to the exact details of the state.
6Note though that in the quark-antiquark case the first interaction happen at “half” wrapping order

(L+1), which can be attributed to the finite density of zero momentum single particle states in the mirror

BTBA formulation as encoded by the poles of the Y-functions [17, 18].
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Z(0)Z(0) Z(0)Z(0)

Z̄(x)Z̄(x) Z̄(x)Z̄(x)

Y (0) Y (0)Ȳ (0) Ȳ (0)

Y (x) Y (x)Ȳ (x) Ȳ (x)

(a) (b)

Figure 2. Graphs for insertion of W = Z2. The fields are ordered according to the trace structure

in (2.9).

Z(0) Z(0)Z(0)Z(0)Z(0)

Z̄(x) Z̄(x)Z̄(x)Z̄(x)Z̄(x)

Y (0) Ȳ (0)

Y (x)Ȳ (x)

Figure 3. The generalization of figures 1b and 2b for insertion of ZL. The figure on the right is

the space-time structure of the diagram (the resulting 2L-loop integral I2L) with the lines going to

x amputated. They can be easily restored by adding a line to each trivalent vertex.

For general L we conjecture therefore that the first wrapping correction comes from

the graph in figure 3. It gives rise to a UV divergent loop integral depicted on the right

of figure 3, where the ellipses correspond to repeating the structure to generate the total

number of 2L loops in the integrals.

Based on explicit data for L = 1, 2, 3 and our conjecture for larger L (from the results

of the next section), these integrals were recently shown in [26] to have the same divergence

structure as the zig-zag integrals [35, 36]. We present the map of the above integrals to

the zig-zag integrals in some more detail in appendix C. The results for the overall UV

divergences (denoted by calligraphic I) of the integral I2 arising in the L = 1 case from

the diagrams in figure 1 and the integrals I2L depicted on the right of figure 3, regularized

in D = 4− 2ε (and with the coupling restored) are

I2 =
λ2

(4π)4

(
− 1

2ε2
+

1

2ε

)
, I2L =

λ2L

(4π)4Lε

1

L2

(
4L− 2

2L− 1

)
ζ(4L− 3) , (2.11)

where our conjectured result I2L was proven recently (cf., Eqn (3) of [26]). Note that for

L ≥ 2 the integrals are free of subdivergences, which is indicated by the absence of all

higher order poles in ε. Assuming these are indeed the first graphs that contribute, we
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conclude that the anomalous dimension of the ground state is

δ∆L = −2ελ∂λI2L +O(λ2L+1) = − 4λ2L

(4π)4L
1

L

(
4L− 2

2L− 1

)
ζ(4L− 3) +O(λ2L+1) . (2.12)

At L = 1, however, the integral contains a one-loop subdivergence which leads to an

inconsistency here: it enters as a simple ε-pole in the anomalous dimension, which has to

be finite and independent of ε. In this setup, i.e. for a gauge invariant composite operator

in a theory with unrenormalized coupling, such a one-loop subdivergence at two loops can

only be cancelled either by further two-loop diagrams or by a one-loop counter term, both

of which are associated with the renormalization of this operator. We conjecture that the

approximation of the state with L = 1 by (2.4) is inappropriate and that the correct state

will be renormalized at one-loop order.

The fact that short states are subtle and can lead to divergences was seen in the

past in the integrability-based descriptions [37–40]. In certain cases (deformed or orbifold

setups) a possible resolution of this issue in the field theory was given in [41, 42], though

the effect observed there has no net effect for the N = 4 SYM theory. We note that the

integrability calculation in the next section also gives a divergence for the L = 1 state -

so whatever effect lifts this divergence (presumably by a one-loop anomalous dimension)

should somehow also alter the integrability description of this state. We leave it to the

future to resolve this issue.

2.3 General angle

As mentioned above, the two D-branes do not have to be coincident, but can be at arbitrary

angles on S5, which on the gauge theory side amounts to replacing Ȳ with an arbitrary

linear combination of Y , X, X̄ and Ȳ which we denoted by Ŷ in (1.1). It is easy to see

that the wrapping graphs we calculated will see only the Ȳ factor in Ŷ and the result of

the first wrapping effect will be multiplied by sin2 θ1 sin
2 θ2.

3 Integrable description of the Y Ȳ brane system

In this section we formulate the integrable description of the Y Ȳ brane system. In the

integrable formulation we characterize and solve the system in terms of the scattering data

of the particle-like excitations of the strings. The finite-volume energy spectrum of the

particles corresponds to the sought-for anomalous dimensions on the gauge theory side.

D-branes provide boundary conditions for open strings, which translate into reflection

amplitudes for the elementary particle-like excitations. The bulk scattering matrix of

these excitations supplemented by the reflection factors define the theory and enable one

to calculate both the asymptotic large-volume energy spectrum and all finite-size effects.

In the integrable description we assume the quantum integrability of the model, and

solve the theory in semi-infinite geometry by determining the scattering (reflection) data.

Integrability forces the multiparticle reflection process to factorize into pairwise scatterings

and individual reflections. Integrable boundary conditions in this point of view can be

– 9 –



J
H
E
P
0
3
(
2
0
1
4
)
0
5
5

classified by finding all one-particle reflection matrices, which are compatible with the

given bulk S-matrix and residual symmetries.

When two boundaries exist their relative orientation is also important, which is used

to break the supersymmetry of the vacuum state of the Y = 0 brane studied in [43]. The

new vacuum state acquires a nontrivial anomalous dimension from finite-size effects. Our

notation in this section is summarized in appendix A.

3.1 Reflection matrices in Ŷ = 0 brane systems

We focus on systems in which the left and right boundary conditions are not the same, but

all of them are related to the Y = 0 system in a relatively simple way. The Y = 0 boundary

condition preserves an su(1|2)⊕ su(1|2) sub-algebra of the full su(2|2)⊕ su(2|2) symmetry

of the bulk S-matrix. If we label the excitations in the fundamental representation by

(1, 2|3, 4)⊗ (1̇, 2̇|3̇, 4̇) then the su(2) symmetry, which rotates in the (1, 2) or (1̇, 2̇) space

(
1

2

)
→
(

cos θ sin θ

− sin θ cos θ

)(
1

2

)
(3.1)

is broken by the presence of the Y = 0 brane. The reflection factor compatible with the

unbroken symmetry, which satisfies the boundary Yang-Baxter equation has the following

factorized form [13, 44]

R
−
Y (p) = R−

0 (p)R
−
Y (p)⊗ Ṙ−

Y (p) (3.2)

where

R−
Y (p) = Ṙ−

Y (p) = diag(e−i p
2 ,−ei p2 , 1, 1) , R−

0 (p) = −e−ipσ(p,−p) , (3.3)

and σ(p,−p) is the BES dressing factor [45]. This reflection factor can be extended for

bound-states both in the string/mirror theories belonging to the totally symmetric/anti-

symmetric atypical representations of su(2|2) ⊕ su(2|2), respectively [46–48]. The totally

anti-symmetric representation describing the bound-states of a fundamental particles in

the mirror theory has a diagonal reflection factor

R−
Y (p) = diag(Iae

−i p
2 ,−Iae

i p
2 , Ia+1,−Ia−1) , (3.4)

and its scalar factor is obtained by fusion.

Although the presence of the D-brane breaks the rotational symmetry, this symmetry

does not completely disappear from the system. Acting with such a transformation (3.1)

will rotate the D-brane itself and acts on the reflection factors in the following way:

R−
θ = OR−

YO
T =




cos2 θ e−i p
2 − sin2 θ ei

p

2 sin θ cos θ (e−i p
2 + ei

p

2 ) 0 0

sin θ cos θ (e−i p
2 + ei

p

2 ) sin2 θ e−i p
2 − cos2 θ ei

p

2 0 0

0 0 1 0

0 0 0 1



, (3.5)

where O acts as in eq. (3.1) in the (1, 2) space and as identity in the (3, 4) space. We

introduce two rotation angles θ1 and θ2 for dotted and undotted indices. The reflection
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factor has to satisfy unitarity, boundary crossing unitarity and the boundary Yang-Baxter

equations to maintain integrability. The reflection factor (3.5) solves these constraints, as

the rotation by O is part of the bulk symmetry which commutes with the S-matrix.

If we choose θ1 = θ2 = π
2 we obtain the reflection factor of the Ȳ = 0 system. This

is the anti-brane counterpart of the Y = 0 brane, and has a reflection factor in which the

two labels (1, 2) are exchanged

R−
Ȳ
(p) = Ṙ−

Ȳ
(p) = diag(−ei p2 , e−i p

2 , 1, 1) . (3.6)

This is nothing but the charge conjugated reflection factor:

R−
Ȳ
= CR−

Y C
−1 , C =




0 −i 0 0

i 0 0 0

0 0 0 1

0 0 −1 0


 . (3.7)

This picture extends to the reflection factors of the bound states, too: they can be simply

obtained by exchanging the labels (1, 2).

3.2 Y Ȳ system in large volume

In the following we analyze a two-boundary system in finite volume, namely in the strip

geometry. We place R
−
Y on the right boundary but

R
+
Ȳ
(p) = R

−
Ȳ
(−p) (3.8)

on the left boundary. We are interested in the asymptotic spectrum of multiparticle states

and an exact description of the ground state. Both problems can be attacked via double-

row transfer matrices and Y-system. The energy of a multiparticle state gives a half of

the total anomalous dimension in gauge theory (2.5), and the other half is obtained in an

analogous way.

The boundary Bethe-Yang equations (also called boundary asymptotic Bethe Ansatz

equations) are valid for large size L, the R-charge of the inserted word. They determine the

momenta, {pi}, of a multiparticle state by the periodicity of the wave function as follows.

Pick up any particle (with momentum pk say), scatter through the others to the right,

reflect back from the right boundary, scatter with momentum −pk on all particles to the

left, reflect back from the left boundary and scatter back to its original position; we have to

arrive at the same state multiplied by e−2ipkL. During the scattering processes the labels of

the multiparticle state are mixed up, and the problem is to find eigenstates of the mixing

matrix. This problem is solved by introducing and diagonalizing the double-row transfer

matrix. As the diagonalization problem factorizes between the two su(2|2) factors we focus
on one copy only, and define this double-row transfer matrix by

TY Ȳ (p) = STr
(
R+

Ȳ
(p)S(p, p1) . . . S(p, pM )R−

Y (p)S(pM ,−p) . . . S(p1,−p)
)
, (3.9)

where we used the non-graded S-matrix S = S0 S⊗S, in the su(2) normalization (S11
11 = 1).

On the left boundary R+
Ȳ
(p) is introduced in (3.9), which is different from the standard
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definition [49]. Nevertheless the two are equivalent up to an overall normalization [43, 50].

Our choice ensures that a “test” particle is brought around the two boundaries in the above

sense; if we specify the test particle momenta as p = pk we obtain the kth particle’s mixing

matrix.

Let us diagonalize the double-row transfer matrix for Y Ȳ states in the su(2) sector.

We start by analyzing the ground state of the first level |1, 1, . . . , 1〉 in algebraic Bethe

Ansatz, and denote its eigenvalue by T (p|{pi}) or T for short. It describes an M -particle

state in the su(2) sector. Interestingly, similarly to the Y Y system [43], the eigenvalue can

be expressed in terms of the diagonal elements:

T = ρ1T1 + ρ2T2 − ρ3T3 − ρ4T4 , (3.10)

where
T1 = S11

11(p, p1) . . . S
11
11(p, pM )S11

11(pM ,−p) . . . S11
11(p1,−p) = 1

T2 = S21
21(p, p1) . . . S

21
21(p, pM )S12

12(pM ,−p) . . . S12
12(p1,−p)

T3 = T4 = S31
31(p, p1) . . . S

31
31(p, pM )S13

13(pM ,−p) . . . S13
13(p1,−p)

(3.11)

which explicitly read as:

T3 =
M∏

i=1

(x+ − x+i )

(x+ − x−i )

(x+ + x−i )

(x+ + x+i )
=:

R(−)+

R(+)+

T2 =

M∏

i=1

(x+ − x+i )(x
+ + x−i )(x

−x+i − 1)

(x+ − x−i )(x
+ + x+i )(x

−x−i − 1)

(x−x−i + 1)

(x−x+i + 1)
=:

R(−)+

R(+)+

B(−)−

B(+)−
.

(3.12)

The ρi (i = 1, . . . , 4) can be calculated following the considerations in [43]. The result

turns out to be

ρ1 = −ρ3 = −(1 + (x−)2)(x− + x+)

2x−(1 + x+x−)
, ρ2 = −ρ4 = −(1 + (x+)2)(x− + x+)

2x+(1 + x−x+)
. (3.13)

Clearly x− ↔ x+ exchanges 1 ↔ 2 and 3 ↔ 4, and thus acts as conjugation, under which

the Y Ȳ ground state is invariant. The momenta of the state are determined from the

following asymptotic boundary Bethe-Yang equations

e−2ipkLT (pk)
2d1,1(pk) = 1 , (3.14)

where we introduced the proper normalization factor

d1,1(p) = R−
0 (p)R̂0(−p)

M∏

j=1

S0(p, pj)S0(pj ,−p) , R̂0(−p) =
e−2ipR−

0 (p)

S0(p,−p)ρ21(p)
, (3.15)

which is determined by the boundary Bethe-Yang equations for one-particle states (D.1).

The extension from the diagonal sector to the full sector can be easily done at the level

of the generating functional, which we now introduce. The eigenvalues of the double-row
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transfer matrix, in which mirror bound-state test particles of charge a are scattered and

reflected through the multiparticle state, are generated as

W̃−1
su(2) = (1−Dρ1T1D)(1−Dρ3T3D)−1(1−Dρ4T4D)−1(1−Dρ2T2D) =

∞∑

a=0

(−1)aDaT̃a,1Da ,

(3.16)

in the su(2) grading, where D is the shift operator (A.3). Technically it is simpler to

renormalize the generating functional and the transfer matrices as

W−1
su(2) =

(
1+
R(+)

R(−)
D2

)(
1−D2

)−1(
1−Du

+

u−
D
)−1(

1+Du
+

u−
DB

(−)

B(+)

)
=

∞∑

a=0

(−1)aDaTa,1Da .

(3.17)

The relation between the normalizations is of the fusion type:

T̃a,1 = f [a−1]f [a−3] . . . f [3−a]f [1−a]Ta,1 , f = T3ρ3 . (3.18)

Explicit calculation gives all the antisymmetric transfer matrix eigenvalues

(−1)aTa,1 = (a+ 1)
u

u[−a]
+ a

u−

u[−a]

R(+)[a]

R(−)[a]

+ a
u+

u[−a]

B(−)[−a]

B(+)[−a]
+ (a− 1)

u

u[−a]

R(+)[a]

R(−)[a]

B(−)[−a]

B(+)[−a]
.

(3.19)

3.2.1 Boundary asymptotic Bethe Ansatz equations for generic states

Comparing eq. (3.19) with the corresponding expression of the Y Y system [43], we can

observe that the result is the same up to signs in front of the fermionic contributions, as if we

had performed the trace instead of the supertrace. This, however, breaks supersymmetry

and allows a nontrivial ground state energy for the Y Ȳ system. This simple observation

allows us to conjecture the generating functional for the eigenvalue of the double-row

transfer matrix for a generic state

Λ(p) =
(
x+(p)

x−(p)

)m1R(−)+

R(+)+

[
ρ1
R(+)+

R(−)+

B−
1 R

−
3

B+
1 R

+
3

−ρ3
B−

1 R
−
3

B+
1 R

+
3

Q++
2

Q2
−ρ4

R+
1 B

+
3

R−
1 B

−
3

Q−−
2

Q2
+ρ2

B(−)−

B(+)−

R+
1 B

+
3

R−
1 B

−
3

]
,

(3.20)

where as in (A.4), B1R3 and R1B3 represent type 1 Bethe roots denoted by yj , and Q2

represents type 2 Bethe roots denoted by µ̃l. Regularity of the transfer matrix at the roots

gives the boundary Bethe-Yang equations. Type 1 roots are specified as x+(p) = yj , type

2 roots when u(p) = µ̃l, finally type 3 roots when x−(p) = y−1
j . The corresponding Bethe

equations read as

R(+)+Q2

R(−)+Q++
2

∣∣∣∣∣
x+(p)=yj

= −1,
ρ3
ρ4

R−
1 B

−
1 R

−
3 B

−
3 Q

++
2

R+
1 B

+
1 R

+
3 B

+
3 Q

−−
2

∣∣∣∣∣
u(p)=µ̃l

= −1,
B(−)−Q2

B(+)−Q−−
2

∣∣∣∣∣
x−(p)=y−1

j

= −1.

(3.21)
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The Bethe Ansatz equation which determine the momenta are

e−2ipkLΛ(pk)
2d1,1(pk) = 1. (3.22)

3.2.2 Asymptotic Y-system for the vacuum state

From now on we focus only on the unprotected vacuum state. As M = 0, we have R =

B = 1, and the expression (3.19) for the eigenvalues of the transfer matrices simplifies

considerably:

Ta,1 = (−1)a
4au

u[−a]
. (3.23)

They constitute part of a solution of the T-system

T+
a,sT

−
a,s = Ta−1,sTa+1,s + Ta,s−1Ta,s+1 , (3.24)

on the su(2|2)-hook. For completeness and later applications we provide here the full

solution of the su(2|2) T-system. The transfer matrix eigenvalues in the symmetric repre-

sentations are generated via the inverse of (3.17):

Wsu(2) =

(
1 +Du

+

u−
D
)−1(

1−Du
+

u−
D
)(

1−D2
) (

1 +D2
)−1

=
∞∑

s=0

DsT1,sDs , (3.25)

which results in

T1,s = (−1)s2

[
1 +

u[s]

u[−s]
+ 2

s−1∑

k=1

u[s]

u[s−2k]

]
. (3.26)

The T-functions on the boundary of the su(2|2)-hook are

T0,a = Ta,0 = 1 (a ≥ 0), T2,Q = TQ,2 =
16u[Q]u[−Q]

u[−Q+1]u[−Q−1]
(Q ≥ 2). (3.27)

The asymptotic Y-functions are defined from the T-functions as

Ya,s =
Ta,s+1Ta,s−1

Ta+1,sTa−1,s
(3.28)

for s > 0. For s = 0, (in a similar analysis for the su(2) sector) Y1,0(pk) = −1 should

provide the boundary Bethe-Yang equations (3.14). This allows us to restore the correct

normalization:

Y1,0 = f1,1T
2
1,1e

−2iLp , f1,1 = d1,1(ρ3T3)
2 . (3.29)

The normalization of the bound state transfer matrix eigenvalues follow from the bootstrap:

fa,1 = f
[a−1]
1,1 f

[a−3]
1,1 . . . f

[3−a]
1,1 f

[1−a]
1,1 . (3.30)
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3.2.3 Lüscher correction for the vacuum state

In the following we use the asymptotic Y-functions to calculate the leading finite-size —

so called Lüscher — correction for the vacuum state. For this we analytically continue Ya,0
in u to the mirror plane:

Ya,0 = fa,1T
2
a,1

(
z−

z+

)2L

=
u[−a]

u[a]

(
4au

u[−a]

)2(z−
z+

)2L

=
16a2u2

u[a]u[−a]

(
z−

z+

)2L

, (3.31)

where we denote the analytically-continued variables x[±a] by z±, which can be parametrized

by the mirror momenta q as:

z± =
q + ia

4g

(√

1 +
16g2

q2 + a2
± 1

)
. (3.32)

We can compare the Ya,0 functions with the integrand of the vacuum Lüscher correction [48,

50] calculated directly from the reflection matrices:

∆E(L) = −
∞∑

a=1

∞∫

−∞

dq

4π
Ya,0 = −

∞∑

a=1

∞∫

−∞

dq

4π
R
−j
i (z

±)Cjj̄R
+j̄
ī
(−1/z∓)Cīi

(
z−

z+

)2L

. (3.33)

As charge conjugation exchanges the Ȳ = 0 boundary with the Y = 0 boundary, we simply

square the analytically-continued bound state reflection factor (3.4) and perform the trace.

This gives for the matrix part

a
(
2 +

z+

z−
+
z−

z+

)
= a

(z+ + z−)2

z+z−
. (3.34)

The prefactor was already calculated in [50]

R0(z
±)R0(−1/z∓) =

4(1 + z+z−)2

(z+ + 1
z+

)(z− + 1
z−

)(z− + z+)2
. (3.35)

Squaring the matrix part and multiplying with the scalar factor exactly reproduces the

transfer matrix result (3.31). A further check on the Y functions obtained with the aid of

the generating functional is described in appendix D.

It is now easy to evaluate the finite-size correction in the weak coupling limit. At

leading order in g2 we find the following correction for the vacuum:

∆E(L) = −
∞∑

a=1

∞∫

−∞

dq

4π

(
4g2
)2L

16a2
q2

(q2 + a2)2L+1
= − 4g4L

4L− 1

(
4L

2L

)
ζ(4L− 3) , (3.36)

which agrees precisely with the gauge theory result (2.12) for L ≥ 2, and diverges at L = 1.
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3.3 Generic angle, the Ŷ = 0 brane

Here we analyze the system with generic angles. We keep R
−
Y on the right boundary

but place R
+
θ (p) = R

−
θ (−p) on the left boundary. The reflection factor in the totally

antisymmetric representation can be dressed as:7

R−
θ (p) =




(
cos2 θ e−i p

2 − sin2 θ ei
p

2

)
Ia

(
sin θ cos θ (e−i p

2 + ei
p

2 )
)
Ia 0 0

(
sin θ cos θ (e−i p

2 + ei
p

2 )
)
Ia

(
sin2 θ e−i p

2 − cos2 θ ei
p

2

)
Ia 0 0

0 0 Ia+1 0

0 0 0 −Ia−1



.

(3.37)

3.3.1 Lüscher correction

In order to calculate the Lüscher correction for the ground state energy, we start from the

expression in eq. (3.33). Only the matrix part is deformed by the angle:

a(2 + sin2 θ(eip + e−ip)− 2 cos2 θ) = a sin2 θ

[
2 +

(
z+

z−
+
z−

z+

)]

= a sin2 θ
(z+ + z−)2

z+z−
, (3.38)

which shows that we simply have to include an additional sin2 θ factor compared to the

Y Ȳ system for each su(2|2) wing. The resulting Y-functions are

Ya,0 =
16a2u2

u[a]u[−a]
sin2 θ1 sin

2 θ2

(
z−

z+

)2L

, (3.39)

which at leading order leads to the wrapping correction

∆θE(L) = − sin2 θ1 sin
2 θ2

4g4L

4L− 1

(
4L

2L

)
ζ(4L− 3) . (3.40)

This is precisely what we expect from gauge theory calculations for the Y -Ŷ brane system.

It is (3.36) multiplied by the square of the respective angular dependence in (1.1).

The generating functional for the vacuum in case of a generic angle is analyzed in

appendix E.

4 The Y Ȳ ground state BTBA

In this section we derive the ground state BTBA equations for the Y Ȳ system and analyze

them numerically.

TBA equations in the presence of boundaries can be formulated in the same way as

in the periodic case, provided that the S-matrix and the boundary reflection amplitudes

are diagonal [30]. BTBA follows from the mirror trick, which equates the open string

7This is not quite the same as fusing the already-dressed reflection matrices.
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worldsheet partition function in the string region with the closed string transition amplitude

between boundary states in the mirror region. In the mirror picture, the boundary state

projects the intermediate states to those consisting of an even number of particles with the

opposite momentum. As a result, a Y-function in the ground state BTBA is the ratio of

the density of particle pairs to that of hole pairs.

When the S-matrix is non-diagonal, it becomes very difficult to compute the source

term in BTBA explicitly, which comes from the overlap between a boundary state and

the bulk state written in terms of the density of Bethe roots and holes. Thus, a simple

alternative approach is called for. Recall that the periodic TBA can also be derived by

integrating the Y-system assuming appropriate discontinuity relations and analyticity of Y-

functions [32, 51]. In this section we apply this method to derive a set of BTBA equations,

and solve them numerically.

4.1 Boundary TBA from Y-system and discontinuity relations

The derivation of the equations goes along the lines of ref. [32] relying on the following

assumptions:8

• There exist TBA-type integral equations governing the spectrum of the Y Ȳ system.

• The Y-functions of the BTBA equations satisfy the Y-system functional equations [52]

of AdS/CFT.

• The Y-functions satisfy the discontinuity relations of ref. [51], too.

• The Y-functions are real functions. They are meromorphic in the vicinity of the real

axis away from cuts prescribed by the discontinuity relations.

• The ground state Y-functions are parity even and left-right symmetric.

• The Y-functions are smooth deformations of their asymptotic limit, so qualitative

information on the location of their point-like singularities can be borrowed from the

asymptotic solution.

• The massive Y-functions decay at large rapidity at least as 1/u, while the large u

behavior of the other Y-functions is the same as that of the asymptotic solution,

namely in the u→ ∞ limit they tend to state- and coupling-independent constants.

From the assumptions above it is clear that the BTBA equations presented in this section

are valid only as long as the analytic structure of Y-functions agrees with that of the

asymptotic solution and the massive Y-functions decay fast enough at infinity. The value

of the coupling constant where one of the previous two assumptions fails is called a critical

value, and some of our assumptions need to be relaxed.

In this section the notations of refs. [32, 53] are used so that their results could be

referred directly. All kernels and source functions of the subsequent BTBA equations can

be found in appendix A of ref. [32].

8These assumptions are also supported by the asymptotic solution of excited states.
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For the ground state of the Y Ȳ system the local singularities which affect the actual

form of the BTBA equations lie in the fundamental strip −1/g ≤ Imu ≤ 1/g and they

have fixed positions located at 0 or ±i/g in the complex plane. Based on the asymptotic

solution given in subsection 3.2.2, the Y-function combinations which have poles or zeroes

at the {0,±i/g} positions are listed below.9

• YQ, Y±, Ym|vw, and Y2m−1|w have double zero at u = 0 for Q,m = 1, 2, . . ..

• Y2m|w, 1 + Y2m|w, 1− 1
Y±
, and 1 + 1

Ym|vw
have double pole at u = 0 for m = 1, 2, . . .

• Y1 and Y1|w have simple poles at u = ±i/g.

• Y2m−1|w have double poles at u = ±i/g for m = 1, 2, . . .

The derivation of the BTBA equations goes along the lines of ref. [32]. Most of the equations

can be derived straightforwardly from the Y-system equations by taking into account the

residue contributions of the local singularities listed above. The two subtle equations are

the discontinuity functions of log Y− and log Y1 denoted by J and ∆, respectively [32]. The

derivation of equations for these quantities requires the usage of discontinuity relations

of [51]. Since asymptotically eJ = 1 for the ground state it is assumed that it has no local

singularities on the whole complex plane. So it follows that Y−

Y+
is given by (5.30) of [32]

by taking the set {uj} = ∅ or equivalently Rp/m → 1 and Bp/m → 1.

The computation of ∆ goes along the lines of section 6. of ref. [32] taking into account

the different singularity structure and asymptotic behavior of the Y-functions. Here we

introduce the notations:

L± = log

[
τ2
(
1− 1

Y±

)]
, Lm = log

[
τ2
(
1 +

1

Ym|vw

)]
, τ(u) = tanh(

πgu

4
).

(4.1)

The discontinuity function ∆ satisfies the following equation:

∆ = 2L− − 2(L− + L+) ⋆̂ K − 2
∞∑

m=1

Lm ⋆ km + 2W − 2LBTBA log x2 +∆red, (4.2)

where ∆red is given by10

∆red = 2
∞∑

N=1

J [ǫ] ⋆̌ (K [2N ] −K [−2N ]) (4.3)

and the source term W is given by the integral representation:

W =



∫

[γ]

+

∫

[−γ]


 dv log τ(v)K(v, u) +

∫

[γ]

dv log τ−(v)K(v, u) +

∫

[−γ]

dv log τ+(v)K(v, u),

(4.4)

9For 1 + Y and 1 + 1/Y type combinations only the real singularities relevant for BTBA equations, so

only these points are listed.
10Here the ǫ description means, that the integration contour goes just above the real axis
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where [±γ] means that the integration runs along the lines v ± iγ from −∞ to ∞, with γ

being a small positive number. Starting from the discontinuity function (4.2) and apply-

ing the simplification techniques described in sections 7 and 8 of [32], the hybrid BTBA

equations for the massive Y-functions can be derived. Carrying out the whole process the

following BTBA equations were derived:

Ym|vw = τ2 exp

{
log

[
(1 + Ym+1|vw)(1 + Ym−1|vw)

(1 + Ym+1)

]
⋆ s

}
, m ≥ 2, (4.5)

Y1|vw = τ2 exp

{
log

[
(1 + Y2|vw)

(1 + Y2)

]
⋆ s+ log

[
1− Y−
1− Y+

]
⋆̂ s

}
, (4.6)

Ym|w = τ2 (−1)m+1
exp

{
log
[
(1 + Ym+1|w)(1 + Ym−1|w)

]
⋆ s
}
, m ≥ 2, (4.7)

Y1|w = τ2 exp

{
log
[
1 + Y2|w

]
⋆ s+ log

[
1− 1

Y−

1− 1
Y+

]
⋆̂ s

}
, (4.8)

YQ = τ2 exp

{
log

[
YQ+1 YQ−1(1 + YQ−1|vw)

2

Y 2
Q−1|vw(1 + YQ+1)(1 + YQ−1)

]
⋆ s

}
, Q ≥ 2, (4.9)

Y−
Y+

= exp



−

∞∑

Q=1

log(1 + YQ) ⋆ KQy



 . (4.10)

Y+Y− = τ4 exp

{
2 log

[
1 + Y1|vw

1 + Y1|w

]
⋆s+

∞∑

Q=1

log(1 + YQ) ⋆
[
−KQ + 2KQ1

xv ⋆s
]
}
(4.11)

The symbols ⋆, ⋆̂ denote the convolutions defined in (A.4) of [32]. Equations (4.10) and

(4.11) determine Y± up to an overall sign factor. The sign factor can be fixed from the

asymptotic solution and its value is −1. Thus the fermionic Y-functions can be expressed

in terms of the l.h.s. of (4.10) and (4.11) by the formula:

Y∓ = −e
1
2
log Y+Y−± 1

2
log

Y−
Y+ . (4.12)

For the massive Y-functions we present the hybrid form of the BTBA equations.

log YQ = −2LBTBAẼQ + fQ + 2 log(1 + YQ−1|vw) ⋆ s+ 2 log(1 + Y1|vw) ⋆ s ⋆̂ KyQ

− 2 log

[
1− Y−
1− Y+

]
⋆̂ s ⋆ K1Q

vwx + 2L− ⋆̂ KyQ
− + 2L+ ⋆̂ KyQ

+

+
∞∑

Q′=1

log(1 + YQ′) ⋆
[
KQ′Q

sl(2) + 2s ⋆ KQ′−1, Q
vwx

]
, Q = 1, 2, . . .

(4.13)

where the source term fQ is given by:

fQ = log τ2 − log τ2 ⋆ KQ − 2 W̃Q, (4.14)
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with

W̃Q(u) =



∫

[γ]

+

∫

[−γ]


 dv log τ(v)KyQ

+ (v, u) +

∫

[γ]

dv log τ−(v)KyQ
+ (v, u)

+

∫

[−γ]

dv log τ+(v)KyQ
+ (v, u).

(4.15)

The parameter LBTBA in (4.2) and the hybrid BTBA equations (4.13) is related to the

R-charges of the determinant-like operator denoted by L in the previous sections. In

particular LBTBA = L for the ground state.

The energy of the Y Ȳ ground state after subtraction of the bare dimension is given

by the formula

EBTBA ≡
∞∑

Q=1

E(Q) = −
∞∑

Q=1

∫ ∞

0

du

2π

dp̃Q

du
log(1 + YQ). (4.16)

This BTBA energy corresponds to the energy of a single open string. The total dimension

of the determinant-like operator (2.5) with W = ZL,V = ZL′
is written as

∆[OZL,ZL′

Y Ȳ
] = ∆bare + EBTBA(L) + EBTBA(L

′). (4.17)

Before closing the subsection we argue that due to the constraints imposed by the Y-

system equations, the L-R symmetry and parity, the local singularities of the Y-functions

located at the positions {0,± i
g} do not receive any wrapping corrections. As an example

we show that the double zero of Y1 located at the origin remains fixed at any value of the

coupling constant. As a first step let us invoke the Y-system equations

Y +
1 Y

−
1 =

Y2
Y 2
−

(1− Y−)
2

1 + Y2
. (4.18)

At the level of the asymptotic solution, the double zero of Y1 at the origin is related to

a simple zero of 1 − Y−(v) at v = ± i
g . Suppose that wrapping corrections change the

quantization condition as

Y−(v) = 1 at v =
i

g
− iδ ⇔ Y1(v) = 02 (double zero) at v = −iδ. (4.19)

Since Y−(v) is parity even, this equation should be valid after the parity transformation

v 7→ −v, which implies Y1(v) = 02 at v = +iδ. Now if we take the asymptotic limit, Y1
possesses a quartic zero instead of a double zero at the origin, which is a contradiction.

In other words, the origin v = 0 is a special point where the parity transformation acts

trivially, thus a double zero is allowed.
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4.2 Lower bounds for TBA energy in AdS5 × S5

In this subsection we show that the energy which can be computed from the BTBA equa-

tions of the Y Ȳ ground state is bounded from below. This means that the BTBA equations

can describe the model as long as the energy is real and remains above the lower bound.

To determine a lower bound, the energy formula (4.16) must be studied. In order for

the energy to be finite, the individual integrals should stay finite; and having evaluated the

integrals, the remaining sum must also converge.

First consider the case of individual integrals. To see their convergence the large u

behavior of the integrand must be analyzed. Since
dp̃Q
du ∼ g for large u and at any Q, YQ(u)

must decay faster than 1/u at infinity. This simple remark constrains the range of the

BTBA energy, because the large rapidity behavior of YQ is governed by the exact energy

through the formula:11

log YQ(u) = − (4L+ 4EBTBA) log |u|+O(1), (|u| ≫ 1). (4.20)

This gives the large rapidity lower bound for the energy:

4L+ 4EBTBA > 1 ⇔ EBTBA >
1

4
− L. (4.21)

The convergence of the sum in (4.16) imposes a stronger constraint on the energy.

Since
dp̃Q
du = O(1) at large Q, YQ must be sufficiently small for large Q. Let us investigate

the large Q behavior of the summand:

E(Q) = −
∫ ∞

0

du

2π

dp̃Q
du

log(1 + YQ(u)). (4.22)

Since YQ is small for large Q in (4.22) the log can be expanded and at leading order one

can write:

E(Q) ≃ −
∫ ∞

0

du

2π

dp̃Q
du

YQ(u).

As it is shown in appendix F the large Q behavior of YQ can be deduced from the BTBA

equations, and it can be expressed in terms of the asymptotic solution as follows:

YQ(u) ≃ ξ f [Q](u) f̄ [−Q](u)Y •
Q(u), (4.23)

where ξ is a real coupling dependent constant and f̄(u) is the complex conjugate function

of f(u). The explicit functional form of f is not important except for its leading large u

asymptotics:

f(u) = u−2EBTBA(1 + . . . ), (4.24)

where the dots mean contributions negligible for large u. Changing variables u→ Qs:

E(Q) ≃ −Q
∞∫

0

ds

2π

dp̃Q
du

(Qs) f

(
Q
(
s+

i

g

))
f̄

(
Q
(
s− i

g

))
Y •
Q(Qs)

11The formula (4.20) can be derived from (4.13). The ∼ L term comes from the ẼQ term, while the

∼ EBTBA terms originate from the
∞∑

Q′=1

log(1 + YQ′) ⋆ KQ′Q

sl(2) term by exploiting the following large u

expansion of the kernel: KQ′Q

sl(2)(t, u) = − 1
π

dp̃Q′

dt
log |u|+O(1).
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and expanding all terms for large Q one gets:

E(Q) ≃ −16g

2π
ξ Q3−4L−4EBTBA

∞∫

0

ds
s2

(s2 + 1
g2
)2L+1+2EBTBA

(1 + . . . ) ∝ Q3−4L−4EBTBA ,

(4.25)

where the dots stand for subleading corrections in Q. The sum of the energy formula is

convergent only if the energy satisfies the inequality as follows:

4L− 3 + 4EBTBA > 1 ⇔ EBTBA > Ecr ≡ 1− L . (4.26)

This formula gives the lower bound for EBTBA, which is stronger than the bound given

in (4.21).

This result is valid for L > 1. At L = 1 the asymptotic solution is not trustable even

at weak coupling, as can be seen by the divergent Lüscher correction (3.36). Concerning

the L = 1 state, it is not clear if either the BTBA equations (4.5)–(4.13) must be modified,

or if there exists another BTBA solution, whose small g expansion is different from that of

the asymptotic Y-functions given by (3.23), (3.26).

Finally we argue that the lower bound (4.26) can never be saturated. This follows

from (4.16). If the energy reached the lower bound, the l.h.s. of (4.16) would take finite

values, i.e. 1−L. On the other hand the sum on the r.h.s. of (4.16) would tend to infinity

which leads to a contradiction. Thus we conclude that the BTBA description of the system

breaks down and needs to be modified — if it is possible at all — even before the energy

would reach the lower bound given in (4.26).

The numerical results presented in the next section show that the critical energy is

reached at finite values of the coupling constant. This prevents us from extending our

BTBA solutions to the strong coupling region and extracting the large-coupling behavior

of the ground state energy.

Our argument concerning the lower bound of the energy is applicable to any other

TBA systems containing the dressing kernel. It becomes particularly important if non-

BPS ground states are investigated. There the standard derivation of the TBA equations

is valid, which guarantees the positivity of the Y-functions and so the negativity of the

ground state energy.

4.3 Numerical results

We solved the BTBA equations for the Y Ȳ ground state numerically for various (g, L) and

computed the BTBA energy by using the methods explained in appendix G. Our numerical

results are presented in appendix G.4 and figure 4, which we now explain in detail.

The left figure shows that the BTBA energy for the states with L = 3
2 , 2,

5
2 , 3. We

examined half-integer values of L to study how the energy depends on L, although they

do not correspond to the determinant-like operator (2.4) with W = ZL or V = ZL. One

sees that the energy loses precision at some critical value gcr of the coupling, as indicated

by huge error bars spreading out toward EBTBA = −∞. The right figure shows a plot of

gcr as a function of L. A linear fit is also drawn under the assumption that gcr = 0 for the

L = 1 state, because the Lüscher energy at L = 1 diverges logarithmically.
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L=1.5
L=2.0
L=2.5
L=3.0

1 2 3 4 5
g
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-1.0

-0.5

EBTBA

Apparently singular

0 1 2 3 4 5
g

1.5

2.0

2.5

3.0
L

Figure 4. The exact energy EBTBA(g) of the Y Ȳ ground state with various L (left) and the phase

diagram (right). The thick lines in the left figure represent the numerical data including error bars,

the dashed lines the Lüscher energy, and the dotted lines Ecr = 1 − L. The blue, purple, green,

brown curves correspond to L = 3
2 , 2,

5
2 , 3, respectively. The straight line in the right figure is

L(fit)(gcr) = 1 + 0.42 gcr.

The data points and the error bars of the left figure are computed in the following

way. Once we obtained a numerical solution of the BTBA for each (g, L), we calculate the

BTBA energy by

E
(data)
BTBA = −

Qmax∑

Q=1

∫ ∞

0

dv

2π

dp̃Q
dv

log(1+YQ(v))−
100∑

Q=Qmax+1

∫ ∞

0

dv

2π

dp̃Q
dv

log(1+Y •
Q(v)), (4.27)

with Qmax = 6, instead of (4.16). Here we truncate the YQ functions at Q = Qmax

to obtain a numerical solution of BTBA. Unfortunately, the truncation can induce large

errors particularly around the critical point EBTBA & Ecr .

To estimate the order of truncation errors, we extrapolate the energy integrals EQ

using the large Q behavior (4.25). The extrapolation function is given by

E(fit)(Q) =

(
Qmax

Q

)4L+4E
(fit)
BTBA(Q)−3

E(Qmax), (4.28)

where the extrapolated BTBA energy is given by

E
(fit)
BTBA(Qmax + 1) =

Qmax∑

Q=1

E(Q) +E(fit)(Qmax + 1)−
100∑

Q=Qmax+2

∫ ∞

0

dv

2π

dp̃Q
dv

log(1 + Y •
Q(v)).

(4.29)

We solve these two equations simultaneously to determine E(fit)(Qmax + 1) and

E
(fit)
BTBA(Qmax+1). By repeating this procedure we obtain E

(fit)
BTBA(Qmax = 100). It turns out

δEBTBA ≡ E
(data)
BTBA − E

(fit)
BTBA(Qmax = 100) > 0, for any (g, L). (4.30)

The upper edge of the error bars in the left of figure 4 represents E
(data)
BTBA, and the lower edge

represents E
(fit)
BTBA(Qmax = 100). The right edge of the error bars in the right of figure 4

– 23 –



J
H
E
P
0
3
(
2
0
1
4
)
0
5
5

represents the value of g at which E
(data)
BTBA ≃ Ecr , and the left edge represents the value of

g where E
(fit)
BTBA(Qmax = 100) ≃ Ecr .

5 Summary and discussion

We have studied the scaling dimension of determinant-like operators which corresponds

to the energy of an open string stretching between giant graviton branes from different

points of view: gauge theory perturbation, boundary asymptotic Bethe Ansatz, bound-

ary Lüscher formula and boundary TBA equations. At weak coupling we computed the

Lüscher corrections to the dimension of general Y Ȳ states. For the Y Ȳ ground state we

identified Feynman diagrams which reproduce the Lüscher corrections. At general coupling

we studied the dimension of the Y Ȳ ground state by proposing boundary TBA equations

and solving them numerically.

We have shown analytically that the ground state energy of TBA have an L dependent

lower bound called critical energy Ecr = 1−L. This is actually the point where the physical

energy of the open string reaches zero. To see this, let us compare the total dimension

of the state in gauge theory, ∆total to the total energy in string theory, Etotal. In gauge

theory, the Y Ȳ operator (2.4) is constructed by removing one Y and one Ȳ from the

determinant and inserting W and V , which means that the total dimension is given by

∆total = 2N − 2 + dimW + dimV . In string theory, we measure the energy of a pair of

open strings ending on the Y Ȳ branes. Since the open strings do not lower the energy of

D-branes, the total energy of this system is Etotal = 2N +Eopen +E′
open . Therefore, when

W = ZL, the physical energy of the open string is

Eopen = E(0)
open + EBTBA[W] = L− 1 + EBTBA(L), (5.1)

which is equal to zero at the critical point.

Our numerical studies show that the critical energy is reached at a finite value of the

coupling constant gcr and beyond the critical point our TBA description breaks down. At

the critical point the open string energy becomes zero, so one can think that this is the

transition point, where the energy square of the ground state changes sign and the energy

becomes complex. The existence of this behaviour for determinant-like Y Ȳ operators is

very natural from the AdS/CFT point of view. We expect that these determinant-like

operators are dual to the open tachyons between Y = 0 and Ȳ = 0 branes in string theory,

and the energy of an open tachyon is not real. Thus, there must be a value of the coupling

constant at which the BTBA solution exhibits an exotic behavior, making EBTBA(g) from

real to complex valued. This interpretation of the critical point explains the break down of

the TBA description: our TBA equations by construction can account only for real values

of the energy, so it should not describe complex energies.

The emergence of tachyonic instability depends on the value of L. Indeed all wrapping

corrections are exponentially small at any coupling if L is sufficiently large, showing that

the angular momentum L of an open string controls the stability of the D-D̄ system in

AdS5 × S5. We can compare this situation with tachyons in flat spacetime. If we add an

excitation to the tachyonic ground state of an open string in flat spacetime or separate
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the D-D̄ branes far enough, the resulting state is usually no longer tachyonic. In curved

spacetime we expect an excitation to still remove the tachyon. From our results we infer

that also adding enough R-charge to the ground state makes it no longer tachyonic.

There are many interesting open problems: analytic continuation of the BTBA solution

beyond the critical coupling is certainly one of them, which should be tackled in the future.

Further study on the spectrum of an open string ending on Y Ȳ branes from string theory

is also called for.

On top of that, the divergence of the L = 1 state is another challenging problem.

On one hand, once the precise determinant-like operator is constructed, its dimension

must be finite in perturbation theory of N = 4 SYM. On the other hand the BTBA

description based on the Lüscher Y-functions gives an unreasonable value of the energy, as

commonly found in the non-BPS state with small L [37–40]. We would like to conjecture

that this divergence in the Y Ȳ system and the breakdown of BTBA at L > 1 are the same

phenomena like a manifestation of the tachyon, and that only for L = 1 this breakdown

happens already at λ = 0.

Acknowledgments

Z.B., N.D. and R.N. thank the Israel Institute for Advanced Study, where this collaboration

was initiated, for its lovely hospitality and financial support.

N.D. also thanks the hospitality and financial support of the University of Hamburg

and the DESY Theory Group through SFB 676, the Tokyo University Kavli IPMU and

Komaba particle theory group, Nagoya University and the Hungarian Academy of Sciences.

The research of N.D. is underwritten by an advanced fellowship of the Science & Technology

Facilities Council and by STFC grant number ST/J002798/1.

C.S. thanks the Hungarian Academy of Sciences for hospitality and financial sup-

port. The work of C.S. is supported by Deutsche Forschungsgemeinschaft (DFG), Sonder-

forschungsbereich SFB 647 Raum-Zeit-Materie. Analytische und Geometrische Strukturen.
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A Notation

A.1 Notation for section 3

The notation of the paper [43] is used in section 3 and appendices D, E, namely

g =

√
λ

4π
, f± = f̄

(
v± i

2

)
, x(v) =

v

2g
+ i

√

1− v2

4g2
, xs(u) =

u

2g
+

√
u

2g
− 1

√
u

2g
+ 1 .

(A.1)

The rapidity v (or u) and the momentum p are defined by

v

g
= x+

1

x
, eip =

x+

x−
, (A.2)

and the mirror energy is given by x[+Q]

x[−Q] = eǫ̃Q . In addition, the variable q is defined

in (3.32). We use the shift operator

Df(u) = f

(
u− i

2

)
D =: f−D. (A.3)

In the integrable description, generic states are specified byM momenta {p1 , . . . , pM},
m1 type 1 fermionic roots {y1 , . . . , ym1} and m2 type 2 bosonic roots {µ̃1 , . . . , µ̃m2}. The
eigenvalue of the double-row transfer matrices can be expressed by the following functions:

R(±) =
M∏

i=1

(
x(p)−x∓(pi)

) (
x(p)+x±(pi)

)
, B(±) =

M∏

i=1

(
1

x(p)
−x∓(pi)

)(
1

x(p)
+x±(pi)

)
,

B1R3 =

m1∏

j=1

(x(p)−yj) (x(p)+yj) , R1B3 =

m1∏

j=1

(
1

x(p)
−yj
)(

1

x(p)
+yj

)
, (A.4)

Q(u) =
M∏

i=1

(u− ui)(u+ ui), Q2(u) =

m2∏

l=1

(u− µ̃l)(u+ µ̃l),

with x±i = xs(pi).

A.2 Notation for section 4

In section 4 and appendices F, G, we start using another notation commonly used in the

TBA equations AdS5 × S5 (e.g. [54]),

g =

√
λ

2π
, f± = f

(
v ± i

g

)
, x(v) =

v − i
√
4− v2

2
, (A.5)

which enables the direct comparison with the literature. It should be kept in mind that

the finite-size corrections are computed using the mirror region in (A.5) or the anti-mirror

region in (A.1) for the respective notations. The two conventions are related by the ±-flip,

x± → x∓, and

ḡ =
g

2
, v̄ =

g

2
v , x̄ = x , x̄(v̄ = 2ḡ) = x(v = 2) = 1, (A.6)

where we write a bar on the variables of the notation (A.1).
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The Y-functions are labeled in different ways between two sections as

YQ = YQ,0 , Y− = −1/Y1,1 , Y+ = −Y2,2 , YQ|vw = 1/YQ+1,1 , YQ|w = Y1,Q+1 .

(A.7)

We may assume the left-right symmetry Ya,s = Ya,−s for the states of our concern.

B Boundary and wrapping interactions

We consider here the index structures arising from the partial contraction of the Y and Ȳ

fields in the determinants leaving behind one or two pairs which give the boundary and

wrapping interactions.

B.1 Boundary interactions

The first boundary interactions involve just one pair of Y and Ȳ . To evaluate it we need

to know the contraction of only N − 2 indices from each determinant

ǫa1···aN ǫb′1···b′N δ
b′2
a2 · · · δ

b′N−1
aN−1 = (N − 2)! ǫa1aN

b′1b
′
N

, ǫa1aN
b′1b

′
N

= δa1
b′1
δaN
b′
N

− δa1
b′
N

δaN
b′1
. (B.1)

If we take Y (0) and Ȳ (x) we get a combinatorial factor of (N − 1)2 from choosing the two

fields and the resulting expression is

(N − 1)!6

(N − 1)
ǫa1aN
b′1b

′
N

δcN
d′
N

ǫ
a′1a

′
N

b1bN
δ
c′N
dN

〈
Y (0)b1a1W(0)dNaNV(0)

bN
cN
Ȳ (x)

b′1
a′1
V̄ ′(x)

d′N
a′
N

W̄ ′(x)
b′N
c′
N

〉

=
(N − 1)!6

(N − 1)
ǫa1aN
b′1b

′
N

ǫ
a′1a

′
N

b1bN

〈
Y (0)b1a1(V(0)V̄ ′(x))bN

a′
N

Ȳ (x)
b′1
a′1
(W̄ ′(x)W(0))

b′N
aN

〉

=
(N − 1)!6

(N − 1)

[〈
Tr[V(0)V̄ ′(x)] Tr[W(0)W̄ ′(x)] Tr[Y (0)Ȳ (x)]

〉

−
〈
Tr[Ȳ (x)V(0)V̄ ′(x)Y (0)] Tr[W(0)W̄ ′(x)]

〉

−
〈
Tr[V(0)V̄ ′(x)] Tr[Y (0)W̄ ′(x)W(0)Ȳ (x)]

〉

+
〈
Tr[V(0)V̄ ′(x)Y (0)W̄ ′(x)W(0)Ȳ (x)]

〉]
.

(B.2)

These terms come with different powers of N . In the large N limit the interactions factorize

to the individual traces in the product. When contracting Y (0) and Ȳ (x) with free prop-

agators, the first term in brackets scales like NL+L′+4, the second and third like NL+L′+3,

and the last one like NL+L′+2. The first seems to dominate, but the combinatorics assumed

that Tr[Y (0)Ȳ (x)] interacts with one of the other traces, otherwise it was accounted for

already in (2.7) (and gets multiplied by the factor (N−1)−1). We should therefore consider

only graphs with interactions that involve the distinguished Y (0) and Ȳ (x) and some fields

in the adjoint words. In this case, the first term will involve connected graphs, which do

not give additional powers of N , similar to the last term. In the second and third term,

however, these interactions generate planar contributions at leading order in N .

The second and third terms on the r.h.s. of (B.2) give an interaction on one side of V(0)
and on one side of W(0). The interaction with Ȳ (0) and Y (x) will lead to the interaction
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on the other sides of these open spin-chains. Each of these terms is identical to some of

those which arise when considering a single word inside the usual Y = 0 brane. Similar

terms with Y ↔ Ȳ and the interaction at the other end of the words are identical to the

case of the Ȳ = 0 brane. This ensures that the one loop boundary interaction is the same

as in those cases, which with the appropriate projections on the two sides of the open

spin-chain leading to (2.8).

B.2 Wrapping corrections

Wrapping graphs come from the interaction of one of the words, like W with Y on one

side and Ȳ on the other. The leading wrapping corrections will arise by choosing one Y (0)

and one Ȳ (0) from each operator and requiring that they all interact with either W or V .
With two copies of (B.1) we get the index soup12

(N−1)!6

(N−1)2
ǫa1aN

b′
1
b′
N

ǫc1cN
d′

1
d′

N

ǫ
a′

1
a′

N

b1bN
ǫ
c′
1
c′N

d1dN

〈
Y (0)b1a1

Ȳ (0)d1

c1
W(0)dN

aN
V(0)bNcN Ȳ (x)

b′
1

a′

1

Y (x)
d′

1

c′
1

V̄(x)d
′

N

a′

N

W̄(x)
b′N
c′
N

〉
.

(B.3)

There are 16 possible contractions arising from this expression. Focusing on the wrapping

corrections to W we take the free contractions of V and V̄ giving

(N − 1)!6NL′+1

(N − 1)2
ǫa1aN
b′1b

′
N

ǫ
c′1c

′
N

d1dN

〈
W(0)dNaN

(
Ȳ (x)Y (0)

)b′1
a1

W̄(x)
b′N
c′
N

(
Ȳ (0)Y (x)

)d1
c′1

〉
. (B.4)

The piece with the maximum number of traces is of the form

〈
Tr[Y (0)Ȳ (x)] Tr[Ȳ (0)Y (x)] Tr[W(0)W̄(x)]

〉
. (B.5)

The planar contractions of this expression will give another factor of NL+5, but the com-

binatorics assume that there are interactions between all Y and Ȳ (otherwise we have to

multiply the whole expression by (N − 1)−2 and recover (2.7) again). The connected cor-

relator 〈Tr[Y (0)Ȳ (x)] Tr[Ȳ (0)Y (x)]〉 is independent of both W and V . Such contractions

arise also in the absence of the insertions and lead to a mixing of the determinant opera-

tors themselves through the action of the full non-planar dilatation operator [55] starting

at 1-loop. As mentioned in the main text, the mixing problem for such determinant-like

operators with a total of 2N fields, half Y and half Ȳ has not been solved and we will

ignore this interaction term, which is not directly related to the insertions W and V .
The leading wrapping correction comes from the single trace term in (B.4), which leads

to (2.9).

12Other graphs of the same order (or lower) will involve interactions of two Y s taken from one operator

and two Ȳ s from the other. These will not lead to wrapping effects, as they will all sit on one side of W or

V and will not lift the energy of the vacuum.
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C Solution of the integrals

The loop integrals for the wrapping corrections are obtained by unifying in figures 1 and 3

all fields Y (0), Ȳ (0) and Z(0) at the space-time point 0 and regarding the fields Y (x),

Y (x) and Z̄(x) as external. This means, one removes the composite operator at x and the

propagators that are connected to it and thus obtains the integral I2L, which for generic

L ≥ 2 is shown on the right in figure 3. Since I2L has an overall UV divergence, it

contributes to the renormalization of the composite operator. The divergence has to be

absorbed into the renormalization constant Z, which contains the negative of the sum of

the UV divergencies of the diagrams. The anomalous dimension is determined by this

constant, which is a matrix if mixing with other operators has to be taken into account.

Here, i.e. in a CFT and for gauge invariant operators, the anomalous dimension is extracted

as δ∆ = 2ελ∂λ lnZ. Consistency of renormalization requires that lnZ is free of higher-

order ε-poles.

For L = 1 the two-loop integral I2 that is found from figure 1 and its overall UV

divergence I2 read

I2 = , I2 = KR[I2] = K[I2 −K[I1]I1] =
λ2

(4π)4

(
− 1

2ε2
+

1

2ε

)
, (C.1)

where in D = 4− 2ε dimensions the operator K extracts the poles in ε, while R subtracts

the one-loop subdivergence. The subdivergence is given by the simple one-loop integral

I1 built from two propagators, which has an overall UV divergence K[I1] =
λ

(4π)2ε
. In the

expression for the overall UV divergence I2 in (C.1) the presence of the subdivergence is

indicated by the occurrence of a quadratic ε-pole. If Z contains no one-loop contribution,

then this subdivergence is in contradiction with the consistency requirement that lnZ is free

of higher order ε-poles. Hence, the L = 1 state must either have a one-loop divergence, e.g.

by mixing with other states, or at two-loops there must be further diagrams which cancel

the quadratic ε-pole or even the entire contribution from the diagram in figure 1. Such a

one-loop mixing or additional two-loop contributions could e.g. be related to the fact that

the considered gauge theory state admits interactions of the Y and Ȳ fields at large N . As

mentioned in the main text, this state is not known and it is possible that for this state

lnZ is free of higher order ε-poles.

For generic L ≥ 2, the integrals are given by the second of the figures 3. They are free

of subdivergences and a unifying expression can be found for its pole parts, giving them

as a function of L.13 Our conjecture together with analytical and numerical data and the

discussion with one of the authors led to [26], in which a map also of these integrals to the

zig-zag integrals IZn with n loops was presented. A conjecture for the pole parts of IZn

was made almost 20 years ago [35] and it was proven recently in [36]. In our conventions,

13For other examples of such integrals see e.g. [56] and [57].
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the result of [35, 36] reads

IZn =

1
2 n−1

,

IZn = K[IZn ] =
λn

(4π)2nε

4

n2

(
2n− 2

n− 1

)(
1− 1

2n− 3
(1− (−1)n)

)
ζ(2n− 3) .

(C.2)

In the following, we will summarize in brief the argument presented in [26], i.e. the

mapping of the integrals in figure 3 to the zig-zag integrals. We set n = L − 1 ≥ 2 such

that the respective loop integral contains 2L = 2n+2 loops and consider the dual graph14

I2n+2 =

1 2 ... n

=

1 ... n−1

. (C.3)

Note that in the following we understand equal signs as equalities only of the overall

divergencies on both sides. For n = 1 the pole part is directly given by the one of the

4-loop zig-zag integral I4 = IZ4 . For n = 2 we see that the dual diagram is the zig-zag

integral, and hence we find I6 = IZ6 .

For n ≥ 3, following [26], we add a vertex at ∞, and connect it with propagators

to the three-valent vertices such that the integral becomes conformally invariant. This

involves adding a line of negative weight between the two (n + 3)-valent vertices at zero

and infinity. Then, we apply the twist identity of [58] as follows: first, we identify four

vertices subject to the condition that the integral decomposes into two disconnected pieces

when these points are erased. Moreover, these vertices should not be connected each by

one propagator only to a common further vertex. The selected vertices will be depicted

in blue. Then, we add auxiliary lines connecting the four chosen vertices in a particular

way [26]. They form two sets of paired lines as will be indicated by using different colors

for them. In a next step, all lines which belong to the left part of the diagram and enter

the chosen points are rearranged: their endpoints are permuted among the upper and

lower two pairs of selected points. This may lead to vertices that are no longer four-valent

and hence conformal invariance appears to be broken. It is, however, restored in the next

step where the paired auxiliary lines come into play: propagators running parallel to the

auxiliary lines can be shifted to run along the respective paired auxiliary lines, thereby

ensuring that the vertices become again four-valent. One step of applying this procedure,

14Taking the dual means going from the coordinate-space to the momentum-space representation of the

diagram.
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i.e. the twist identity of [58], can be visualized as follows

k−n+1z2k−2 k ... n−1 = k−n+1z2k−2 k ... n−1

= k−n+2k+1 ... n−1z2k−2 = k−n+2z2k k+1 ... n−1 ,

(C.4)

where the subgraph z2k is obtained from z2k−2 as follows

z0 = , z2k = z2k−2 , (C.5)

i.e. z2k is given by a zig-zag line with 2k+1 triangles. The above procedure can be applied

n− 2 times. After the last step, we obtain

I2n+2 = z2n−4 = z2n−4 = z2n = IZ2n+2 , (C.6)

where in the second step we have removed the vertex at ∞ in the conformally invariant

integral. Then, the remaining four triangles extend the zig-zag line z2n−4 with 2n − 3

triangles to a zig-zag line z2n with 2n + 1 triangles. The upper horizontal propagator

connects the two two-valent vertices of this zig-zag line such that one obtains the zig-zag

integral IZ2n+2 with the known overall UV-divergence given in (C.2). Note that the result

also extends to n = 1.
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D One-particle Lüscher correction

In order to provide further support for the correctness of the asymptotic Y-functions ob-

tained from the generating functional, we compute in this appendix the Lüscher correction

for the 11̇ particle reflecting between the Y Ȳ boundaries in two different ways: first from

the Y-functions obtained by using the generating functional, and second by appropriately

modifying the “direct” Lüscher computation done for the Y Y case in [50]. These two

computations should give identical results, and it is shown below that this is indeed the

case.

We start by solving the boundary Bethe-Yang equations determining the momentum

of the reflecting particles

1 = e−2ipL
R
+
Ȳ
(−p)R−

Y (p) , (D.1)

where R
+
Ȳ
(p) and R

−
Y (p) are given by eqs. (3.2), (3.3), (3.6). Using them in eq. (D.1) gives

1 = e−2ip(L+1)σ(p,−p)2 (D.2)

for the 11̇ particle (in fact for all the bosonic ones i.e. for 12̇ 21̇ 22̇ 33̇ 34̇ etc.), while for

the fermionic ones (13̇ 31̇ 23̇ 32̇ 24̇ etc.)

1 = −e−2ip(L+1)σ(p,−p)2 (D.3)

is obtained. Therefore, in the weak coupling limit

pn =
π

L+ 1
n for bosons , pn =

π

L+ 1

(
n+

1

2

)
for fermions , n = 1, . . . , L .

(D.4)

Note that this is consistent with supersymmetry being broken.

For the computation using the Ya,0 functions, one can repeat the same steps taken

for the Y Y case. Since S0(p, p1) is the same as for the Y Y case, eventually the complete

normalization becomes (see eqs. (4.9-4.11) of [43])

fa,1 =

(
z[−a]

z[a]

)2
u[−a]

u[a]
Q[a−1]Q[1−a]

Q[a+1]Q[−1−a]
≃
(

4g2

q2 + a2

)2
q − ia

q + ia

Q[a−1]Q[1−a]

Q[a+1]Q[−1−a]
. (D.5)

From the weak coupling limit of (3.19) we find for the eigenvalue of the double-row transfer

matrix (3.19)

Ta,1 = (−1)a
aqP (q, a, u(p))

4(q − ia)Q[a−1]Q[1−a]
, (D.6)

where

P (q, a, u) = (−3 + q4 + 2a2 − 8u2 + 2q2(−1 + a2 − 4u2) + (a2 + 4u2)2) . (D.7)

Thus

Ya,0 ≃ fa,1 T
2
a,1 e

−2ǫ̃aL = g4
a2q2P 2(q, a, u(p))

(q2 + a2)3Q[a+1]Q[−1−a]Q[a−1]Q[1−a]

(
4g2

q2 + a2

)2L

, (D.8)
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and we can compute the leading weak coupling correction to the energy of the 11̇ particle as

∆E(L) = −
∞∑

a=1

∞∫

0

dq

2π
Ya,0 =

−i
2

∞∑

a=1

ResYa,0. (D.9)

As for the “direct” Lüscher computation, recall that the approach in [50] works directly

in the mirror theory where — using the boundary state formalism — this contribution can

be depicted as

∆E(L) =
∑

a

∫ ∞

0

dq

2π
K

l̄i(q)Sjbic (q, p)K̄jk̄(q)S
k̄c
l̄b (−q, p)e−2ǫ̃aL.

(D.10)

Here c refers to the particle type whose energy correction we are calculating (which, in the

present case, is 11̇), and the other indices run over (4a)2 components of the a-th atypical

representation of su(2|2)⊕ su(2|2). The boundary state amplitudes, Kl̄i for the Y = 0 and

K̄jk̄ for the Ȳ = 0, are related to the reflection factors (eq. (3.4)) by analytical continuation

K
ij(z(q)) = C

īi
R
j
ī
(ω2 − z(q)), where z(q) is the uniformization parameter on the rapidity

torus [59]. These boundary state amplitudes are the only ones in the whole computation

we have to change in the Y Ȳ case. Since both the bulk S-matrix and the boundary state

amplitudes factorize as S = S0 S ⊗ S and K = K0K ⊗ K, the energy correction can be

written as

∆E(L) = −
∑

a

∫ ∞

0

dq

2π
K0(q)S0(q, p)K̄0(q)S0(−q, p)

[
Tr
(
K̄(q)S(q, p)K(q)S(−q, p)

)]2
e−2ǫ̃aL .

(D.11)

In this expression we have to change only the matrix part compared to [50] when making

the summation over the bound state polarizations. Decomposing the 4a dimensional bound

state representation 4a = (a+1)+(a− 1)+a+a as in [50], the non-vanishing components

of the boundary state amplitudes that correspond to the Y Ȳ boundaries are

K11
j,a−j = K̄11

j,a−j = (−1)j , K22
j,a−2−j = K̄22

j,a−2−j = −(−1)j ,

K34
j,a−1−j = K̄34

j,a−1−j = −i(−1)je−ǫ̃a/2 , K43
j,a−1−j = K̄43

j,a−1−j = −i(−1)jeǫ̃a/2 . (D.12)

Substituting these into the sums over the bound state polarizations given in [50] leads to

Tr
(
K̄(q)S(q, p)K(q)S(−q, p)

)
= − aP (q, a, u(p))

(q+2u(p)+i(a−1))(i(a−1)−q+2u(p))(2u(p)+i)2
.

(D.13)
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Using this together with the fact that K̄0(q)K0(q) ≡ R0(z(q)− ω2
2 )R0(−z(q)− ω2

2 ) in place

of eq. (3.35) and the explicit form of S0(q, p) given in [50]

S0(q, p) =
(2u(p) + i)2(2u(p)− q + i(a− 1))

(2u(p)− q − i(a+ 1))(2u(p)− q − i(a− 1))(2u(p)− q + i(a+ 1))
+O(g2),

we find that the expression (D.11) exactly reproduces the integrand, Ya,0, of the previous

computation (D.8).

For completeness we list here the first few cases of leading Lüscher corrections computed

from eq. (D.9)

L = 1, p =
π

2
: ∆E = 23g8 (4ζ(3)− 5ζ(5)) , (D.14)

L = 2, p =
π

3
: ∆E = −27g12 · 3

8
ζ(5) , (D.15)

L = 2, p =
2π

3
: ∆E = 27g12

(
81

8
ζ(5)− 21

2
ζ(9)

)
, (D.16)

L = 3, p =
π

2
: ∆E = 211g16

(
−15

16
ζ(7) +

165

64
ζ(11)− 429

256
ζ(13)

)
. (D.17)

E Generating function in the rotated case

In this appendix we analyze the generating functional for the vacuum state with generic

angle (E.5).

We now calculate the asymptotic solution of the T-system (3.24) in the rotated case

from the already explicitly calculated anti-symmetric transfer matrix eigenvalues:

Ta,1 = (−1)a
4au

u[−a]
sin2 θ . (E.1)

Choosing the same boundary condition we had before T0,s = Ta,0 = 1, we can easily find

T2,s = Ts,2 =
16u[s]u[−s]

u[−s+1]u[−s−1]
sin4 θ, (s ≥ 2). (E.2)

The expression for the symmetric transfer matrix eigenvalues has a complicated form (cf.

eq. (3.26)):

T1,s = 2(−1)s

[
a0,s

(
1 +

u[s]

u[−s]

)
+ 2

s−1∑

k=1

ak,su
[s]

u[s−2k]

]
, (E.3)

where

a0,s =
s−1∑

k=0

(−1)k
(
s− 1

k

)(
s+ k

s

)
cos2k θ sin2 θ (s > 0) , al,s = as−l,s = a0,la0,s−l ,

(E.4)

and a0,0 = 1

Remarkably, these transfer matrices can be generated from the following generating

functional

Wsu(2) = F

(
Du

+

u−
D
)−1 (

1−Du
+

u−
D
) (

1−D2
)
F
(
D2
)−1

=
∞∑

s=0

DsT1,sDs , (E.5)
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where F (z) is given by

F (z) =
√
1− 2 cos(2θ)z + z2 . (E.6)

Evidently F (z) can also be written as

F (z) =
√

(1− ei2θz)(1− e−i2θz) , (E.7)

which is a simple deformation of 1 − z. Indeed, for θ = 0, the vacuum generating func-

tional (E.5) reduces to W = 1 (i.e., T1,s = 0 for all s > 0, which is consistent with the

supersymmetry of the Y Y system); while for θ = π/2, F (z) = 1 + z and therefore (E.5)

reduces to the Y Ȳ generating functional (3.25).

We now verify that the inverse of this generating functional reproduces our previous

result (E.1) for the transfer matrix eigenvalues for anti-symmetric representations:

W−1
su(2) = F

(
D2
) (

1−D2
)−1

(
1−Du

+

u−
D
)−1

F

(
Du

+

u−
D
)

=
∞∑

a=0

(−1)aDaTa,1Da . (E.8)

To this end, we expand F (z) in powers of z:

F (z) =
∞∑

n=0

αnz
n . (E.9)

By expanding the inverse operators, we can write

W−1
su(2) =

∞∑

n=0

αnD2n
∞∑

k=0

Dk (k + 1)u

u[−k]
Dk

∞∑

m=0

αmDm u[m]

u[−m]
Dm

=

∞∑

n,m,k=0

αnαm(k + 1)Dn+m+k u[m−n]

u[−n−m−k]
Dn+m+k .

(E.10)

Comparing with (E.8), we can read off the following transfer matrix eigenvalues

Ta,1 = (−1)a
2u

u[−a]

a∑

n=0

a−n∑

m=0

αnαm(a+ 1− n−m) = (−1)a sin2 θ
4au

u[−a]
, (E.11)

which coincides with our previous result (E.1). In passing to the last line we used that

s(θ) ≡ 2
a∑

n=0

a−n∑

m=0

αnαm(a+ 1− n−m) = − lim
x→1

PP
d

dx

( ∞∑

n=0

∞∑

m=0

αnαmx
n+m−a−1

)

= − lim
x→1

PP
d

dx
((1− 2 cos(2θ)x+ x2)x−a−1)

= − lim
x→1

d

dx
(x−a−1 − 2 cos(2θ)x−a + x−a+1) = 4a sin2 θ ,

(E.12)

where PP denotes the principal part of the Laurent series, i.e. terms with negative powers

of x.
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The generating functional can be rewritten in the following form.

W−1 ≡ W−1
su(2) =

(
1−D2

)−1
g
(
D2
)
g̃

(
Du

+

u−
D
)(

1−Du
+

u−
D
)−1

=
∞∑

a=0

(−1)aDaTa,1(θ)Da .

(E.13)

We conjecture that this quantity is equal to the ‘dual’ generating functional in the sl(2)

grading, W−1 = W−1
sl(2) , just as in the Y Y case (see appendix C of [43]).

We calculate the middle gg̃ term as

g(D2)g̃(Du
+

u−
D) = (1−D2)W−1(1−Du

+

u−
D) (E.14)

We now use the relation between the generic θ case and the θ = π/2 case:

Ta,1(θ) = sin2 θ Ta,1(π/2) , a > 0 , (E.15)

which implies that

W−1(θ)−1 =
∞∑

a=1

(−1)aDaTa,1(θ)Da = sin2 θ
∞∑

a=1

(−1)aDaTa,1(π/2)Da = sin2 θ
[
W−1(π/2)−1

]
.

(E.16)

Substituting this result for W−1(θ) into (E.14), and recalling that W−1(π2 ) is given by the

inverse of (3.25), we obtain

g
(
D2
)
g̃

(
Du

+

u−
D
)

=
(
1−D2

) [
cos2 θ + sin2 θ

(
1 +D2

) (
1−D2

)−1

×
(
1−Du

+

u−
D
)−1(

1 +Du
+

u−
D
)](

1−Du
+

u−
D
)

= cos2 θ

[(
1−D2

)(
1−Du

+

u−
D
)]

+ sin2 θ

[(
1 +D2

)(
1 +Du

+

u−
D
)]

= 1− cos(2θ)D
(
1 +

u+

u−

)
D +D2Du

+

u−
D .

(E.17)

Clearly the square roots have disappeared. This function can be written as (1−D2A)(1−
A−1D u+

u−D) where A is the solution of the following equation

A− +
1

A+

u+

u−
= cos(2θ)

(
1 +

u+

u−

)
. (E.18)

Although we have not managed to find its solution for general angle, explicit solutions can

be obtained at special values of θ, such as

A
(
u, θ =

π

4

)
= α

Γ
(
− iu

2

)
Γ
(
1
2 + iu

2

)

Γ
(
iu
2

)
Γ
(
1
2 − iu

2

) , α+α− = 1, (E.19)

or

A(u, θ) = 1 +
iθ

u
− 2

(
1− r(u)

4u2

)
θ2 +O(θ3),

r(u) =
u

2i

(
3 + 8iu+

u2

2
+ 4Φ (−1, 1, 2− 2iu)− 4ψ (2− 2iu)

)
,

(E.20)
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where ψ is the digamma function and Φ(−1, 1, x) ≡ ∑∞
k=0(−1)k/(k + x) is the Lerch

transcendent.

We expect the generating functional for states in the sl(2) sector to be of the form:

W−1
sl(2) =

(
1−D2R

(−)

R(+)

)−1[
1−cos(2θ)D

(
1+

u+

u−

)
D+D2Du

+

u−
D
](

1−B(+)

B(−)
Du

+

u−
D
)−1

.

(E.21)

F The large Q behavior of YQ

In this appendix the large Q behavior of the YQ functions is determined. As a first step the

large m behavior of the Ym|vw functions is investigated with the help of (4.5). For large m

the factor (1 + Ym) becomes unity and Ym±1|vw ≃ Ym|vw substitution can be done. Thus

for lager m at leading order Ym|vw satisfies the equation:

Ym|vw = τ2 exp
[
2 log(1 + Ym|vw) ⋆ s

]
, (F.1)

such that the large u asymptotics is given by:

lim
u→∞

Ym|vw(u) = m2

(
1 +O(

1

m
)

)
.

The solution of this equation modulo 1
m corrections is given by the asymptotic Y ◦

m|vw

functions. Thus for large index Ym|vw tend to its asymptotic counterpart.

Now we can turn to investigate the large Q behavior of the “massive” YQ functions.

The relevant equation to be studied is (4.9). For our considerations it is worth to convert

it into its Y -system form:

Y +
Q Y −

Q

YQ−1 YQ+1
=

(
1 + 1

YQ−1|vw

)2

(1 + YQ−1) (1 + YQ+1)
. (F.2)

In the large Q limit it becomes:

Y +
Q Y −

Q

YQ−1 YQ+1
=

(
1 +

1

Y ◦
Q−1|vw

)2

. (F.3)

Now, that solution of (F.3) should be found which has the properties as follows:

• The structure and positions of the local singularities within the fundamental strip15

are the same as those of the asymptotic counterpart Y •
Q.

• The large u behavior of the solution is given by (4.20).

15Here the fundamental strip means 1/g ≤ Imu ≤ 1/g.
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To satisfy the first requirement and solve the nontrivial part of the Y -system equation, we

search the solution of (F.3) in the form: YQ = σQ Y
•
Q, where σQ is introduced to connect

the different large u behavior of the exact and asymptotic YQs. Then it follows that σQ
must be a zero mode of the l.h.s. of (F.3):

σ+Q σ
−
Q

σQ−1 σQ+1
= 1, (F.4)

with the properties as follows:

• The large u asymptotics is governed by the energy: σQ(u) = ξ u−4EBTBA (1 + . . . ).

• σQ is real and even function.

• σQ has no zeroes or poles in the fundamental strip.

Thus σQ can be represented as a product of left and right mover modes:

σQ(u) = ξ f
(
u+

iQ

g

)
f̄
(
u− iQ

g

)
, (F.5)

where ξ is a real and coupling dependent constant, the function f has the large u

expansion:

f(u) = u−2EBTBA(1 + . . . ) with dots denoting negligible terms for large u and f̄ is the

complex conjugate of f . Putting everything together we get that the large Q behavior of

YQ is given by formula (4.23).

G Solving the Y Ȳ BTBA

The details of numerical computation which yielded the results in figure 4 will be given

below.

We want to solve the BTBA equations, which consist of a set of nonlinear integral

equations. It is convenient to divide the whole problem into two subproblems, nonlinear

root-finding and numerical integration. The nonlinear part of the problem is solved by

relaxed iteration, and the integration part by interpolation and extrapolation of the in-

tegrand. Our algorithms are implemented as Mathematica scripts which are executed by

CPU clusters.

For notational simplicity, we write the BTBA equations (4.5)–(4.13) as

L (Ya) = L (1± Yb) ⋆ Kba , (G.1)

where we introduce the symbol

L (1± Ya) = log
1± Ya
1± Y ◦

a

, L (Ya) = log
Ya
Y ◦
a

, (a 6= Q),

L (1 + YQ) = log(1 + YQ) , L (YQ) = log
YQ
Y •
Q

, (Y ◦
Q = 0). (G.2)
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In the first line we take the positive sign for bosonic Y’s and the negative sign for fermionic

Y’s.16 The normalized variables L (1 + Y ) have better analytic and numerical behavior

than log(1 + Y ).

G.1 Algorithm for nonlinear problems

Iteration is one of the simplest methods for nonlinear root-finding problems. We solve the

equation (G.1) by iteration of one-dimensional integrals as

L (Y (n+1)
a ) = Fa[Y

(n)
b ] ≡ L (1± Y

(n)
b ) ⋆ Kba . (G.3)

Y
(n)
a is close to the exact solution provided that the initial conditions Y

(0)
b are appropriate,

n is large enough, and that all eigenvalues of the linear infinite-dimensional integration

operator δFa/δYb stay nonzero and inside the unit circle during the iteration.

Slower iteration algorithms are generally more stable. If one wants to get a reasonable

solution from inexact initial data, a large number of iteration steps are needed. Relaxation

is an example of slower algorithms, and used to solve nonlinear integral equations in the

literature [60, 61]. In the relaxed iteration, instead of (G.3) we update the solution by

L (Y (n+1)
a ) = µ(n)L (Ỹ (n+1)

a ) + (1− µ(n))L (Y (n)
a ) , (G.4)

L (Ỹ (n+1)
a ) ≡ L (1± Y

(n)
b ) ⋆ Kba , (G.5)

where µ(n) > 0 is a relaxation parameter. For simplicity we choose the same relaxation

parameter for all Y-functions.

The updating rule (G.4) says Y (n+1) is related to Y (n), Y (n) to Y (n−1) and so on,

which is repeated until one reaches Y (0). However, the computation using recursively-

defined variables demands large memory. Thus we use the updating rule (G.4) only for the

first ρ steps, and use a truncated rule later on:

L (Y (n+1)
a ) = (1− µ(n))n+1

L (Y (0)
a ) + µ(n)

n∑

k=0

(1− µ(n))k L (Ỹ (n+1−k)
a ) (0 ≤ n ≤ ρ),

(G.6)

L (Y (n+1)
a ) = (1− µ(n))ρ L (Ỹ (n+1−ρ)

a ) + µ(n)
ρ−1∑

k=0

(1− µ(n))k L (Ỹ (n+1−k)
a ) (n ≥ ρ+ 1).

(G.7)

We used ρ = 4 or 5.

The Y-functions should be updated carefully in the beginning because they change a

lot after one step of iteration. This means that the relaxation parameter should be small.

In fact, when we plot the energy at each step of iteration, we find that the energy typically

increases for the first few steps, and then decreases monotonically. We used 0.1 ≤ µ ≤ 0.3

at the beginning of iteration, 0.3 ≤ µ ≤ 0.75 in later steps, depending on (g, L).

16The Y∓ functions appear also in the form of L (1 − 1/Y∓), which should be defined in accordance

with (G.2).
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G.2 Algorithm for integration

Our next problem is to evaluate the set of one-dimensional integrals (G.5). In numerical

analysis, one needs to approximate integrals by finite sums by choosing an appropriate

distribution of sampling points {t1 , t2 , . . . tNp}.
If one wants to achieve the best precision at a fixed number of sampling points Np , one

should look for the best distribution of sampling points {ti} for each integral. However,

since (G.5) consists of numerous one-dimensional integrals, it is impractical to construct

different sampling points {ti} for different integrals.

One solution is to choose different sampling points for different Y-functions. With this

method, we construct a fitting function L (Y
(fit)
b (t)) based on {ti} and use it to compute

the integrals (G.5). This method is similar to the one used in [28], and has the advantage

that we can easily keep track of the explicit shape of the Y-functions.

Let us explain our numerical integration scheme in detail. For each Yb at fixed (g, L)

we introduce a rapidity cutoffMb . Then we construct a piecewise continuous interpolation

function for t ≤Mb and an extrapolation function for t ≥Mb, and combine them together as

L (Y
(fit)
b (t)) =

{
L (Y

(in)
b (t))

∣∣∣ t ∈ [0,Mb]
}

∪
{

L (Y
(ex)
b (t))

∣∣∣ t ∈ (Mb ,+∞)
}
, (G.8)

and compute the integral L (1 + Y
(fit)
b ) ⋆ Kba(v) through

L (1± Y
(fit)
b (t)) = log

(
1± Y ◦

b (t) exp
[
L (Y

(fit)
b (t))

]

1± Y ◦
b (t)

)
. (G.9)

Recall that all Y-functions are even under the parity transformation t 7→ −t. As for Y∓
functions we only need the interpolation function for t ∈ [0, 2]. We also construct fitting

functions for some kernels in the hybrid BTBA equation (4.13), namely the dressing phase

kernel KΣ
Q′Q(t, v) and s ⋆ K

Q′−1, Q
vwx (t, v) to accelerate computation.

We used the third-order spline to obtain L (Y
(in)
b (t)) from the data points {Yb(ti)} for

ti ≤Mb . The extrapolation was constructed via the ansatz

L (Y
(ex)
b (t)) =

np∑

i=1

c
(i)
b

ti
(b =M |vw,M |w), L (Y

(ex)
Q (t)) = c

(−1)
Q log(t) +

np−2∑

i=0

c
(i)
Q

ti
.

(G.10)

The order of extrapolation np should not be too large, as the extrapolation tends to oscillate

wildly around the cutoff t &Mb . We mostly used np = 3 or 4.

The rapidity cutoff Mb is determined as follows. The fitting Y-functions should be

a good approximation of the actual Y-functions as far as the number of sampling points

Np is sufficiently large. Since we know that the normalized Y-functions L (Yb(t)) go to

zero for at large t, we want to choose the value of rapidity t = Mb such that |L (Yb(t))|
decays monotonically for t > Mb. To estimate a good choice of Mb we define the “width”

of Y-function Wb by

YQ(WQ) =
1

20
Max
u∈R

[YQ(u)] , YM |vw(WM |vw) =
19

20
M(M + 2), YM |w(WM |w) =

21

20
M(M + 2).

(G.11)
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If there are multiple solution to these equations, we use the largest one as the width. Then

we choose the rapidity cutoff within the range from Wb .Mb . 8Wb .
17

The distribution of sampling points for a bosonic Y-function is determined from its

width.18 Concretely, we used the following semi-uniform distribution for t ∈ [0,Wb]:

∆tk =

{
Wb

4Np

(
0 ≤ t <

Wb

16

)}
∪
{
3Wb

4Np

(
Wb

16
≤ t <

Wb

4

)}
∪
{

3Wb

2(Np − 2np)

(
Wb

4
≤ t < Wb

)}
,

(G.12)

where ∆tk = tk+1− tk is the distance between the two adjacent sampling points. There are

(Np − np) points in total for 0 ≤ t < Wb . The outermost np points are used to construct

the extrapolation,

tk =Wb × 23/4(k−Np+np) (k = Np − np, . . . Np − 1). (G.13)

For small g we used tk =Wb × 2(k−Np+np) for YQ .

G.3 Numerical parameters

For clarity the numerical value of various cutoff parameters is given below.

We must truncate the number of Y-functions appearing in the BTBA equations. Let

us denote the index cutoff for YQ , YM |vw , YM |w by Qmax ,Mvw|max ,Mw|max , respectively.

We used

Qmax = 6, Mvw|max = 14, Mw|max = 10. (G.14)

The Y-functions beyond the index cutoffs are fixed at the asymptotic values.

Recall that Np is the number of total sampling points used to construct the fit of a Y-

function, and np is the number of sampling points greater than the width as in (G.13). For

the first argument of the kernels KΣ
Q′Q(t, v) and s ⋆ K

Q′−1, Q
vwx (t, v), we constructed suitable

distributions of sampling points in a manner similar to appendix G.2. As for (Np, np), the

following values were used for each distribution:19

(Np, np) = (36, 8) for YQ≥1 , (Np, np) = (128, 8) for YM |vw , YM |w , Y∓ , (G.15)

(Np, np) = (128, 8) for t in s ∗KQ′−1,Q
vwx (t, v),

(Np, np) = (128, 16) for t in KΣ
11(t, v),

(Np, np) = (64, 8) for t in KΣ
Q′Q(t, v) (Q′Q > 1).

For small g we start iteration from the asymptotic Y-functions. This part of the

computation is completely parallelizable. However, as g increases the finite-size corrections

get larger, and one needs to start iteration from the solution at the previous step, i.e.

smaller g.20 The total number of iteration steps is typically 20 to 40 depending on (g, L).

17MQ > WQ means that the numerical coefficient in (G.11) is smaller than 1
20

, and similarly for other

Wb .
18As for Y∓(t) the uniform distribution over t ∈ [0, 2] is used.
19Usually the outermost 3 or 4 points are not used, because the optimal order of extrapolation is

np = 3 or 4.
20For example, our iteration started from the asymptotic solution for g ≤ 2.4 and L = 2.
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With this parameter choice and using a node of CPU clusters with 48 cores, it took

around 90 minutes to generate the dressing kernel data, and 6 hours to finish 20 steps of

iteration.

Error estimates. There are three sources of errors: (i) truncation of BTBA by a finite

number of Y-functions, (ii) finite number of iterations, (iii) discretization of the integrals.

The first source of errors is significant around g = gcr , as represented by the huge error

bars in figure 4.

The second source of errors makes our results unreliable at the third or fourth digits.

The larger number of iterations does not always indicate the more precise results, because

errors may accumulate during iterations.

The third source of errors is negligible compared to the first two. We carefully

choose the distribution of sampling points for each Y-function at each (g, L), and set

PrecisionGoal no less than 6 in computing various integrals in Mathematica.

G.4 Table of numerical results

In table 1 we present the numerical results drawn in figure 4, in which the top end of error

bars corresponds to raw data and the bottom end of error bars to the fitted data.

The raw data (Qmax = 6) are not sensitive to the large Q singularity (4.25), and thus

contain the points g > gcr . When the raw data hits the large u singularity (4.21), we

cannot compute the finite BTBA energy further in a reliable way. Moreover, when the

energy is close to 1
4 − L, we always find that E(Q) defined in (4.22) for different Q’s have

comparable order of magnitude.

Note that our data also include some points with EBTBA < 1
4 − L, because we deter-

mined the large u behavior of YQ(u) by fitting the numerical data instead of using (4.20).
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L = 3
2

g E
(data)
BTBA E

(fit)
BTBA

1.3 −3.39× 10−1 −4.53× 10−1

1.4 −4.92× 10−1 −
1.45 −5.95× 10−1 −
1.5 −7.30× 10−1 −
1.54 −8.82× 10−1 −
1.56 −9.88× 10−1 −
1.58 −1.16 −
1.59 −1.35 −
1.592 −1.44 −
1.594 −1.59 −

L = 2

g E
(data)
BTBA E

(fit)
BTBA

0.6 −1.02× 10−3 −1.02× 10−3

0.8 −5.85× 10−3 −5.85× 10−3

1. −1.97× 10−2 −1.97× 10−2

1.2 −4.79× 10−2 −4.79× 10−2

1.4 −9.45× 10−2 −9.46× 10−2

1.6 −1.62× 10−1 −1.62× 10−1

1.8 −2.61× 10−1 −2.63× 10−1

2. −4.40× 10−1 −4.59× 10−1

2.1 −5.41× 10−1 −5.86× 10−1

2.2 −6.62× 10−1 −7.83× 10−1

2.3 −8.13× 10−1 −
2.4 −1.00 −
2.5 −1.29 −
2.55 −1.53 −
2.56 −1.61 −
2.565 −1.68 −
2.57 −1.77 −
2.572 −1.86 −
2.5722 −1.87 −
2.5724 −1.89 −
2.5726 −1.90 −
2.5728 −1.94 −
2.573 −2.01 −
2.5732 −2.58 −

L = 5
2

g E
(data)
BTBA E

(fit)
BTBA

3.2 −9.19× 10−1 −9.61× 10−1

3.4 −1.24 −
3.6 −1.63 −
3.65 −1.78 −
3.7 −2.00 −
3.71 −2.06 −
3.72 −2.13 −
3.73 −2.23 −
3.74 −2.64 −

L = 3

g E
(data)
BTBA E

(fit)
BTBA

2.4 −1.62× 10−1 −1.62× 10−1

2.8 −2.86× 10−1 −2.86× 10−1

3.2 −4.50× 10−1 −4.51× 10−1

3.6 −6.69× 10−1 −6.74× 10−1

3.8 −8.00× 10−1 −8.09× 10−1

4. −9.57× 10−1 −9.78× 10−1

4.2 −1.14 −1.18

4.4 −1.31 −1.42

4.6 −1.58 −
4.8 −1.87 −
4.9 −2.07 −
5. −2.44 −
5.03 −2.73 −

Table 1. Numerical data for the BTBA energy of the Y Ȳ ground state with the R-charge L. The

symbol ‘−’ means that the extrapolated energy hits the lower bound and thus diverges.
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