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Abstract. In this paper we study a new relation between sentences: the jump

relation. The idea of the jump relation is based on an analysis of Feferman’s
Theorem that the inconsistency of a theory U is interpretable over U . The

jump relation is based on a converse of Feferman’s Theorem: if a sentence

is interpretable over a theory U , it is, in a sense, an inconsistency statement
over U . We introduce an antipode of the inconsistency statement the pre-

sistency statement. The jump relation allows one to ‘jump’ from presistencies
to inconsistencies.

We show that for a wide classes of theories U the jump relation coincides

with interpretability over U and for an even wider class it coincides with Π1-
conservativity over U . Thus, the jump relation provides a new way of looking

at interpretability and Π1-conservativity. On the other hand, we will show

that the jump relation admits variations that are distinct from interpretability
and Π1-conservativity.

We show that the jump relation satisfies the interpretability logic ILM.
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1. Introduction

The story I want to tell you in this paper has three beginnings. Rather than choose
one starting point as the ‘leading’ one, let me give you each of the beginnings
separately.

1.1. Role Provability Predicates. Syntactical approaches to modality come in
two flavors. A first idea is to add a predicate or predicates to a language that has
sufficient coding possibilities. Then, we stipulate that the predicate, considered
as a predicate of sentences, satisfies a number of desired modal properties. An
important question is which properties we can consistently (or also conservatively)
demand of such predicates and whether we can define a Kripke style semantics for
them. For examples of this approach, see e.g. [KM60], [Mon63], [Tho80], [RL86],
[HL01], [HLW03] and [SF13].

A second approach is the modal study of predicates that are definable in theories
with sufficient coding possibilities. This line of research usually zooms in on specific
predicates like provability and interpretability. Provability Logic is a perfect exam-
ple of this study. The classical papers in this field are [Göd33], [Kre53], [Löb55],
[Sol76]. For expository texts, see: [BS91], [Boo93], [Lin96], [JdJ98], [Šve00], [AB04].
There are many variations.

1. Over EA, also known as I∆0 + exp, cutfree provability and ordinary provability
are not equivalent. On the other hand they both validate Löb’s Logic. See
[Vis90] and [Kal91].

2. Over EA, provability with an oracle for Σ1-truth and ordinary provability are
not equivalent. On the other hand they both validate Löb’s Logic.

3. Over PA we can consider the predicates ‘provable in PA with a an oracle for
Πn+1-truth’. The logic of the hierarchy of such predicates is Japaridze’s Logic
GLP. See [Jap85]. See also [Boo93]. This logic was used by Lev Beklemishev
to extract proof theoretic ordinals from its closed fragment. See e.g. [Bek04,
Bek05, BJV05, Bek06].

4. We consider over the theory ZF, the predicate truth in all transitive models of
ZF. This example was studied by Solovay in [Sol76]. See also [Boo93]. A closely
related example is to consider truth in all Vκ where κ is inaccessible. See [Boo93].

5. Let PA2 be the first-order version of second order arithmetic. We may consider
the arithmetization of provability in PA2 with the ω-rule. This predicate was
studied e.g. in [Boo93].

6. Recently Graham Leach-Krouse studied an internal version of Ω-validity over
ZFC with the von Neumann interpretation.

All predicates in the above list validate Löb’s logic. There are however other
modally interesting predicates. The principal of the alternative unary predicates is
the Feferman Predicate that was introduced in [Fef60]. It was studied in [Mon78],
[Vis89] and [Sha94]. Of a quite different kind is the binary predicate for inter-
pretability over a given theory. This can be viewed as a generalization of ordinary
provability. We refer the reader to e.g. [JdJ98], [Vis98], [JV00], [AB04], [GJ08].
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An alternative arithmetical interpretation of interpretability logics is provided by
various notions of conservativity. In the present paper we will provide yet another
interpretation: the jump relation.

This paper is in the second tradition: we treat modal predicates as objets trouvés.
They are already present in a given theory. On the other hand, we will not zoom in
on specific predicates in the given theory, but we will be interested in the totality
of predicates over the given theory satisfying such-and-such properties. The appro-
priate analogy is as follows. A predicate of a theory satisfying a given modal theory
is like a model of a theory, for example group theory. We will be interested in the
relationships between these ‘models’. In the analogy: groups are models of group
theory. One studies the relations between different groups and constructions on
groups. In the same spirit we want to study certain transformations of predicates
satisfying modal principles.

1.2. Generalizing Feferman’s Theorem and Giving It a Converse. We have
the following theorem:

Theorem 1.1 (Feferman). Consider any theory U with a p-time decidable axiom
set. Suppose N is an interpretation of Buss’ theory S1

2 in U , then there is an
interpretation K of U + inconN (U) in U .

In the statement of the theorem we assume that the theory U is given with a
∆b

1-formula representing its axiom set. We note that Feferman’s Theorem is a
strengthening of the Second Incompleteness Theorem. The theory U not only fails
to prove its own consistency as coded in any choice N for the natural numbers, no,
it is positively able to produce uniformly internal models of itself in which we have
its inconsistency coded in N . Feferman’s Theorem enables us to view the Second
Incompleteness Theorem as a strength rather than as a weakness. Feferman proved
this theorem in [Fef60]. In [Fef97], Feferman provides a historical discussion of a.o.
the genesis of his theorem which is warmly recommended. We give simple proof of
Feferman’s Theorem in Section 3.

In the paper we show that Feferman’s result lifts to a class of predicates that we
call HBL-predicates and also to an even wider class the regular HBL-predicates. In
this generalized form, the theorem admits a converse. Let us restrict ourselves for
definiteness to PA. We find: PA + B is interpretable in PA iff B is of the form M⊥
for some HBL-predicate M over PA. So the inconsistency of PA is interpretbale over
PA. Conversely a sentence is only interpretable over PA because it can be viewed
as an inconsistency.

The generalization of Feferman’s Theorem can be extended to a version involving
regular HBL-predicates. This will allow us, e.g. for extensions U of PA, to find a
new characterization of the relation U+B is interpretable in U+A. This possibility
leads to our third beginning.

1.3. Semantics of Interpretability Logic. The idea of interpretability logic is
very simple, given that we already know provability logic. It is the modal study
of the predicate A interprets B over U or A�U B, which means U + A interprets
U + B. We refer the reader to the papers [JdJ98], [Vis98], [JV00], [AB04], [GJ08]
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for more information. The basic system of interpretability logic is IL which is Löb’s
Logic plus the following principles.1

IL1. ` �(φ→ ψ)→ φ� ψ

IL2. ` (φ� ψ ∧ ψ � χ)→ φ� χ

IL3. ` (φ� χ ∧ ψ � χ)→ (φ ∨ ψ)� χ

IL4. ` φ� ψ → (3φ→ 3ψ)

IL5. ` 3φ� φ

If we take an essentially reflexive theory like Peano Arithmetic (PA) as our basic
theory, then we have the extra principle M.

M. ` φ� ψ → (φ ∧ �χ)� (ψ ∧ �χ)

The arithmetical completeness of ILM for theories like PA was proven by Volodya
Shavrukov in [Sha88] and Alessandro Berarducci in [Ber90]. Apart from relative
interpretability the binary connective has a natural interpretation as conservativ-
ity. See e.g. [HM90], [Ign91], [HM92], [DJ94] Regular L-predicates provide a new
interpretation of our modal interpretability logic.

1.4. Basic Notions and Facts. In Appendix A we introduce the basic notions
and facts needed to read the paper. The reader is also referred to the textbook
[HP93]. At this point we just fix a number of conventions and notations.

Theories are, in this paper, theories of first-order predicate logic, that have a finite
relational signature and that are axiomatized by an axiom set that is represented
by a ∆b

1-formula. We will pretend that a theory also has function symbols. These
terms can be eliminated by the well-known term-unwinding algorithm.

We use modal notations as much as possible. For example �UA is provU (pAq). We
use �U,xA for restricted provability where the Gödel numbers of the axioms used
in the proof are all below x and the complexity (= depth of quantifier alternations)
is amaller than x. See the appendix for more information. We use A �U B for
interpretability of U .

2. Jumping

In this section we define regular L-predicates and present their connection to inter-
pretability logic.

2.1. Regular L-predicates. Let U be any theory and let N be an interpretation
of the the Tarski-Mostowski-Robinson Arithmetic R in U . Let P be a predicate
of the N -numbers. We write MA for P (pAq), where p·q is some standard efficient
Gödelnumbering used w.r.t. N . We use ` for `U .

A predicate M is a regular L-predicate w.r.t. U,N if it satisfies the following prin-
ciples.

rL1. A ` B ⇒ MA ` MB
1Usually, we have two operators � and �. However, � can be defined by: �A :↔ ¬A�⊥.
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rL2. MA,M(A→ B) ` MB

rL3. MA ` MMA

The name regular is taken from the regular modal logics described in [HC96].

Remark 2.1. The original Hilbert-Bernays conditions ([HB39], in the second edi-
tion: p294, 295) were approximately, in modern notation:

1. A ` B ⇒ MA ` MB

2. ` M¬Ax→ M¬Ak

3. S ` MS, where S is a Σ1-sentence

So it is a curious fact is that rL1 was the true first Hilbert-Bernays condition.
It should be noted that Hilbert and Bernays assumed that M was Σ1, so their
conditions were not really intended as fully abstract conditions.

We note one alternative formulation for our axioms. Let Γ and Θ range over finite
sets of U -sentences. We write MΘ := {MC | C ∈ Θ}. A predicate M is a regular
L-predicate w.r.t. U,N iff it satisfies.

• Γ,MΘ ` A ⇒ MΓ,MΘ ` MA, where we demand that Γ ∪Θ 6= ∅.

A predicate M is a normal L-predicate or simply an L-predicate if it is a regular
L-predicate and if we have in addition that ` M>.

Example 2.2. Even over R, we have non-trivial examples of L-predicates. E.g.,
let A be the conjunction of the axioms of a finite axiomatization of S1

2, or, rather,
a version of S1

2 in the arithmetical language. Then, MB :↔ (A → �RB) is an
L-predicate. Here �R is a standard formalization of provability.

Since we have the necessary fixed points in R, we can prove Löb’s Theorem.

Theorem 2.3 (Löb’s Theorem). Suppose U is a theory with natural numbers N
satisfying R. Suppose that M is a regular L-predicate. Then M(MA→ A) ` MA.

Proof. By the Gödel fixed Point Lemma, we find a B such that

(†) ` B ↔ (MB → A).

Since B,MB ` A, we find MB ` MA. So, we have MA→ A ` MB → A and, hence,
MA → A ` B. Ergo, M(MA → A) ` M(MB → A) and M(MA → A) ` MB. By the
usual reasoning it follows that M(MA→ A) ` MA. 2

We could also have given a purely modal formulation of the insight contained in
Löb’s theorem. The only role of R is the fact that it supports the Fixed Point
Lemma. If we have a purely modal language and a modal operator satisfying the
regular L-property extended with constants and axioms for fixed points for guarded
(aka modalized) propositional variables, then the above reasoning works.
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2.2. Regular Löb’s Logic. Corresponding to the idea of a regular L-predicate
we have the purely modal theory Regular Löb’s Logic or rGL. It has the following
axioms.

rGL1. φ ` ψ ⇒ Mφ ` Mψ

rGL2. Mφ,M(φ→ ψ) ` Mψ

rGL3. Mφ ` MMφ

rGL4. M(Mφ→ φ) ` Mφ

The following result is rather useful.

Theorem 2.4. GL ` φ iff rGL ` M> → φ.

Proof. From left to right is an induction of proof length. From right to left is trivial,
since GL extends rGL. 2

2.3. Jump Devices. We define A I B as: for some regular L-predicate M, we
have A ` M> and M⊥ ` B.

We will call a triple 〈A,M, B〉 a device if M is a regular L-predicate and A ` M>
and M⊥ ` B. We write M : B J A or M : A I B for: 〈A,M, B〉 is a device.

Two devices M : A I B and M′ : A′ I B′ are equivalent iff ` A ↔ A′, ` B ↔ B′

and, for all C, we have ` MC ↔ M′C.

Given any device from A to B, we can find a device from A to B that satisfies
some further desirable properties. We will call such devices basic devices. A device
M : A I B is basic iff it satisfies:

bD1. C ` D ⇒ MC ` MD

bD2. MC,M(C → D) ` MD

bD3. ` M> ↔ (A ∨B).

bD4. ` M⊥ ↔ B.

bD5. ` MM⊥ ↔ (A ∨B).

It is easy to see that a basic device is a device. Suppose M : A I B is an arbitrary
device. Consider Ψ〈A,M, B〉 := 〈A,M∗, B〉, where M∗ is defined as

M∗C :↔ B ∨ (A ∧ M(B → C)).

We claim that M∗ : A I B is a basic device. The verification is an easy exercise in
modal logic. We treat as an example bD5. We have:

B ` B ∨ (A ∧ M(B → ⊥))
` B ∨ (A ∧ M(M⊥ → ⊥))
` B ∨ (A ∧ M⊥)
` B ∨ (A ∧B)
` B
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We note that Ψ preserves equivalence of devices. The operation Ψ is idempotent,
since: Ψ〈A,Ψ〈A,M, B〉, B〉 = 〈A,M◦, B〉, where:

M◦C := B ∨ (A ∧ (B ∨ (A ∧ M(B → C))))

We verify the validity of IL for I. The verification is for the moment in the meta-
language. We want it to be verifiable in the U itself. We postpone discussion of
the demands on U until after the proof. We remind the reader that the logic IL is
defined as follows.

IL1. ` �(φ→ ψ)→ φ� ψ

IL2. ` (φ� ψ ∧ ψ � χ)→ φ� χ

IL3. ` (φ� χ ∧ ψ � χ)→ (φ ∨ ψ)� χ

IL4. ` φ� ψ → (3φ→ 3ψ)

IL5. ` 3φ� φ

Each principle except IL4 corresponds to an operation on devices.2 The operations
as chosen by us all yield a basic device as output independent of whether the input
devices are basic. In our verifications we will use the fact that Γ,MΘ ` A ⇒
MΓ,MΘ ` MA, provided that Γ ∪Θ is non-empty.

IL1: Suppose ` A→ B. We define Φ1(A,B) := 〈A,M∗, B〉, where M∗C :↔ B.

It is easy to verify that Φ1(A, B) is a basic device.

IL2: Suppose M0 : A I B and M1 : B I C. We define Φ2(A,M0, B,M1, C) :=
〈A,M∗, C〉, where:

M∗D :↔ C ∨ (A ∧ ((B ∧ M1(C → D)) ∨
(¬B ∧ M0(B → ((C ∧D) ∨ (¬C ∧ M1(C → D)))))))

We verify bD1. Suppose D ` E. It follows that (C → D) ` (C → E). Ergo:

(a) M1(C → D) ` M1(C → E).

Hence, also:

B → ((C ∧D) ∨ (¬C ∧ M1(C → D))) ` B → ((C ∧ E) ∨ (¬C ∧ M1(C → E))).

It follows that:

(b) M0(B → ((C ∧D) ∨ (¬C ∧ M1(C → D)))) ` M0(B → ((C ∧ E) ∨ (¬C ∧ M1(C → E)))).

It is immediate from (a) and (b) that M∗D ` M∗E.

We verify bD2. We can easily derive: (a) M1(C → D), M1(C → (D → E)) ` M1(E) and from this:

B → ((C ∧D) ∨ (¬C ∧ M1(C → D))),

B → ((C ∧ (D → E)) ∨ (¬C ∧ M1(C → (D → E)))) `
B → ((C ∧ E) ∨ (¬C ∧ M1(C → E))).

2In hindsight is would have been more natural to have IL4 as the last principle of the list.
However, we do not want to diverge from the traditional order.
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It follows that:

(b) M0(B → ((C ∧D) ∨ (¬C ∧ M1(C → D)))),

M0(B → ((C ∧ (D → E)) ∨ (¬C ∧ M1(C → (D → E))))) `
M0(B → ((C ∧ E) ∨ (¬C ∧ M1(C → E)))).

We reason in U . Suppose (c) M∗D and (d) M∗(D → E). It follows that we have one of the

exclusive cases C or ¬C ∧ A ∧ B or ¬C ∧ A ∧ ¬B. In case we have C we are immediately

done. Suppose we have ¬C and A and B. In this case (c) gives us M1(C → D) and (d) gives

us M1(C → (D → E)). By (a), we find M1(C → E). Ergo M∗E. Suppose we have ¬C and

A and ¬B. In this case (c) and (d) give us M0(B → ((C ∧ D) ∨ (¬C ∧ M1(C → D)))) and

M0(B → ((C ∧ (D → E)) ∨ (¬C ∧ M1(C → (D → E))))). By (b) we find the desired conclusion

M0(B → ((C ∧ E) ∨ (¬C ∧ M1(C → E)))), and hence M∗E.

We treat bD3,4,5. First we have:

` M∗> ↔ C ∨ (A ∧ ((B ∧ M1(C → >)) ∨
(¬B ∧ M0(B → ((C ∧ >) ∨ (¬C ∧ M1(C → >)))))))

↔ C ∨ (A ∧ ((B ∧ >) ∨
(¬B ∧ M0(B → (C ∨ (¬C ∧ >))))))

↔ C ∨ (A ∧ (B ∨ (¬B ∧ >)))

↔ C ∨A

We note that since M0⊥ ` B, we have ¬B ` ¬M0⊥, and, hence, M0¬B ` M0(¬M0⊥) and, so,

M0¬B ` M0⊥. Similarly, M1¬C ` M1⊥. We have:

` M∗⊥ ↔ C ∨ (A ∧ ((B ∧ M1¬C) ∨
(¬B ∧ M0(B → ((C ∧ ⊥) ∨ (¬C ∧ M1¬C))))))

↔ C ∨ (A ∧ ((B ∧ M1⊥) ∨ (¬B ∧ M0(B → (¬C ∧ M1⊥)))))

↔ C ∨ (A ∧ ((B ∧ C) ∨ (¬B ∧ M0¬B)))

↔ C ∨ (A ∧ ((B ∧ C) ∨ (¬B ∧ M0⊥)))

↔ C ∨ (A ∧B ∧ C)

↔ C

Finally:

` M∗M∗⊥ ↔ M∗C

↔ C ∨ (A ∧ ((B ∧ M1(C → C)) ∨
(¬B ∧ M0(B → ((C ∧ C) ∨ (¬C ∧ M1(C → C)))))))

↔ C ∨ (A ∧ ((B ∧ >) ∨ (¬B ∧ M0(B → (> ∨ (¬C ∧ M1>))))))

↔ C ∨ (A ∧ (B ∨ (¬B ∧ >)))

↔ C ∨A

IL3: Suppose M0 : A I C and M1 : B I C, We define Φ3(A,M0, B,M1, C) :=
〈A ∨B,M∗, C〉, where:

M∗D :↔ C ∨ (A ∧ M0(C → D)) ∨ (¬A ∧B ∧ M1(C → D)).
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All cases except bD4 are like the cases of IL2 but simpler. We treat bD4.

` C → C ∨ (A ∧ M0¬C) ∨ (¬A ∧B ∧ M1¬C)

→ C ∨ (A ∧ C) ∨ (¬A ∧B ∧ C)

→ C

IL4: Suppose M : A I B and ` ¬B. It follows that M> ` M¬B, and, hence,
M> ` M¬M⊥ and, thus, that M> ` M⊥. We may conclude that A ` B and, so,
A ` ⊥, i.e., ` ¬A.

IL5: We prove a stronger fact, say IL5+. Suppose M is a regular L-predicate and
A ` M>. We show that (A∧OB)�B. We define Φ4(A,B,M) := 〈(A ∧ OB),M∗, B〉,
where :

M∗C :↔ B ∨ (A ∧ OB ∧ M(B → C)).

We leave the simple verifications to the reader.

We will call Φ1, Φ2, Φ3, Φ4: the Φ-operations. We will call a class of devices closed
under the Φ-operations: Φ-closed.

To truly obtain IL, we need verifiability of the above proofs in U itself w.r.t. some
chosen N : S1

2 � U . Fortunately all the transformations in our verification are
p-time, so we do not encounter a problem in internalizing the argument.

Clearly every Φ-closed class of devices D will satisfy IL. The basic devices are an
example of such a class. We will write ID for the jump relation obtained by only
considering devices from D.

Open Question 2.5. One would hope that the devices (or a closed subclass of
the devices) form a category, but its seems that our definitions do not yield the
associativity of composition. Since neither the class of devices nor the chosen
operations on devices are uniquely determined, there is still some hope that we
can find the desired category. So we formulate the open question: can we find a
category of devices?

2.4. Regular HBL-predicates. In this subsection we introduce the class of reg-
ular HBL-predicates. We will show that devices associated with these predicates
are Φ-closed.

We formulate our relevant notion of ∃Σb
1-completeness. Consider a theory U and

an interpretation N : S1
2 � U . We define:

r-C: M>, SN ` MSM , where S is a ∃Σb
1-sentence and M is any interpretation

of S1
2 in U .

r-C0: M>, SN ` MSN , where S is a ∃Σb
1-sentence.

Note that the definition assumes that we have U and N fixed in the background. We
call a regular L-predicate that satisfies r-C w.r.t. U,N : a regular HBL-predicate. We
call a regular L-predicate that satisfies r-C0 w.r.t. U,N : a regular HBL0-predicate.
The name “HBL” stands for: Hilbert-Bernays-Löb. The reason for this choice is
the fact that the third Hilbert-Bernays was verifiable Σ1-completeness.



JUMPING IN ARITHMETIC 11

Here is a basic theorem about regular ∃Σb
1-completeness, connecting it with re-

stricted provability.

Theorem 2.6. Suppose that U is sequential. Let N interpret S1
2 in U . Suppose

that M is a regular L-predicate for U,N . Then, the following are equivalent:

i. M is a regular HBL-predicate.

ii. For all U -sentences A, and for all n, we have M> ` �Nn A→ MA.

Proof. Suppose that U is sequential and N : S1
2 � U . Suppose that M is a regular

L-predicate for U,N .

(i) ⇒ (ii). Suppose M is a regular HBL-predicate. Consider any sentence A and
any number n. Since U is sequential, there is an interpretation M : S1

2 � U , such
that U ` �Mn A → A. By r-C, we have M> ` �Nn A → M�Mn A. Since ` �Mn A → A,
we have, by rL1, that ` M�Mn A→ MA. It follows that M> ` �Nn A→ MA.

(ii)⇒ (i), Suppose that, for all U -sentences A, and for all n, we have M> ` �Nn A→
MA. Consider any ∃Σb

1-sentence S and any M : S1
2 � U . We have, for sufficiently

large n, ` SN → �Nn S
M and M> ` �Nn S

M → MSM . Hence, M> ` SN → MSM . 2

We remind the reader of our operations:

• Ψ〈A,M, B〉 := 〈A,M∗, B〉, where M∗ is defined as:
M∗C :↔ B ∨ (A ∧ M(B → C)).

• Φ1(A,B) := 〈A,M∗, B〉, where M∗C :↔ B.

• Suppose M0 : A I B and M1 : B I C. We define Φ2(A,M0, B,M1, C) :=
〈A,M∗, C〉, where:
M∗D :↔ C ∨ (A ∧ ((B ∧ M1(C → D)) ∨

(¬B ∧ M0(B → ((C ∧D) ∨ (¬C ∧ M1(C → D))))))).

• Suppose M0 : A I C and M1 : B I C, We define Φ3(A,M0, B,M1, C) :=
〈A ∨B,M∗, C〉, where:
M∗D :↔ C ∨ (A ∧ M0(C → D)) ∨ (¬A ∧B ∧ M1(C → D)).

• Suppose M : A I D. Note that D is not necessarily B. We define
Φ4(A,B,M) := 〈(A ∧ OB),M∗, B〉, where:
M∗C :↔ B ∨ (A ∧ OB ∧ M(B → C)).

If the predicates in the input of the operations are HBL (HBL0) for U,N , then so
are the predicates in the output.

We treat the case of Φ2 for HBL. Suppose M0 : A I B and M1 : B I C, where M0 and M1 are HBL.
We have, for any M : S1

2 � U , that: A ` SN → M0SM , so a fortiori A ` SN → M0(B → SM ).

Similarly, B ` SN → M1(C → SM ) and, hence, A ` M0(B → (SN → M1(C → SM ))). We also

have A ` SN → (M0SN ∧ M0SM ). So:

A ` SN → M0(B → ((C ∧ SM ) ∨ (¬C ∧ M1(C → SM )))).

From these facts the desired result is immediate.

We show that, if we restrict ourselves to devices based on HBL (HBL0) predicates
for U,N , we have:

M: Suppose S is ∃Σb
1, then: A I B ⇒ (A ∧ SN ) I (B ∧ SN ).
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Suppose M : A I B. Let Φ5(A,M, B) := 〈A ∧ SN ,M∗, B ∧ SN 〉, where M∗C :↔
(SN ∧ MC).

We leave the easy verification that M∗ is indeed a HBL (HBL0) predicate for U,N
and that M∗ : (A∧SN ) I (B∧SN ) to the reader. We note that, since �UC is ∃Σb

1,
the usual form of M follows:

A I B ⇒ (A ∧ �NC) I (B ∧ �NC).

3. Feferman’s Theorem

In this section we present a simple proof of Feferman’s Theorem. We remind the
reader of the Theorem.

Feferman’s Theorem: Consider any theory U with a p-time decidable axiom
set. Suppose N is an interpretation of Buss’ theory S1

2 in U , then there is an
interpretation K of U + inconN (U) in U .

Proof. Consider any theory U with p-time decidable axiom set and an interpretation
N : S1

2 � U . Clearly, we have 3N> `U 3N�N⊥ and 3N�N⊥ �U �N⊥, by,
respectively, the Second Incompleteness Theorem and the Gödel-Hilbert-Bernays-
Wang-Henkin-Feferman Theorem (Theorem A.1 of the Appendix). By composition,
3N> �U �N⊥. Suppose K witnesses that 3N> �U �N⊥. We also have ID :
�N⊥�U �N⊥. Hence K〈3N>〉ID : >�U �N⊥. Here K〈3N>〉ID is the disjunctive
interpretation that ‘is’ K if 3N> and ID if not 3N>. (See Appendix A.2 for the
definition of disjunctive interpretations.) 2

The proof of Feferman’s Theorem presented here was given in [Vis90]. The same
proof is reported in [Fef97]. Feferman learned the proof in conversation from Per
Lindström. It seems likely that Per discovered the proof independently.

4. Jumping, Interpretatibility, Conservativity

In this section, we prove that, for essentially reflexive theories, jumping and in-
terpretability coincide and we prove that for theories interpreting EA jumping and
Π1-conservativity coincide. (The preceding formulation is still not fully precise. It
will be refined below.)

4.1. Interpretability over Essentially Reflexive Theories. In this subsection,
we show that HBL-jumping and interpretability coincide for essentially reflexive
theories. We first prove Interpretation Existence for HBL predicates.

A theory U is locally sententially essentially reflexive if, for every U -sentence A
and for every n, there is an M : S1

2 � U such that U ` �MU,nA → A. Here �U,n is
restricted provability as described in Appendix A.4. As is well known, sequential
theories are locally sententially essentially reflexive.

The theory U is sententially essentially reflexive if, there is a fixed N : S1
2 � U

such that, for every U -sentence A and for every n, we have U ` �NU,nA → A. We
often make N part of the data and say, e.g., U is essentially reflexive w.r.t. N .
Sequential theories with full induction, such as PA and ZF, are essentially reflexive
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and, hence, a fortiori sententially essentially reflexive. For a worked out-example
of a theory that is sententially essentially reflexive but not essentially reflexive, see
[Vis12].

Theorem 4.1. Suppose that U is locally sententially essentially reflexive. Let the
interpretation N provide natural numbers satisfying S1

2. Suppose that M is a regular
HBL-predicate for U,N . Then, (M> ∧ OA)�A.

Proof. By Theorem 2.6, we have, for every n, that M> ` OA→ 3NU,nA. Hence, by
Theorem A.3, we find that (M> ∧ OA)�A. 2

Next we prove Feferman’s Theorem w.r.t. HBL predicates.

Theorem 4.2. Suppose that U is locally sententially essentially reflexive. Let our
natural numbers be given by N : S1

2�U . Suppose that M is a regular HBL-predicate
for U,N . Then, M>� M⊥.

Proof. First, we trivially have (M> ∧ M⊥) � M⊥. Secondly, we have, by Löb’s
Theorem, (M>∧O>) ` (M>∧OM⊥) and, by Theorem 4.1, (M>∧OM⊥)�M⊥. By
IL3 we are done. 2

We now move to a result where we really need global reflexivity.

Theorem 4.3. We work over a theory U and N : S1
2�U . Suppose U is sententially

essentially reflexive w.r.t. N . Then, over U,N , we have: A�B iff A Ihbl B.

Proof. Suppose A�B. It follows that, for every n, A ` 3Nn B. We define:

MC :↔ B ∨ (A ∧ ∃x (�Nx (B → C) ∧3Nx B)).

We show that M : A I B is a basic device. We have:

` M⊥ ↔ B ∨ (A ∧ ∃x (�Nx ¬B ∧3Nx B))
↔ B

` M> ↔ B ∨ (A ∧ ∃x (�Nx > ∧3Nx B))
↔ A ∨B

` MM⊥ ↔ MB

↔ B ∨ (A ∧ ∃x (�Nx > ∧3Nx B))
↔ A ∨B

We treat rL1. Suppose C ` D. Then, (a) for some n, C `n D. We reason
in U . Suppose (b) B ∨ (A ∧ ∃x (�Nx (B → C) ∧ 3Nx B)) We want to prove (c)
B ∨ (A ∧ ∃x (�Nx (B → D) ∧ 3Nx B)). If B we are easily done. Suppose (d) A ∧
∃x (�Nx (B → C) ∧ 3Nx B). It follows that we have A and hence 3Nn B. Thus, we
may assume that for some a ≥ n, (e) �Na (B → C) ∧ 3Na B. Combining this with
(a), we find: (f) �Na (B → D) ∧3aB. From this we easily find the desired (c).

Both rL2 and the ∃Σb
1-condition are both easy.

The other direction is immediate from Theorem 4.2. 2
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We remind the reader that every essentially reflexive theory U has Orey sentences.
This means that, there is a sentence O such that > �U O and > �U ¬O. It
follows from Theorem 4.3, that there are HBL-predicates M0 and M1 such that
U ` M0⊥ ↔ ¬M1⊥.

Both Per Lindström and Robert Solovay have shown that interpretability over an
essentially reflexive theory is complete Π1. Inspecting the proof of Theorem 4.3 we
can see that we can reduce the question whether A�U B to the question whether
the specific predicate M as constructed in the proof is a HBL-predicate. Hence the
question whether a predicate is HBL is complete Π2.

4.2. Π1-Conservativity. Suppose Γ is a set of arithmetical sentences. We define
Γ-conservativity. Let N : S1

2 � U and M : S1
2 � U . Then:

• (U,N)�Γ (V,M) iff, for all Γ-sentences C, if V ` CM , then U ` CN .

• A�U,N,Γ B iff (U +A,N)�Γ (U +B,N).

The logic of Π1-conservativety was studied by Petr Hájek and Franco Montagna
in two papers [HM90], [HM92]. They proved the arithmetical completeness of ILM
for extensions of IΣ1. A careful analysis of precisely what principles are involved
in the proof can be found in [BV05]. The basic system for which the proof works
is IΠ−+ Exp. In this section we prove that Ihbl0 coincides with �Π1 for extensions
of EA, aka I∆0 + Exp.

Theorem 4.4. Consider any theory U and any N : S1
2 � U . Suppose A Ihbl0 B

w.r.t. U,N . Then A�∀Πb
1
B.

Proof. Let U and any N : S1
2 � U be given. Suppose A Ihbl0 B w.r.t. U,N . Let

M be a HBL0 predicate for U,N and let P be a ∀Πb
1-sentence and let S be the

negation of P . We have:

B ` PN ⇒ M⊥ ` PN

⇒ SN ` ¬M⊥
⇒ MSN ` M¬M⊥
⇒ MSN ` M⊥
⇒ SN ,M> ` M⊥
⇒ SN ,M> ` ⊥
⇒ M> ` PN

⇒ A ` PN

Hence B is ∀Πb
1-conservative over A w.r.t. U,N . 2

If we have the totality of exponentiation inN , then we can transform ∀Πb
1-conservativity

into Π1-conservativity. For completeness sake we reproduce the simple argument.

Theorem 4.5. Consider any theory U and any N : EA � U . Suppose A Ihbl0 B
w.r.t. U,N . Then A�Π1 B.
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Proof. Let U and any N : EA�U be given. Suppose A Ihbl0 B w.r.t. U,N . Let M
be a HBL0 predicate for U,N and let P be a Π1-sentence and let S be the negation
of P . We have EA ` S ↔ S0, for some S0 in ∃Σb

1. We have:

B ` PN ⇒ M⊥ ` PN

⇒ SN ` ¬M⊥
⇒ SN0 ` ¬M⊥
⇒ MSN0 ` M¬M⊥
⇒ MSN0 ` M⊥
⇒ SN0 ,M> ` M⊥
⇒ SN ,M> ` ⊥
⇒ M> ` PN

⇒ A ` PN

Hence B is Π1-conservative over A w.r.t. U,N . 2

It would be nice to prove a converse of Theorem 4.4. However, we could not do
it. In stead we prove a converse of Theorem 4.5. To prove this converse we need
to develop some machinery. Our strategy is to develop an analogue of restricted
provability and then simply mimic the proofs we gave for the case of interpretability
and jumping.

Open Question 4.6. Do we have the converse of Theorem 4.4? I.o.w., consider
any theory U and any N : S1

2 � U . Suppose A �∀Πb
1
B w.r.t. U,N . Do we have:

A Ihbl0 B w.r.t. U,N?

Let φ be a formula of propositional logic. We define: substU (φ) is the set of all
σ : FV(φ)→ sentU . We write taut(φ) for ‘φ is a tautology’ and �prop for provability
in propositional logic.

Lemma 4.7. Suppose U is any theory and N : S1
2 � U . We have:

i. EA ` ∀φ (taut(φ)→ �propφ),

ii. EA ` ∀φ∀σ ∈ substU (φ) (taut(φ)→ �Uσ(φ)),

iii. EA ` ∀φ (¬ taut(φ)→ �U¬ tautN (φ)),

iv. EA ` ∀φ∀σ ∈ substU (φ) �U (tautN (φ)→ σ(φ)).

Proof. The proof of (i) is simply the formalization of the usual completeness proof
of propositional logic. Item (ii) is a direct consequence of (i). Item (iii) is an
instance of Σ1-completeness. Item (iv) follows from (ii) and (iii). 2

We define sub0 is follows:

• sub0(A) := {A} if A is of the form QxB, for Q ∈ {∀,∃}, or P~t, where P~t is
an atomic sentence.

• sub0(B ∧C) := sub0(B) ∪ sub0(C) ∪ {(B ∧C)}, and similarly for the other
propositional connectives.
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The set at0(A) is the set of all B in sub0(A) of the form QxC or P~t, where P is
atomic. We define the function θ by θ(A) := ppAq , if A is of the form QxB or P~t,
where P is atomic, and θ commutes with the propositional connectives. Suppose
ν : ppAq 7→ A. Then ν(θ(B)) = B. Let taut∗U (A) := taut(θ(A)). We have:

Lemma 4.8. Suppose U is any theory and N : S1
2 � U . We have:

EA ` ∀A �U ( taut∗NU (A)→ A).

Proof. The lemma is immediate by Lemma 4.7(iv). 2

We will employ a Σ1-truth predicate in the definition of our restricted-provability-
analogue. We note that we have S1

2 ` trueΣ1(S)→ S and EA ` S → trueΣ1(S). Sup-
pose trueΣ1(x) is of the form ∃y true0(y, x), where true0 is ∆0. We write truezΣ1

(x)
for: ∃y ≤ z true0(y, x).

Let S∗(A) be the set of S in Σ1 such that SN is in at0(A). Here we assume that all
such formulas start with an existential quantifier. Let S∗(X) :=

⋃
A∈X S∗(A). We

write XN for the set of BN such that B is in X. We write � for �U and taut∗ for
taut∗U . Let Yx := {B | ∃p < x proofU (p,B)}. We define:

�xA := ∃S ⊆ S∗(Yx ∪ {A})∃z (∀S ∈ S truezΣ1
(S) ∧ taut∗(

∧
(Yx ∪ SN )→ A)).

The business with variable ‘z’ is just a trick to avoid the use of Σ1-collection. In case
we do have Σ1-collection in the ambient theory we can omit ‘z’ from the definition.
We collect the basic facts about �x in a lemma.

Lemma 4.9. Suppose U is any theory and N : S1
2 � U . The variable ‘S’ ranges

over Σ1-sentences, that begin with an existential quantifier. We have:

i. �xA is Σ1.

ii. EA ` ∀A (�A→ ∃x�xA).

iii. EA ` ∀A (�A→ ∃x� �Nx A).

iv. EA ` ∀S, x (trueΣ1(S)→ �xS).

v. EA ` ∀x,A,B ((�xA ∧ �x(A→ B))→ �xB).

vi. EA ` ∀x,A�(�Nx A→ A).

vii. EA ` ∀A (∃x�xA→ �A).

viii. EA ` ∀A (∃x�xA↔ �A).

Proof. Items (i) and (ii) are trivial. Item (iii) follows from (i) and (ii) by Σ1-
completeness. (iv) is again trivial.

We address item (v). Reason in EA. Consider A, B and x. Suppose �xA and
�x(A → B). We have S0 ⊆ S∗(A) and S1 ⊆ S∗(A → B) and z0 and z1 such that
all elements of S0 are true witnessed below z0 and and all elements of S1 are true
witnessed below z1 and taut∗(

∧
(Yx ∪ SN0 ) → A) and taut∗(

∧
(Yx ∪ SN1 ) → (A →

B)). Clearly, all elements of S0 ∪ S1 are true witnessed below z := max(z0, z1).
Moreover, taut∗(

∧
(Yx ∪ SN0 ∪ SN1 ) → B). Let S2 := (S0 ∪ S1) ∩ S∗(B). By

elementary propositional logic we find that taut∗(
∧

(Yx ∪ SN2 ) → B) (since the
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atoms corresponding to elements of S0 ∪ S1 that are not in θ(B) are irrelevant for
the truth of θ(B) for a given assignment). The elements of S2 are witnessed below
z. So �xB.

We prove item (vi). We reason in EA. Consider any A in the language of U and
any x. We have:

� ( �Nx A → [ ∃S ⊆ S∗(Yx ∪ {A})∃z
(∀S ∈ S truezΣ1

(S) ∧ taut∗(
∧

(Yx ∪ SN )→ A)) ]N

→
∨

S⊆S∗(Yx∪{A})

(
∧
S∈S

trueNΣ1
(S) ∧ taut∗N (

∧
(Yx ∪ SN )→ A))

→
∨

S⊆S∗(Yx∪{A})

(
∧
SN ∧ (

∧
(Yx ∪ SN )→ A))

→
∨

S⊆S∗(Yx∪{A})

(
∧
SN ∧ (

∧
Yx → A))

→ (
∧
Yx → A)

→ A )

Finally (vii) follows by combining (iii) and (vi) and (viii) is simply the combination
of (ii) and (vii). 2

With our new notion of ‘restricted provability’ in hand, we can now proceed to give
an ‘Orey Hájek characterization’ for Π1-conservativity. We have Π1 here rather
than ∀Πb

1 because we need the totality of exponentiation to get everything going.

We write �V,M,n for � define w.r.t. V,M . We have:

Theorem 4.10 (Orey-Hájek for Π1-conservativity). Consider U,N and V,M ,
where N is an interpretation of EA in U and M is an interpretation of EA in
V . Then, (U,N)�Π1 (V,M) iff, for all n, we have U ` �NV,M,n>.

Proof. From left to right: Suppose (U,N)�Π1 (V,M). By Lemma 4.9(vi) we have,
for any n, that V ` �MV,M,n>. Hence we also have U ` �NV,M,n>.

From right to left: Suppose, for all n, U ` �NV,M,n>. Suppose V ` PM , for P in
Π1. It follows that U ` �NV,M,n∗P

M , for sufficiently large n∗. We can write P as
¬S, where S is in Σ1. Reason in U . Suppose SN . Then, we have �NV,M,n∗S

M .
So, �NV,M,n∗⊥. Quod non. Hence, we may conclude PN . Leaving U , we see that
U ` PN . 2

Open Question 4.11. Consider U,N and V,M , where N is an interpretation
of S1

2 in U and M is an interpretation of EA in V . Can we prove the following?
(U,N)�∀Πb

1
(V,M) iff, for all n, we have U ` �NV,M,n>.

Finally we give our main theorem.

Theorem 4.12. Suppose U is a theory and N : EA � U . Then, A Ihbl0 B iff
A�Π1 B.
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Proof. From left to right. This is Theorem 4.5.

From right to left. SupposeA�Π1B. By the ‘unformalized’ version of Lemma 4.9(vi),
we have: for all n, ` B → �Nn B and, hence (†) for all n, ` A → �Nn B. We define
the following predicate:

NC :↔ (B ∨ (A ∧ ∃x (�x(B → C) ∧ �xB))).

We claim that N : A Ihbl0 B (w.r.t. for U,N). It is easy to see that ` N⊥ ↔ B,
` N> ↔ (A ∨B) and ` NN⊥ ↔ (A ∨B).

Suppose C ` D. It follows that (‡) for some m, ` �m(C → D). Reason in U .
Suppose NC. In case we have B, we are immediately done. Suppose ¬B. In that
case, we have A and ∃x (�x(B → C)∧�xB). Suppose �x0(B → C) and �x0B. We
may assume, by (†) that x0 ≥ m. By (‡) it follows that A and �x0(B → D) and
�x0B. So ND.

Reason in U . Suppose NC and N(C → D). In case B, we immediately have
ND. Suppose ¬B. It follows that A and for some x0, x1, we have �x0(B → C)
and �x1(B → (C → D)) and �x0B and �x1B. Let x := max(x0, x1). We find:
�x(B → C) and �x(B → (C → D)) and �xB. It follows that A and �x(B → D)
and �xB. I.o.w., ND. 2

We have seen, in the previous subsection, that for sententially essentially reflexive
theories, interpretability and the HBL jump relation coincide. In the present sub-
section, we have seen that for extensions of EA, Π1-conservativity and the HBL0

jump relations coincide.

In the next section we will provide an example that illustrates that the L jump
relation does not coincide with interpretability for a wide range of theories.

5. The Kreisel Condition and a Separating Example

Suppose we have a theory U and an interpretation N of EA in U . We assume
that the theory U is ∆b

1-axiomatized. As before, the interpretation N provides us
the Gödel numbers we use. In this section we want to achieve two things at once.
In the first place, we want to produce a Σ1-predicate � for U such that �N is
an L-predicate that satisfies the Kreisel condition: U ` �NA iff U ` A, for all
U -sentences A. In the second place, we we want �N⊥ to be a separating example
between I and �. Thus, we want: U I (U + �N⊥), but U 6� (U + �N⊥).

Let P be any formula defining a set of N -numbers in U . We assume that P starts
with a quantifier. Note that we can always add a vacuous quantifier to obtain the
desired effect. We treat P as a modal operator, writing MA for P (pAq). Note that,
for the moment, we do not demand any further properties from P .

Consider any set of sentences Z in the language of U . The set Z generates a
propositional language as follows. First we define sub(Z) as the smallest set X
such that:

i. Z ⊆ X,
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ii. if A∧B is in X then A and B are in X, and similarly for the other propositional
connectives.

iii. if MA is in X, then so is A.

In our set-up, we treat the formulas starting with quantifiers as atoms. Consider
any set of sentences Z. We define Z `0 C, if C follows from Z using modus ponens
and M-necessitation, i.e., the rule that if we have derived A, we may infer MA. A
`0-proof from Z is simply a sequence of formulas D0, . . . , Dk−1, where that Di are
either in Z or follow from earlier elements of the sequence by our two rules.

Suppose Z is finite. Consider any `0-proof π from Z. Let γ be an occurrence-as-
subconclusion of a formula C in π. We note that if C is in sub(Z), then all formulas
occurring above γ as subconclusions are subformulas of formulas in Z. If C is not
in sub(Z), then C is of the form MD and the last rule applied is M-necessitation.

Thus, any proof witnessing Z `0 A has the following form: A = MnB (n may be
0), where B is subformula of of formula in Z. From B to A we have necessitation
inferences, and the proof of B contains only elements of of sub(Z).

If a `0-proof containing only elements of sub(Z) is longer than the number of subfor-
mulas of formulas of Z, then a certain subconclusion will occur twice sequentially.
Thus we can shorten the proof by omitting all but the first occurrence of the sub-
conclusion. Hence, proofs containing only subformulas of formulas in Z can be
reduced to proofs with as length at most the number of subformulas of formulas in
Z.

We may conclude that Z `0 A is decidable. We can easily see that our decidability
proof can be formalized in EA.

Let Yn be the set of A such that, for some p < n, proofU (p,A). Let �PxA stand for
(the arithmetization of) Yx `0 A, and let �PA stand for ∃x �PxA. We note that
P only occurs coded in the definition of �Px and �P .

Consider any Σ1-sentence S of the form ∃xS0(x), where S0 is ∆0(exp). Using the
Gödel Fixed Point Lemma, we find a formula � (or, more explicitly, �[S]) with:

EA ` �A↔ ��NA < S.

Note that we take P := �N . We define �⊥A by S ≤ ��NA.

Theorem 5.1. We have:

i. EA ` ∀A,B ((�A ∧�(A→ B))→ �B),

ii. EA ` ∀A (�A→ � �NA),

iii. EA ` ∀A (�A→ � �NA),

iv. EA ` ∀A (�A→ �A).

v. EA + ¬S ` ∀A (�A↔ �A).

vi. EA verifies that, if S is false, then, �N is an L-predicate for U .

vii. EA ` �A→ (�A ∨�⊥A).
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Proof. We reason in EA. We write s for the minimal witness of S. In case ¬S, we
treat s as ∞ in the obvious way.

Ad (i): Suppose �A and �(A → B). It follows that, for some x < s, we have
��N
x A and ��N

x (A → B). Hence, since ��N
x is closed under modus ponens by

construction, we find ��N
x B. Ergo, �B.

Ad (ii): Suppose �A. It follows that, for some x < s, we have ��N
x A. Since ��N

x

is closed under �N -necessitation by construction, we find ��N
x �NA. Ergo, ��NA.

Ad (iii): This is just Σ1-completeness.

Ad (iv): Suppose �A. Then, for some x < s, we have ��N
x A. We prove by induc-

tion on proof-length that, for every `0-proof p from Yx of a B, there is a matching
ordinary proof q of B. To make the induction possible, we need a multi-exponential
bound on the q. We will discuss this bound after describing the transformations.
We note that we can consider the `0-proof p as the witness for ��N

x B, since the
U -proofs needed for verifying that an element of the proof is in Yx are all bounded
by x.

In case B is in Yx, we are guaranteed a proof q < x of B.

Suppose we have concluded B from C and C → B. Say, we have `0-proofs p0 of C
and p1 of C → B, then by the induction hypothesis we have proofs q0 of C and q1

of C → B. Clearly, we can find a proof q of B with length linear in the lengths of
q0 and q1.

Suppose we have concluded B = �NC from C. Suppose our `0-proof of C is p.
Clearly p witnesses �C. So we can construct an ordinary proof of order 22p to show
��N C —following the usual proof of Σ1-completeness. (Note that we do not need
the Induction Hypotheses here.)

On the basis of the two transformations, we can easily see that we can estimate the
ordinary proofs q by 22p , where p is the `0-proof from which they are derived.

Ad (v): This is immediate using (iv).

Ad (vi): We reason in EA. By (i) and (iii), we have that:

�((�NA ∧�N (A→ B))→ �NB) and �(�NA→ �N�NA).

Suppose ¬S and �A. Then, by (v), we find that �A. So, by (iii), � �NA.

Ad (vii): This is immediate since EA ` �A→ ��A. 2

Next, we find using the Gödel Fixed Point Lemma, a sentence R such that:

EA ` R↔ ∃C (� �[R],N C ≤ ��[R],N
C).

Inspecting the fixed point construction we may arrange it so that R is of the form:

∃p ∃C < p (proof(p,�t,NC) ∧ ∀x < p¬ ��t,N
x C),

where t is an elementary term that evaluates to (the Gödel number of) R. We note
that R is of the form ∃pR0(p), where R0 is ∆0(exp).
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Finally we define �A :↔ �[R]A. So,

EA ` R↔ ∃C (� �N C ≤ ��NC).

Theorem 5.2. We have:

a. EA ` R→ �⊥,

b. EA ` 3> → (�A↔ �A),

c. EA ` � �N A↔ �A,

d. Suppose that U is EA-verifiably sequential and essentially reflexive w.r.t. N .
Then, EA ` >��N⊥ → �⊥.

Proof. Ad (a): We reason in EA. Suppose R. It follows that, for some C, we have
��N C ≤ ��NC. It follows that ��N C, i.e. (a) �( ��NC < R)N . On the other
hand, R implies R ≤ ��NC. So, by Σ1-completeness, (b) �(R ≤ ��C)N . By (a)
and (b), we may conclude that �⊥.

Ad (b): The desired result is immediate by (a) and Theorem 5.1(v).

Ad (c): The right-to-left direction is immediate from Theorem 5.1(iii). We prove
left-to-right. We reason in EA. Suppose � �N A. We want to show �A. In case
we have R, we are immediately done by (a). If we have ¬R, it follows that we
cannot have � �N A < ��NA. So, we must have ��NA, and hence �A. By
Theorem 5.1(v), we find �A.

Ad (d): Suppose that U is EA-verifiably sequential and essentially reflexive w.r.t.
N . We reason in EA. Suppose >��N⊥. Then also >� ¬ �⊥,N ⊥. Since �⊥⊥ is
Σ1, it follows that �¬ �⊥,N ⊥. By Theorem 5.1(vii), �(�N⊥ → (�N⊥∨�⊥,N⊥)).
Hence, (†) �(�N⊥ → �N⊥). It follows that �(�N�N⊥ → �N �N ⊥). Hence, by
(c), we find �(�N�N⊥ → �N⊥), and so (‡) ��N⊥. Combining (†) and (‡), we
obtain � �N ⊥. Hence, again by Theorem 5.1(vii), we may conclude �⊥. 2

Here (c) gives us the promised result that �N has the Kreisel property. Moreover
(d) shows that I strictly extends �, since we do have > I �N⊥. In fact �N⊥ is
a Σ1 Rosser sentence for U . So, we have an example of a Σ1 Rosser sentence that
can be I-reached from >.
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Appendix A. Basic Facts and Definitions

In this appendix we explain some basic notions. The appendix still

should be checked. Do
we have everything

here? Are the notations

coherent with the rest?
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A.1. Theories. Theories are, in this paper, theories of first-order predicate logic,
that have a finite signature and that are axiomatized by an axiom set that is
represented by a ∆b

1-formula.3 Theories will usually be one-sorted, but we will
consider a few times two-sorted theories.

The formula specifying the axiom set is part of the data for the theory. Thus, we
treat theories intensionally and not as mere sets of theorems.

We say that a theory is finitely axiomatized if its axiomatization has the form∨
i<n x = pAiq. Note that S1

2 may prove that a theory has an axiom-set of, say,
less than two axioms, without being able to prove the equivalence of the formula
defining the axiom set with any formula of the prescribed form.

Our official signatures are relational, however, via the term-unwinding algorithm,
we can also accommodate signatures with functions.

A.2. Translations and Interpretations. We present the notion of m-dimensi-
onal interpretation without parameters. There are two extensions of this notion:
we can consider piecewise interpretations and we can add parameters. We will not
treat these extensions in this paper.

Consider two signatures Σ and Θ. An m-dimensional translation τ : Σ → Θ is a
quadruple 〈Σ, δ,F ,Θ〉, where δ(v0, . . . , vm−1) is a Θ-formula and where for any n-
ary predicate P of Σ, F(P ) is a formula A(~v0, . . . , ~vn−1) in the language of signature
Θ, where ~vi = vi0, . . . , vi(m−1). Both in the case of δ and A all free variables are
among the variables shown. Moreover, if i 6= j and k 6= `, then vik is syntactically
different from vj`.

We demand that we have ` F(P )(~v0, . . . , ~vn−1)→
∧
i<n δ(~vi). Here ` is provability

in predicate logic. This demand is inessential, but it is convenient to have.

We define Bτ as follows:

• (P (x0, . . . , xn−1))τ := F(P )(~x0, . . . , ~xn−1).

• (·)τ commutes with the propositional connectives.

• (∀xA)τ := ∀~x (δ(~x)→ Aτ ).

• (∃xA)τ := ∃~x (δ(~x) ∧Aτ ).

There are two worries about this definition. First, what variables ~xi on the side
of the translation Aτ correspond with xi in the original formula A? The second
worry is that substitution of variables in δ and F(P ) may cause variable clashes.
These worries are never important in practice: we choose ‘suitable’ sequences ~x to
correspond to variables x, and we avoid clashes by α-conversions. However, if we
want to give precise definitions of translations and, for example, of composition of
translations these problems come into play. These problems are clearly solvable,
but they are beyond the scope of this paper.

We allow identity to be translated to a formula that is not identity. There are
several important operations on translations.

3See [Bus86] or [HP93] for an explanation of the relevant formula classes.
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• idΣ is the identity translation. We take δidΣ(v) := v = v and F(P ) := P (~v).

• We can compose translations. Suppose τ : Σ → Θ and ν : Θ → Λ. Then
ν ◦ τ or τν is a translation from Σ to Λ. We define:

– δτν(~v0, . . . , ~vmτ−1) :=
∧
i<mτ

δν(~vi) ∧ (δτ (v0, . . . , vmτ−1))ν .

– Pτν(~v0,0, . . . , ~v0,mτ−1, . . . ~vn−1,0, . . . , ~vn−1,mτ−1) :=∧
i<n,j<mτ

δν(~vi,j) ∧ (P (v0, . . . , vn−1)τ )ν .

• Let τ, ν : Σ → Θ and let A be a sentence of signature Θ. We define
the disjunctive translation σ := τ〈A〉ν : Σ → Θ as follows. We take
mσ := max(mτ ,mν). We write ~v � n, for the restriction of ~v to the first n
variables, where n ≤ length(~v).

– δσ(~v) := (A ∧ δτ (~v � mτ )) ∨ (¬A ∧ δν(~v � mν)).

– Pσ(~v0, . . . , ~vn−1) := (A ∧ Pτ (~v0 � mτ , . . . , ~vn−1 � mτ )) ∨
(¬A ∧ Pν(~v0 � mν , . . . , ~vn−1 � mν))

Note that in the definition of τ〈A〉ν we used a padding mechanism. In case, for
example, mτ < mν , the variables vmτ , . . . , vmν−1 are used ‘vacuously’ when we have
A. If we had piecewise interpretations, where domains are built up from pieces with
possibly different dimensions, we could avoid padding by building the domain of
disjoint pieces with different dimensions.

A translation relates signatures; an interpretation relates theories. An interpreta-
tion K : U → V is a triple 〈U, τ, V 〉, where U and V are theories and τ : ΣU → ΣV .
We demand: for all axioms A of U , we have V ` Aτ . Here are some further
definitions.

• IDU : U → U is the interpretation 〈U, idΣU , U〉.

• Suppose K : U → V and M : V → W . Then, KM := M ◦K : U → W is
〈U, τM ◦ τK ,W 〉.

• Suppose K : U → (V +A) and M : U → (V +¬A). Then K〈A〉M : U → V
is the interpretation 〈U, τK〈A〉τM , V 〉. In an appropriate category K〈A〉M
is a special case of a product.

The notation K : U → V is inspired by the idea of interpretations as arrows
in a category. There is also an intuition of interpretability as a generalization of
provability. The traditional notations and notions associated to this intuition are:

• K : U � V stands for K : U → V .

• K : V � U stands for K : U → V .

• U � V stands for ∃K K : U � V . We say: U is interpretable in V .

• V � U stands for ∃K K : V � U . We say: V interprets U .

• U ≡ V stands for U � V and V � U . We say: V and U are mutually
interpretable.

A basic insight in concerning interpretability is the Gödel-Hilbert-Bernays-Wang-
Henkin-Feferman Theorem.
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Theorem A.1. Consider N : S1
2 � U . We assume that U is ∆b

1-axiomatized.
Then, we can construct an interpretation H : (U +3NU>)� U . We call H: the
Henkin interpretation. This interpretation has the additional feature that we can
construct inside U a truth-predicate T such that for some definable cut I of N the
commutation conditions for the language coded in I are U -verifiable.

The proof uses the formalized Henkin construction to produce an interpretation
H : (U +3NU>)� U . The basic intuition here is, of course, that an interpretation
is a uniform internal model construction. The lack of induction in our setting has
to be systematically compensated by going to shorter and shorter definable cuts of
N .

A.3. Sequential Theories. A sequential theory provides an interpretation N of
a weak number theory, say S1

2, and sequences of all objects of the domain of the
theories with projections in N . We can use these sequences to develop partial
satisfaction predicates. Using these we can prove restricted consistency statements
of U in U .

The notion of sequential theory has an very simple definition discovered by Pavel
Pudlák. We first need the definition of a very weak set theory. The theory Adjunc-
tive Set Theory or AS is a one-sorted theory with a binary relation ∈.

AS1 ` ∃x∀y y 6∈ x,

AS2 ` ∀x, y ∃z ∀u (u ∈ z ↔ (u ∈ x ∨ u = y)).

We note that we do not demand extensionality. For example, in AS we could have
lots of ‘empty sets’.

An interpretation is direct iff it is one-dimensional, unrelativised (that is, it has the
trivial domain) and identity preserving (that is, it translates identity to identity).

A theory U is sequential iff it directly interprets AS. By a substantial bootstrap, we
can define, in a sequential theory U , an interpretation N of a weak number theory,
sequences of all objects, etc.

For details see, for example, [Pud83], [Pud85], [MPS90], [HP93], [Vis09] and [Vis13].

We can generalize the notion of sequentiality a bit to poly-sequentiality by re-
placing direct interpretation in the definition by its obvious generalization to the
m-dimensional case.

A.4. Complexity Measures. In sequential theories we can define partial satis-
faction predicates for formulas with complexity below n, for any n. The presence
of these predicates has as a consequence that for any sequential theory U and for
any n, we can find an interpretation N of a weak arithmetic like Buss’ S1

2 in U such
that U ` conNn (U). See, for example, [Vis93] for more details. We give the relevant
definitions of complexity notions.

Restricted provability plays an important role in this paper. An n-proof is a proof
from axioms with Gödel number smaller or equal than n only involving formulas
of complexity smaller or equal than n. To work conveniently with this notion,
a good complexity measure is needed. This should satisfy three conditions. (i)
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Eliminating terms in favour of a relational formulation should raise the complexity
only by a fixed standard number. (ii) Translation of a formula via the translation
corresponding to an interpretation K should raise the complexity of the formula
by a fixed standard number depending only on K. (iii) The tower of exponents
involved in cut-elimination should be of height linear in the complexity of the
formulas involved in the proof.

Such a good measure of complexity together with a verification of desideratum (iii)
—a form of nesting degree of quantifier alternations— is supplied in the work of
Philipp Gerhardy. See [Ger03] and [Ger05]. It is also provided by Samuel Buss in
his preliminary draft [Bus11]. Buss also proves that (iii) is fulfilled.

Gerhardy’s measure corresponds to the following formula classes:

• AT is the class of atomic formulas.

• N?
−1 = Σ?

−1 = Π?
−1 := ∅.

• N?
n ::= AT | ¬N?

n | (N?
n ∧ N?

n) | (N?
n ∨ N?

n) | (N?
n → N?

n) | ∀Π?
n | ∃Σ?

n.

• Σ?
n ::= AT | ¬Π?

n | (N?
n−1 ∧ N?

n−1) | (Σ?
n ∨ Σ?

n) | (Π?
n → Σ?

n) | ∀Π?
n−1 | ∃Σ?

n.

• Π?
n ::= AT | ¬Σ?

n | (Π?
n ∧Π?

n) | (N?
n−1 ∨ N?

n−1) | (N?
n−1 → N?

n−1) | ∀Π?
n | ∃Σ?

n−1.

We may define ρ(A) as the minimal n such that A is in N?n.4

Samuel Buss gives the following formula classes.

• Σ∗
0 = Π∗

0 = the class of quantifier-free formulas.

• Σ∗
n ::= Σ∗

n−1 | Π∗
n−1 | ¬Π∗

n | (Σ∗
n ∧ Σ∗

n) | (Σ∗
n ∨ Σ∗

n) | (Π∗
n → Σ∗

n) | ∃Σ∗
n.

• Π∗
n ::= Σ∗

n−1 | Π∗
n−1 | ¬Σ∗

n | (Π∗
n ∧Π∗

n) | (Π∗
n ∨Π∗

n) | (Σ∗
n → Π∗

n) | ∀Π∗
n.

We may define ρ(A) as the smallest n such that A is in Σ∗n. This is the same
measure, as was employed in [Vis93]. For our purposes it does not matter whether
we use Gerhardy’s of Buss’ definition.

We use proofU,n for the proof predicate where only U -axioms with Gödel numbers
≤ n are allowed and where the formulas occurring in the proof are in the complexity
class Γn of all formulas of complexity ≤ n. Similarly we use U `n A, conn(U),
�U,mA, etc.

We end with some basic facts concerning sequential theories and restricted prov-
ability. A finitely axiomatized sequential theory is mutually interpretable with its
own restricted consistency over S1

2.

Theorem A.2. Suppose A is finitely axiomatized and sequential. We have:

A ≡ (S1
2 +3A,ρ(A)>).

For a proof, see, [Pud85] or [HP93]. We note that the right-to-left direction of the
result is a variant of the Gödel-Hilbert-Bernays-Wang-Henkin-Feferman Theorem.
An important point here is that the existence of a truth-predicate for the witnessing
Henkin interpretation is lost when we switch from ordinary consistency to restricted

4Vincent van Oostrom gave a variant of this formulation of Gerhardy’s measure in conversation.



28 ALBERT VISSER

consistency. (If this were not the case, we would obtain a contradiction with the
Second Incompleteness Theorem.)

We provide an partial analogue of Theorem A.2 for infinitely axiomatized theories.
The 0-functor is given as follows.5

• 0(U) := S1
2 + {3U,n> | n ∈ ω}.

The central fact about the 0-functor is as follows:

Theorem A.3. Suppose U is sequential. We have: U �loc V ⇔ 0(U)� V .

If we restrict ourselves to sequential theories, the theorem tells us that 0 is the
right adjoint of the embedding functor of � considered as a preorder category into
�loc considered as a preorder category. For a proof, see [Vis11] We note that it
follows that U ≡ 0(U).

Department of Philosophy, Utrecht University, Janskerkhof 13, 3512BL Utrecht, The
Netherlands

E-mail address: a.visser@uu.nl

5We pronounce 0 as ‘mho’ is such a way that it rhymes with ‘joe’.


