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Abstract. This paper is an exposition of Feferman’s Theorem concerning the
interpretability of inconsistency and of further insights directly connected to

this result. Feferman’s Theorem is a strengthening of the Second Incomplete-

ness Theorem. It says, in metaphorical paraphrase, that it is not just the case
that a theory fails to prove its own consistency, but that a theory actively

holds its own inconsistency for possible. We first give a careful presentation

of the result. Then, we provide two versions of the result that are both modal
and infinitary. We explain how Feferman’s Theorem is connected with two

notions of completion of a theory. We provide an example of an application
of the theorem. Finally, we discuss the failure of the result in a constructive

setting.
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Dedicated to Sol Feferman, whose ideas always continued to inspire me.

1. Introduction

Feferman’s Theorem is an intriguing result from Sol Feferman’s fundamental paper
Arithmetization of metamathematics in a general setting ([Fef60]). As a first ap-
proximation, the theorem says that, under certain conditions, a theory interprets
itself plus its own inconsistency. In terms of models this tells us that there is a
uniform construction (of a special kind) that yields, for every model of the given
theory, an internal model of the theory that satisfies the formalized inconsistency
statement of the theory. If, heuristically, we interpret the internal model relation as
an epistemic accessibility relation, we could rephrase the theorem by saying: every
theory deems its own inconsistency possible.

Feferman’s Theorem is a strengthening of the Second Incompleteness Theorem. If a
theory would prove its own consistency, it would interpret the conjunction of its own
consistency statement and its inconsistency statement and, thus, be inconsistent.

Methodologically, Feferman’s Theorem is interesting because it is a direct appli-
cation both of Gödel’s Completeness Theorem and of his Second Incompleteness
Theorem, thus showing that these two central theorems can very well collaborate.

The present paper is a study of Feferman’s Theorem. It is both an exposition of
existing results and a presentation of new results.

In Section 3, I give a formulation of Feferman’s Theorem in its full generality. I
present various proofs of the theorem. In the case of finitely axiomatized theo-
ries, the theorem can be strengthened: one can show that, for sufficiently large
n, a theory deems its own n-restricted inconsistency possible. Here n-restricted
provability means that one only considers proofs where the complexity of the for-
mulas occurring in the proof is below n. We provide a proof of this strengthening.
The strengthening is to Feferman’s Theorem as Pudlák’s version of the Second
Incompleteness Theorem for restricted provability is to the ordinary Second Incom-
pleteness Theorem.

In Section 4, we extend Feferman’s Theorem to modal and infinitary forms. One
considers a Big Kripke Model (or: Possibluum) with all possible models for finite
signature as nodes and with as accessibility relation the internal model relation. If
we we heuristically view the modality as epistemic, we can formulate the result as
follows. We show that not only does a theory deem its own inconsistency possible,
but, what is more, the theory considers it possible that it is inescapably inconsis-
tent. The modal versions give rise to infinitary versions of Feferman’s Theorem
as a matter of course. We also prove a modal version of Feferman’s Theorem for
restricted provability which is based on an infinitary version of Feferman’s Theo-
rem due to Jan Kraj́ıček. One consequence of the existence of the modal version
is a simple proof that the extension of first order predicate logic with the proposi-
tional modal logic of the internal model relation is more expressive that first order
predicate logic alone.

In Section 5, we study completions of theories, i.e., systematic ways of extending
a theory with sentences that are interpretable over it in a non-arbitrary way. We
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study three possible completions: the syntactic completion, the semantic comple-
tion and the intrinsic completion. The definitions of the the semantic completion
and the intrinsic completion are adaptations of ideas of Emil Jeřábek developed
in another context, to wit cut-interpretability. We will prove that the semantic
and the intrinsic completion contain all inconsistencies of the infinitary versions of
Feferman’s Theorem. Thus, we show that inconsistency is highly non-arbitrary. If
we did not already know that the inconsistency statements of familiar theories are
false it would almost be an argument for adopting them as natural axioms . . .

In most of the paper, Feferman’s Theorem appears as a tool of understanding the
peculiar place of (in)consistency statements in metamathematics. In Section 6,
we illustrate that the theorem also has applications to unrelated matters. We
show that the Π3-conservativity of the negation of Σ1-collection over Elementary
Arithmetic is associated with a p-time transformation of proofs. The proof employs
a miniaturization of the classical proof of Paris & Kirby ([PK78]). Undoubtedly
there are many other ways of implementing such a miniaturization, so the claim
is just that Feferman’s Theorem ‘comes in handy’ to do the job, not that it is
indispensable.

Finally, we explain, in Section 7, the fact —happy or sad, depending on your
perspective– that Feferman’s Theorem fails for constructive theories with the dis-
junction property (as long as we restrict ourselves to parameter-free interpreta-
tions). This fact can be proved as an immediate consequence of Harvey Friedman’s
celebrated theorem that the disjunction property implies the numerical existence
property. To find an appropriate adaptation of Feferman’s Theorem to the con-
structive context remains an open question.

Remark 1.1. This paper is intended as a presentation of a classical result and its
Umfeld. Some parts of it, however, contain new material. Sections 2, 3, and Appen-
dix A are expositions of previously published material. Section 7 is a presentation
of Friedman’s classical result that the disjunction property implies the numerical
existence property. The section adds a few new elements. Specifically, we present
some ideas due to Emil Jeřábek (in an unpublished note) to optimize the generality
of the result. Section 4 is in part a presentation of known results, e.g. results of
Jan Kraj́ıček, but also contains new material, specifically the presentation of the
material using modal notions is new. Sections 5, 6 and Appendix B are new.

Remark 1.2. In a companion paper Jumping in Arithmetic I will discuss yet
another aspect of Feferman’s Theorem: the question whether it has a converse.

2. Basic Facts & Definitions

In this section we fix a number of notations and conventions and we remind the
reader of basic facts from the literature. In Appendix A, we give a more detailed
exposition of some of the notions involved. The reader is advised to go through
this section lightly in order to return when some fact or definition is used.

2.1. Theories and Provability. Theories in this paper have finite signature. The
signature is supposed to be part of the data of the theory. Usually we also take it
that a formula representing the axiom set is also part of the data. This is relevant
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when we consider e.g. the formalization of provability in the given theory. However
we will consider some theories that are not recursively enumerable and for these
there often is no obvious formula representing the axiom set. We will be slightly
sloppy about these things and what is intended will be clear from the context.

The signatures of our theories will be officially relational, but we will often treat
them as if they also have function symbols. The p-time term-unraveling algorithm
guarantees that this confusion is harmless.

A finitely axiomatized theory will be a theory where the axiom set is explicitly
given by a disjunction of the form

∨
i<n x = pBiq. Consider the theory that has as

axioms the Peano axioms that are larger than the smallest inconsistency proof of
Peano Arithmetic. This theory has in fact finitely many axioms, but we will not
count it as finitely axiomatized. Par abus de langage, we will use A, B, . . . to
designate a finitely axiomatized theories, thus confusing a sentence axiomatizing
a theory with a theory. One disadvantage is that sometimes it is really relevant
that we can read off the signature from the theory. The big advantage is that it
is immediately clear from the notation that we are looking at something that is
finitely axiomatized.

We will use modal notations for arithmetized provability and consistency. E.g., we
use �UA for provU (pAq) and 3U> for con(U). We will also consider restricted prov-
ability : a sentence is n-provable iff it is provable from axioms with Gödelnumbers
below n, where the formulas in the proof have complexity less than n. The notion
of complexity we use is depth of quantifier changes. 1 We will use ρ(A) for the
complexity of A. We write �U,xA for the arithmetization of restricted provability.

Some special theories that we will use is Buss’ system S1
2 (see [Bus86] or [HP93])

and Elementary Arithmetic EA, also known as Elementary Function Arithemetic
EFA and as I∆0 + Exp (see [HP93]).

2.2. Translations, Interpretations & Interpretability. We first explain the
idea of a translation τ between signatures Σ and Θ. More details on translations are
given in Appendix A.1 and Appendix A.3. The translation τ sends the predicates of
Σ to formulas of the language based on Θ where we represent the argument places
by designated variables. Moreover, the translation τ provides a domain formula δτ .
We may also consider k-dimensional translations. In this case an argument place
of a Σ-predicate is represented by a sequence of designated variables of length k.
In addition we may allow parameters in our translation: these are variables in the
translations of the predicate symbols that do not correspond to an argument place
of the translated predicate symbol. We do not demand that the identity relation is
translated by itself. The translation commutes with the propositional connectives.
It also commutes with the quantifiers but it adds a relativization to the domain:
e.g., in the 1-dimensional case, ∀xA translates to ∀x (δτ (x)→ Aτ (x)).

An interpretation K relates two theories U and V . These theories are part of the
data for K. The interpretations provides a translation τK . We demand that, for
all U -sentences A, if U ` A, then V ` AτK . We write K : U → V or K : U � V
or K : V � U . The notation K : U → V is useful when we want to think of

1See Appendix A.4 for more information on this complexity measure.
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theories and interpretations forming a category. The notations K : U � V and K :
V � U function in a context where we think of interpretability as a generalization
of provability.

We write K : U �faith V for: K is a faithful interpretation of U in V . This means
that: for all U -sentences A, we have: U ` A iff V ` AτK .

A translation τ maps a model M to an internal model τ̃(M) provided that the
M |= ∃x δτ (x). Thus an interpretation K : U → V gives us a mapping K̃ from
MOD(V ), the class of models of V to MOD(U) the class of models of U . If we build
a category of theories and interpretations, usually MOD with MOD(K) := K̃ will
be a contravariant functor.

We have a number of operations of translations and interpretations. First every
signature has an identity translation. This induces for every theory an identity
interpretation. Secondly, translations and interpretations can be composed in the
obvious way. Thirdly we can transform two translations / interpretations into a
disjunctive interpretation: given that we have τ0 and τ1, we can form the translation
τ0〈A〉τ1 that behaves like τ0 when A and like τ1 when ¬A. Clearly disjunctive
translations induce disjunctive interpretations. Uses of disjunctive interpretations
will be everywhere dense in this paper.2

To make interpretations into a category we need a notion of sameness between
interpretations. There are a number of possible choices for what sameness is. We
mention four of them. Suppose K,K ′ : U → V .

a. K is equal0 to K ′ if V proves that K and K ′ are extensionally equal, i.e. V `
∀x (δK(x)↔ δK′(x)) and V ` ∀~x ∈ δτ (PK~x↔ PK′(~x)).

b. K is equal1 to K ′ if there is a V -definable V -verifiable isomorphism F between
K and K ′. Equivalently: K is equal1 to K ′ if , in every V -model M there is
a definable isomorphism between K̃(M) and K̃ ′(M). The equivalence between
these definitions uses a compactness argument and disjunctive interpretations.3

c. K is equal2 to K ′ if, for every V -modelM, we have that K̃(M) and K̃ ′(M) are
isomorphic.

d. K is equal3 to K ′ if, for all V -sentences A, V ` AK ↔ AK
′
. Equivalently: K is

equal3 to K ′ if, for every V -modelM, we have that K̃(M) and K̃ ′(M) are ele-
mentary equivalent. Equivalently: K is equal3 if, for every countable recursively
saturated V -model M, we have that K̃(M) and K̃ ′(M) are isomorphic.

Each of the notions of equality gives us a different category. Each category in its
turn delivers a different notion of isomorphism between theories. Two theories are
definitionally equivalent or synonymous if they are isomorphic in the category of
equal0. They are bi-interpretable if they are isomorphic in the category of equal1.
Two theories are iso-congruent if they are isomorphic in the category of equal2.
They are sententially congruent if they are isomorphic in the category of equal3.

2See Appendix A.1 for more explicit definitions of operations on translations and

interpretations.
3See Appendices A.2 en A.3 for more details on definable isomorphisms.
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We will consider a number of reduction relations between theories based on inter-
pretations.

• We write U � V for: there is a K such that K : U � V . We pronounce this
as: U is interpretable in V . We write V �U for U �V . We pronounce this
as: V interprets U . We use U ≡ V for: U � V and V � U . So ≡ is the
induced equivalence relation of �. In this case we say that U and V are
mutually interpretable.

• We write U J V or V I U for: every V -model has an internal U model.
We pronounce this as: U is model-interpretable in V or V model-interprets
U . We use ≡mod for the induced equivalence relation.

• We write U�locV or V �locU for: for all finite subtheories U0 of U , U0�V .
We pronounce this as: U is locally interpretable in V or V locally interprets
U . We use ≡loc for the induced equivalence relation.

• Suppose the theory W extends U . Then, V locally interprets W over U , or
V �(U,loc) W , iff, for all finite subtheories W0 of W , V � (U +W0). We use
≡(U,loc) for the induced equivalence relation.

We sometimes write e.g. A�U B for (U + A)� (U +B). For finitely axiomatized
A we have: U �A iff U I A iff U �loc A. If follows that:

V � U ⇒ V I U and V I U ⇒ V �loc U.

In this paper, we present examples that illustrate that neither of these arrows can
be reversed.

In this paper we will mainly look at interpretations from the standpoint of kinds
of interpretability and not so much from the standpoint of categories that are not
just preorders. For this reason, we will be somewhat sloppy w.r.t. the translation /
interpretation distinction and w.r.t. the strict regime of source and target that we
officially have for interpretations.

A basic insight in concerning interpretability is the Gödel-Hilbert-Bernays-Wang-
Henkin-Feferman Theorem.

Theorem 2.1. Consider N : S1
2 � U . We assume that U is ∆b

1-axiomatized. Then,
we can construct an interpretation H : (U +3NU>)� U . We call H: the Henkin
interpretation. This interpretation has the additional feature that we can construct
inside U a truth-predicate T such that for some definable cut I of N the commuta-
tion conditions for the language coded in I are U -verifiable.

The proof uses the formalized Henkin construction to produce an interpretation
H : (U +3NU>)� U . The basic intuition here is, of course, that an interpretation
is a uniform internal model construction. The lack of induction in our setting has
to be systematically compensated by going to shorter and shorter definable cuts of
N .

We end this subsection with a useful theorem in the style of the Friedman-Goldfarb-
Harrington Theorem.
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Theorem 2.2. Consider any finitely axiomatized theory A and suppose that N :
S1

2 � A. Consider any Σ1-formula S(x). Then, we can effectively obtain a Σ1-
formula R(x), such that:

a. EA ` ∀x ((A� (A+RN (x)))↔ (S(x) ∨ �A⊥)).

b. EA +3A> ` ∀x (R(x)↔ S(x)).

Proof. By the Gödel Fixed Point Lemma we can find R such that:

S1
2 ` R(x)↔ S(x) ≤ (A� (A+RN (x))).

We will suppress the parameter x in the reasoning since it just rides along for free.
We prove (a). We reason in EA.

From left to right. Suppose A� (A+RN ). Then R or R⊥. In the first case we have
S. In the second case, by Σ1-completeness, A � (A + RN + R⊥N ). Hence A � ⊥
and so �A⊥.

From right to left. If we have �A⊥ we are immediately done. Suppose S. It follows
that R or R⊥. In the first case we have A� (A+RN ), by Σ1-completeness. In the
second case, we have A� (A+RN ), since R⊥ is (A� (A+RN )) < S.

The proof of (b) is left to the reader. 2

2.3. The Modal Logic of Internality. We define the modal language as follows.
For any signature Θ we have:

• φΘ ::= AΘ | ¬φΘ | (φΘ ∧ φΘ) | (φΘ ∨ φΘ) | (φΘ → φΘ) | �UφΣU .

Here AΘ ranges over formulas of predicate logic for signature Θ and U ranges
over recursively enumerable theories of ordinary predicate logic, where ΣU is the
signature of U . We use A,B, . . . for predicate logical formulas and φ, ψ for mixed
predicate logical and modal formulas. We use Γ,∆, . . . for sets of modal formulas.
The operator ♦Uφ is defined as ¬�U¬φ. The operator � is internal necessity and
♦ is internal possibility. Note that there is no quantifying into modal formulas.

The big Kripke model K has as nodes all models of finite signature. For any
recursively enumerable theory U we have an accessibility relation R satisfying:
M RU K iff K |= U and M�K. Here we assume that U is given with a signature
Σ and K has signature Σ.

We define truth-at-a-node and validity.

• Truth at a note is define in the obvious way for the atoms and the truth
functional connectives.

• M |= �Uφ iff, for all K such that M RU K, we have K |= φ.

• Γ |=Θ φ iff, for all modelsM of signature Θ, ifM |= Γ, thenM |= φ. Here
we assume that Γ, φ consists of modal sentences of signature Θ. We will
often suppress the subscript for the signature.

Note that RU is reflexive on models of U and that the composition of RU and RV
is contained in RV .
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We can define model interpretability in terms of the modal logic:

V I U iff V |= ♦U>.

Remark 2.3. In the present paper we will essentially need modalities correspond-
ing to infinitely axiomatized theories. If we restrict ourselves to finitely axiomatized
theories we can simplify the set-up by just having �Σ where Σ is a signature, since
�AB is equivalent to �Σ(A→ B).

Remark 2.4. One can obtain many alternative Big Kripke Models (or Possiblua)
by varying the accessibility relation and/or restricting the domain of first order
models. Here are some interesting examples.

a. We can restrict ourselves to models of a basic arithmetical theory that is pre-
served to definable cuts. We take the definable cut relation as accessibility
relation.

b. We can restrict ourselves to models of PA with as accessibility relation: is an
internal model such with a definable satisfaction predicate such that all axioms of
PA are internally true. This structure is studied by Paula Henk in a forthcoming
paper. The modal logic of this Big Model is precisely Löb’s Logic. It is unknown
what happens if e.g. we consider analogues of this idea for finitely axiomatized
sequential theories.

c. We can consider models of ZF and the relation: is an internal (parametrically
definable) transitive model of ZF. The modal logic of this was characterized by
Robert Solovay. See [Sol76]. A detailed exposition is given in [Boo93].

d. We can consider models of ZF and the relation: is an internal (parametrically
definable) universe of ZF. The modal logic of this was characterized by Robert
Solovay. See [Sol76]. A detailed exposition is given in [Boo93].

e. We can consider models of ZF and consider the relation: is a set forcing extension.
The modal logic of this was characterized by Joel Hamkins and Benedikt Löwe.
See [HL08].

In this paper we will not study the modal logic of internality. It will rather serve
as a language that provides memorable formulations of some results. Two results
will be spin-off of versions of Feferman’s Theorem. The valid principles involving
the box are Π2-hard and modal definability is stronger than first order definability.
Both results use gray boxes for non-finite recursively enumerable theories, so it
is open whether we get the same results when we only allow IA for A finitely
axiomatized. We present one characterization theorem in Appendix B.

2.4. A Basic Concept. The modal notions discussed in Subsection 2.3 have a
syntactic shadow. In this subsection, we introduce this shadow, to wit the operation
[A]U,V .

• [A]U,V := {AK | K : V � U}.

• [A]U := [A]U,U .
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We note that, if U and V are recursively enumerable theories then [A]U,V is prima
facie Σ3. If U is finitely axiomatized, then [A]U,V is Σ1. We give two basic insights,
also for later reference, concerning [A]U,V . The first result is a triviality but very
useful.

Theorem 2.5. Suppose K : Z �W and M : U � V . Consider any Z-sentence
A. Then, M∗ : (U + [AK ]W,U ) � (V + [A]Z,V ). Here M∗ is based on the same
translation as M .

We note two salient special cases.

a. If we take Z := W and K := IDW , then: M∗ : (U + [A]W,U )� (V + [A]W,V ).

b. If we take U := V and M := IDV , then: V + [AK ]W,V ⊆ V + [A]Z,V . If we, in
the last case, specialize K to the identical embedding, so that Z is a subtheory of
W in the same language, or Z ⊆W , we get: V + [A]W,V ⊆ V + [A]Z,V .

So, we have monotonicity in the U -component w.r.t. � and anti-monotonicity in
the W -component w.r.t. ⊆.

Proof. For any L : W � U , we have V + [A]Z,V ` AKLM . So it is immediate that
V ` (U + {(AK)L | L : W � U})M . 2

Theorem 2.6. Suppose A is finitely axiomatized. Suppose U �A.

i. Suppose U ′ is an extension in the same language as U . Then, we have
(U ′ + [B]A,U ) ` [B]A,U ′ .

ii. Suppose M |= U . Then, M |= [B]A,U iff M |= �AB.

Proof. We prove (i). Suppose K : A� U and K ′ : A� U ′. Then L := K ′〈AK′〉K :
A�U . So U + [B]A,U ` BL. It follows that U ′+ [B]A,U ` BL and, since U ′ ` AK′ ,
we have U ′ + [B]A,U ` BK

′
.

The proof of (ii) is similar. 2

2.5. Sequential Theories. The notion of sequential theory is an explication of
theory with coding. Specificaly, a sequential theory provides an interpretation N of
S1

2, and sequences of all objects of the domain of the theories with projections in
N . We can use these sequences to develop partial satisfaction predicates. Using
these we can prove restricted consistency statements of U in U .

The notion of sequential theory has a very simple definition discovered by Pavel
Pudlák. We first need the definition of Adjunctive Set Theory or AS is a one-sorted
theory with a binary relation ∈.

AS1 ` ∃x∀y y 6∈ x,

AS2 ` ∀x, y ∃z ∀u (u ∈ z ↔ (u ∈ x ∨ u = y)).

We note that we do not demand extensionality. For example, in AS we could have
lots of ‘empty sets’.

An interpretation is direct iff it is one-dimensional, unrelativised (that is, it has the
trivial domain) and identity preserving (that is, it translates identity to identity).
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A theory U is sequential iff it directly interprets AS. By a substantial bootstrap,
we can define, in a sequential theory U , an interpretation N of a weak number
theory, sequences of all objects, etc. For details see, for example, [Pud83], [Pud85],
[MPS90], [HP93], [Vis09] and [Vis13a].4

We collect a number of basic facts about sequential theories.

In sequential theories, number systems are partly comparable: they share modulo
definable isomorphism a definable cut.

Theorem 2.7. Suppose U is a sequential theory and N,N ′ : S1
2 � U . Then there

are definable cuts I, I ′ of N , respectively N ′ such that there is an U -definable,
U -verifiable isomorphism between I and I ′.

Theorem 2.7 is due to Pavel Pudlák. See [Pud85] or [HP93].

A finitely axiomatized sequential theory is mutually interpretable with its own
restricted consistency over S1

2.

Theorem 2.8. Suppose A is finitely axiomatized and sequential. We have:

A ≡ (S1
2 +3A,ρ(A)>).

For a proof, see, [Pud85] or [HP93]. We note that the right-to-left direction of the
result is a variant of the Gödel-Hilbert-Bernays-Wang-Henkin-Feferman Theorem.
An important point here is that the existence of a truth-predicate for the witnessing
Henkin interpretation is lost when we switch from ordinary consistency to restricted
consistency. (If this were not the case, we would obtain a contradiction with the
Second Incompleteness Theorem.)

We provide an partial analogue of Theorem 2.8 for infinitely axiomatized theories.
The 0-functor is given as follows.5

• 0(U) := S1
2 + {3U,n> | n ∈ ω}.

The central fact about the 0-functor is as follows:

Theorem 2.9. Suppose U is sequential. We have: U �loc V ⇔ 0(U)� V .

If we restrict ourselves to sequential theories, the theorem tells us that 0 is the
right adjoint of the embedding functor of � considered as a preorder category into
�loc considered as a preorder category. For a proof, see [Vis11]. We note that it
follows that U ≡loc 0(U).

Inspection of the interpretation of U in 0(U) shows that it can be given a truth-
predicate inside 0(U) for an internally definable language that is downwards closed
under taking subformulas and that contains all standard formulas. We do not get,
on pain of contradicting the Second Incompleteness Theorem, the truth predicate
for a language that is upward closed under the formation rules like forming con-
junctions.

4We can generalize the notion of sequentiality a bit to poly-sequentiality by replacing direct

interpretation in the definition by its obvious generalization to the m-dimensional case.
5We pronounce 0 as ‘mho’ in such a way that it rhymes with ‘joe’.
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There is an important connection between interpretability between Π1-sentences
over S1

2 and provability between Π1-sentences over EA.

Theorem 2.10. For any Π0
1-sentences P , P ′, we have:

(S1
2 + P )� (S1

2 + P ′) ⇔ EA ` P → P ′.

This result is due to Wilkie and Paris. See [WP87]. For a generalization, see:
[Vis92].6

The following FGH-style result is a variant and refinement of a sequence of FGH
theorems proved in [Vis93], [Vis05] and [Vis12a]. This work is in its turn based on
ideas and results of Jan Kraj́ıček (see [Kra87]) and Harvey Friedman (see [Smo85]).
Kraj́ıček’s work is based on results from Alex Wilkie’s fundamental paper [Wil86].
Theorem 2.11 is Theorem 10 of [Vis13b].

Theorem 2.11. Let A be a finitely axiomatized sequential theory. Let k be any
number. We can find an interpretation N0 : S1

2�A, such that, for every Σ1-sentence
S with ρ(S) ≤ k:

EA ` �A,mS
N0 ↔ (S ∨ �A,ρ(A)⊥).

Here m := max(ρ(A), k + ρ(N0)).

We will use the following application of Theorem 2.11. Let A be a finitely axiom-
atized sequential theory. We note that for some fixed k0 and for all ` we have:
ρ(�A,`⊥) = k0. Substituting �A,`⊥ for S in the statement of Theorem 2.11, we
find: there is an interpretation N0 : S1

2 �A, such that, for every `:

EA ` �A,m�N0
A,`⊥ ↔ (�A,`⊥ ∨ �A,ρ(A)⊥).

Here m := max(ρ(A), k + ρ(N0)). We note that EA ` �A,`⊥ → �A,ρ(A)⊥, since
cutelimination for a standard complexity is multi-exponential. It follows that

EA ` �A,m�N0
A,`⊥ ↔ �A,ρ(A)⊥.

From this we have:
EA ` 3A,m3N0

A,`> ↔ 3A,ρ(A)>.
Ergo, by the Theorems 2.8 and 2.10:

A ≡ (S1
2 +3A,ρ(A)>) ≡ (S1

2 +3A,m3N0
A,`>) ≡ (A+3N0

A,`>).

Thus, we find:

Theorem 2.12. Suppose A is a finitely axiomatized sequential theory. Then there
is an N0 : S1

2 �A such that, for every `, A� (A+3N0
A,`>).

We end with a theorem that is closely related to Theorem 2.11. A theory U is
trustworthy iff, for all recursively enumerable theories V with U � V , we have
U�faithV . Harvey Friedman proved that consistent, finitely axiomatized, sequential
theories are trustworthy. See [Smo85]. Corollary 5.9 of [Vis05] gives us the following
minor but useful strengthening of Friedman’s result.

6We find the theorem also formulated with Q, PA− and I∆0 + Ω1 in the role of S1
2. It is easy

to see that all these versions are equivalent.
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Theorem 2.13. Suppose A is consistent, finitely axiomatized and sequential. Sup-
pose U is an recursively enumerable theory and U is mutually interpretable with A.
Then U is trustworthy.

3. Proofs of Feferman’s Theorem

We present various proofs of Feferman’s Theorem. In Subsection 3.1 we present
a version of Feferman’s own proof. In Subsection 3.2, we adapt a proof strategy
due to Kreisel to prove Feferman’s Theorem. In Subsection 3.3, we present the
simplest known proof of Feferman’s Theorem. We prove a variant of the Theorem
for restricted provability in Subsection 3.4.

We remind the reader of the full statement of the theorem. Some of the proofs
below have less scope.

Feferman’s Theorem: Consider any theory U with a p-time decidable axiom
set. Suppose N is an interpretation of Buss’ theory S1

2 in U . Then, there is an
interpretation K of U + �NU⊥ in U .

3.1. Feferman’s Proof. We work over a theory U which is reflexive with respect
to an interpretation N : S1

2 � U . The Feferman predicate �∗ is defined by:

�∗UA :↔ ∃x (�U,xA ∧3U,x>).

We note that we have:

• U ` A⇒ U ` �∗UA (this uses reflexivity),

• U ` (�∗U (A→ B) ∧ �∗UA)→ �∗UB,

• U ` 3∗NU >,

• U ` �∗NU A→ �NUA

• U ` SN → �∗NU SN , for S ∈ ∃Σb
1.

Let G be the ordinary Gödel sentence for U , so U ` GN ↔ ¬�NUG
N . Here is

Feferman’s original proof:

�∗NU GN `U �∗NU GN ∧ �NUG
N

`U �∗NU (GN ∧ �NUG
N )

`U �∗NU ⊥
`U ⊥

It follows that `U 3∗NU ¬GN , and hence `U 3∗NU �NU⊥. We may conclude, by
the Gödel-Hilbert-Bernays-Wang-Henkin-Feferman Theorem (Theorem 2.1), that
>�U �NU⊥.
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A slight variant of the proof is to eliminate the Gödel sentence in favor of the
consistency statement:

�∗NU 3NU> `U �∗NU 3NU> ∧ �NU3
N
U>

`U �∗NU 3NU> ∧ �NU⊥
`U �∗NU (3NU> ∧ �NU⊥)

`U �∗NU ⊥
`U ⊥

It follows that `U 3∗NU �NU⊥. Hence, by the Gödel-Hilbert-Bernays-Wang-Henkin-
Feferman Theorem (Theorem 2.1), that >�U �NU⊥.

A third variant is to prove that `U 3NU,n�NU⊥, for each n and to apply the Orey-
Hájek Characterization. We note that this last strategy still needs the Feferman
predicate or some related device to prove the Orey-Hájek Characterization.

We note that the Feferman proof works for reflexive theories like PRA, PA and ZF.
It still works for theories that are just sententially reflexive like IΠ−1 , the theory of
parameter-free Π1-induction and the curious theory PAcor (see [Vis12b]).

3.2. A Kreiselian Proof. Kreisel’s entertaining alternative proof of the Second
Incompleteness Theorem is reported in [Smo77]. What has not been noted before is
that it ‘really’ is a proof of Feferman’s Theorem. Surprisingly, this approach gives
Feferman’s Theorem in full generality.

Consider N : S1
2 � U . We assume that U is ∆b

1-axiomatized. The formalized Henkin
construction gives us H : (U +3NU>)� U —this is the Gödel-Hilbert-Bernays-
Wang-Henkin-Feferman Theorem (Theorem 2.1).

Let T be the truthpredicate associated withH. We note that T ‘works’ for sentences
on some definable cut J of N . We find a sentence L such that U ` L ↔ ¬T (L).
Suppose S is ∃Σb

1. We have U ` SN → �NU S
N . Hence,

(†) H : (U + SN +3NU>)� (U + SN ).

The construction of T consists of finding a J-path through a binary tree. At each
node a yes-no choice concerning the consistency of a finite extension of U is made.
The no decision is ∃Σb

1 in N .

Now suppose we have, in U , 3NU>. In this case we may apply H. If, inside H,
we have again 3NU>, we can repeat this to form H2. Etc. Since, by (†), the ∃Σb

1-
sentences are inward preserved if we iterate H, the path will move to the right.
Since the value of L alternates when we iterate H, the path moves in each iteration
of H strictly to the right. Since the breadth of the tree at depth L is approximately
n := 2`, where ` is the Gödel number of L, this can happen at most n times. This
means that (H〈3NU>〉id)n : U � (U + �NU⊥).

We note that in case we give the proof for e.g. PA, we need not use (†). The
fact that Σb

1-sentences are inward preserved follows from the fact that the internal
model construction yields strict end-extensions. This, of course, fails in the general
case.
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The nice feature of the present proof is that it does not presuppose the Second
Incompleteness Theorem. On the other hands it uses the same ingredients: ∃Σb

1-
completeness and self-reference. (In the case of PA the use of ∃Σb

1-completeness is
replaced by upwards preservation of Σ1-sentences to end-extensions.) The disad-
vantage is that the witnessing interpretation is rather large.

3.3. A Simple Proof. A very simple proof of Feferman’s Theorem was given in
[Vis90]. The same proof is reported in [Fef97]. Feferman learned the proof in
conversation from Per Lindström. It seems likely that Per discovered the proof
independently.

Consider any theory U with p-time decidable axiom set and an interpretation N :
S1

2�U . Clearly, we have 3NU> `U 3NU �NU⊥ and 3NU �N⊥�U �NU⊥, by, respectively,
the Second Incompleteness Theorem and the Gödel-Hilbert-Bernays-Wang-Henkin-
Feferman Theorem (Theorem 2.1). By composition, 3NU> �U �NU⊥. Suppose K
witnesses that 3NU>�U�NU⊥. We also have ID : �NU⊥�U�NU⊥. Hence K〈3NU>〉ID :
>�U �NU⊥.

3.4. Feferman’s Theorem for Restricted Provability. Consider a finitely ax-
iomatized theory A.7 If we say finitely axiomatized, we mean axiomatized by a
formula of the form x = pAq or, perhaps,

∨
i<n xi = pAiq. So nothing like “x is an

axiom if x = pAq or there is an inconsistency proof of PA below x and x is / codes
a Peano axiom.”

For finitely axiomatized theories we have Löb’s Theorem for restricted provability.
This is in essence due to Pudlák [Pud85]. (Pudlák stated the theorem as a form of
the Second Incompleteness Theorem, but the fact that Löb follows from the Second
Incompleteness Theorem is well known.) For completeness we give the proof. This
is just the usual proof where one convinces oneself that one never exceeds the bounds
of the chosen restriction for restricted provability. We define ρ(N) as the maximum
of the ρ(PN~x) where P is a relation symbol of a relational version of arithmetic.
We note that, for an arithmetical formula, ρ(AN ) is estimated by ρ(A) + ρ(N) + 1.
We first unravel the terms in a small scope way. This adds 1 to the alternating
quantifier depth because we add blocks of existential quantifiers. Then we replace
all relations symbols by the corresponding formulas which adds ρ(N).

Theorem 3.1. We have:

i. S1
2 verifies the following. Suppose N : S1

2 � A. Let k be sufficiently large.
(In the proof, we discuss what this means.) Then, for any sentence B in the
language of A and for any n ≥ max(ρ(B), k), we have: if A `n �NA,nB → B,
then A `n B.

ii. I∆0 + supexp verifies the following. Suppose N : S1
2 � A. Let k be suffi-

ciently large. Then, for any sentence B in the language of A and for any
n ≥ max(ρ(B), k), we have: if A ` �NA,nB → B, then A ` B.

7Par abus de langage, the formula-variable ‘A’ is used to suggest a finitely axiomatized theory.
Of course, a finitely axiomatized theory is really a different kind of thing than a sentence.
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Proof. We note that (ii) is immediate from (i), since we have cut-elimination in
I∆0 + supexp. We treat (i). We work in S1

2.

Suppose N : S1
2 �A and A `n �NA,nB → B. We note that for this to make sense n

must exceed ρ(B), ρ(A), and ρ(�NA,nB), where:

ρ(�NA,nB) = ρ(N) + ρ(prov′(u, v, w)) + 1,

since A, n and B only occur as numerals. Here prov′(u, v, w) is a codification
of bounded provability in a finite theory where u represents the theory (in a
canonical way), v represents the bound and w represents the conclusion. Clearly,
ρ(prov(u, v, w)) is a standard number. We also assume that n > ρ(p), where p is
an A-proof of (

∧
S1

2)N .

We have:

(†) S1
2 ` ∀D,E ∀x ≥ max(ρ(D), ρ(E), ρ(N) + ρ(prov′(u, v, w)) + 1)

((�A,xD ∧ �A,x(D → E))→ �A,xE).

This needs a standard proof, say q. We can also prove:

(‡) S1
2 ` ∀D ∀x ≥ max(ρ(D), ρ(N) + ρ(prov′(u, v, w)) + 1) (�A,xD → �A,x�A,xD).

This needs a standard proof, say r. We take n > max(ρ(q), ρ(r)) + ρ(N).

By the Gödel Fixed Point Lemma, we can find a C such that:

A `n C ↔ (�NA,nC → B).

We note that the proof of the Fixed Point Lemma contains a formula of the form
provNA,n(substN (m,m)). The proof is very roughly the computation showing that
subst(m,m) = pCq. This amounts to showing that a certain sequence of numbers
given as numerals has a desired property. The length of the computation and the
numerals occurring in it may be non-standard, but the complexity of the formulas
occurring in it clearly has some standard bound not much exceeding ρ(subst(v, v))+
ρ(N).

Now we reason as follows. Suppose A `n �NA,nB → B. We reason in A. Suppose
�NA,nC. Then �NA,n�NA,nC, by instantiation of (‡). Moreover, by the choice of C
and instantiation of (†): �NA,nB. By our assumption it follows that B. Hence
�NA,nC → B, i.e. C.

So we find A `n (�NA,nC → B) and A `n C. It follows that A `n �NA,nC and hence
that A `n B. 2

Theorem 3.2. Suppose N : S1
2 � A. Then, we can effectively find a k, such that

A� (A+ �NA,k⊥).

Proof. Suppose N : S1
2 � A. We take k large enough w.r.t. ρ(N) and ρ(A) and

ρ(p) where p verifies N : S1
2 � A. We reason in A. In case we have �NA,k⊥, we

take the identical interpretation. Otherwise we have 3NA,k>. By Löb’s Theorem,
we have 3NA,k�

N
A,k⊥. From this consistency statement we can build a Henkin inter-

pretation H of A+ �NA,k⊥. So we take this H. Thus, the disjunctive interpretation
IDA〈�NA,k⊥〉H does the trick. 2
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Open Question 3.3. Is it possible to prove Theorem 3.2 using a method analogous
to the Kreisel-style proof of Feferman’s Theorem?

4. Modal and Infinitary Versions of Feferman’s Theorem

This section is devoted to modal versions of Feferman’s Theorem. Viewed in a
different way, these versions are infinitary in the sense that they involve infinitely
may inconsistency statements.

Let’s briefly look at Feferman’s Theorem again:

Feferman’s Theorem: Consider any theory U with a p-time decidable axiom
set. Suppose N is an interpretation of Buss’ theory S1

2 in U . Then, there is an
interpretation K of U + �NU⊥ in U .

A moment’s reflection suggests that, unless we substantially enrich the modal frame-
work, there is nog good modal version that reflects what this says. As we will see
below, we can formulate and prove a modal version that is in many respects stronger
than the original version. It is weaker in that we have to replace interpretability
by model interpretability. In other words, the cost is uniformity.

We can also give a modal version for the case of restricted provability. This version is
from a technical point of view more interesting than the ordinary one. For example
using it we show that definability in the logic of internality is not first-order. In
the next section we will see that it also follows that the valid principles of the logic
of internality are at least Π0

2.

4.1. Inconsistency is Possibly Necessary. Before proving the promised modal
result, we first prove an infinitary version of Feferman’s Theorem. We remind the
reader that U �(W,loc) V iff U and V are extensions of W and, for every finite
subtheory V0 of V , we have U � (W + V0).

Theorem 4.1. Suppose U is recursively enumerable. Then, we have:

U �(U,loc) (U + [�U⊥]S2
1,U

).

Sometimes a result has two essentially different proofs. This is true for our lemma.
I give both proofs

Proof. The first proof works by iterating Feferman’s Theorem. Suppose Ni : S1
2�U ,

for i ≤ k and K : U � (U +
∧
i<k �NiU ⊥). Clearly NkK : S1

2 � U . By Feferman’s
Theorem, for some M , we have M : U � (U + �NkKU ⊥). Moreover:

K : (U + �NkKU ⊥)� (U +
∧
i≤k

�NiU ⊥).

So MK : U � (U +
∧
i≤k �NiU ⊥).

A second approach is as follows. Suppose Ni : S1
2�U , for i < k. We want to consider

�?UA :=
∧
i<n �NiU A as a proof predicate. It is important to make clear for oneself

that, for every �NiU A, the code of A is given by an Ni-numeral. So
∧
i<n �NiU A does

not result from a uniform substitution in some formula of the form
∧
i<n provNiU (x).
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It’s not that we cannot write down such a formula, but x could be e.g. in N0 but
not in N1 and even if x was both in N0 and N1 it could play the role of, say, 7
in the first case and 114 in the second. In spite of the apparent obstacles, we can
prove the Second Incompleteness Theorem for �?.

We first note that do have K4 for �?UA. The 4 principle is because we have U `
�NiU A→ �NiU �?UA. So it is sufficient to prove a relevant version of the Gödel Fixed
Point Lemma. We briefly sketch how this works.

Let v0, . . . , vk−1 be a sequence of designated variables. The idea is that vi ranges
over Ni. We define a substitution function subst(x, y) that substitutes simultane-
ously, for each vi the Ni-numeral of x in y. Consider any formula B(v0, . . . , vk−1).
Let C(v0, . . . , vk−1) := B(substN0(v0, v0), . . . , substN0(vk−1, vk−1)). Let c be the
Gödel number of C. Let c(i) be the Ni-numeral of c and let D := C(c(0), . . . , c(k−1)).
It is easy to see that U ` D ↔ B(pDq(0), . . . , pDq(k−1)). Given the ingredients we
collected, we can now prove the Second Incompleteness Theorem for �?U .

Using a disjunctive interpretation one can show that (U +3?UE)� (U +E). Using
this we can repeat the usual proof of Feferman’s Theorem for �?U . 2

Remark 4.2. If U is sequential, the above result has a third proof. By an insight
due to Pudlák, we can find an N : S1

2 � U that is verifiably definably initially
embeddable in N0, . . . , Nk−1. By Feferman’s Theorem, we have U � (U + �NU⊥)
and, hence, by upward persistence of Σ1-sentences, U � (U +

∧
i<k �NiU ⊥).

Here is the promised modal version of Feferman’s Theorem.

Theorem 4.3. Suppose U is recursively enumerable and for some N , we have
N : S1

2 � U . Then, U |= ♦U�S1
2
�U⊥, or, equivalently, U I (U + [�U⊥]S2

1,U
).

We note that, the equivalence of U |= ♦U�S1
2
�U⊥ and U I (U+[�U⊥]S2

1,U
) follows

from Theorem 2.6.

Proof. Consider any model M |= U . If, for each internal S1
2-model N of M, we

have N |= �U⊥, we are done. Otherwise, for some internal S1
2-model N ?, we have

N ? |= 3U>. Hence, a fortiori, N ? |= 0(U). Since U �loc (U + [�U⊥]S1
2,U

), it
follows, by Theorem 2.9, that 0U � (U + [�U⊥]S1

2,U
). (We remind the reader that

U + [�U⊥]S1
2,U

is a recursively enumerable theory.) Let K be the interpretation
witnessing this. Then, M? := K̃(N ?) satisfies U + [�U⊥]S1

2,U
. We note that M?

is an internal U -model of M. By Theorem 2.6, we find that M? |= �S1
2
�U⊥. 2

We show that the model-interpretability of (U + [�U⊥]S2
1,U

) in U is, for certain
theories, optimal.

Theorem 4.4. Suppose A is finitely axiomatized, consistent and sequential. Then,
A 6� (A+ [�A⊥]S2

1,A
).

Proof. Suppose A is finitely axiomatized, consistent and sequential. Let W :=
(A + [�A⊥]S2

1,A
). Suppose A �W , then clearly A ≡ W . By Theorem 2.13, the

theory W is trustworthy. It follows that there is a faithful interpretation N of S1
2 in
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W . Let N0 be any interpretation of S1
2 in A. (Such an interpretation exists because

A is sequential.) Then, M := N〈(
∧

S1
2)N 〉N0 is an interpretation of S1

2 in A. Thus,
�MA ⊥ is an axiom of W and hence W ` �NA⊥, contradicting the faithfulness of
N . 2

Theorem 4.4 provides a separating example between interpretability and model-
interpretability.

4.2. Kraj́ıček Theories. In this subsection we show that if A is finitely axioma-
tized, then we can model-interpret a Kraj́ıček theory for A in A. A Kraj́ıček theory
for A is axiomatized by A plus, for every N : S1

2 � A, a statement of the form
�NA,n⊥, where n varies with N . In other words, a Kraj́ıček theory is axiomatized
by A+ {�NA,ν(N)⊥ | N : S1

2 �A}, where ν maps each N to some standard number.
The possibility of such theories was first noted in [Kra87].

Theorem 4.5. Let A be finitely axiomatized. Let Ni : S1
2 � A enumerate the

number systems of A. We can effectively construct a theory kraj(A) of the form
A+ {�NiA,ni⊥ | i ∈ ω} and A�loc kraj(A).

Note that kraj(A) is a specific Kraj́ıček theory.

Proof. Let Ni : S1
2 � A enumerate the number systems of A. Then, we can find a

sequence n0, n1, . . . such that, for every k, we have: A� (A+
∧
i<k �Nini ⊥).

We construct interpretations Kj and numbers ni in stages. At stage k we produce
Kk : A� (A+

∧
i<k �Nini ⊥) and at stage k + 1 we construct nk.

At stage 0, we take K0 := IDA. We consider stage k + 1. We are given Kk :
A� (A+

∧
i<k �Nini ⊥). Clearly, NkKk : S1

2�A. By Theorem 3.2, we can effectively
find an nk and an M such that M : A� (A+ �NkKknk

⊥). It follows that:

Kk+1 := KkM : A� (A+
∧

i<k+1

�Nini ⊥).

Hence it follows that A�loc (A+ {�Nini ⊥ | i ∈ ω}). 2

Before proceeding we need some definitions.

• A model M of A is a Kraj́ıček model for A if, for all internal models N of
S1

2 in M, there is an n such that N |= �A,n⊥. The class of all Kraj́ıček
models for A is KA. The predicate logical theory of all Kraj́ıček models for
A is Th(KA).

• Consider an interpretation N : S1
2 � A and an A-model K. We say that

J is an infinite initial segment of N in K if, in K, the set given by J is a
downward closed subset of δN and if, for each standard n, K satisfies J(n).

• We define S1
2, as the theory in the language of arithmetic extended by a

unary predicate  axiomatized by:

S1
2 + ∀x, y(((x) ∧ y ≤ x)→ (y)) + {(n) | n ∈ ω}.

So S1
2, is the theory of an infinite initial segment.
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• We define �A,B :↔ ∃x ((x) ∧ �A,xB).

We give a modal characterization of a Kraj́ıček model.

Theorem 4.6. Let K be an A-model. We have:

K |= �S1
2,

�A,⊥ iff K is a Kraj́ıček model for A.

Proof. From right to left is immediate. Suppose K |= �S1
2,

�A,⊥. Consider any
N : S1

2 � A. In K, we define J? := {a ∈ N | 3NA,a>}. In case J? contains all
standard natural numbers, it is an infinite initial segment. This contradicts that
we have �NA,J?⊥. So J∗ must be finite and, thus, for some n, we have �NA,n⊥. 2

The following theorem is our infinitary version of Feferman’s Theorem for restricted
interpretability.

Theorem 4.7. Suppose N0 : S1
2 � A. Then, every model of A has an internal

Kraj́ıček model for A. In modal terms: A |= ♦A�S1
2,

�A,⊥.

Proof. Consider any model M of A. In case M is itself a Kraj́ıček model, we are
done.

Otherwise, there is an internal model N such that N |= 0(A). Since A�loc kraj(A),
we have, by Theorem 2.9, that 0(A) � kraj(A). It follows that N has an internal
model K that satisfies kraj(A). By transitivity, K is an internal model of M. We
claim that K is a Kraj́ıček model. Consider any internal S1

2-model N ′ of K. Suppose
this model is given by the interpretation N ′. Clearly N ′′ := N ′〈(

∧
S1

2)N
′〉N0 is an

interpretation of S1
2 in A. So, for some k, we have kraj(A) ` �N

′′

A,k⊥. Since, in K, the
interpretation N ′′ defines the same internal model as N ′, we find that N ′ satisfies
�A,k⊥. It follows that K is a Kraj́ıček model. 2

Remark 4.8. We note that for consistent, finitely axiomatized, sequential A, we
have A �loc 0(A). The existence of Kraj́ıček models shows that we cannot have
A I 0(A). So, we have a separating example between model interpretability and
local interpretability.

We can use Kraj́ıček models to show that internal modal logic is more expressive
than predicate logic.

Theorem 4.9. Let A be any finitely axiomatized, consistent, sequential theory.
Then Th(KA), the theory of all Kraj́ıček models has a model that is not itself a
Kraj́ıček model.

Proof. Let A be any consistent finitely axiomatized sequential theory. Let N0 :
S1

2 � A, be the interpretation promised in Theorem 2.12, such that, for any k, we
have A�(A+3N0

A,k>). Consider the theory U := Th(KA)+3N0
A,c>+{c 6= n | n ∈ ω}.

Here c is a fresh constant and the n are N0-numerals. We claim that U is consistent.
By compactness, it is sufficient to show that, for any n, Un := Th(KA) + 3N0

A,n>
is consistent. Consider any Kraj́ıček model K. Let M : A � (A + 3N0

A,n>). Then

M := M̃(K) is again a Kraj́ıček model that satisfies 3N0
A,n>. Thus, M |= Un.

Let K? be any model of U . Clearly K? is not a Kraj́ıček model. 2
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We turn to the syntactical trace of �S1
2,

�A,⊥.

• We define z(A) := A + [�A,⊥]S1
2,,A

. So, z(A) contains the �NA,J⊥ such
that N is an interpretation of S1

2 in A and J is an infinite initial segment
of N .

Since S1
2, is not finitely axiomatized we cannot conclude that, for any A-modelM

we have: M |= �S1
2,

�A,⊥ iff M |= z(A).

Open Question 4.10. Suppose A is a consistent, finitely axiomatized, sequential
theory. Is Th(KA) axiomatized by z(A)?

Here is a characterization of z(A).

Theorem 4.11. Let A be a finitely axiomatized theory. We have: z(A) ` B iff
(A+ ¬B)�0(A).

Proof. Suppose N : S1
2, �A. Then,

A+ ∀x ∈ N 3NA,x> ` 0N (A).

Clearly, if z(A) ` B, then A + ¬B implies a disjunction of sentences of the form
∀x ∈ N 3NA,x>, so (A+ ¬B) ` 0N (A).

Conversely, suppose N ′ : (A+ ¬B)� 0(A). We extend N ′ to N by interpreting 
as {x ∈ N | ¬B → 3N

′

A,x>}. Since A+ ∃x ((¬B → 3N
′

A,x>) ∧�N
′

A,x⊥) implies B, we
have A+ �NA,⊥ ` B. So, z(A) ` B. 2

We note that Theorem 4.11 makes it perspicuous that the set of theorems from
z(A) is Σ3.

Open Question 4.12. I conjecture that, for consistent, finitely axiomatized, se-
quential A, the set of theorems of z(A) is complete Σ3. (In this paper we show
that it is Π2-hard. See Theorem 5.16.)

We note that it would follow, via Theorem 4.11, that interpretability between re-
cursively enumerable theories is complete Σ3. This last fact is already known. It
was proven by Volodya Shavrukov in [Sha97]. Still it would not hurt to have an
alternative proof, in the light of the fact that Shavrukov’s proof is quite intricate.

As an immediate consequence of theorem 4.7, we find that z(A) is model-interpretable
in A.

Theorem 4.13. A I z(A).

We cannot generally improve on Theorem 4.13. Suppose A is finitely axiomatized,
consistent and sequential. Theorem 4.4 tells us that A 6� (A + [�A⊥]S2

1,A
). So, a

fortiori, A 6� z(A).

In the next section we will explain that Theorem 4.7 tells us that z(A) is in the
semantic completion of A.
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5. Completions

In this section, we discuss constructions of certain natural completions of theories.
The section is like a walk at the rim of a vast ocean most of which is mare incog-
nitum. There are many such completions and most questions concerning them are
open.

We introduce the three notions of completion that we will study. Let a theory U
be given. Let M and M ′ range over interpretations of U in U .

I. synco(U) := {A | ∃M ∀M ′ U ` AM ′M}.

II. semco(U) := {A | U |= ♦U�UA}.

III. intco(U) := {A | ∀B (U � (U +B)⇒ U � (U +A+B))}.

We note that, for finitely axiomatized A, the completion synco(A) is prima facie
Σ3 and intco(A) is Π2. To classify semco we note that we can replace the quantifi-
cation over the external models by a quantification over complete theories and the
quantifications over internal models by quantifications over translations. Thus we
get:

A ∈ semco(U) ⇔ ∀X ⊆ sentU ( (X is a complete extension of U)⇒
∃τ ( ∀B (U ` B ⇒ Bτ ∈ X) ∧

∀τ ′ (∀B (U ` B ⇒ Bτ
′τ ∈ X)→ Aτ

′τ ∈ X) ) )

Thus, the semantic completion of an recursively enumerable theory is prima facie
Π1

1. We will show in Subsection 5.4 that all three completions are Π2-hard for any
consistent, finitely axiomatized, sequential theory A.

5.1. The Syntactic Completion. The theory synco(U) is the syntactic comple-
tion of U . It is easy to see that the syntactic completion contains U , is deductively
closed and is closed under conjunction. Thus it is a theory.

Let M , M ′, M ′′ range over interpretations of U in U . If we define M ′ ≤ M :⇔
∃M ′′ M ′ = M ′′M , then we have:

A ∈ synco(U)⇔ ∃M ∀M ′ ≤M U ` AM
′
.

We clearly have:
A ∈ synco(U)⇔ U � (U + [A]U ).

We note that U + [A]U need not be enumerable. If U is a finitely axiomatized
theory it clearly is. Moreover, for a finitely axiomatized theory A, the set [B]A has
an natural p-time decidable axiomatization over A to wit:

{Bτ〈A
τ 〉idΣA | τ : ΣA → ΣA}.

We show that synco preserves various notions of sameness of theories. So we may
consider it as an operation on the various structures of theories modulo one of these
equivalence relations.

Theorem 5.1. The operation synco preserves mutual interpretability, sentential
congruence, iso-congruence, bi-interpretablity and definitional equivalence.
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Proof. Suppose K : U�V and M : V �U and A ∈ synco(U). Then, by Theorem 2.5:

V � U � (U + [A]U )� (V + [AK ]V ).

Hence, AK ∈ synco(V ). Hence, K? : synco(V ) � synco(U), where K? is based on
the same translation as K. Similarly, M? : synco(U)� synco(V ).

Now if K,M form e.g. a sentential congruence, then, for any B, U ` BKM ↔ B.
It follows that U + [A]U ` BK

?M? ↔ B. Similarly for the MK case. So, K? and
M? form a sentential congruence. Similarly, for iso-congruence, bi-interpretablity
and definitional equivalence. 2

In case A is finitely axiomatized and sequential, semco(A) trivializes as is shown
by the following theorem.

Theorem 5.2. Suppose A is finitely axiomatized and sequential. We have:
B ∈ synco(A) iff A ` B.

Proof. The right-to-left direction is trivial. We treat left-to-right. If A is inconsis-
tent this is immediate. Suppose A is consistent. Suppose B ∈ semco(A). Then,
A ≡ (A + [B]A). By Theorem 2.13, the theory A + [B]A is trustworthy. This
means that if W is interpretable in A+ [B]A, then W is faithfully interpretable in
A + [B]A. It follows that there is a faithful interpretation M of A in A + [B]K .
Let M∗ := M〈AM 〉IDA. We have M∗ : A � A and hence A + [B]A ` BM

∗
. Since

A+ [B]A ` AM , it follows that A+ [B]A ` BM . But M is faithful, so A ` B. 2

Remark 5.3. Let us restrict ourselves to arithmetical theories A like S1
2 that are

preserved to definable (ω1-)cuts. Suppose that we replace, in the definition of synco,
interpretations by cut-interpretations, i.o.w. by relativization to a definable cut.
Let us call the resulting notion syncocut. Then, I∆0 + Ω1 + BΣ1 + 0(A) will be
in syncocut(A). Hence, we do not have an analogue of Theorem 5.2 in the case of
cut-interpretability.

Remark 5.4. There is a model theoretic variant of the definition that works as
follows. Let M, M′ range over U -models and let M range over interpretations of
U in U . We remind the reader that M̃ is the functor that associates an internal
U -model M′ to an U -model M using the translation τM . We define:

A ∈ synco+(U)⇔ ∃M ∀M ∀M′ � M̃(M)M′ |= A.

It is easy to see that synco+(U) is contained in synco(U). In case U is finitely
axiomatized, the converse is also true.

5.2. The Semantic Completion. The notion of semantic completion was intro-
duced in the context of cut-interpretability by Emil Jeřábek. In fact Jeřábek’s
notion is not entirely analogous to ours since his formulation was in terms of initial
sub-cuts and not in terms of internal subcuts.

The following theorem connects B ∈ semco(U) to the model-interpretability of
[B]U .

Theorem 5.5. We have:

i. Suppose U is any theory and suppose B is an U -sentence. Then,
B ∈ semco(U)⇒ U I (U + [B]U ),
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ii. Suppose A is any finitely axiomatized theory and suppose B is an A-sentence.
Then, B ∈ semco(A)⇔ A I (A+ [B]A).

Proof. Ad (i). Suppose B ∈ semco(U) and M is an U -model. Let M′ be an
internal U -model of M such that M′ |= �UB. Consider any K : U � U . Then,
clearly K̃(M′) |= B and, hence, K′ |= BK .

Ad (ii). From left-to-right is by (i). Suppose A I (A + [B]A). Consider any A-
model M. Let M′ be the promised internal A-model of M such that M′ |= [B]A.
By Theorem 2.6, we find that M′ |= �AB. 2

It follows immediately that, for finitely axiomatized A, the theory synco(A) is con-
tained in semco(A).

Remark 5.6. We note that synco+(U) of Remark 5.4 is contained in semco(U),
also in the infinitely axiomatized case.

The operation semco preserves all good notions of sameness that one can think of.
Thus it can be seen as a good operation from the standpoint of a more abstract
view of theories.

Theorem 5.7. The operation semco preserves mutual interpretability, sentential
congruence, iso-congruence, bi-interpretablity and definitional equivalence.

Proof. Suppose K : U � V and M : V � U . Suppose A ∈ semco(U). We prove
that AK ∈ semco(V ). Consider any V -model M. Let K := K̃(M). By our
assumption, K has an internal U -model K′ such that K′ |= �UA. Clearly, also
M′ := M̃(K′) |= �UA. It follows that M′ |= �V �UA, and hence M′ |= �VA

K .
Clearly M′ is an internal model of M and we are done.

We have shown that K lifts to an interpretation K? with the same underlying
translation of semco(U) in semco(V ). Similarly we can lift M to an interpretation
M? of semco(V ) in semco(U). It is easy to see that the properties that make K,M
into a definitional equivalence, a bi-interpretation, an iso-congruence, or a sentential
congruence are preserved from K,M to K?,M?. 2

We show that inconsistencies are highly non-arbitrary by the lights of the semantic
completion.

Theorem 5.8. The theory semco(U) contains U + [�U⊥]S1
2,U

.

Proof. By Theorem 4.3, we have U |= ♦U�S1
2
�U⊥. Hence, U |= ♦U�U�S1

2
�U⊥,

and, thus, U |= ♦U�U [�U⊥]S1
2,U

. 2

We remind the reader that, for finitely axiomatized A, we have z(A) := A +
[�A,⊥]S1

2,,A
.

Theorem 5.9. Suppose A is finitely axiomatized. Then, semco(A) contains z(A).

Proof. By Theorem 4.7, we haveA |= ♦A�S1
2,

�A,⊥. Hence, A |= ♦A�A�S1
2,

�A,⊥,
and, thus, A |= ♦A�A[�A,⊥]S1

2,,A
. 2
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We end this subsection by a remark in which we reflect on the meaning of a piece
of S4 reasoning.

Remark 5.10. Suppose U |= B → �UB. We claim that:

U |= ♦U�U (¬B → �U¬B).

This follows from the following two inferences:

U |= ♦UB → ♦U�UB

→ ♦U�U (¬B → �U¬B)

U |= �U¬B → ♦U�U (¬B → �U¬B)

It follows that for B such that U |= B → �UB, we have (¬B → [¬B]U ) in
semco(U). Here (¬B → [¬B]U ) := {¬B → C | C ∈ [B]U}.

If we want to apply the above insight to finitely axiomatized sequential theories
we are in for a disappointment. Consider a finitely axiomatized, sequential theory
A. For which B do we have: A |= B → �AB or equivalently A + B ` [B]A? We
certainly have this when A + B is inconsistent. Suppose A + B is consistent. By
Theorem 2.13, A + B is trustworthy. Let K be a faithful interpretation of A in
B. Let K ′ := K〈AK〉IDA. Clearly K ′ : A � A. So, if A + B ` [B]A, we find
A + B ` BK′ and hence A + B ` BK . Since K is faithful, it follows that A ` B.
So A + B ` [B]A if either A ` ¬B or A ` B. Thus, in the finitely axiomatized,
sequential case the above observation does not have an interesting application.

In case we change the interpretation of � by supposing that A is an arithmetical
theory that is preserved to definable cuts and by taking as accessibility relation the
definable cut relation, we have a completely different situation. Let’s signal our
change of meaning using a superscript cut. We have A |=cut P → �cut

A P , for any
Π1 sentence P . So it follows that, for any Σ1-sentence S we have A+ S → [S]cut

A ,is
in semcocut(A). If we take A := PA− this gives us precisely that the theory Peano
Basso is in the semantic completion. See [Vis12b].

We are in the following interesting situation: our full present knowledge of sentences
in semco(A) beyond A itself comes from Feferman style reasoning. This does not
give us anything when we look at semcocut(A), since restriction to cuts cannot
introduce Σ1-unsoundness. On the other hand our full knowledge of extra principles
beyond A in semcocut(A) comes from the above S4 reasoning. As we have shown
this reasoning is completely powerless for the semco case. Thus in the present stage
of knowledge semco(A) and semcocut(A) seem to be orthogonal.

5.3. The Intrinsic Completion. The idea for intco(U) is an adaptation of an
idea that Emil Jeřábek formulated in the context of cut-interpretability. We note
that we have U �(U,loc) intco(U).

Remark 5.11. One fanciful way to think about the intrinsic completion is as follows. Hilbert’s
program for foundations was very crudely: justify a theory by showing its consistency. One
problem of Hilbert’s approach was the non-uniqueness problem: mutually contradictory extensions

of a given theory may be consistent. One solution to this problem is to say that meaning is theory
internal, so that the extensions do not really contradict each other since the content of the A in
extension 1 is not the content of A in ¬A in extension 2.
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Nelson’s foundational program ([Nel86]) can be viewed as replacing consistency proofs by relative

interpretability. (It is not quite clear if he wants general interpretability or just interpretability by

relativization to definable cuts. Both notions are interesting.) Here we still have non-uniqueness

because of the Orey phenomenon that we can interpret mutually contradictory extensions.8 In

the light of the Orey phenomenon, we can make two moves. Just as in the Hilbert case we can

say that the meaning of the extensions is different. In fact we can view the meaning as given by

the interpretation. The other way is to restrict oneself to extensions that are compatible with all

other extensions: i.e. to opt for the intrinsic completion.

We start with a characterization of intco(U) in terms of the U -local interpretability
of [A]U .

Theorem 5.12. We have: A ∈ intco(U)⇔ U �(U,loc) (U + [A]U ).

The idea of the proof is due to Joel Hamkins (in e-mail correspondence).

Proof. Suppose A ∈ intco(U). Let K0, . . . ,Kn−1 be interpretations of U in U .
Clearly, U � (U + (¬A ∨

∧
i<nA

Ki)), by the interpretation:

K := K0〈¬AK0〉(K1〈¬AK1〉(. . . (Kn−1〈¬AKn−1〉IDU ) . . .)).

It follows that U � (U +A+ (¬A ∨
∧
i<nA

Ki)). Ergo, U � (U +
∧
i<nA

Ki).

Conversely, suppose U �(U,loc) (U + [A]U ) and L : U � (U +B). We find:

U � (U +AL)� (U +A+B).

So, U � (U +A+B). 2

We note that we have:

Theorem 5.13. Let A be finitely axiomatized. Then,

• B ∈ synco(A) iff A� (A+ [B]A).

• B ∈ semco(A) iff A I (A+ [B]A).

• B ∈ intco(A) iff A�loc (A+ [B]A).

As a consequence we have: synco(A) ⊆ semco(A) ⊆ intco(A).

Next we show that intco is a good operation w.r.t. more abstract views of theories.

Theorem 5.14. The operation intco preserves mutual interpretability, sentential
congruence, iso-congruence, bi-interpretablity and definitional equivalence.

Proof. The proof is analogous to the proof of Theorem 5.1. 2

Finally we show that [�A⊥]S1
2,U

is a subtheory of intco(U).

Theorem 5.15. [�A⊥]S1
2,U

is a subtheory of intco(U).

8Solovay found a variant of the Orey phenomenon for cut-interpretability. Here the sentences
are not strictly contradictory but their conjunction implies exp, i.e. the totality of exponentiation,

which is a taboo statement in Nelson’s program.
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We note that we cannot conclude our theorem immediately from Theorem 5.8, since,
for non-finitely axiomatized U , we do not know whether semco(U) is included in
intco(U).

Proof. By Theorem 4.1, we have U �(U,loc) (U + [�U⊥]S2
1,U

). We clearly have:

(U + [�U⊥]S2
1,U

) ` (U + [[�U⊥]S2
1,U

]U,U ).

Hence, U �(U,loc) (U + [[�U⊥]S2
1,U

]U,U ). So we are done by Theorem 5.12. 2

5.4. Complexity. We show that for finitely axiomatized, sequential, consistent A,
the theories z(A), semco(A) and intco(A) are Π2-hard. We note that z(A) is prima
facie Σ3, semco(A) is prima facie Π1

1 and intco(A) is prima facie Π2. So we find
that intco(A) is Π2-complete.

Theorem 5.16. Suppose A is a consistent, finitely axiomatized sequential theory.
Then, z(A), semco(A) and intco(A) are Π2-hard.

Proof. Let A be a consistent, finitely axiomatized sequential theory. We will pro-
vide a p-time computable function Φ from Σ1-formulas in one variable S(x) to
A-sentences such that the following are equivalent:

i. ∀xS(x) is true.

ii. Φ(S) is in z(A).

iii. Φ(S) is in semco(A).

iv. Φ(S) is in intco(A).

We first construct Φ. Let N0 be the interpretation given by Lemma 2.12. Consider
any Σ1-formula S(x). By Lemma 2.2, we can effectively find a Σ1-formula R(x)
such that:

(†) {n ∈ ω | S(n)} = {n ∈ ω | R(n)} = {n ∈ ω | A� (A+RN0(n))}.

We define J(x) :↔ x ∈ N0 ∧ ∀y ≤ xRN0(x). We take Φ(S) := �N0
A,J⊥.

Suppose ∀nS(n) is true. Then, by Lemma 2.2, ∀nR(n). It follows, by Σ1-
completeness that J is an infinite initial segment for A,N0. Hence �N0

A,J⊥ is in
z(A). So (i) implies (ii).

Suppose �N0
A,J⊥ is in z(A), then by Theorem 5.13, �N0

A,J⊥ is in semco(A). So (ii)
implies (iii). Similarly, (iii) implies (iv).

We show that (iv) implies (i). Suppose �N0
A,J⊥ is in intco(A). Consider any n.

Since, by Lemma 2.12, we have A � (A + 3N0
A,n>), it follows by the definition of

intco, that:
A� (A+3N0

A,n>+ ∃x ∈ J �N0
A,x⊥).

Hence, A� (A+R(n)). By (†) we may conclude that S(n). Since n was arbitrary,
we find: ∀nS(n). 2
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6. Conservativity of the Negation of Σ1-Collection

We present a well-known construction of Paris & Kirby ([PK78]) to show the con-
servativity of the negation of Σ1-collection. In this section we work in extensions of
I∆0. For the purposes of this section, a Σ1-formula is a formula of the form ∃~xS0~x,
where S0 is ∆0, i.e. S0 contains only bounded quantifiers. We use that over EA
we have a Σ1-predicate def~x(y, z) such that whenever an element a is Σ1-definable
in parameters ~b, then, for some numeral k, def~b(k, z) defines a. We follow Paris &
Kirby in defining def as follows. Let T(e, w, x) is Kleene’s T-predicate where T is
∆0. We take:

def~x(y, z) :⇔ ∃v (T(y, 〈~x, z〉, v) ∧ ∀w′ < 〈z, v〉 ¬T(y, 〈~x, (w′)0〉, (w′)1)).

Consider any model N of I∆0. Let ~m be a finite set of elements of N . Let M be the
set of Σ1,0(~m)-definable elements of N . Clearly, M is closed under the arithmetical
operations 0, successor, plus and times. Let M be the restriction of N to M . For
any Π2-formula A(~k), with parameters ~k from M, we have, as is easily seen, that,
whenever N |= A(~k), thenM |= A(~k). Thus,M will satisfy I∆0. If N |= EA, then
M |= EA, etc.

Suppose that N |= EA. LetM be the model constructed above for any ~m. Suppose
M is non-standard and that m? is a non-standard element of M. Then, we have:
M |= ∀x < m? + 1∃y < m? def ~m(y, x). Hence M satisfies the negation of Σ1-coll.
(If M did satisfy Σ1-coll, this would give us a bound b for the relevant witnesses
of def. Thus we could replace def by a ∆0-formula. This would contradict the
well-known fact that we have the ∆0-pigeon hole principle in EA. See e.g. [HP93],
p42.)

We prove that ¬Σ1-coll is Π3-conservative over EA.

Suppose A is Π3 and EA 0 A. Let N be a non-standard model of EA plus ¬A.
Suppose A is of the form ∀~xA0(~x), where A0 is Σ2. Pick ~m such thatN |= ¬A0(~m).
Let n be any non-standard element of N . We now construct the submodel M
of N by restriction to the Σ1(n, ~m)-definable elements. Then, by our previous
considerations, N is a model of ¬Σ1-coll and N |= ¬A0(~m). Thus, EA+¬Σ1-coll 0
A.

Remark 6.1. It is unknown whether the presence of the totality of exponentiation
can be eliminated from the argument above. In fact we do not know whether
I∆0 +¬ exp +¬BΣ1 is consistent. See [AKP12] for a discussion of the state-of-the-
art.

Our purpose is now to show that this conservativity result is verifiable in a weak
theory like I∆0 + Ω1. There is a p-time transformation of a proof of a Π3-sentence
A from EA +¬Σ1-coll into a proof of A from EA. Our strategy is to transmute the
above model construction into the construction of an interpretation with similar
properties.

We will construct, for every Σ3-sentence B, an interpretation

(‡) QB : (EA + ¬Σ1-coll +B)� (EA +B)
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such that both QB and the proof witnessing (‡) are polynomial in B. Then we
can reason as follows. Suppose C is Π3 and (i) EA + ¬Σ1-coll ` C. We have: (ii)
EA +¬C ` (EA +¬Σ1-coll +¬C)Q¬C . On the other hand, by (i) and (ii), we have
(iii) EA + ¬C ` CQ¬C . The proof witnessing (iii) is p-time in the original proof
witnessing (i). Combining (ii) and (iii), we find EA + ¬C ` ⊥, and, hence, (iv)
EA ` C. Of course, the proof witnessing (iv) is p-time in the proof witnessing (i).

In the Paris–Kirby construction the standard numbers play an important role: the
Σ1-definitions we use are standard. We need a suitable substitute for the standard
numbers when we internalize the construction. Our substitute will be a strict cut:
a definable cut of our numbers such that we can provably produce an element above
the cut. Clearly, true arithmetical theories have no strict cuts, so we have to pre-
process our theory to insert a strict cut. This is where Feferman’s Theorem for
restricted provability comes in.

We use that, for any finitely axiomatized theory A and any N : S1
2 � A, we have:

K : A� (A+ �NA,n⊥). Inspection of the construction shows that (the Gödelnumber
of K) is polynomial in n and (the Gödel numbers of) A and N . By the results of
[Pud85] (see also [Vis93]), we can find a cut J of N such that A ` 3JA,n>. Using
the technique of writing short formulas (see [Pud85] and [FR79]), we can show that
the size of J just depends polynomially on n. We find that, in A+ �NA,n⊥, the cut
J is a strict cut of N .

We now consider A0 :=
∧

EA + B, where B is Σ3. In this theory, we interpret
A1 := A0 + �A0,n⊥, for sufficiently large n. We proceed in A1. Suppose B is of
the form ∃~xB0(~x), where B0 is Π2. Using an interpretation with parameters we
can now interpret A2 :=

∧
EA + B0(~c) + �A0,n⊥, for fresh constants ~c. In A2, we

have the cut J that is below the smallest A0-proof of p of ⊥. Since in A2 we have a
truth-predicate true for Σ1-sentences, we can define the set M of numbers that are
Σ1(~c)-definable by a definition in J . Relativization to M gives us an interpretation
of A3 := EA + ¬Σ1-coll + B in A2. Composing all our interpretations, we get an
interpretation QB : A3 → A0. This interpretation is p-time in B and so is the
witnessing proof.

We see that we have the promised p-time transformation. Moreover, every step in
the argument is verifiable in I∆0 + Ω1.

7. Feferman’s Theorem Fails in the Constructive Case

Feferman’s Theorem for parameter-free interpretations fails in the constructive set-
ting. To my knowledge the most elegant proof of this is to use Harvey Friedman’s
result that the disjunction property implies the numerical existence property. See
[Fri75]. The main point of our application of the theorem here is that, since the
disjunction property is ‘coordinate-free’, we have the numerical existence property
for any any interpretation of number theory in the given theory. Throughout this
section we consider a theory U , where we assume that U is ∆b

1-axiomatized. By
the results of [Bus86], we can find a ∆b

1-definition prfU (x, y) of the proof-predicate
for U .
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The theories i-S1
2, i-T1

2, i-EA and i-IΣ1 are the obvious constructive counterparts of
respectively S1

2, T1
2, EA and IΣ1. In i-S1

2 we have the decidability of ∆b
1-formulas.

In i-T1
2 we have the ∆b

1-minimum principle.

We first prove a theorem that already blocks the Feferman result (restricted to
parameter-free interpretations) for a wide range of theories. After that we will
prove a better result using ideas derived from an unpublished note by Emil Jeřábek
that we were allowed to use with Emil’s gracious permission.

We write �pf for parameter-free interpretability.

Theorem 7.1 (i-EA). Let S be an ∃∆b
1-sentence. Suppose N : i-T1

2 �pf U . The
following can be verified in i-EA. Suppose that U has the disjunction property and
U ` SN . Then, S is true or U is inconsistent.

Proof. Let S be ∃∆b
1, say S is of the form ∃xS0x, where S0 is ∆b

1. Let N : i-T1
2�pfU .

We find R with i-S1
2 ` R↔ [S ∨�U¬RN ] ≤ �UR

N . We write R⊥ for the opposite
of R, to wit: �UR

N < [S ∨ �U¬RN ].

From this point on, we work in i-EA. Since we are working in i-EA, we will use �
for `, etc. Suppose U satisfies the disjunction property and �US

N .

Since in N we have both i-T1
2 and S, there is, inside N , a minimal u such that

S(u) ∨ prfU (u,RN ) ∨ prfU (¬RN ). It follows that: �U (RN ∨R⊥N ).

By the disjunction principle, we find (a) �UR
N or (b) �UR

⊥N . In case (a), we
have (aa) R or (ab) R⊥. If (aa) R, then (aaa) S or (aab) �U¬RN . In case (aab) we
have both �UR

N and �U¬RN . Hence �U⊥. So, in case (aa) we have S or �U⊥.
In case (ab) we have R⊥, and, hence, by Σ1-completeness, �UR

⊥N . Combining
this with �UR

N , we find �U⊥. We may conclude that in case (a) we have S or
�U⊥.

In case (b) we have �U¬RN . It follows that (ba) R or (bb) R⊥. If we have (ba)
R, we find, by Σ1-completeness, �UR

N and, hence �U⊥. In case (bb), we have
�UR

N and, hence, �U⊥. So in case (b) we have �U⊥.

We may conclude that �US
N implies either S or �U⊥. 2

We note that Theorem 7.1 is sufficient to block Feferman’s Theorem in the parameter-
free case. If we had U �pf (i-T1

2 + �U⊥), then we would also have �U⊥.

Remark 7.2. Let us view the mapping C 7→ CN not as an interpretation but just
as some p-time function from sentences to sentences. Analyzing the proof, we see
that the following principles are used:

I. i-S1
2 ` C ⇒ U ` CN

II. U ` (C → D)N → (CN → DN )

III. U ` (C ∨D)N → (CN ∨DN )

IV. U ` ¬⊥N

Thus the proof also works e.g. for Boolean morphisms.

Next we present Emil Jeřábek’s variant of Theorem 7.1
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Theorem 7.3 ( i-EA). Let S be an ∃∆b
1-sentence. Say S is of the form ∃xS0x,

where S0 is ∆b
1. Suppose N : i-S1

2 �pf U . The following can be verified in i-EA.
Suppose that U has the disjunction property and U ` (∃xS0|x|)N , then S is true
or U is inconsistent.

Proof. We note that all steps in the proof of Theorem 7.1 go through except one.
This is the step where we conclude �UR

N∨�U¬RN . For this step we now use that,
inside N , there is a minimal u ≤ |x| such that S(u) ∨ prfU (u,RN ) ∨ prfU (¬RN ),
where x is the promised witness of S0|x|. 2

Using Theorem 7.3, we are now ready to prove a first approximation of the numerical
existence property.

Theorem 7.4 ( i-EA). Suppose N : i-S1
2 �pf U . Consider any sentence A of the

form ∃x ∈ δN A0x. The following can be verified in i-EA. Suppose that U has the
disjunction property and U ` A. Then, for some n, we have U ` ∃x ≤ n A0x.
(Here the numeral n is defined relative to N .)

Proof. Consider any sentence A of the form ∃x ∈ δN A0x. We define:

• �UB :↔ ∃x prfU (|x|, pBq).

We find a sentence Q with U ` Q↔ A ≤ �N
UQ.

We reason in i-EA. Suppose U has the disjunction property. Suppose �UA. We
claim �U (Q ∨�N

UQ). To see this, reason inside �U . Let x witness A. Either there
is a U -proof of Q below |x| or there isn’t, since ∆b

1-formulas are provably decidable
in i-S1

2. In the first case, we have �UQ and, in the second case, we have Q. We exit
from �U .

It follows, by the disjunction property, that �UQ or �U �N
U Q. Applying Theo-

rem 7.3 to the second disjunct, we find �UQ and, hence, �UQ. So, in all cases, we
have �UQ. Suppose p is a U -proof of Q. Clearly, it follows that �UprfU (p, pQq).
We also have �U (A ≤ �N

UQ). Let n := 2p. Then, �U∃x≤nA0x. 2

We are now ready to prove a better version of Σ1-reflection than Theorem 7.1.

Theorem 7.5 (i-EA). Let S be an Σ1-sentence (or, if you wish, a Σ1(ω1)-sentence).
Suppose N : U �pf i-S1

2. The following can be verified in i-EA. Suppose that U has
the disjunction property and U ` SN . Then, S is true or U is inconsistent.

Proof. Let S be an Σ1-sentence. Say S = ∃xS0(x), where S0 is ∆0 (or ∆0(ω1)).
Suppose N : U�pf i-S1

2. We reason in i-EA. Suppose U has the disjunction property.
By Theorem 7.4, for some n, we have �U∃x ≤ nS0x. In case ∃x ≤ nS0x, we have
S. In case ∀x ≤ n¬S0(x), we find �U∀x ≤ n¬S0(x), and, hence, �U⊥. 2

We note that it follows that, if U �pf (i-S1
2 + �U⊥), then U is inconsistent.

Theorem 7.6 (i-IΣ1). Suppose N : i-S1
2 �pf U . Consider any formula A0x with

only x free. We can verify the following in i-IΣ1. Suppose U has the disjunction
property and �U∃x ≤ nA0x. Then, ∃m�UA0m.
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Proof. Suppose N : i-S1
2 �pf U . Consider A0x with only x free. We reason in i-IΣ1.

Suppose U has the disjunction property. and �U∃x ≤ nA0x. The desired result
follows by induction on k for the formula �U∃y ≤ (n− k)A0y ∨ ∃m�UAm. 2

Theorem 7.7 (i-IΣ1). Consider any formula A0x with only x free. Suppose N :
U�pf i-S1

2. The following can be verified in i-IΣ1. Suppose that U has the disjunction
property and U ` ∃x ∈ δN A0x. Then, for some n, we have U ` A0n.

Proof. The result is immediate by Theorem 7.4 and Theorem 7.6. 2

Remark 7.8. What happens when we drop the restriction to parameter-free in-
terpretations? We only have a very limited result.

Suppose U has the disjunction property and N(~x) : i-S1
2 � U . Suppose the param-

eters of N(~x) are taken from the numbers of a parameter-free interpretation M of
i-S1

2. Say the parameter-domain is α. We assume that:

i. U ` ∀~x ∈ α ~x ∈ δM .

ii. U ` ∃~x ~x ∈ α.

iii. U ` ∀~x ∈ α (AN(~x) ∧ �U⊥), where A is the conjunction of the axioms of i-S1
2.

Applying Friedman’s theorem to M we obtain M -numerals ~m such that: U ` ~m ∈
α. Subtituting ~m in N we obtain a parameter-free interpretation N ′ := N(~m) of
i-S1

2 + �U⊥. From this it follows that U is inconsistent.

The general question whether it is possible that U has the disjunction property, U
is consistent and U � (i-S1

2 + �U⊥), where parameters are allowed, is open.
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[HL08] Joel Hamkins and Benedikt Löwe. The modal logic of forcing. Transactions of the Amer-

ican Mathematical Society, 360(4):1793–1817, 2008.
[Hod93] W. Hodges. Model theory. Encyclopedia of Mathematics and its Applications, vol. 42.

Cambridge University Press, Cambridge, 1993.
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Appendix A. Further Details on Definitions

In this appendix we explain some basic notions.
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A.1. Translations and Interpretations. We present the notion of m-dimensi-
onal interpretation without parameters. There are two extensions of this notion:
we can consider piecewise interpretations and we can add parameters. We will give
a bit more details on parameters in Appendix A.3. We will not describe piecewise
interpretations here.

Consider two signatures Σ and Θ. An m-dimensional translation τ : Σ → Θ is a
quadruple 〈Σ, δ,F ,Θ〉, where δ(v0, . . . , vm−1) is a Θ-formula and where for any n-
ary predicate P of Σ, F(P ) is a formula A(~v0, . . . , ~vn−1) in the language of signature
Θ, where ~vi = vi0, . . . , vi(m−1). Both in the case of δ and A all free variables are
among the variables shown. Moreover, if i 6= j and k 6= `, then vik is syntactically
different from vj`.

We demand that we have ` F(P )(~v0, . . . , ~vn−1)→
∧
i<n δ(~vi). Here ` is provability

in predicate logic. This demand is inessential, but it is convenient to have.

We define Bτ as follows:

• (P (x0, . . . , xn−1))τ := F(P )(~x0, . . . , ~xn−1).

• (·)τ commutes with the propositional connectives.

• (∀xA)τ := ∀~x (δ(~x)→ Aτ ).

• (∃xA)τ := ∃~x (δ(~x) ∧Aτ ).

There are two worries about this definition. First, what variables ~xi on the side
of the translation Aτ correspond with xi in the original formula A? The second
worry is that substitution of variables in δ and F(P ) may cause variable clashes.
These worries are never important in practice: we choose ‘suitable’ sequences ~x to
correspond to variables x, and we avoid clashes by α-conversions. However, if we
want to give precise definitions of translations and, for example, of composition of
translations these problems come into play. These problems are clearly solvable,
but they are beyond the scope of this paper.

We allow identity to be translated to a formula that is not identity. There are
several important operations on translations.

• idΣ is the identity translation. We take δidΣ(v) := v = v and F(P ) := P (~v).

• We can compose translations. Suppose τ : Σ → Θ and ν : Θ → Λ. Then
ν ◦ τ or τν is a translation from Σ to Λ. We define:

– δτν(~v0, . . . , ~vmτ−1) :=
∧
i<mτ

δν(~vi) ∧ (δτ (v0, . . . , vmτ−1))ν .

– Pτν(~v0,0, . . . , ~v0,mτ−1, . . . ~vn−1,0, . . . , ~vn−1,mτ−1) :=∧
i<n,j<mτ

δν(~vi,j) ∧ (P (v0, . . . , vn−1)τ )ν .

• Let τ, ν : Σ → Θ and let A be a sentence of signature Θ. We define
the disjunctive translation σ := τ〈A〉ν : Σ → Θ as follows. We take
mσ := max(mτ ,mν). We write ~v � n, for the restriction of ~v to the first n
variables, where n ≤ length(~v).

– δσ(~v) := (A ∧ δτ (~v � mτ )) ∨ (¬A ∧ δν(~v � mν)).
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– Pσ(~v0, . . . , ~vn−1) := (A ∧ Pτ (~v0 � mτ , . . . , ~vn−1 � mτ )) ∨
(¬A ∧ Pν(~v0 � mν , . . . , ~vn−1 � mν))

Note that in the definition of τ〈A〉ν we used a padding mechanism. In case, for
example, mτ < mν , the variables vmτ , . . . , vmν−1 are used ‘vacuously’ when we have
A. If we had piecewise interpretations, where domains are built up from pieces with
possibly different dimensions, we could avoid padding by building the domain of
disjoint pieces with different dimensions.

A translation relates signatures; an interpretation relates theories. An interpreta-
tion K : U → V is a triple 〈U, τ, V 〉, where U and V are theories and τ : ΣU → ΣV .
We demand: for all axioms A of U , we have V ` Aτ . Here are some further
definitions.

• IDU : U → U is the interpretation 〈U, idΣU , U〉.

• Suppose K : U → V and M : V → W . Then, KM := M ◦K : U → W is
〈U, τM ◦ τK ,W 〉.

• Suppose K : U → (V +A) and M : U → (V +¬A). Then K〈A〉M : U → V
is the interpretation 〈U, τK〈A〉τM , V 〉. In an appropriate category K〈A〉M
is a special case of a product.

A.2. i-morphisms. Consider an interpretation K : U → V . We can view this
interpretation as a uniform way of constructing internal models τK(M) of U from
modelsM of V . This construction gives us the contravariant model functor as soon
as we have defined an appropriate category of interpretations.

Now consider two interpretations K,M : U → V . Between the inner models τK(M)
and τM (M) we have the usual structural morphisms of models. We are interested
in the case where these morphisms are V -definable and uniform over models. This
idea leads to the following definition. An i-morphism M : K → M is a triple
〈K,F (~u,~v),M〉, where F (~u,~v) is a V -formula and where ~u has length mK and ~v
has length mM . We demand:

• V ` F (~u,~v)→ (δK(~u) ∧ δM (~v)),

• V ` δK(~u)→ ∃~v (δM (~v) ∧ F (~u,~v)),

• V ` (~u0 =K ~u1 ∧ F (~u0, ~v0) ∧ F (~u1, ~v1))→ ~v0 =M ~v1,

• V ` (~u0 =K ~u1 ∧ ~v0 =M ~v1 ∧ F (~u0, ~v0))→ F (~u1, ~v1),

• V ` (PK(~u0, . . . ~un−1) ∧
∧
i<n F (~ui, ~vi))→ PM (~v0, . . . ~vn−1).

Clearly, F : K →M is an i-morphism iff, for all models M of V , FM represents a
morphism of models from τK(M) to τM (M).

Two i-morphisms F,G : K →M are i-equal, when V ` ∀~u,~v (F (~u,~v)↔ G(~u,~v)).

In the obvious way, we can define the identity i-morphism IdK : K → K, com-
position of i-morphisms, i-isomorphisms, etc. One can show that these operations
preserve i-equality. Moreover, i-isomorphisms really are isomorphisms in the cate-
gories given by these operations.



36 ALBERT VISSER

We will say that two interpretations K,M are i-equivalent when there is an i-
isomorphism between them, that is, they are i-isomorphic.

We will not divide out i-equivalence of interpretations. This enables us to use
the notation τM meaningfully, to speak about the dimension of an interpretation,
etc. However, we demand that operations on interpretations preserve i-equivalence.
It is easy to see that, for example, the operation K,M 7→ K〈A〉M preserves i-
equivalence. Moreover, if K and M are i-equivalent, then K = M .

One can show, by a simple compactness argument, that K and M are i-isomorphic
iff, for every M |= V , there is an F such that FM represents an isomorphism
between τK(M) and τM (M).

The category INT1 is the category of theories (as objects) and interpretations mod-
ulo i-equivalence (as arrows). One may show that we have indeed defined a category.
The relation of i-equivalence is preserved by composition, etcetera. Two theories
U and V are bi-interpretable if they are isomorphic in INT1. Wilfrid Hodges calls
this notion: homotopy. See [Hod93], p222.

Thus, U and V are bi-interpretable if there are interpretations K : U → V and
M : V → U , so that M ◦ K is i-isomorphic to IDU and K ◦ M is i-isomorphic
to IDV . We call the pair K,M a bi-interpretation between U and V . One can
show that the components of a bi-interpretation are faithful interpretations. Many
good properties of theories like finite axiomatizability, decidability, κ-categoricity
are preserved by bi-interpretations.

A.3. Parameters. In general interpretations are allowed to have parameters. We
will briefly sketch how to add parameters to our framework. We first define a
translation with parameters. The parameters of the translation are given by a
fixed sequence of variables ~w that we keep apart from all other variables. A trans-
lation is defined as before, but for the fact that now the variables ~w are allowed to
occur in the domain and in the translations of the predicate symbols in addition
to the variables that correspond to the argument places. Officially, we represent
a translation τ~w with parameters ~w as a quintuple 〈Σ, δ, ~w, F,Θ〉. The parameter
sequence may be empty: in this case our interpretation is parameter-free.

An interpretation with parameters K : U → V is a quadruple 〈U,α,E, τ~w, V 〉,
where τ~w : ΣU → ΣV is a translation and α is a V -formula containing at most ~w
free. The formula α represents the parameter domain. For example, if we interpret
the Hyperbolic Plain in the Euclidean Plain via the Poincaré interpretation, we
need two distinct points to define a circular disk. These points are parameters
of the construction, the parameter domain is α(w0, w1) = (w0 6= w1). (For this
specific example, we can also find a parameter-free interpretation.) The formula
E represents an equivalence relation on the parameter domain. In practice this is
always pointwise identity for parameter sequences, but for reasons of theory one
must admit other equivalence relations too. We demand:

• ` δτ,~w(~v)→ α(~w),

• ` Pτ,~w(~v0, . . . , ~vn−1)→ α(~w).

• V ` ∃~w α(~w);
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• V ` E(~w, ~z)→ (α(~w) ∧ α(~z));

• V proves that E represents an equivalence relation on the sequences forming
the parameter domain;

• ` E(~w, ~z)→ ∀~x (δτ,~w(~x)↔ δτ,~z(~x));

• ` E(~w, ~z)→ ∀~x0, . . . , ~xn−1 (Pτ,~w(~x0, . . . , ~xn−1)↔ Pτ,~z(~x0, . . . , ~xn−1));

• for all U -axioms A, V ` ∀~w (α(~w)→ Aτ,~w).

We can lift the various operations in the obvious way. Note that the parameter
domain of N := M ◦K and the corresponding equivalence relation should be:

• αN (~w, ~u0, . . . , ~uk−1) := αM (~w) ∧
∧
i<k δτM (~w, ~ui) ∧ (αK(~u))τM , ~w.

• EN (~w, ~u0, . . . , ~uk−1, ~z,~v0, . . . , ~vk−1) :=
EM (~w, ~z) ∧

∧
i<k δτM (~w, ~ui) ∧

∧
i<k δτM (~w,~vi) ∧ (EK(~u,~v))τM , ~w.

Consider interpretations K,M : U → V . An i-morphism φ : K → M is a triple
〈K,G,F,M〉, where G(~u, ~w) and F (~u, ~w, ~x, ~y) are V -formulas.9 We write F ~u;~w(~x, ~y)
for F . We demand that:

• V proves that G is a surjective relation between αK/EK and αM/EM ;

• V ` F ~u;~w(~x, ~y)→ G(~u, ~w);

• V proves that, if G(~u, ~w), then F ~u;~w is a function from δK/=K to δM/=M .

• V proves that if EK(~u0, ~u1) and EM (~w0, ~w1), then F ~u0, ~w0 is the same func-
tion is F ~u1, ~w1 .

Finally, we say that two i-maps φ0 and φ1 are i-equal if V proves that Gφ0 and Gφ1

and Fφ0 and Fφ1 are the same.

The definitions of the identity i-morphism and of composition of i-morphisms are
as is to be expected. We can compute what an i-isomorphism is: G is, V -verifiably,
a bijection between αK/EK and αM/EM , and V proves that, if G(~u, ~w), then F ~u;~w

is a bijection between δK/=K and δM/=M .

A.4. Complexity Measures. Restricted provability plays an important role in
this paper. An n-proof is a proof from axioms with Gödel number smaller or equal
than n only involving formulas of complexity smaller or equal than n. To work
conveniently with this notion, a good complexity measure is needed. This should
satisfy three conditions. (i) Eliminating terms in favour of a relational formulation
should raise the complexity only by a fixed standard number. (ii) Translation of a
formula via the translation corresponding to an interpretation K should raise the
complexity of the formula by a fixed standard number depending only on K. (iii)
The tower of exponents involved in cut-elimination should be of height linear in the
complexity of the formulas involved in the proof.

Such a good measure of complexity together with a verification of desideratum (iii)
—a form of nesting degree of quantifier alternations— is supplied in the work of

9In G and F we could allow extra parameters, ~z, the eigenparameters of G and F . We will
refrain from doing that here to unburden the presentation a bit.
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Philipp Gerhardy. See [Ger03] and [Ger05]. It is also provided by Samuel Buss in
his preliminary draft [Bus11]. Buss also proves that (iii) is fulfilled.

Gerhardy’s measure corresponds to the following formula classes:

• AT is the class of atomic formulas.

• N?
−1 = Σ?

−1 = Π?
−1 := ∅.

• N?
n ::= AT | ¬N?

n | (N?
n ∧ N?

n) | (N?
n ∨ N?

n) | (N?
n → N?

n) | ∀Π?
n | ∃Σ?

n.

• Σ?
n ::= AT | ¬Π?

n | (N?
n−1 ∧ N?

n−1) | (Σ?
n ∨ Σ?

n) | (Π?
n → Σ?

n) | ∀Π?
n−1 | ∃Σ?

n.

• Π?
n ::= AT | ¬Σ?

n | (Π?
n ∧Π?

n) | (N?
n−1 ∨ N?

n−1) | (N?
n−1 → N?

n−1) | ∀Π?
n | ∃Σ?

n−1.

We may define ρ(A) as the minimal n such that A is in N?n.10

Samuel Buss gives the following formula classes.

• Σ∗
0 = Π∗

0 = the class of quantifier-free formulas.

• Σ∗
n ::= Σ∗

n−1 | Π∗
n−1 | ¬Π∗

n | (Σ∗
n ∧ Σ∗

n) | (Σ∗
n ∨ Σ∗

n) | (Π∗
n → Σ∗

n) | ∃Σ∗
n.

• Π∗
n ::= Σ∗

n−1 | Π∗
n−1 | ¬Σ∗

n | (Π∗
n ∧Π∗

n) | (Π∗
n ∨Π∗

n) | (Σ∗
n → Π∗

n) | ∀Π∗
n.

We may define ρ(A) as the smallest n such that A is in Σ∗n. This is the same
measure, as was employed in [Vis93]. For our purposes it does not matter whether
we use Gerhardy’s of Buss’ definition.

Appendix B. Finite Necessity in a Sequential Environment

In this Appendix, we provide characterization of necessity for finitely axiomatized
theories in terms of restricted provability. The characterization needs an ambient
sequential model.

Suppose M is a sequential model. Modulo isomorphism, the internal S1
2-models of

M have a unique intersection JM. To see this, first consider any internal S1
2-model

N ofM. We take the intersection JNM of allM-definable cuts of N . Consider any
other internal S1

2-model N ′ ofM and let JN ′M be the intersection of allM-definable
cuts of N ′. By a theorem of Pudlák, we can find definable cuts I of N and I ′ of N ′
such that there is an M-definable isomorphism between I and I ′. The restriction
of that isomorphism to JNM is an isomorphism between JNM and JN ′M . Thus all JNM
are isomorphic. This justifies the notation JM.

We note that the isomorphisms we produced between JNM JN
′

M are independent
of the chosen cuts: the restrictions to JNM of all definable isomorphisms between
cuts of N resp. N ′ are identical. This means that there is precisely one definable
isomorphism between JNM and JN ′M .

One can show that JM is a model of (at least) EA + BΣ1 + 0(A).

Theorem B.1. Let M be a sequential model and let S be a Σ1-sentence. Then
M |= �S1

2
S iff JM |= S.

10Vincent van Oostrom gave a variant of this formulation of Gerhardy’s measure in
conversation.
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Proof. From left to right is trivial. Suppose M |= �S1
2
S. Suppose S has the

form ∃xS0x, where S0x is ∆0. Consider any internal S1
2-model N of M. Let

X := {a ∈ N | N |= ∀y < a¬S0(y)}. If X is closed under successor it can be
shortened to a definable ω1-cut I of N . On this cut we have ¬S, contradicting the
fact that I |= S1

2 and M |= �S1
2
S. So X is not closed under successor. It follows

that, for some b, N |= S0(b) ∧ ∀y < b¬S0(y). Clearly b must be in all definable
ω1-cuts of N . Hence, JM |= S. 2

Remark B.2. It seems to me that we can make sense of Theorem B.1 if we allow
parameters in S from JM, since, in every internal S1

2-model ofM, these parameters
have unique representatives. So, M |= �S1

2
S(~a) would mean: for all internal S1

2-
models N and for the unique representatives ~b in N of ~a, we have N |= S(~b).

We define MAB :↔ �A,max(ρ(A),ρ(B))B.

Theorem B.3. Let M be a sequential model. Let A be any finitely axiomatized
theory. Then, the following are equivalent:

i. M |= �AB,

ii. M |= �S1
2
MAB,

iii. JM |= MAB.

Proof. The equivalence between (ii) and (iii) is immediate from Theorem B.1.

We prove: (i) ⇒ (ii) by contraposition. Suppose M |= ♦S1
2
OAC. Then, for some

internal S1
2-model N of M, we have N |= 3A,max(ρ(A),ρ(C))C. Using the Henkin-

Feferman construction, we can find an internal model K of N with K |= (A ∧ C).
By the transitivity of the internal model relation, we have M |= ♦AC. (Note that
this direction does not use sequentiality.)

We prove (ii) ⇒ (i) by contraposition. Suppose M |= ♦AC. This means that, for
some interpretation K, we have M |= (A ∧ C)K . Since M is sequential, for any
sufficiently large k, we can find an internal S1

2-model N of 3k(A ∧ C)K . By the
usual properties of interpretations, our model N also satisfies 3A,max(ρ(A),ρ(C))C.
So M |= ♦S1

2
OAC. 2
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