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1 Introduction

In recent years significant progress has been made towards understanding the excitation
spectrum of strings moving in five-dimensional anti-de Sitter space-time and, accordingly,
the spectrum of scaling dimensions of composite operators in planar N = 4 supersymmetric
gauge theory. This progress became possible due to the fundamental insight that strings
propagating in AdS space can be described by an integrable model. In certain aspects,
however, the deep origin of this exact solvability has not yet been unraveled, mainly be-
cause of tremendous complexity of the corresponding model. A related question concerns
robustness of integrability in the context of the gauge-string correspondence [1], as well
as the relationship between integrability and the amount of global (super)symmetries pre-
served by the target space-time in which strings propagate. To shed further light on these
important issues, one may attempt to search for new examples of integrable string back-
grounds that can be solved by similar techniques. One such instance, where this program
is largely promising to succeed, is to study various deformations of the string target space
that preserve the integrability of the two-dimensional quantum field theory on the world
sheet. Simultaneously, this should provide interesting new information about integrable
string models and their dual gauge theories.

There are two known classes of integrable deformations of the AdS5 × S5 superstring.
The first of these is a class of backgrounds obtained either by orbifolding AdS5 × S5 by a
discrete subgroup of the corresponding isometry group [2, 3] or by applying a sequence of
T-duality – shift – T-duality transformations (also known as γ-deformations) to this space,
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giving a string theory on a TsT-transformed background [4, 5]. Eventually all deformations
of this class can be conveniently described in terms of the original string theory, where the
deformations result into quasi-periodic but still integrable boundary conditions for the
world-sheet fields.

The second class of deformations affects the AdS5 × S5 model on a much more fun-
damental level and is related to deformations of the underlying symmetry algebra. In the
light-cone gauge this symmetry algebra constitutes two copies of the centrally extended Lie
superalgebra psu(2|2) with the same central extension for each copy. It appears that this
centrally extended psu(2|2), or more precisely its universal enveloping algebra, admits a
natural deformation psuq(2|2) in the sense of quantum groups [6, 7]. This algebraic struc-
ture is the starting point for the construction of a psuq(2|2)⊕psuq(2|2)-invariant S-matrix,
giving a quantum deformation of the AdS5 × S5 world-sheet S-matrix [6, 8, 9]. The defor-
mation parameter q can be an arbitrary complex number, but in physical applications is
typically taken to be either real or a root of unity.

Since these quantum group deformations modify the dispersion relation and the scat-
tering matrix, to solve the corresponding model by means of the mirror Thermodynamic
Bethe Ansatz (TBA), for a recent review see [10], one has to go through the entire procedure
of first deriving the TBA equations for the ground state and then extending them to include
excited states. While this program has been successfully carried out for deformations with
q being a root of unity [11, 12], the corresponding string background remains unknown.
There is a conjecture that in the limit of infinite ’t Hooft coupling the q-deformed S-matrix
tends to that of the Pohlmeyer-reduced version of the AdS5 × S5 superstring [13, 14]. It is
not straightforward, however, to identify the S-matrix of the latter theory as one has to un-
derstand whether the elementary excitations that scatter in that model are solitons or kinks.

The case of real deformation parameter considered in this paper is not less compelling.
Recently there was an interesting proposal on how to deform the sigma-model for strings
on AdS5 × S5 with a real deformation parameter η [15]. Deformations of this type con-
stitute a general class of deformations governed by solutions of the classical Yang-Baxter
equation [16, 17]. This class is not solely restricted to the string model in question but can
be applied to a large variety of two-dimensional integrable models based on (super)groups
or their cosets [18]–[21].

The aim of the present work is to compute the 2 → 2 scattering matrix for the η-
deformed model in the limit of large string tension g and to compare the corresponding
result with the known q-deformed S-matrix found from quantum group symmetries, uni-
tarity and crossing [6, 8]. In the context of the undeformed model a computation of this
type has been carried out in [22].

The η-deformed model appears to be rather involved, primarily because of fermionic
degrees of freedom. Our strategy is therefore to switch off fermions and proceed by studying
the corresponding bosonic action. Of course, the perturbative S-matrix computed from
this action will not coincide with the full world-sheet S-matrix but nevertheless will give a
sufficient part of the scattering data to provide a non-trivial test for both integrability (the
Yang-Baxter equation) and a comparison with the q-deformed S-matrix. The contribution
of fermions is of secondary concern and will be discussed elsewhere [23].
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Let us summarize the results of this paper. Coming back to the bosonic action, we find
that it corresponds to a string background which in addition to the metric also supports a
non-vanishing B-field. The deformation breaks AdS5×S5 isometries down to U(1)3×U(1)3,
where the first and second factors refer to the deformed AdS and five-sphere, respectively.
Thus, only isometries corresponding to the Cartan elements of the isometry algebra of the
AdS5×S5 survive, very similar to the case of generic γ-deformations. As for the metric, its
AdS part exhibits a singularity whose nature is currently unclear. Computed in a string
frame the metric includes the contribution of a dilaton, and to extract the latter one needs
to know the RR-fields which requires considering fermions.

With the bosonic action at hand it is straightforward to compute the corresponding
tree-level S-matrix. We then show that it matches perfectly with the q-deformed S-matrix
taken in the large tension limit and restricted to the scattering of bosons, provided we
identify the deformation parameters as

q = e−ν/g , ν = 2η
1 + η2 .

This is the main result of our work which makes it quite credible that the η-deformed
model indeed may enjoy hidden psuq(2|2) ⊕ psuq(2|2) symmetry for finite values of the
coupling constant g. If true, this implies that despite the singular behaviour of the metric
the quantum string sigma model would be well defined. In particular it would be possible
to compute its exact spectrum by means of the mirror TBA.

The paper is organized as follows. In the next section we recall the general form of the
action for the η-deformed model and use it to derive an explicit form of the Lagrangian
for bosonic degrees of freedom. In section 3, upon fixing the uniform light-cone gauge,
the corresponding Hamiltonian is derived up to quartic order in fields and further used to
compute the tree-level S-matrix. This result is subsequently compared to the one arising
from the q-deformed S-matrix (which includes the dressing phase) in the large g limit.
We conclude by outlining interesting open problems. Finally some technical details on
the derivation of the bosonic Lagrangian, the perturbative expansion of the q-deformed
dressing phase and the form of the q-deformed S-matrix are collected in three appendices.

2 Superstrings on η-deformed AdS5 × S5

According to [15], the action for superstrings on the deformed AdS5 × S5 is

S =
∫

dσdτL ,

where the Lagrangian density depending on a real deformation parameter η is given by1

L = −g4(1 + η2)
(
γαβ − εαβ

)
str
[
d̃(Aα) 1

1− ηRg ◦ d
(Aβ)

]
. (2.1)

1Note that our η-dependent prefactor differs from the one in [15]. Our choice is necessary to match the
perturbative world-sheet scattering matrix with the q-deformed one.
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Here and in what follows we use the notations and conventions from [24], in particular ετσ =
1 and γαβ = hαβ

√
−h that is the Weyl invariant combination of the world-sheet metric hαβ;

the component γττ < 0. The coupling constant g is the effective string tension. Further,
Aα = −g−1∂αg, where g ≡ g(τ, σ) is a coset representative from PSU(2, 2|4)/SO(4, 1) ×
SO(5). To define the operators d and d̃ acting on the currents Aα, we need to recall that
the Lie superalgebra G = psu(2, 2|4) admits a Z4-graded decomposition

G = G (0) ⊕ G (1) ⊕ G (2) ⊕ G (3) .

Here G (0) coincides with so(4, 1) × so(5). Denoting by Pi, i = 0, 1, 2, 3, projections on
the corresponding components of the graded decomposition above, operators d and d̃ are
defined as

d = P1 + 2
1− η2P2 − P3,

d̃ = −P1 + 2
1− η2P2 + P3 .

Finally, the action of the operator Rg on M ∈ G is given by

Rg(M) = g−1R(gMg−1)g , (2.2)

where R is a linear operator on G satisfying the modified classical Yang-Baxter equation.
In the following we define the action of R on an arbitrary 8× 8 matrix M as

R(M)ij = −i εijMij , εij =


1 if i < j

0 if i = j

−1 if i > j

, (2.3)

In the limit η → 0 one recovers from (2.1) the Lagrangian density of the AdS5 × S5

superstring.
Our goal now is to obtain an explicit form for the corresponding bosonic action. With

fermionic degrees of freedom switched off, formula (2.1) simplifies to

L = −g2(1 + κ2)
1
2
(
γαβ − εαβ

)
str
[
A(2)
α

1
1− κRg ◦ P2

(Aβ)
]
, (2.4)

where we have introduced
κ = 2η

1− η2 ,

which as we see in a moment is a convenient deformation parameter.
To proceed, we need to choose a representative g of a bosonic coset SU(2, 2|4) ×

SU(4)/SO(4, 1)×SO(5) and invert the operator 1−ηRg ◦d. A convenient choice of a coset
representative and the inverse of 1 − ηRg ◦ d are discussed in appendix A. Making use of
the inverse operator, one can easily compute the corresponding bosonic Lagrangian. It is
given by the sum of the AdS and sphere parts

L = La + Ls = L G
a + LWZ

a + L G
s + LWZ

s , (2.5)
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where we further split each part into the contribution of the metric and Wess-Zumino
pieces. Accordingly, for the metric pieces we obtain

L G
a = −g2(1 + κ2)

1
2 γαβ

(
− ∂αt∂βt

(
1 + ρ2)

1− κ2ρ2 + ∂αρ∂βρ

(1 + ρ2) (1− κ2ρ2) + ∂αζ∂βζρ
2

1 + κ2ρ4 sin2 ζ

+∂αψ1∂βψ1ρ
2 cos2 ζ

1 + κ2ρ4 sin2 ζ
+ ∂αψ2∂βψ2ρ

2 sin2 ζ

)
, (2.6)

L G
s = −g2(1 + κ2)

1
2 γαβ

(
∂αφ∂βφ

(
1− r2)

1 + κ2r2 + ∂αr∂βr

(1− r2) (1 + κ2r2) + ∂αξ∂βξr
2

1 + κ2r4 sin2 ξ

+∂αφ1∂βφ1r
2 cos2 ξ

1 + κ2r4 sin2 ξ
+ ∂αφ2∂βφ2r

2 sin2 ξ

)
, (2.7)

while the Wess-Zumino parts LWZ
a and LWZ

s read

LWZ
a = g

2κ(1 + κ2)
1
2 εαβ

ρ4 sin 2ζ
1 + κ2ρ4 sin2 ζ

∂αψ1∂βζ , (2.8)

LWZ
s = −g2κ(1 + κ2)

1
2 εαβ

r4 sin 2ξ
1 + κ2r4 sin2 ξ

∂αφ1∂βξ . (2.9)

Here the coordinates t , ψ1 , ψ2 , ζ , ρ parametrize the deformed AdS space, while the co-
ordinates φ , φ1 , φ2 , ξ , r parametrize the deformed five-sphere. Switching off the defor-
mation, one finds that the AdS5 coordinates are related to the embedding coordinates ZA,
A = 0, 1, . . . , 5 obeying the constraint ηABZAZB = −1 where ηAB = (−1, 1, 1, 1, 1,−1) as

Z1 + iZ2 = ρ cos ζ eiψ1 , Z3 + iZ4 = ρ sin ζ eiψ2 , Z0 + iZ5 =
√

1 + ρ2 eit , (2.10)

while the S5 coordinates are related to the embedding coordinates Y A, A = 1, . . . , 6 obeying
Y 2
A = 1 as

Y1 + iY2 = r cos ξ eiφ1 , Y3 + iY4 = r sin ξ eiφ2 , Y5 + iY6 =
√

1− r2 eiφ . (2.11)

It is obvious that the deformed action is invariant under U(1)3 × U(1)3 corresponding to
the shifts of t, ψk, φ, φk. One also finds the ranges of ρ and r: 0 ≤ ρ ≤ 1

κ and 0 ≤ r ≤ 1.
The (string frame) metric of the deformed AdS is singular at ρ = 1/κ. Since we do not
know the dilaton it is unclear if the Einstein frame metric exhibits the same singularity.
The bosonic Wess-Zumino terms signify the presence of a non-trivial background B-field
which is absent in the undeformed case.

In the next section we are going to impose the light-cone gauge, take the decompact-
ification limit and compute the bosonic part of the four-particle world-sheet scattering
matrix. To this end, we first expand the Lagrangian (2.5) up to quartic order in ρ, r and
their derivatives, and then make the shifts of ρ and r as described in appendix A, cf. (A.18).
Since we are interested in the perturbative expansion in powers of fields around ρ = 0, the
final step consists in changing the spherical coordinates to (zi, yi)i=1,...,4 as

z1 + iz2

1− 1
4z

2 = ρ cos ζeiψ1 ,
z3 + iz4

1− 1
4z

2 = ρ sin ζeiψ2 , z2 ≡ z2
i , (2.12)

y1 + iy2

1 + 1
4y

2 = r cos ξeiφ1 , y3 + iy4

1 + 1
4y

2 = r sin ξeiφ2 , y2 ≡ y2
i ,
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with further expanding the resulting action up to the quartic order in z and y fields. In
this way we find the following quartic Lagrangian

La =− g

2(1 + κ2)
1
2 γαβ

[
−
(

1 + (1 + κ2)z2 + 1
2(1 + κ2)2(z2)2

)
∂αt∂βt

+
(

1 + (1− κ2)z
2

2

)
∂αzi∂βzi

]
+ 2gκ(1 + κ2)

1
2 (z2

3 + z2
4)εαβ∂αz1∂βz2 ,

Ls =− g

2(1 + κ2)
1
2 γαβ

[(
1− (1 + κ2)y2 + 1

2(1 + κ2)2(y2)2
)
∂αφ∂βφ

+
(

1− 1
2(1− κ2)y2

)
∂αyi∂βyi

]
− 2gκ(1 + κ2)

1
2 (y2

3 + y2
4)εαβ∂αy1∂βy2 .

(2.13)

We point out that the metric part of this Lagrangian has a manifest SO(4)× SO(4) sym-
metry which is however broken by the Wess-Zumino terms.

3 Perturbative bosonic world-sheet S-matrix

3.1 Light-cone gauge and quartic Hamiltonian

To fix the light-cone gauge and compute the scattering matrix, it is advantageous to use
the Hamiltonian formalism. For the reader’s convenience we start with a general discussion
on how to construct the Hamiltonian for the world-sheet action of the form

S = −g2

∫ r

−r
dσdτ

(
γαβ∂αX

M∂βX
NGMN − εαβ∂αXM∂βX

NBMN

)
, (3.1)

where GMN and BMN are the background metric and B-field respectively. In the first
order formalism we introduce conjugate momenta

pM = δS

δẊM
= −gγ0β∂βX

NGMN + gX
′NBMN . (3.2)

The action can be rewritten as

S =
∫ r

−r
dσdτ

(
pMẊ

M + γ01

γ00C1 + 1
2gγ00C2

)
, (3.3)

where C1, C2 are the Virasoro constraints. They are given by

C1 = pMX
′M , (3.4)

C2 = GMNpMpN − 2gpMX ′QGMNBNQ + g2X ′PX ′QBMPBNQG
MN + g2X ′MX ′NGMN .

The first Virasoro constraint has the same form as in the undeformed case. In particular,
the solution for x′− in terms of pµ, xµ will still be the same. When expressed in terms of
the conjugate momenta, the second constraint gets an explicit dependence on the B-field.
To impose light-cone gauge, one first introduces light-cone coordinates

x− = φ− t, x+ = (1− a)t+ aφ. (3.5)
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The second Virasoro constraint can be written as

C2 =G−−p2
− + 2G+−p+p− +G++p2

+

+ g2G++x
′2
− + 2g2G+−x

′
+x
′
− + g2G−−x

′2
+ +Hx ,

(3.6)

where

G−− = a2G−1
φφ − (a− 1)2G−1

tt , G+− = aG−1
φφ − (a− 1)G−1

tt , G++ = G−1
φφ −G

−1
tt ,

G++ = (a− 1)2Gφφ − a2Gtt, G+− = −(a− 1)Gφφ + aGtt, G−− = Gφφ −Gtt,

and Hx is the part that depends on the transverse fields only

Hx = Gµνpµpν + g2X ′µX ′νGµν − 2gpµX ′ρGµνBνρ + g2X ′λX ′ρBµλBνρG
µν . (3.7)

Notice that the B-field is contained only in Hx, since in the action it does not couple to
the derivatives of x±. We impose the uniform light-cone gauge

x+ = τ, p+ = 1. (3.8)

Solving C2 = 0 for p− gives the Hamiltonian

H = −p−(pµ, xµ, x′µ). (3.9)

Formally the solution for the Hamiltonian is still given by eq. (2.16) of the review [24],
with the only difference that now the components of the metric are deformed and that Hx
has also the B-field contribution. Rescaling the fields with powers of g and expanding in g
one can find Hn, namely the part of the Hamiltonian that is of order n in the fields. Then
the action acquires the form

S =
∫

dτdσ
(
pµẋ

µ −H2 −
1
g
H4 − · · ·

)
, (3.10)

where the quadratic Hamiltonian is given by

H2 = 1
2p

2
µ + 1

2(1 + κ2)x2
µ + 1

2(1 + κ2)x′2µ . (3.11)

The quartic Hamiltonian in a general a-gauge is

H4 =1
4
(
(2κ2z2 − (1 + κ2)y2)p2

z − (2κ2y2 − (1 + κ2)z2)p2
y

+
(
1 + κ2

) ((
2z2 −

(
1 + κ2

)
y2
)
z′2 +

((
1 + κ2

)
z2 − 2y2

)
y′2
) )

− 2κ
(
1 + κ2

) 1
2
((
z2

3 + z2
4

) (
pz1z

′
2 − pz2z′1

)
−
(
y2

3 + y2
4

) (
py1y

′
2 − py2y′1

))
+ (2a− 1)

8
(
(p2
y + p2

z)2 − (1 + κ2)2(y2 + z2)2

+ 2(1 + κ2)(p2
y + p2

z)(y′2 + z′2) + (1 + κ2)2(y′2 + z′2)2 − 4(1 + κ2)(x′−)2
)
.

(3.12)

Here we use the notation p2
z ≡ p2

zi , p
2
y ≡ p2

yi , where sum over i is assumed.
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To simplify the quartic piece, we can remove the terms of the form p2
zy

2 and p2
yz

2 by
performing a canonical transformation generated by

V = (1 + κ2)
4

∫
dσ
(
pyyz

2 − pzzy2
)
, (3.13)

where the shorthand notation pyy ≡ pyiyi, pzz ≡ pzizi was used. After this is done the
quartic Hamiltonian is

H4 = (1 + κ2)
2 (z2z′2 − y2y′2) + (1 + κ2)2

2 (z2y′2 − y2z′2) + κ2

2 (z2p2
z − y2p2

y)

−2κ(1 + κ2)
1
2
[(
z2

3 + z2
4

) (
pz1z

′
2 − pz2z′1

)
−
(
y2

3 + y2
4

) (
py1y

′
2 − py2y′1

)]
+(2a− 1)

8

(
(p2
y + p2

z)2 − (1 + κ2)2(y2 + z2)2 (3.14)

+2(1 + κ2)(p2
y + p2

z)(y′2 + z′2) + (1 + κ2)2(y′2 + z′2)2 − 4(1 + κ2)(x′−)2
)
.

We recall that in the undeformed case the corresponding theory is invariant with
respect to the two copies of the centrally extended superalgebra psu(2|2), each containing
two su(2) subalgebras. To render invariance under su(2) subalgebras manifest, one can
introduce two-index notation for the world-sheet fields. It is also convenient to adopt the
same notation for the deformed case2

Z34̇ = 1
2(z3 − iz4), Z33̇ = 1

2(z1 − iz2),

Z43̇ = −1
2(z3 + iz4), Z44̇ = 1

2(z1 + iz2),
(3.15)

Y 12̇ = 1
2(y3 − iy4), Y 11̇ = 1

2(y1 + iy2),

Y 21̇ = −1
2(y3 + iy4), Y 22̇ = 1

2(y1 − iy2) .
(3.16)

In terms of two-index fields the quartic Hamiltonian becomes H4 = HG4 +HWZ
4 , where HG4

is the contribution coming from the spacetime metric and HWZ
4 from the B-field

HG4 = 2(1 + κ2)
(
Zαα̇Z

αα̇Z ′
ββ̇
Z ′ββ̇ − YaȧY aȧY ′

bḃ
Y ′bḃ

)
+2(1 + κ2)2

(
Zαα̇Z

αα̇Y ′
bḃ
Y ′bḃ − YaȧY aȧZ ′

ββ̇
Z ′ββ̇

)
+κ2

2
(
Zαα̇Z

αα̇Pββ̇P
ββ̇ − YaȧY aȧPbḃP

bḃ
)

+(2a− 1)
8

(1
4(PaȧP aȧ + Pαα̇P

αα̇)2 − 4(1 + κ2)2(YaȧY aȧ + Zαα̇Z
αα̇)2 (3.17)

+2(1+κ2)(PaȧP aȧ+Pαα̇Pαα̇)(Y ′aȧY ′aȧ+Z ′αα̇Z ′αα̇)+4(1+κ2)2(Y ′aȧY ′aȧ+Z ′αα̇Z ′αα̇)2

−4(1 + κ2)(PaȧY ′aȧ + Pαα̇Z
′αα̇)2

)
,

HWZ
4 = 8iκ(1 + κ2)

1
2
(
Z34̇Z43̇(P33̇Z

′33̇ − P44̇Z
′44̇) + Y 12̇Y 21̇(P11̇Y

′11̇ − P22̇Y
′22̇)
)
.

2This parameterisation is different from the one used in [24] and the difference is the exchange of the
definitions for Y 11̇ and Y 22̇. This does not matter in the undeformed case but is needed here in order to
correctly match the perturbative S-matrix with the q-deformed one computed from symmetries.
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Note that we have used the Virasoro constraint C1 in order to express x′− in terms of
the two index fields. The gauge dependent terms multiplying (2a− 1) are invariant under
SO(8) as in the underformed case.

3.2 Tree level bosonic S-matrix

The computation of the tree level bosonic S-matrix follows the route reviewed in [24], and
we also use the same notations. It is convenient to rewrite the tree-level S-matrix as a
sum of two terms T = TG + TWZ , coming from HG4 and HWZ

4 respectevely. The reason is
that TG preserves the so(4) ⊕ so(4) symmetry, while TWZ breaks it. To write the results
we always assume that p > p′. Then, one finds that the action of TG on the two-particle
states is given by

TG |YaċY ′bḋ〉 =
[

1− 2a
2 (pω′ − p′ω) + 1

2
(p− p′)2 + ν2(ω − ω′)2

pω′ − p′ω

]
|YaċY ′bḋ〉

+ pp′ + ν2ωω′

pω′ − p′ω

(
|YaḋY

′
bċ〉+ |YbċY ′aḋ〉

)
,

TG |Zαγ̇Z ′βδ̇〉 =
[

1− 2a
2 (pω′ − p′ω)− 1

2
(p− p′)2 + ν2(ω − ω′)2

pω′ − p′ω

]
|Zαγ̇Z ′βδ̇〉

− pp′ + ν2ωω′

pω′ − p′ω

(
|Zαδ̇Z

′
βγ̇〉+ |Zβγ̇Z ′αδ̇〉

)
,

TG |YaḃZ
′
αβ̇
〉 =

[
1− 2a

2 (pω′ − p′ω)− ω2 − ω′2

pω′ − p′ω

]
|YaḃZ

′
αβ̇
〉 ,

TG |Zαβ̇Y
′
aḃ
〉 =

[
1− 2a

2 (pω′ − p′ω) + ω2 − ω′2

pω′ − p′ω

]
|Zαβ̇Y

′
aḃ
〉 ,

(3.18)

and the action of TWZ on the two-particle states is

TWZ |YaċY ′bḋ〉 = iν
(
εab |YbċY ′aḋ〉+ εċḋ |YaḋY

′
bċ〉
)
,

TWZ |Zαγ̇Z ′βδ̇〉 = iν
(
εαβ |Zβγ̇Z ′αδ̇〉+ εγ̇δ̇ |Zαδ̇Z

′
βγ̇〉
)
,

(3.19)

where on the r.h.s. we obviously do not sum over the repeated indices. In the formulae the
frequency ω is related to the momentum p as

ω = (1 + κ2)
1
2

√
1 + p2 =

√
1 + p2

1− ν2 , (3.20)

and we have introduced the parameter

ν = κ
(1 + κ2)

1
2

= 2η
1 + η2 , (3.21)

which, as one can see from the expressions above, is the natural deformation parameter.
In fact, as we discuss in the next subsection, it is related in a very simple way to the
parameter q of the q-deformed S-matrix: q = e−ν/g.
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The S-matrix S computed in perturbation theory is related to the T-matrix as

S = 1 + i

g
T . (3.22)

In the undeformed case, as a consequence of invariance of S with respect to two copies of
the centrally extended superalgebra psu(2|2), the corresponding T-matrix admits a factor-
ization

TPṖ ,QQ̇
MṀ,NṄ

= (−1)εṀ (εN+εQ)T PQMNδ
Ṗ
Ṁ
δQ̇
Ṅ

+ (−1)εQ(εṀ+εṖ )δPMδ
Q
NT

Ṗ Q̇

ṀṄ
. (3.23)

Here M = (a, α) and Ṁ = (ȧ, α̇), and dotted and undotted indices are referred to two
copies of psu(2|2), respectively, while εM and εṀ describe statistics of the corresponding
indices, i.e. they are zero for bosonic (Latin) indices and equal to one for fermionic (Greek)
ones. The factor T can be regarded as 16× 16 matrix.

It is not difficult to see that the same type of factorization persists in the deformed
case as well. Indeed, from the formulae (3.18) we extract the following elements for the
T -matrix

T cdab = Aδcaδ
d
b +B δdaδ

c
b +W εabδ

d
aδ
c
b ,

T γδαβ = D δγαδ
δ
β + E δδαδ

γ
β +W εαβ δ

δ
αδ

γ
β ,

T cδaβ = Gδcaδ
δ
β , T γdαb = Lδγαδ

d
b ,

(3.24)

where the coefficients are given by

A(p, p′) = 1− 2a
4 (pω′ − p′ω) + 1

4
(p− p′)2 + ν2(ω − ω′)2

pω′ − p′ω
,

B(p, p′) = −E(p, p′) = pp′ + ν2ωω′

pω′ − p′ω
,

D(p, p′) = 1− 2a
4 (pω′ − p′ω)− 1

4
(p− p′)2 + ν2(ω − ω′)2

pω′ − p′ω
,

G(p, p′) = −L(p′, p) = 1− 2a
4 (pω′ − p′ω)− 1

4
ω2 − ω′2

pω′ − p′ω
,

W (p, p′) = iν .

(3.25)

Here W corresponds to the contribution of the Wess-Zumino term and it does not actually
depend on the particle momenta. All the four remaining coefficients T γδab , T cdαβ , T

γd
aβ , T

γd
αb

vanish in the bosonic case but will be switched on once fermions are taken into account.
The matrix T is recovered from its matrix elements as follows

T = T PQMN E
M
P ⊗ ENQ = T cdab Eac ⊗ Ebd + T γδαβ E

α
γ ⊗ E

β
δ + T cδaβ Eac ⊗ E

β
δ + T γdαb E

α
γ ⊗ Ebd ,

where ENM are the standard matrix unities. For the reader convenience we present T as an
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explicit 16× 16 matrix3

T ≡



A1 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0
0 A2 0 0 | A4 0 0 0 | 0 0 0 0 | 0 0 0 0
0 0 A3 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0
0 0 0 A3 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0
− − − − − − − − − − − − − − − − − − −
0 A5 0 0 | A2 0 0 0 | 0 0 0 0 | 0 0 0 0
0 0 0 0 | 0 A1 0 0 | 0 0 0 0 | 0 0 0 0
0 0 0 0 | 0 0 A3 0 | 0 0 0 0 | 0 0 0 0
0 0 0 0 | 0 0 0 A3 | 0 0 0 0 | 0 0 0 0
− − − − − − − − − − − − − − − − − − −
0 0 0 0 | 0 0 0 0 | A8 0 0 0 | 0 0 0 0
0 0 0 0 | 0 0 0 0 | 0 A8 0 0 | 0 0 0 0
0 0 0 0 | 0 0 0 0 | 0 0 A6 0 | 0 0 0 0
0 0 0 0 | 0 0 0 0 | 0 0 0 A7 | 0 0 A9 0
− − − − − − − − − − − − − − − − − − −
0 0 0 0 | 0 0 0 0 | 0 0 0 0 | A8 0 0 0
0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 A8 0 0
0 0 0 0 | 0 0 0 0 | 0 0 0 A10 | 0 0 A7 0
0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 A6



.

Here the non-trivial matrix elements of T are given by

A1 = A+B, A2 = A, A4 = B −W, A5 = B +W, A6 = D + E, (3.26)
A6 = D + E, A7 = D, A8 = L, A9 = E −W = −A5, A10 = E +W = −A4.

We conclude this section by pointing out that the found matrix T satisfies the classical
Yang-Baxter equation

[T12(p1, p2), T13(p1, p3) + T23(p2, p3)] + [T13(p1, p3), T23(p2, p3)] = 0 (3.27)

for any value of the deformation parameter ν.

3.3 Comparison with the q-deformed S-matrix

In this subsection we show that the perturbative bosonic world-sheet S-matrix coincides
with the first nontrivial term in the large g expansion of the q-deformed AdS5×S5 S-matrix,
in other words with the corresponding classical r-matrix.4

Let us recall that up to an overall factor the q-deformed AdS5×S5 S-matrix is given by
a tensor product of two copies of the psu(2|2)q-invariant S-matrix [6] which is reviewed in
appendix B. Including the overall factor Ssu(2) which is the scattering matrix in the su(2)
sector, the complete S-matrix can be written in the form [8]

S = Ssu(2)S ⊗̂S , Ssu(2) = eia(p2E1−p1E2)

σ2
12

x+
1 + ξ

x−1 + ξ

x−2 + ξ

x+
2 + ξ

· x
−
1 − x

+
2

x+
1 − x

−
2

1− 1
x−1 x

+
2

1− 1
x+1 x

−
2

, (3.28)

where S is the psu(2|2)q-invariant S-matrix (B.3), ⊗̂ stands for the graded tensor product,
a is the parameter of the light-cone gauge (3.5), σ is the dressing factor, and E is the

3See appendix 8.5 of [25] for the corresponding matrix in the undeformed case.
4The difference with the expansion performed in [13] is that we include the dressing factor in the definition

of the S-matrix.
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q-deformed dispersion relation (B.9) whose large g expansion starts with ω. The dressing
factor can be found by solving the corresponding crossing equation, and it is given by [8]

σ12 = eiθ12 , θ12 = χ(x+
1 , x

+
2 ) + χ(x−1 , x

−
2 )− χ(x+

1 , x
−
2 )− χ(x−1 , x

+
2 ), (3.29)

where

χ(x1, x2) = i

∮
dz

2πi
1

z − x1

∮
dz′

2πi
1

z′ − x2
log

Γq2
(
1 + ig

2 (u(z)− u(z′))
)

Γq2
(
1− ig

2 (u(z)− u(z′))
) . (3.30)

Here Γq(x) is the q-deformed Gamma function which for complex q admits an integral
representation (C.1) [8].

To develop the large g expansion of the q-deformed AdS5 × S5 S-matrix, one has to
assume that q = e−υ/g where υ is a deformation parameter which is kept fixed in the limit
g → ∞, and should be related to ν. Then, due to the factorisation of the perturbative
bosonic world-sheet S-matrix and the q-deformed AdS5 × S5 S-matrix, it is sufficient to
compare the T -matrix (3.24) with the T-matrix appearing in the expansion of the “square
root” of S

S
1/2
su(2) 1g S = 1 + i

g
T , (3.31)

where 1g is the graded identity which is introduced so that the expansion starts with 1.
The only term which is not straightforward to expand is the Ssu(2) scalar factor because
it contains the dressing phase θ12. The scalar factor obviously can contribute only to the
part of the T-matrix proportional to the identity matrix. Since in the expansion of the
psu(2|2)q-invariant S-matrix (B.3), 1gS = 1 + i

g r, the element r11
11 is equal to 0 (because

a1 = 1) it is convenient to subtract T 11
11 1 = A11 from the T -matrix and compare the

resulting matrix with the classical r-matrix. One should obviously remove the off-diagonal
terms from the classical r-matrix which appear due to the presence of fermions in the
full superstring action (2.1). With this done, one finds that they are equal to each other
provided υ = ν, and therefore q = e−ν/g is real. Thus, to show that T = T one should
demonstrate that A1 is equal to the 1/g term in the expansion of S1/2

su(2). To this end one
should find the large g expansion of the dressing phase θ12 which is done by first expanding
the ratio of Γq2-functions in (3.30) with u(z) and u(z′) being kept fixed. This is done in
appendix C, see (C.9). Next, one combines it with the expansion of the 1

z−x±1
1

z′−x±2
terms

which appear in the integrand of (3.29). As a result one finds that the dressing phase is
of order 1/g just as it was in the undeformed case [26]. We have not tried to compute the
resulting double integrals analytically but we have checked numerically that the element
A1 is indeed equal to the 1/g term in the expansion of S1/2

su(2) if the deformation parameter ν
satisfies ν < 1/

√
2. At ν = 1/

√
2 the integral representation for the dressing factor breaks

down but it is unclear to us if it is a signal of a genuine problem with the q-deformed
S-matrix. In fact it is not difficult to extract from A1 the leading term in the large g

expansion of the dressing phase which appears to be very simple

θ12 = ν2 (ω1 − ω2) + p2
2 (ω1 − 1)− p2

1 (ω2 − 1)
2g (p1 + p2) + · · · . (3.32)
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It would be curious to derive this expression from the double integral representation. Note
that doing this double integral one also could get the full AFS order of the phase.

4 Conclusions

In this work we successfully matched in the large tension limit the tree-level bosonic
S-matrix arising from the sigma-model on the deformed AdS5 × S5 space with the
q-deformed S-matrix obtained from symmetries. There are many other important issues
to be addressed.

We identified NSNS background fields in the string frame. More studies are needed
however to extract RR fields since the latter couple directly to fermionic degrees of freedom.
Rather intricate field redefinitions should be performed to bring the deformed action to
the standard one for Type IIB superstring in an arbitrary supergravity background, thus
allowing the identification of the full bosonic background. It might be easier in fact just
to use the NSNS background fields and the type IIB supergravity equations of motion to
find the full supergravity background [23].

Next, the matching of S-matrices, successful at tree level, can be further extended by
computing admittedly more complicated loop corrections to the tree-level scattering matrix
of the light-cone sigma-model; this also requires taking fermions into account. It is natural
to expect that the deformation parameter ν undergoes a non-trivial renormalization to fit
the parameter q entering the exact, i.e. all-loop, q-deformed S-matrix.

We also showed that in the large tension limit the conjectured dispersion relation (B.9)
turns into the perturbative one (3.20). It would be interesting to find an η-deformed giant
magnon solution [27] which would provide additional evidence in favour of (B.9). In the case
of the finite angular momentum the corresponding solution would also provide important
information about the structure of the finite size corrections [28] in the η-deformed theory.

It is also interesting to find explicit spinning string solutions of the η-deformed bosonic
sigma-model. Due to the singularity of the η-deformed AdS a particularly interesting
solution to analyse would be the GKP string and its generalisation [29, 30]. Then, in
the case of AdS, substituting the spinning Ansatz in the sigma-model equations of motion
leads to the emergence [31] of the Neumann model, a famous finite-dimensional integrable
system. One may hope that studies of the η-deformed sigma-model in this context may
reveal new integrable finite-dimensional systems which can be described as deformations of
the Neumann model. Furthermore, known finite-gap integration techniques can be applied
to obtain a wider class of solutions that generalize the solutions of the Neumann system.
Normally they are described by a certain algebraic curve which is supposed to emerge from
the Bethe Ansatz based on the exact q-deformed S-matrix in the semi-classical limit. This
would serve as another non-trivial check that the two models, one based on the explicitly
known deformed action and the other based on the exact quantum group symmetry, have
a good chance to describe the same physics.

One can also adopt the logic of the undeformed case construction and use the exact
q-deformed S-matrix to engineer the mirror TBA equations for real q; a solution of this
problem is under way [32].
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With the knowledge of a complete supergravity background and its symmetries for
the deformed case, one can approach perhaps the most interesting question about the dual
gauge theory. Since the deformation affects the isometries of the AdS space, the theory will
be neither conformal nor Lorentz invariant. Since there is a B-field on the string theory
side, one may expect that this theory is a non-commutative deformation of N = 4 super
Yang-Mills in the sense of the Moyal star product with a hidden quantum group symmetry
which would include the two copies of the psuq(2|2) algebra. It would be fascinating to
construct such a theory explicitly.
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A The inverse operator and bosonic Lagrangian

To find the bosonic part of the deformed Lagrangian one needs to choose a coset represen-
tative g, and invert the operator 1− ηRg ◦ d. We find useful the following parametrisation
of a bosonic coset element

gb =
(
ga 0
0 gs

)
, ga = Λ(ψk) Ξ(ζ)ǧρ(ρ) , gs = Λ(φk) Ξ(ξ)ǧr(r) . (A.1)

Here the matrix functions Λ, Ξ and ǧ are defined as

Λ(ϕk) = exp
( 3∑
k=1

i

2ϕkhk

)
, Ξ(ϕ) =


cos ϕ2 sin ϕ

2 0 0
− sin ϕ

2 cos ϕ2 0 0
0 0 cos ϕ2 − sin ϕ

2
0 0 sin ϕ

2 cos ϕ2

 , (A.2)

ǧρ(ρ) =


ρ+ 0 0 ρ−
0 ρ+ −ρ− 0
0 −ρ− ρ+ 0
ρ− 0 0 ρ+

 , ρ± =

√√
ρ2 + 1± 1
√

2
, (A.3)

ǧr(r) =


r+ 0 0 i r−
0 r+ −i r− 0
0 −i r− r+ 0
i r− 0 0 r+

 , r± =

√
1±
√

1− r2
√

2
, (A.4)
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where the diagonal matrices hi are given by

h1 = diag(−1, 1,−1, 1) , h2 = diag(−1, 1, 1,−1) , h3 = diag(1, 1,−1,−1) . (A.5)

In the undeformed case the AdS5 coordinates t ≡ ψ3 , ψ1 , ψ2 , ζ , ρ are related to the
embedding coordinates ZA, A = 0, 1, . . . , 5 obeying the constraint ηABZAZB = −1 where
ηAB = (−1, 1, 1, 1, 1,−1) as follows

Z1 + iZ2 = ρ cos ζ eiψ1 , Z3 + iZ4 = ρ sin ζ eiψ2 , Z0 + iZ5 =
√

1 + ρ2 eit , (A.6)

while the S5 coordinates φ ≡ φ3 , φ1 , φ2 , ξ , r are related to the embedding coordinates
Y A, A = 1, . . . , 6 obeying Y 2

A = 1 as

Y1 + iY2 = r cos ξ eiφ1 , Y3 + iY4 = r sin ξ eiφ2 , Y5 + iY6 =
√

1− r2 eiφ . (A.7)

An important property of the coset representative (A.1) is that the Rg operator is inde-
pendent of the angles ψk and φk:

Rgb
(M) = Rǧ(M) , ǧ =

(
ǧa 0
0 ǧs

)
, ǧa = Ξ(ζ)ǧρ(ρ) , ǧs = Ξ(ξ)ǧr(r) . (A.8)

To compute the Lagrangian one needs to know the action of the operator 1/(1− ηRg ◦ d)
on the projection M (2) and Modd of an su(2|2) element M . This action on odd elements
appears to be ǧ-independent

1
1− ηRǧ ◦ d

(Modd) = 1 + ηR ◦ d
1− η2 (Modd) . (A.9)

This action on M (2) factorizes into a sum of actions on Ma and Ms where Ma is the upper
left 4× 4 block of M (2), and Ms is the lower right 4× 4 block of M (2). One can check that
the inverse operator is given by

1
1−ηRǧ ◦ d

(Ma) =
(
1+ η3fa31 + η4fa42 + η5ha53

(1− caη2)(1− daη2) +
ηRǧ ◦ d+η2Rǧ ◦ d ◦Rǧ ◦ d

1− caη2

)(
Ma
)
, (A.10)

1
1−ηRǧ ◦ d

(Ms) =
(
1+ η3f s31 + η4f s42 + η5hs53

(1− csη2)(1− dsη2) +
ηRǧ ◦ d+η2Rǧ ◦ d ◦Rǧ ◦ d

1− csη2

)(
Ms
)
. (A.11)

Here

ca = 4ρ2

(1− η2)2 , da = −4ρ4 sin2 ζ

(1− η2)2 , cs = − 4r2

(1− η2)2 , ds = −4r4 sin2 ξ

(1− η2)2 , (A.12)

fak,k−2(Ma) =
((
Rǧ ◦ d

)k − ca(Rǧ ◦ d
)k−2)(Ma) , (A.13)

f sk,k−2(Ms) =
((
Rǧ ◦ d

)k − cs(Rǧ ◦ d
)k−2)(Ms) , (A.14)

da and ds appear in the identities

fak+2,k = daf
a
k,k−2 , f sk+2,k = dsf

s
k,k−2 , k = 4, 5, . . . , (A.15)
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and ha53 and hs53 appear in

ha53 = fa53 − dafa31 , hs53 = f s53 − dsf s31 . (A.16)

The bosonic Lagrangian can then be easily computed and is given by (2.5)–(2.9). To
find the quartic Lagrangian used for computing the bosonic part of the four-particle world-
sheet scattering matrix, we first expand the Lagrangian (2.5) up to quartic order in ρ, r
and their derivatives

La =− g

2(1 + κ2)
1
2
(
γαβ

[
− ∂αt∂βt(1 + (1 + κ2)ρ2(1 + κ2ρ2)) + ∂αρ∂βρ(1 + (κ2 − 1)ρ2)

+ ∂αψ1∂βψ1ρ
2 cos2 ζ + ∂αψ2∂βψ2ρ

2 sin2 ζ + ∂αζ∂βζρ
2
]
− κεαβρ4 sin 2ζ∂αψ1∂βζ

)
,

(A.17)

Ls =− g

2(1 + κ2)
1
2
(
γαβ

[
∂αφ∂βφ(1− (1 + κ2)r2(1− κ2r2)) + ∂αr∂βr(1 + (1− κ2)r2)

+ ∂αφ1∂βφ1r
2 cos2 ξ + ∂αφ2∂βφ2r

2 sin2 ξ + ∂αξ∂βξr
2
]

+ κεαβr4 sin 2ξ∂αφ1∂βξ
)
.

Further, we make a shift

ρ→ ρ− κ2

4 ρ3 , r → r + κ2

4 r3 (A.18)

so that the quartic action acquires the form

La = −g2(1 + κ2)
1
2 γαβ

[
− ∂αt∂βt

(
1 + (1 + κ2)ρ2 + 1

2κ
2(1 + κ2)ρ4

)
+

+∂αρ∂βρ
(
1− ρ2 − κ2

2 ρ
4
)

+
(
ρ2 − κ2

2 ρ
4
)(
∂αψ1∂βψ1 cos2 ζ + ∂αψ2∂βψ2 sin2 ζ + ∂αζ∂βζ

)]
+g

2κ(1 + κ2)
1
2 εαβρ4 sin 2ζ∂αψ1∂βζ , (A.19)

Ls = −g2(1 + κ2)
1
2 γαβ

[
∂αφ∂βφ

(
1− (1 + κ2)r2 + 1

2κ
2(1 + κ2)r4

)
+

+∂αr∂βr
(
1 + r2 + κ2

2 r
4
)

+
(
r2 + κ2

2 r
4
)(
∂αφ1∂βφ1 cos2 ξ + ∂αφ2∂βφ2 sin2 ξ + ∂αξ∂βξ

)]
−g2κ(1 + κ2)

1
2 εαβr4 sin 2ξ∂αφ1∂βξ . (A.20)

Changing the spherical coordinates to (zi, yi), see (2.12), and expanding the resulting action
up to the quartic order in z and y fields we get the quartic Lagrangian (2.13). Notice that
the shifts of ρ and r in (A.18) were chosen so that the deformed metric expanded up to
quadratic order in the fields would be diagonal.

It is also possible to choose a coset representative precisely in the same way as is done
in the undeformed case, see [24] for details. Accordingly, for the metric pieces we obtain

L G
a = −g2(1 + κ2)

1
2γαβ

[
−Gtt∂αt∂βt+Gzz∂αzi∂βzi +G

(1)
a zi∂αzizj∂βzj +

+G
(2)
a (z3∂αz4 − z4∂αz3)(z3∂βz4 − z4∂βz3)

]
, (A.21)

L G
s = −g2(1 + κ2)

1
2γαβ

[
Gφφ∂αφ∂βφ+Gyy∂αyi∂βyi +G

(1)
s yi∂αyiyj∂βyj +

+G
(2)
s (y3∂αy4 − y4∂αy3)(y3∂βy4 − y4∂βy3)

]
. (A.22)
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Here the coordinates zi, i = 1, . . . , 4, and t parametrize the deformed AdS space, while the
coordinates yi, i = 1, . . . , 4, and the angle φ parametrize the deformed five-sphere. The
components of the deformed AdS metric in (A.21) are5

Gtt = (1 + z2/4)2

(1− z2/4)2 − κ2z2 , Gzz = (1− z2/4)2

(1− z2/4)4 + κ2z2(z2
3 + z2

4)
,

G
(1)
a = κ2GttGzz

z2
3 + z2

4 + (1− z2/4)2

(1− z2/4)2(1 + z2/4)2 , G
(2)
a = κ2Gzz

z2

(1− z2/4)4 .

(A.23)

For the sphere part the corresponding expressions read

Gφφ = (1− y2/4)2

(1 + y2/4)2 + κ2y2 , Gyy = (1 + y2/4)2

(1 + y2/4)4 + κ2y2(y2
3 + y2

4)
,

G
(1)
s = κ2GφφGyy

y2
3 + y2

4 − (1 + y2/4)2

(1− y2/4)2(1 + y2/4)2 , G
(2)
s = κ2Gyy

y2

(1 + y2/4)4 .

(A.24)

Obviously, in the limit κ → 0 the components G(i)
a and G

(i)
s vanish, and one obtains the

metric of the AdS5 × S5, cf. fomulae (1.145) and (1.146) in [24]. Finally, for the Wess-
Zumino terms the results (up to total derivative terms which do not contribute to the
action) are

LWZ
a = 2gκ(1 + κ2)

1
2 εαβ

(z2
3 + z2

4)∂αz1∂βz2
(1− z2/4)4 + κ2z2(z2

3 + z2
4)

LWZ
s = −2gκ(1 + κ2)

1
2 εαβ

(y2
3 + y2

4)∂αy1∂βy2
(1 + y2/4)4 + κ2y2(y2

3 + y2
4)
.

(A.25)

To complete our discussion of the bosonic Lagrangian of the deformed theory, let us
note that in the undeformed case the action is invariant with respect to two copies of
SO(4) acting linearly on zi and yi respectively. As is seen from the expressions above, this
symmetry is broken down to four copies of SO(2) ∼ U(1). Thus, together with the two
U(1) isometries acting on t and φ the deformed action is invariant under U(1)3 ×U(1)3.

B The psu(2|2)q-invariant S-matrix

The S-matrix compatible with psu(2|2)q symmetry [6] has been studied in detail in the
recent papers [8, 11, 12, 14]. To make the present paper self-contained, in this appendix
we recall its explicit form following the same notation as in [11].

Let Eij ≡ Eji stand for the standard matrix unities, i, j = 1, . . . , 4. We introduce the
following definition

Ekilj = (−1)ε(l)ε(k)Eki ⊗ Elj , (B.1)

where ε(i) denotes the parity of the index, equal to 0 for i = 1, 2 (bosons) and to 1 for
i = 3, 4 (fermions). The matrices Ekilj are convenient to write down invariants with respect

5Note that the coordinates yi and zi are different from the ones appearing in the quartic Lagrangian (2.13)
because the nondiagonal components of the deformed metric do not vanish.
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to the action of copies of suq(2) ⊂ psuq(2|2). If we introduce

Λ1 = E1111 + q

2E1122 + 1
2(2− q2)E1221 + 1

2E2112 + q

2E2211 + E2222 ,

Λ2 = 1
2E1122 −

q

2E1221 −
1
2qE2112 + 1

2E2211 ,

Λ3 = E3333 + q

2E3344 + 1
2(2− q2)E3443 + 1

2E4334 + q

2E4433 + E4444 ,

Λ4 = 1
2E3344 −

q

2E3443 −
1
2qE4334 + 1

2E4433 ,

Λ5 = E1133 + E1144 + E2233 + E2244 , (B.2)
Λ6 = E3311 + E3322 + E4411 + E4422 ,

Λ7 = E1324 − qE1423 −
1
q
E2314 + E2413 ,

Λ8 = E3142 − qE3214 −
1
q
E4132 + E4231 ,

Λ9 = E1331 + E1441 + E2332 + E2442 ,

Λ10 = E3113 + E3223 + E4114 + E4224 ,

the S-matrix of the q-deformed model is given by

S12(p1, p2) =
10∑
k=1

ak(p1, p2)Λk , (B.3)

where the coefficients are

a1 = 1 ,

a2 = −q + 2
q

x−1 (1− x−2 x
+
1 )(x+

1 − x
+
2 )

x+
1 (1− x−1 x

−
2 )(x−1 − x

+
2 )

a3 = U2V2
U1V1

x+
1 − x

−
2

x−1 − x
+
2

a4 = −qU2V2
U1V1

x+
1 − x

−
2

x−1 − x
+
2

+ 2
q

U2V2
U1V1

x−2 (x+
1 − x

+
2 )(1− x−1 x

+
2 )

x+
2 (x−1 − x

+
2 )(1− x−1 x

−
2 )

a5 = x+
1 − x

+
2√

q U1V1(x−1 − x
+
2 )

a6 =
√
q U2V2(x−1 − x

−
2 )

x−1 − x
+
2

(B.4)

a7 = ig

2
(x+

1 − x
−
1 )(x+

1 − x
+
2 )(x+

2 − x
−
2 )

√
q U1V1(x−1 − x

+
2 )(1− x−1 x

−
2 )γ1γ2

a8 = 2i
g

U2V2 x
−
1 x
−
2 (x+

1 − x
+
2 )γ1γ2

q
3
2x+

1 x
+
2 (x−1 − x

+
2 )(x−1 x

−
2 − 1)

a9 = (x−1 − x
+
1 )γ2

(x−1 − x
+
2 )γ1

a10 = U2V2(x−2 − x
+
2 )γ1

U1V1(x−1 − x
+
2 )γ2

.
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Here the basic variables x± parametrizing a fundamental representation of the centrally
extended superalgebra psuq(2|2) satisfy the following constraint [6]

1
q

(
x+ + 1

x+

)
− q

(
x− + 1

x−

)
=
(
q − 1

q

)(
ξ + 1

ξ

)
, (B.5)

where the parameter ξ is related the coupling constant g as

ξ = − i2
g(q − q−1)√

1− g2

4 (q − q−1)2
. (B.6)

The (squares of) central charges are given by

U2
i = 1

q

x+
i + ξ

x−i + ξ
= eipi , V 2

i = q
x+
i

x−i

x−i + ξ

x+
i + ξ

, (B.7)

and the parameters γi are

γi = q
1
4

√
ig

2 (x−i − x
+
i )UiVi . (B.8)

The q-deformed dispersion relation E takes the form(
1− g2

4 (q − q−1)2
)(

qE/2 − q−E/2

q − 1/q

)2

− g2 sin2 p

2 =
(
q1/2 − q−1/2

q − 1/q

)2

. (B.9)

Finally, we point out that in the q-deformed dressing phase the variable u appears which
is given by

u(x) = 1
υ

log
[
−
x+ 1

x + ξ + 1
ξ

ξ − 1
ξ

]
. (B.10)

C Expansion of the q-deformed Gamma-function

We take q = eiυ/g, keep x fixed and send g → ∞. We are interested in the leading term
only. At the end we analytically continue to imaginary υ. We have [8]

log
Γq2(1+gx)
Γq2(1−gx) =−iυx+

∫ ∞
0

dt

t

(
2
(
e−υxt − eυxt

)
(
e
υt
g −1

)
(eπt−1)

− gπ
(
e−υxt−eυxt

)
υ (eπt − 1)2 − υ

(
e−υxt−eυxt

)
gπ
(
e
υt
g − 1

)2

+gπ
(
e−υxt−eυxt

)
υ (eπt − 1)2 − υ

(
e−υxt−eυxt

)
gπ
(
e
υt
g − 1

)2 + 2gxe
υt
g

eπt−1 + 2gxet
(
π+υ

g

)
eπt−1 + e−υxt−eυxt

e
υt
g − 1

+ e−υxt−eυxt

eπt − 1

)
.

(C.1)

We understand integrals of the form
∫∞
0 dtF (t) as in [33]∫ ∞

0
dt F (t) ≡

∫
C0

dt

2πi F (t) ln(−t) , (C.2)
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C 0

t

Figure 1. The integration contour C0 in the integral
∫
C0

dt
2πi F (t) ln(−t).

where the integration contour C0 goes from +∞+ i0 above the real axis, then around zero,
and finally below the real axis to +∞− i0, see figure 1. Then the terms on the second line
of (C.1) can be easily computed by using the functions introduced in [34]6

F2(z, a) ≡
∫ ∞

0

dt

t

ezat

(eat − 1)2 = 13
12 + z2

2 −
3z
2 − γ

(
z2

2 − z + 15
12

)
+ (z − 1)logΓ(2− z)

+ψ(−2)(2− z)− log(A)− 1
2 log(2π)−

(
z2

2 − z + 15
12

)
log a ,

F1(z, a) ≡
∫ ∞

0

dt

t

ezat

eat − 1 = F2(z + 1, a)− F2(z, a)

= −γ
(
z − 1

2

)
+ logΓ(1− z)− z log a+ 1

2 log
(
a

2π

)
, (C.3)

F0(z) ≡
∫ ∞

0

dt

t
ezt = F1(z + 1, 1)− F1(z, 1) = −γ − log(−z) ,

where ψ(−2) (z) is given by

ψ(−2) (z) =
∫ z

0
dt logΓ (t) , (C.4)

and A is Glaisher’s constant which satisfies log(A) = 1/12− ζ ′(−1) and ζ is the Riemann
zeta function.

Thus, the terms on the second line of (C.1) are equal to

i2 = gπ

υ

(
F2

(
−υx
π
, π

)
− F2

(
υx

π
, π

))
+ υ

gπ

(
F2

(
−gx, υ

g

)
− F2

(
gx,

υ

g

))
+2gxF1

(
υ

πg
, π

)
+ 2gxF1

(
1− υ

πg
, π

)
+ F1

(
−gx, υ

g

)
− F1

(
gx,

υ

g

)
+F1

(
−υx
π
, π

)
− F1

(
υx

π
, π

)
. (C.5)

The integral on the first line of (C.1) is convergent at t = 0, and one can expand the
integrand in powers of 1/g. One gets for the leading term

i1 = g

∫ ∞
0

dt

t

(2 sinh(υxt)
πυt2

+ 4 sinh(υxt)
υt(1− eπt) + 2π sinh(υxt)

υ (eπt − 1)2

)
. (C.6)

6The function F2 is a simple modification of the one introduced in [34].
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These integrals can be computed by using the functions

H0(z) ≡
∫ ∞

0

dt

t

ezt

t2
= −1

4z
2(2 log(−z) + 2γ − 3) , (C.7)

G1(z, a) ≡
∫ ∞

0

dt

t

ezat

at(eat − 1) = log(A) +
(
−z

2

2 + z

2 −
1
12

)
log(a) + γ

(
−z

2

2 + z

2 −
1
12

)

−ψ(−2)(1− z) + 1
2(1− z) log(2π) . (C.8)

Summing up i1 and i2 and taking the large g limit one gets for the leading term

log
Γq2(1 + gx)
Γq2(1− gx) ≈ g

(
− 2x+ 2x log(g) + x

(
log(−x) + log(x)

))
(C.9)

+g2π
υ

(
ψ(−2)

(
1− υx

π

)
− ψ(−2)

(
1 + υx

π

))
.

The analytic continuation of this expression to imaginary x and υ is straightforward.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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