
SELF-REFERENCE IN ARITHMETIC∗

Volker Halbach and Albert Visser

dra�
15th December 2013

�e net result is to substitute articulate hesitation for
inarticulate certainty. Whether this result has any value
is a question which I shall not consider.

Russell 1940, p.11

AGödel sentence is o�en described as a sentence saying about itself
that it is not provable and a Henkin sentence as a sentence stating
its own provability. We discuss what it couldmean for a sentence to
ascribe to itself a property such as provability or unprovability. �e
starting point will be the answer Kreisel gave to Henkin’s problem.
We describe how the properties of the supposedly self-referential
sentences depend on the chosen coding, the formulae expressing
the properties and the way a �xed point for the formula is obtained.
Some further examples of self-referential sentences are considered
such as sentences that ‘say of themselves’ that they are Σn-true (or
Πn-true) and their formal properties are investigated.
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1. Introduction

‘We thus have a sentence before us that states its own unprovability.’ �is is
how Gödel describes the sentence the kind of sentence that has come to bear
his name.1 Ever since, sentences constructed by Gödel’s method have been de-
scribed in lectures and logic textbooks as saying about themselves that they are
not provable or as ascribing to themselves the property of being not provable.
�e only ‘self-reference like’ feature of theGödel sentence γ that is used in the

proof of the �rst incompleteness theorem is the derivability of the equivalence
γ ↔ ¬Bew(⌜γ⌝); in other words, the only feature needed is the fact that γ is
a �xed point, modulo provable equivalence, of ¬Bew(x).2 But that a sentence
is a �xed point of a certain formula expressing a certain property does by no
means guarantee that the sentence ascribes that property to itself, as we shall
argue in what follows. But whether γ is also self-referential or ‘states its own
unprovability’ in whatever sense is not relevant for Gödel’s proof.3

Löb’s theorem and related results are more intensional than Gödel’s �rst in-
completeness theorem or Tarski’s theorem on the unde�nability of truth in the
sense that the former are more sensitive to the choice of the formula express-
ing provability. But also the proof of Löb’s theorem only relies on the existence
of some �xed points of a certain formulae. Whether this �xed point also states
something about itself, is not relevant for the proof. In this respect at least, Löb’s
theorem, the second incompleteness theorem and so on are still extensional. Be-
low we give examples of results even fail to be extensional in this respect. Since
we take into accuntmore sources for intensionality, our notion of extensionality
si�ers from others found in the literature, for instance, Feferman’s (1960).4

1�e German original reads: ‘Wir haben also einen Satz vor uns, der seine eigene Unbeweis-
barkeit behauptet.’ Of course Gödel (1931, p. 175) refers to provability in a speci�c system.

2In what follows, we will o�en talk about �xed points when we mean �xed points that can be
shown to be �xed points in he relevant theory.

3We use the label self-referential in a very loose way. When we call a sentence self-referential
we mean that it ascribes to itself the property under consideration. Which property is
meant should be clear from the context. �is is inaccurate, because a sentence may
well ascribe to itself another property but not the one under consideration and be self-
referential with respect ot this other property. But it would be very cumbersome to avoid
self-referential and talk about ascribes to itself the property expressed the formula so-and-so.

4See p. 13 for further remarks on Feferman’s treatement of intensionsality.
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Generally, mathematical logicians have come to focus on questions and re-
sults that do not rely on the notion of self-reference; and thus a deeper anal-
ysis of the somewhat elusive notion of self-reference is not required. instead
they have become interested in sences that can be proved to be �xed points of
certain formulae. �e development in metamathematics has lead away from
self-reference as a fundamental concept, because ‘[t]he notion of a sentence’s
expressing something about itself has not proven fruitful.’ 5

At least for certain questions in metamathematics, the notion of self-refer-
ence cannot be easily avoided. For instance, it is natural to ask whether the
sentence that states its own provability is provable or not. �is question be-
comes pointless if reformulated extensionally as a question about �xed points
of the (standard) provability predicate, modulo provable equivalence, because
 = , for instance, is a trivial example of such a �xed point. So the question
under consideration is intensional in the sense that it requires the notion of
stating its own provability. So even though self-reference may not be a central
notion of modern metamathematics, its study has led to results – most remark-
ably Löb’s theorem – that are in themselves no longer dependent on the notion
of self-reference.
In philosophical discussions, the notion of self-reference in metamathemat-

ics assumes a prominent role. Here self-reference in formal languages is a topic
in its own right. Some authors, among them Heck (2007) and Milne (2007),
focus on self-reference in metamathematics and ask, for instance, whether a
given mathematical sentence really states its own unprovability (or some other
property). Even more prominently, the notion of self-reference is used in the
analysis of the paradoxes, and it is o�en hoped that the metamathematical no-
tion of self-reference sheds some light also on the problems of reference and
intensionality in informal discourse. As our discussion will show, whether it
does, is a delicate matter. A salient example where the possibility of such an
application is urgent is the discussion about Yablo’s (1993) paradox where meta-
mathematical tools are used to answer the questionwhether theYablo sentences
are self-referential or not. But even for metamathematical sentences we lack a

5�is quote is taken from Smoryński (1991, p. 122). He gives an illuminating account of the
historical development in which his claim is substantiated.
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full analysis of sef-reference; the use of some �xed-point property in itself isn’t
a su�cient criterion for self-reference. So we think that a better understanding
of the self-reference in metamathematics would facilitate this discussion.

¹

A note on terminology. In this paper we try to analyze the informal metamath-
ematical predicate ascribes property P to itself as applied to sentences of arith-
metic. If P is provability, for instance, we take this phrase to be equivalent to
states its own provability, says of itself that it is provable, predicates provability
of itself and so on. If it is clear which property P is meant, we also say that
the sentence is self-referential without specifying explicitly the property. �is
is somewhat sloppy, because the sentence may not ascribe the property P to
itself but rather some other property or properties. Moreover, the notion of self-
reference has been used in di�erent ways and may be misleading. Presumably
self-predication cannot so easily be understood in a deviant way and therefore
would be preferable. However, since the term self-reference has become com-
mon parlance, it will be used here and our observations in this paper are ex-
plicitly intended as a contribution towards the discussion about self-reference
understood in the sense of self-predication.

2. Intensionality

To begin with, we will look at the method that is usually thought to yield self-
referential sentences of arithmetic. To obtain an arithmetical sentence that, ac-
cording to common parlance, ascribes a certain property such as provability or
unprovability to itself, one proceeds in three stages: First, the expressions of
the language are coded in the numbers; second, a formula expressing the prop-
erty is determined; �nally, a self-referential sentence is constructed from this
formula.
At each of the three stages, choices have to be made. �ey impinge on the

properties of the sentences that supposedly ascribe someproperty to themselves.
So any result about such a sentence is relative to or intensional with respect to
these choices. Corresponding to the three stages there are at least three sources
of intensionality.
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�ese three sources of intensionality are not independent of each other, and
a choice made at an earlier stage will have e�ects on the availability of choices
at a later stage. Examples will be presented below.
Of course, the three source of intensionality depend themselves on further

parameters, in particular, on the language and the formal system. We are in-
terested only in theories that are su�ciently strong. To explicate the notion of
su�cient strength, we introduce a theory that we will call Basic. �e language
of Basic is the language of arithmetic extended with function symbols for all
primitive recursive functions. �e Tarski–Mostowski–Robinson theory R, in-
troduced by Tarski et al. (1953), contains the recursive axioms for addition and
multiplication only in their numeralwise versions. �e theory Basic is then R
extended with all true identities of the form t = n, where t is a closed term and
n the numeral of n. �ese additional identities do not add power since they can
be proved in a de�nitional extension of R and Basic doesn’t ‘know’ anything
about the behaviour of primitive recursive functions outside the standard do-
main. In what follows we will focus on theories Σ that are su�ciently strong
in the sense that they extend Basic and are formulated in the same language as
Basic.

2.1. First Source of Intensionality: Coding.

�e coding is the bridge between properties of numbers and properties of syn-
tactic objects such as formulae and terms. �e choice of coding is primary in
the sense that the satisfaction of the other two tasks depends on it: Whether an
arithmetical formula expresses a property of syntactical objects depends on the
chosen coding and thus also whether a formula ascribes a syntactical property
to itself.
As an extreme example of the e�ect of coding on the last stage, the construc-

tion of a self-referential sentence from a given formula, a ‘reasonable’ Gödel
coding is constructed in Appendix A such that for each formula φ(v) there is
a unique number m such that φ(m) has code m and, consequently, φ(m) is
at least a �xed point of φ(v) and ascribes to itself the property expressed by
φ(v) according to the standards of certain authors. So by choosing the coding
in a clever way the entire last stage, that is, the construction of a self-referential
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statement from φ, can completely be bypassed, as diagonalization is built into
the coding schema for all formulae. Whether this coding leads to truly self-
referential statements is another delicate matter.
For further parts of the paper, other assumptions on the coding are required.

For instance, in our analysis of arithmetical truth tellers constructed with par-
tial truth predicates, the provability or refutability of these sentences will be
shown under certain assumptions on the coding scheme.
In the context of weak theories certain coding schemes are more appropriate

than others. �ere Gödel’s or Kleene’s method of coding are not su�ciently
e�ective. In such cases we assume that a suitable coding scheme is employed.
However, for most of the time we will work in su�ciently strong theories

and most parts of the paper are fairly stable with respect to the chosen cod-
ing scheme. We follow the usual practice and assume some ‘standard’ coding
scheme without setting out the details, unless we explicitly introduce further
assumptions.

2.2. Second Source of Intensionality: Expressing a property.

What does it mean for a formula of arithmetic to express a certain syntactical
property? �is question is notoriously di�cult to answer and has been inves-
tigated by many logicians, among them Feferman (1960) Auerbach (1985) and
Franks (2009).
Here we do not attempt to give a full answer, but we will state some assump-

tions that give some indication of the shape a possible answer could take. First,
we assume that a formula of arithmetic with one free variable does express an
arithmetical property, which in turn may relate to a property of sentences or
other syntactic objects. Secondly, di�erent formulae, even when they are not
logically equivalent, may express the same property. �irdly, even provably
equivalent formulae may fail to express the same property, where provability
may be understood as provability in some designated theory.
Di�erent kinds of criteria have been used to argue that a certain arithmetical

formula expresses a speci�c syntactic property. �e purely extensional notion
of representation, introduced by Kreisel (1953), has occasionally been used as
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a �rst approximation towards an answer to the question of what it means for a
formula to express a property.6

kreisel’s condition. A formula φ(x) is said to express a property P (in a
system Σ) if and only if the following condition is met for all numbers n with
associated numerals n :

Σ ⊢ φ(n) i� n has property P

In metamathematics Kreisel’s Condition became the formal notion notion
of weak representability:7 A formula φ(x) is said to weakly represent a set S of
numbers if and only if the following equivalence holds:

Σ ⊢ φ(n) i� n ∈ S

For the property of being a Σ-provable sentence such formula φ(x) exists that
expresses provability, as long as Σ is consistent, recursively enumerable and suf-
�ciently strong – even if the theory Σ is disturbingly unsound, as is shown in
?.
It is obvious that Kreisel’s Condition can hardly yield an adequate explication

of expressing a syntactic property, because it is purely extensional: Properties
expressed by provably equivalent formulae would always be identical, if this
condition were taken as a full explication. Even if the formulae are not prov-
ably equivalent, they can still express the same property, according to Kreisel’s
Condition, as is witnessed by a canonical provability predicate and its associated
Rosser–provability predicate. �is is in con�ict with our intensional stance on
syntactic properties.
�e applicability of Kreisel’s Condition is also very limited. For notions such

as Π-truth there is no representing formula even though most logicians be-
lieve that there is an arithmetical formula expressing the notion of Π-truth.
6Kreisel (1953) didn’t state his condition for arbitrary properties, but rather only for provabil-
ity:

A formula P(a) is said to express provability in Σ if it satis�es the following
condition: for numerals a, P(a) can be proved in Σ if and only if the formula
with number a can be proved in Σ.

7Feferman (1960) introduced and used the term ‘numerate’ for ‘weakly represent’.
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But not only would Π-truth be not expressible; a canonical Π-truth predi-
cate that provably only applies to Π-sentences would express not Π-truth; it
would rather express the property of being a Σ-provable Π-sentence, because,
for any Π-sentence φ, TrΠ⌜φ⌝ is Σ-provable if and only if φ is Σ-provable as
TrΠ⌜φ⌝ ↔ φ holds for all Π-sentences. Hence for such more complicated
properties like Π-truth other criteria for expressing a property have to be used
instead of Kreisel’s Condition.
Kreisel’s Condition makes the notion of a formula expressing a property rela-

tive to a theory. If this theory is unsound, then the criterionmay yield unwanted
consequences. For instance, relative to the theory PA + ¬ConPA, which is con-
sistent by Gödel’s Second Incompleteness theorem, the canonical provability
predicate doesn’t express provability in PA.
At any rate, Kreisel’s Condition is neither su�cient nor necessary as a cri-

terion of expressing a syntactic property. As alternative or additional criterion,
which we call themeaning postulates or conditions, we could say that formula ex-
presses a certain syntactic property if, veri�ably within the theory, the formula
satis�es certain conditions or meaning postulates.
In the case or partial truth, what is o�en meant by saying Π-truth is express-

ible or de�nable in an arithmetical system Σ is the observation that there is a
formula φ(x) such that the equivalences φ(⌜ψ⌝) ↔ ψ are provable in Σ for all
Π-sentences ψ (and that perhaps also the compositional axioms are provably
satis�ed for these sentences).
So the general meaning postulates or conditions criterion would read as fol-

lows: A formula of arithmetic expresses a property of syntactic objects if and
only if the formula satis�es certain principles or axioms associated with the
property, relative to a coding scheme.
In the case of provability, Löb’s derivability conditions have been used as

meaning postulates, although in themselves they will hardly su�ce because
they are satis�ed by the formula x = x and, even if they are combined with
Kreisel’s Condition, they still admit formulae as presumed provability predi-
cates that can hardly be accepted as genuine provability predicates, as is shown
in ?.
Moreover, it is far from being clear how the meaning postulates become as-

sociated with the property. In fact, in many cases the postulates were only dis-

8



covered once a formula already taken to express a certain property had been
analyzed in detail. In the case of Löb’s conditions, Gödel �rst de�ned a formula
that was generally thought of as a formula expressing provability; the develop-
ment of the derivability conditions started in Gödel’s paper, was continued by
Hilbert and Bernays (1939) and reached their completion in the work of Löb
(1955).
Like Kreisel’s Condition, the meaning postulate criterion is relative to a the-

ory. However, both criteria are not always compatible: In certain unsound the-
ories the canonical provability predicate for PA expresses provability on the
meaning postulate account but not according to Kreisel’s Condition, as wemen-
tioned above; and vice versa in any consistent theory with enough coding we
have a predicate that expresses provability according to the Kreisel conditions
and fails to do so according to the Löb conditions viewed asmeaning postulates.
Still further criteria may not fail so obviously, but are vague or unclear. �is

is the case with what we would like to call the resemblance criterion. Syntactic
properties are usually given by an informal metamathematical description of
that property. O�en logicians expect a formula to express the syntactic prop-
erty if the formula structurally resembles the metamathematical description of
the property. It’s di�cult to explain what such a structural resemblance could
consist in.
�e resemblance criterion is highly sensitive to the chosen coding scheme.

�e similarity between the arithmetical formula and the description of the syn-
tactic property could be seen as a comparison between the de�nition of a set of
syntactic objects and of a set of numbers. Both de�nitions will involve not just
the syntactic objects and numbers in the respective sets, but also some further
intermediary objects and numbers, that need to correspond to each other. �is
correspondence is obviously sensitive to the coding as well.
Oneway to sidestep the sensitivity to coding would be to employ a syntax the-

ory that directly describes syntactic objects. However, we wonder whether such
an approach would not also necessitate arbitrary choices in the construction of
the formulae expressing syntactic properties such as the property of being a
formula or provable in a �xed deductive system.
In practice we seem to recognize the relevant resemblances in many speci�c

cases, but we lack a general account of resemblance that is required. Usually
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the resemblance criterion seems to be applied in claims to the e�ect that a cer-
tain formula expresses a property in a natural way. In what follows, canonical
provability predicates, for instance, will be assumed to resemble in their ‘salient’
features the de�nition of the informal provability predicate in metamathemat-
ics. In what follows all three criteria mentioned will be applied and discussed.

2.3. �ird Source of Intensionality: Self-reference.

As laid out above, the construction of a sentence that ascribes to itself a cer-
tain property P, usually proceeds in three stages: In the �rst step, a coding of
the syntactic objects is �xed. �en a formula is picked that expresses the prop-
erty P relative to the chosen coding. In the third and �nal stage, a sentence is
constructed that, in common parlance, ascribes to itself the property P via the
formula φ(x). To this end, usually Gödel’s diagonal construction or a variant
thereof is employed.
In this paper we assume that there are some paradigmatic cases of self-refer-

ence, usually established via Gödel’s diagonal method using. But even for the
canonical diagonalization method it is not accepted without exceptions that it
establishes self-reference in the intended way. For instance, Heck (2007) and
Milne (2007) have raised some sceptical worries. We share some of the doubts
and do not assume that all so-called Gödel sentences found in textbooks say of
themselves that they are not provable. We shall also look at sentences that have
not been obtained via Gödel’s classical construction, but may be thought to be
self-referential nevertheless. In Appendix A a coding is sketched in which no
third stage is needed, because diagonalization is already built into the coding.
In his initial answer to Henkin’s problem, Kreisel presented a sentence that may
be thought to be self-referential but that hasn’t been obtained from the formula
φ(x) expressing provability in the usual way.
If a sentence γ says about itself that it has property P and P is expressed by the

formula φ(x), then γmust be a �xed point of φ(x), that is γmust be equivalent
to φ(⌜γ⌝) (in a sense to be speci�ed). In other words, the �xed-point property
is a necessary condition for self-reference.
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If a result under consideration doesn’t depend on the choice of the �xed point,
we call it extensional (with respect to the third source of intensionality); if it
does depend on the choice of the �xed point, it is intensional.8

Now one may wonder to what extent the �xed-point requirement narrows
the set of sentences that may be said to assign to themselves the property P.
�at is, whether for a given formula there are many �xed points, given a �xed
Gödel numbering.
It’s not hard to see that, for any given formula φ(x), there are always many

�xed points to choose from. �e set of formulae that are �xed points according
to the standardmodel is not elementarily de�nable; and the set of provable �xed
points is only recursively enumerable but not decidable.

observation 1. Let a formula φ(x) be given. �en there is no formula χ(x)
such that for all formulae ψ the following is true in the standard model:

χ(⌜ψ⌝) ↔ (φ(⌜ψ⌝) ↔ ψ) (1)

�eproof is a generalization of Tarski’s theoremon the unde�nability of truth.
Truth is a predicate with a very simple set of �xed points, because all sentences
are �xed points. Hence truth cannot be expressed by a formula of Σ according
to the observation.

Proof. Assume there is such a formula χ(x). �en, by propositional logic, (1)
would imply

(χ(⌜ψ⌝) ↔ φ(⌜ψ⌝)) ↔ ψ

and therefore χ(x) ↔ φ(x) would be a truth predicate whose existence contra-
dicts Tarski’s theorem on the unde�nability of truth. ⊣

So the set of �xed points of any formula φ(x) cannot be arithmetically de�n-
able. Next we show that the set of sentences such that Σ ⊢ φ(⌜ζ ⌝) ↔ ζ for a
su�ciently strong system Σ cannot be recursive.

8Our notion of extensionality should be distinguished from other closely related notions of
extensionality, such as uniqueness of �xed points, and the following de�nition of exten-
sionality: If γ↔ γ′ is provable, then also φ(⌜γ⌝) ↔ φ(⌜γ′⌝) is provable.
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observation 2. Assume Σ extends Basic, as de�ned on p. 5. �e set of all
provable �xed points of any given formula φ(x), that is, the set of all sentences
ψ with Σ ⊢ φ(⌜ψ⌝) ↔ ψ is not recursive.

�e proof is reminiscent of Curry’s paradox and McGee’s (1992) trick, gives us
the somewhat stronger conclusion that the set of provable �xed points of φ is
complete recursively enumerable.

Proof. �ere is a primitive recursive function that gives applied to a formula ψ
a formula γψ with the following property:

Σ ⊢ γψ ↔ (φ(⌜γψ⌝) ↔ ψ)

By propositional logic this implies the following claim:

Σ ⊢ ψ ↔ (φ(⌜γψ⌝) ↔ γψ)

�us a sentence ψ is provable i� γψ is a provable �xed point. Hence, if the set of
provable �xed points of φ(x) were decidable, the set of Σ-provable sentences
would be decidable. ⊣

Of course, this leaves open the possibility that all provable �xed points of a
given formula are all provably equivalent in a certain theory. But it’s obvious
that for other formulae such as the partial truth predicate for Σ-sentences or
the Rosser provability predicate this is not the case.9

Hence any sentence that says about itself that it possesses the property ex-
pressed by φ(x) will be a �xed point of that formula; but in order to be truly
self-referential further conditions will have to be met. Such a condition was im-
plicitly used byHenkin andKreisel in an exchangewe are going to describe now.

¹

�is completes the description of the three stages in which, according to the
standard method, a sentence is obtained that ascribes a property to itself. None
of the three stages yields a unique output: �ere are many di�erent Gödel cod-
ings; given a coding, every property that can be expressed at all by some formula
9See pages 29 and 32 below.
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can be expressed by many di�erent formulae; and, given a coding and a prop-
erty expressed by a formula, di�erent �xed can be constructed such that their
�xed-point property is provable in the theory is question.
Di�erent choices of the coding, the formula and themethod of obtaining pre-

sumed self-reference can each yield sentences with di�erent properties. �ere-
fore the three stages very roughly correspond to three di�erent dimensions of
intensionality.
�e problems of intensionality in the �rst two dimensions are fairly well

studied. For example, Feferman (1960, p. 35) classi�ed the applications of the
method of arithmetization ‘as being extensional if essentially only numerically
correct de�nitions are involved, or intensional if the de�nitionsmust more fully
express the notions involved [. . . ]’. �is corresponds to our �rst two stages.
�emain point of our paper is to show that also self-reference has intensional

aspects. �is means that at least for certain natural questions, it does not only
matter whether a sentence is a �xed point of a formula expressing the property
in question, but also on whether the sentence says about itself (in a sense to be
discussed) that it has the property expressed by the formula.

3. Henkin’s problem and Kreisel’s answer

At least at one point in the development of metamathematics, a question essen-
tially involving the notion of self-reference initiated a development that led to a
fundamentally new and important result, namely Löb’s theorem. Ironically, the
solution of the problem, which was found only a�er some detours, implied that
the notion of self-reference is actually irrelevant to the problem. Nevertheless
something is to be learnt from following the dead ends that where reached be-
fore the problem was solved by Löb. So we will begin with the situation in the
early 1950s.
If the Gödel sentence is the sentence that states its own unprovability, it is

natural to consider the sentence that states its own provability and to investigate
whether it is independent like the Gödel sentence or provable or refutable.

�e problemwhether a sentence stating its own provability is provable or not
is intensional with respect to all three sources of intensionality, in particular,
also with respect to the third: To ask the question whether a sentence stating
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its own provability is provable or not, it does not su�ce to ask about the status
of a �xed-point of a formula expressing provability, that is, of a formula τ such
that τ ↔ Bew(⌜τ⌝) is provable. Clearly,  =  is a �xed point of Bew(x), if
Bew(x) weakly represents provability, because both =  and thus Bew(⌜= ⌝)
will be provable. But  =  doesn’t say of itself that it’s provable, unless a very
peculiar coding is used. �e question is about a sentence that says of itself that
it’s provable, not just about arbitrary �xed-points of the provability predicate.
�us the notion of self-reference is required to state the problem and cannot be
substituted with a question about the provability or refutability of �xed points
of the provability predicate.
Sentences stating their own provability are nowadays known as Henkin sen-

tences. Henkin (1952) himself did not pose his question directly in terms of
self-reference and used a di�erent formulation for ruling out ‘accidental’ �xed
points such as =:

If Σ is any standard formal system adequate for recursive number
theory, a formula (having a certain integer q as its Gödel number)
can be constructed which expresses the proposition that the for-
mula with Gödel number q is provable in Σ. Is this formula prov-
able or independent in Σ?

We think that Henkin’s formulation is an attempt to ask whether a formula stat-
ing its own provability is provable or not. Henkin avoided a direct appeal to
self-reference and did not ask whether a sentence stating its own provability
is provable or not; but his formulation of the question still leaves some space
for interpretation. Presumably, Henkin had Gödel’s construction in mind for
obtaining the said sentence, but he didn’t explicitly appeal to it.
Nowadays Löb’s theorem is seen bymost logicians – includingKreisel – as the

only pertinent answer toHenkin’s question. However, we think a second look at
Kreisel’s �rst attempt (1953) to answer Henkin’s question is worthwhile. It sheds
light on the question whether Henkin’s formulation is an adequate rendering of
the question whether a sentence stating its own provability is provable or inde-
pendent. In his paper Kreisel summarized his reply to Henkin in the following
way:
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We shall show below that the answer to Henkin’s question depends
on which formula is used to ‘express’ the notion of provability in Σ.

Kreisel proposed to understand ‘express’ in the sense of Kreisel’s Condition in
the sense of weak representability. Kreisel constructed two sentences that are
both supposed to satisfy Henkin’s condition; one of them is provable, the other
refutable:

kreisel’s observation. Let Σ be a consistent theory that extendsBasic.10

�en the following hold:

a) �ere is a formula BewI(x) and a term t such that the following three
conditions are satis�ed:

(i) BewI weakly represents provability in Σ.

(ii) Σ ⊢ t = ⌜BewI(t)⌝
(iii) Σ ⊢ BewI(t)

b) Similarly, there is a provability predicate BewII(x) and a term t such that

(i) BewII weakly represents provability in Σ.

(ii) Σ ⊢ t = ⌜BewII(t)⌝
(iii) Σ ⊢ ¬BewII(t)

�e examples employed by Kreisel in the proof are of some interest. In partic-
ular, the example for BewI(t) foreshadows Kreisel’s (1974) proof of Löb’s the-
orem, as was pointed out by Smoryński (1991). Henkin suggested simpler ex-
amples that are mentioned by Kreisel (1953) in footnotes. We will use Henkin’s
examples and refer the reader to Smoryński’s paper for an exposition of Kreisel’s
original examples.

Proof. We start with a proof for the second part (b). Fix some predicate Bew(x)
that weakly represents Σ-provability in Σ. In case Σ is Σ-sound, a standard
arithmetization of provability will do. In the unsound case, one uses the theo-
rem that any recursively enumerable set is weakly representable in a consistent
recursively enumerable extension of the Tarski–Mostowski–Robinson theory R.

10Kreisel asked that the theory be Σ-sound, but that demand is super�uous.

15



�is is a direct consequence of the Friedman–Goldfarb–Harrington�eorem.11

Using the canonical diagonal construction (or any other method), one obtains
a term t satisfying the following condition

Σ ⊢ t = ⌜t /= t ∧ Bew(t)⌝ (2)

and de�nes BewII(x) as
x /= t ∧ Bew(x)

Condition b(ii), that is, Σ ⊢ t = ⌜BewII(t)⌝ is then obviously satis�ed by the
choice (2) of t. Since Σ refutes t /= t ∧ Bew(t), item b(iii) is satis�ed as well.
It remains to verify b(i), which is the claim that BewII(x) weakly represents

Σ-provability. In other words we must establish the following equivalence for
all formulae φ:

Σ ⊢ φ i� Σ ⊢ BewII(⌜φ⌝) (3)

If φ is di�erent from t /= t ∧ Bew(t) this is obvious from the de�nition of
BewII(x), using the fact that Bew weakly represents provability in Σ. In the
other case the le�-hand side of the equivalence is refutable, and so is the right-
hand side by (2). �is concludes the proof of part (b) of Kreisel’s Observation.
We turn to case (a). If we assume that our theory is Σ-sound and su�ciently

strong (e.g. if it extends the arithmetical version of Buss’ theory S), then the
canonical provability predicate can be used as BewI(x) and t can be obtained in
any way, including the usual Gödel diagonal construction. Claim a(iii) follows
then by Löb’s theorem. (See Löb (1955) or, e.g. Boolos (1993).)
As Löb’s theorem wasn’t known, Henkin and Kreisel had to use a di�erent

construction.12 Henkin suggested the following construction. He picked a term
t such that

Σ ⊢ t = ⌜t= t ∨ Bew(t)⌝

and de�nes BewI(x) as
x= t ∨ Bew(x). ⊣

11See, for instance, Visser (2005) for a discussion.
12Note also that the Kreisel–Henkin construction works in some very weak cases where it is
not clear that we have Löb’s theorem.
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In the next section we will investigate whether Henkin’s question and Kreisel’s
examples can be seen as was has come to be called a Henkin sentence, that is, a
sentence that states its own provability.

4. �e Kreisel–Henkin Criterion for self-reference

Before considering the question whether Kreisel’s Observation has any bearing
on the question whether a sentence stating its own provability is provable or
not, we investigate whether Kreisel answered Henkin’s question, which is not
explicitly formulated as a question about a sentencestating its own provability.
We think that, if BewI(x) expresses provability, then BewI(t) is a formula

with Gödel number q ‘which expresses the proposition that the formula with
Gödel number q is provable in Σ’. An analogous remark applies to BewII(t) as
well. Consequently Kreisel would have answered Henkin’s question.
Henkin himself, however, didn’t accept Kreisel’s answer. In his review (1954)

of Kreisel’s (1953) answer, he rejected Kreisel’s assumption that a formula sat-
isfying Kreisel’s Condition, that is, a formula weakly representing provability
always expresses provability, claiming that ‘it seems fair to say that in one sense,
at least, neither formula [that is, neither BewI(a) nor BewII(a)] expresses the
propositional function a is provable.’ �us Henkin’s dismissal of Kreisel’s an-
swer is based on his rejection of what we have called Kreisel’s Condition for
provability; Henkin doesn’t believe that any formula weakly representing prov-
ability expresses provability.
Henkin’s rejection of Kreisel’s and his own examples of contrived provability

predicates is well motivated and the focus on canonical provability predicates
leads on to Löb’s theorem. �is part of the story is well known.
But we would like to ask whether Kreisel’s Observation can shed any light on

the possible properties of Henkin sentences, if Kreisel’s Condition is accepted.
�at is, we wonder whether, if BewI(x) and BewII(x) are assumed to express
provability, BewI(t) and BewII(t) areHenkin sentences, that is, sentences stat-
ing there own provability.
It is not obvious that BewI(t) and BewII(t) say of themselves that they are

provable, even if Kreisel Condition is accepted. Kreisel had not only used non-
canonical provability predicates; he had also employed a non-canonical way of
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obtaining the �xed points of his provability predicates.13 In particular, he had
not applied Gödel’s construction to his provability predicates to obtain their
�xed points. If he had applied the usual Gödel construction to BewII(x), he
would have obtained a provable sentence rather than the desired refutable sen-
tence BewII(t). �is is the content of our Observation 3 below.
When Henkin posed his question, he presumably had the canonical prov-

ability predicate and the standard Gödel �xed point construction in mind. �e
evidence for this conjecture is that he used the singular ‘this formula’ when he
asked whether the formula is provable; he didn’t ask whether any formula sat-
isfying the description is provable. �at Kreisel hadn’t used the canonical prov-
ability predicate was su�cient for rejecting his answer as besides the point. But
it is surprising that neither Henkin nor Kreisel really remarked on the way the
�xed points of the provability predicates are obtained. Both presumably tried to
avoid murky formulations such as ‘states its own provability’ on the one hand;
on the other hand, they didn’t intend to distract from the intuitive appeal of the
question by referring to a �xed point that is obtained by the method used by
Gödel, because Gödel’s construction is a trick a�er all, a means to an end, and
the method gains it’s intuitive appeal by the comparison with self-referential
constructions in natural language.
Whatever the motives were, Henkin and Kreisel merely required that the

�xed point is of the form φ(t) where φ(x) is a formula expressing provability
and t=⌜φ(t)⌝ is provable.14
We are interested in the question whether Henkin’s way of stating the ques-

tion, if it is read in Kreisel’s way, is really a question about a sentence stating its
own provability. If the question is answered to the a�rmative, thenHenkin and
Kreisel just used a mathematically precise rendering of self-reference. �is way
of turning the notion of self-reference into a mathematically precise notion can
then be captured in the following criterion for self-reference:

13Kreisel seems to hint at this feature of his construction at the end of his paper.
14Contra Smoryński (1991, p. 114) we don’t think it was Kreisel who ‘relaxed the stricture that φ
be constructed to express its own provability’, as Smoryński puts it, but that this relaxation
can already be found in Henkin’s question in a nutshell. It is doubtful, however, whether
Henkin intended this relaxation, as we remarked above.
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kreisel–henkin criterion for self-reference. Let a formula
φ(x) expressing a certain property P in Σ and a closed term t be given. �en
the formula φ(t) says of itself that it has property P i� t has (the code of) φ(t)
as its value.

We would like to use the names of Kreisel and Henkin for this criterion, even
though neither Henkin nor Kreisel explicitly put forward such a criterion for
self-reference, self-predication and ‘saying about itself’ in exactly this way.
As we have formulated it, the criterion applies only to formulae of the form

φ(t), where φ(x) expresses the property in question. Since the criterion doesn’t
state anything about sentences of a di�erent form, the criterion canmerely func-
tion as a su�cient criterion.
If a sentence is of the form φ(t) and t=⌜φ(t)⌝ obtains, then the sentence says

of itself that it has property P. �erefore, if t is obtained in the usual way by the
Gödel construction, then φ(t) says of itself that it has property P.
�e phrase ‘t that has (the code of) φ(t) as its value’ doesn’t stipulate whether

t = ⌜φ(t)⌝ must be provable in Σ or merely only true (in the standard model).
But since equations of this kind are decidable in the theories under consider-
ation, we don’t have to commit ourselves to any particular stance on this. In
other languages one will have to make a decision.
�e observation that for any formula φ(x) there is a a term t such that t =

⌜φ(t)⌝ is known as the StrongDiagonal Lemma. We don’t knowwho formulated
it �rst. Heck (2007) surmises that it made its �rst appearance in Jeroslow (1973),
but it is su�ciently clear from Kreisel’s (1953) answer to Henkin’s problem that
Kreisel was fully aware of it as he uses it in his construction.
It would have been more precise to call the Kreisel–Henkin Criterion a cri-

terion for direct self-reference. If φ(x) is a (partial) truth predicate, a sentence
φ(t) says that the value of the term t is a true sentence ψ(s) and then the value
of s may be φ(t) again. In at least some cases of this kind, one want to say that
φ(t) indirectly ascribes to itself the property expressed byψ(x). We do not want
to go further into the intricacies of indirect self-reference and explicitly state
that here in this paper self-reference is always understood direct self-reference.
Similar remarks apply to related notions.
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In semantic approaches to the semantic paradoxes, authors o�en don’t spec-
ify a deductive system and work with languages containing special constants
and with a designated model. To mimic the e�ect of the diagonal lemma, for
each formula φ(x) a special constant c is added and interpreted in such a way
that it has φ(c) (or its code) as its value in the designated model. �is semantic
approach also yields self-reference in the sense of the Kreisel–Henkin Criterion
if the term value in the criterion is understood in a semantic way as the value
of c in the model.
If a formula φ(t) satisfying the Kreisel–Henkin Criterion is obtained via

the canonical diagonal lemma, the term t will be complex, in contrast to the
constants as on the construction just outlined.15 Under most textbook coding
schemata the function symbols for zero, successor, addition and multiplication
will not su�ce to construct the term t. However, the term t can be a mere nu-
meral if the coding is chosen in an appropriate way. Under the coding that is
constructed in Appendix A, for every φ(x) there is an n such that φ(n) has n as
its code. Moreover, the elementary properties of the coding can be veri�ed in
a su�ciently strong theory Σ (which is not possible on the semantic approach
involving the constants c).
For any given property expressed by a formula φ(x) there are in�nitelymany

sentences saying about themselves that they have the property, at least accord-
ing to the Kreisel–Henkin Criterion. For instance, there are trivial and not very
exciting variations on Gödel’s diagonal construction. Rather than formally sub-
stituting numerals S . . . S, terms of the form  + . . . +  can be substituted.
More interestingly, there can be sentences φ(t) and φ(t) with highly di�er-

ent properties that both ascribe to themselves the property expressed by φ(x)
according to the Kreisel–Henkin Criterion. In fact, the formula BewII(x) from
Kreisel’s Observation can be used as an example.

15By the canonical diagonal lemmawemean the straightforward construction of such a term t,
based on Gödel’s idea. We do not want to imply that the construction of a Gödel sentence
proceeds in this way in most textbooks. In fact, we surmise that most textbooks and Gödel
himself prove the �rst incompleteness theorem with out such a term in the language.
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observation 3. Suppose Σ is a consistent theory of arithmetic that extends
both Basic and S – in other words Σ should be strong enough to verify Löb’s
�eorem.16 �ere is a formula BewII(x) weakly representing provability in Σ
and terms t and t such that both sentences BewII(t) and BewII(t) satisfy the
Kreisel–HenkinCriterion andBewII(t) is provablewhile BewII(t) is refutable.17

Proof. �e formula BewII(x) is the formula from Kreisel’s Observation built
from the canonical provability predicate Bew(x) in case Σ is Σ-sound or a suit-
able other predicate satisfying the Kreisel Condition, that is, weak representabil-
ity otherwise. �e refutability of BewII(t) is established in the proof of Kreisel’s
Observation.
�e term t can be chosen by Gödel’s usual diagonal construction. With this

choice of t, t /= t is provable under reasonable assumptions about the coding.
Moreover, if t = ⌜φ⌝, we have Σ ⊢ φ ↔ Bew(⌜φ⌝). So, Σ ⊢ φ follows by Löb’s
theorem.18 ⊣

�e formula BewII(x) expresses the provability according to Kreisel’s Condi-
tion; and both sentences BewI(t) and BewII(t) say of themselves that they are
provable. �erefore Kreisel’s assessment that ‘the answer to Henkin’s question
depends on which formula is used to ‘express’ the notion of provability in Σ’
is at least misleading. By the standards Kreisel employed back then, it also de-
pends on how the sentence expressing its own provability is constructed from
a given formula expressing provability. �erefore the answer to Henkin’s ques-
tion is subject to intensionality phenomena not only with respect to the second
source of intensionality that concerns the expression of properties but also to
the third source that concerns self-reference, at least if Kreisel’s Condition and
the Kreisel–Henkin Criterion are adopted.
Generally, theKreisel–HenkinCriterion for self-reference can’t narrowdown

the set of all self-referential sentences such that questions about sentences as-

16�e most elegant way to formulate such theories is to demand that we add the recursion
equations for the p-time computable functions to Basic, using the function symbols that
are already present.

17We will strengthen this result in the next section.
18For Löb’s theorem, see Löb (1955) or, e.g. Boolos (1993).
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cribing to themselves a property via a �xed coding and a �xed formula express-
ing the property yield a unique answer. �ere are many di�erent ways to ob-
tain self-referential statements in the sense of the Kreisel–Henkin Criterion.
We shall discuss more examples of intensionality arising from the third source
soon.
We don’t take a de�nite stance whether the Kreisel–Henkin Criterion is ad-

equate. Many authors seem at least to sympathize with a criterion similar to
it.19

Examples such as the sentences BewI(t) and BewII(t), however, cast some
doubt on the adequacy of the Kreisel–HenkinCriterion. Both sentences are self-
referential in the weak sense that they ascribe certain properties to themselves.
BewI(t), for instance, ascribes to itself the property expressed by the formula
x=x∨Bew(x), but, at least to us, it is not so obvious that it also states about itself
that it has the property expressed by the predicate x = t ∨ Bew(x). However,
according to the Kreisel–Henkin Criterion, BewI(t) says of itself that it has
both properties.
As in the case of the second source of intentionality, that is the expression

of a property by a formula, it is hard to specify general criteria, but one can
retreat to a default position by invoking a ‘canonical’ construction. In the case
of self-reference, the canonical construction is Gödel’s diagonal method and,
at least for the purposes of this paper, we assume that the canonical method
yields a paradigmatic case of self-reference. Before dipping into a more general
discussion of the Kreisel–HenkinCriterion and possible improvements of it, we
ask whether Kreisel’s use of a non-canonical method for obtaining a �xed-point
of his provability predicates was indispensable.

19For instance, Heck (2007, p. 19) writes: ‘So suppose thatO [an interpreted language with the
truth predicate] contains a truly self-referential liar sentence, that is, thatO contains a term
λ that denotes the sentence ⌜¬Tλ⌝.’ In the discussion on whether Yablo’s paradox is self-
referential, the availability of criteria for self-reference is crucial. However, a general crite-
rion is hardly ever explicitly discussed. However, a number of authors, e.g. (Priest, 1997,
p. 236), seem to rely implicitly on criteria akin to the Kreisel–Henkin Criterion. (Milne,
2007, p. 210) is more cautious.
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5. Refutable and independent Henkin sentences obtained by canonical
diagonalization

If we are interested in Henkin sentences that do not only satisfy the Kreisel–
Henkin Criterion for self-reference but that are – unlike BewII(t) – obtained
from applying the usual Gödel construction to a chosen provability predicate,
then Kreisel’s Observation doesn’t provide an answer. Kreisel’s construction,
however, can be �nessed to produce such a sentence. �e provability predicates
from which this sentences is obtained by the canonical diagonal construction
that expresses again provability in Σ by Kreisel’s Condition.

theorem 4. �ere is a provability predicate Bew(x) weakly representing
provability in Σ such that its �xed point obtained by the usual diagonal con-
struction is refutable.

Lavinia Picollo used a variation of the construction to show that there are also
independent Henkin sentences of this kind and suggested to us the following
observation:

theorem 5. �ere is a provability predicate Bew(x) weakly representing
provability in Σ such that its �xed point obtained by the usual diagonal con-
struction is neither provable nor refutable.

We give a uni�ed treatment of both theorems. We assume that Σ is a recursively
enumerable theory extending Basic.

definition 6. A diagonal operator d (for Σ) is a primitive recursive function
that returns, when applied to a formula of the language of Σ with a designated
variable x free20, a formula with the same variables but not x free that satis�es
the following condition:

Σ ⊢ d(φ(x)) ↔ φ(⌜d(φ(x))⌝) (4)

definition 7. A diagonal operator d has the Kreisel–Henkin property if
d(φ(x)) is of the form φ(t), where t is a closed term and t=⌜d(φ(x))⌝ is true.

20We allow that x occurs zero times.
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It is easy to see that the Kreisel–Henkin property implies satisfaction of Equa-
tion 4. �e canonical diagonal operator is the function that is obtained ‘in the
usual way’, as found, for instance, in Smoryński’s (1985). Clearly, this operator
has the Kreisel–Henkin property.
For the following de�nitions we �x some primitive recursive diagonal opera-

tor d; the canonical one will su�ce. �e diagonal operator d is represented in
Σ by d. , so for any formula ψ we have:

Σ ⊢ d. (⌜ψ⌝)=⌜d(ψ)⌝. (5)

Let γ be any sentence of the language. Given a formula φ(x) (e.g. the canonical
provability predicate) and using some diagonalization function (not necessarily
d), we obtain a sentences φγ(x) satisfying the following condition:

Σ ⊢ φγ(x) ↔ (x /=d. (⌜φγ(x)⌝) ∧ φ(x)) ∨ (x=d. (⌜φγ(x)⌝) ∧ γ) (6)

We note that if γ and φ(x) are Σ, then so is φγ(x), if φγ(x) has been obtained
by applying the canonical diagonal operator.
As in the case of Henkin’s and Kreisel’s formulae, it is possible to show that,

according to Kreisel’s Condition, that is, weak representability, both φγ(x) and
φ(x) express provability, if φ(x) is a provability predicate. In the general case
we only have this for all cases except for the crucial one:

lemma 8. Σ ⊢ x /= d. (⌜φγ(x)⌝) → (φγ(x) ↔ φ(x))

For the crucial case we can prove the following claim:

lemma 9. Σ ⊢ d(φγ(x)) ↔ γ.

Proof. We have:

Σ ⊢ d(φγ(x)) ↔ φγ(⌜d(φγ(x))⌝) diagonal property (4)
↔ (⌜d(φγ(x))⌝ /=d. (⌜φγ(x)⌝) ∧ φ(⌜d(φγ(x))⌝)) ∨

(⌜d(φγ(x))⌝=d. (⌜φγ(x)⌝) ∧ γ) def. of φγ(x)
↔ γ ⊣

As in the proof of Kreisel’s Observation on p. 15, �x some formula Bew(x)
weakly representing Σ-provability in Σ. We verify that the predicate Bewγ(x)
satis�es Kreisel’s Condition.
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lemma 10. Bewγ(x) expresses Σ-provability by Kreisel’s Condition, that is, it
weakly represents provability in Σ.

Proof. We need to show the equivalence Σ ⊢ ψ i� Σ ⊢ Bewγ(⌜ψ⌝). If ψ is dif-
ferent from d(Bewγ(x)), the claim follows from Lemma 8; if ψ is d(Bewγ(x))
the claim follows from the �xed point property of d(Bewγ(x)), that is, (4) in
De�nition 6. ⊣

Note that Lemma 10 really says that the Kreisel property is preserved by the (⋅)γ

construction. We summarize our insights in a theorem.

theorem 11. Suppose Σ is an arithmetical theory that contains Basic. Let d
be a diagonal operator and let γ be a sentence of the language. �en there is a
predicate Bewγ which satis�es the Kreisel property for Σ such that

Σ ⊢ d(Bewγ(x)) ↔ γ.

�eorem 4 is then proved by choosing the canonical diagonal operator as d,
Bew(x) as φ(x) and γ as = . �eorem 5 is proved by choosing the canonical
diagonal operator as d, Bew(x) as φ(x) and γ as as an independent sentence.
�is concludes the proofs of �eorems 4 and 5.
We can use the ideas above to strengthen Observation 3. Let’s say that a se-

quence of diagonal operators (dn)n∈ω is primitive recursive if there is a binary
primitive recursive function d such that d(n, x) = dn(x), for all n, x in ω. We
say that (dn)n∈ω is semi-injective if, whenever x occurs in φ and n ≠ m, we have
dn(φ(x)) ≠ dm(φ(x)). Finally we say that (dn)n∈ω is expansive if, whenever x
occurs in φ, the Gödel number of dn(φ) is strictly larger than n.
It is easy to construct a primitive recursive, semi-injective and expansive se-

quence (dn)n∈ω where each dn has the Kreisel–Henkin property. For example,
we can take the ‘internal variable’ of the usual �xed point construction vn, where
the Gödel number of vn exceeds n. We should keep the vn distinct from other
variables occurring in φ. Clearly all such details can be taken care of. Alter-
natively we can add super�uous material to the de�nition of the substitution
function.
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Let a primitive recursive, semi-injective and expansive sequence (dn)n∈ω be
given. �e sequence is represented in Σ by d. , so for any formula ψ we have

Σ ⊢ d. (n, ⌜ψ⌝)=⌜dn(ψ)⌝. (7)

Let γ be a formula containing x free. Given a formula φ(x) (e.g. the canonical
provability predicate) and using some diagonalization function (not necessarily
d), we obtain a sentences φγ(x) satisfying the following condition:

Σ ⊢ φγ(x) ↔ ∀y < x (x /=d. (y, ⌜φγ(x)⌝) ∧ φ(x)) ∨
∃y < x (x=d. (y, ⌜φγ(x)⌝) ∧ γ(y))

We note that if γ is Σ, then so is φγ(x), if φγ(x) has been obtained by the
canonical diagonal method.

lemma 12. Σ ⊢ ∀y < n n /= d. (y, ⌜φγ(x)⌝) → (φγ(n) ↔ φ(n))

lemma 13. Σ ⊢ dn(φγ(x)) ↔ γ(n).

Proof. We reason in Σ as follows:

dn(φγ(x)) ↔ φγ(⌜dn(φγ(x))⌝)
↔ ∀y<⌜dn(φγ(x))⌝(⌜dn(φγ(x))⌝ /=d. (y, ⌜φγ(x)⌝) ∧ φ(⌜dn(φγ(x))⌝)) ∨

∃y<⌜dn(φγ(x))⌝(⌜dn(φγ(x))⌝=d. (y, ⌜φγ(x)⌝) ∧ γ(y))
↔ γ(n) ⊣

�e next lemma shows that Bewγ(x) is a provability predicate by Kreisel’s stan-
dards.

lemma 14. Bewγ(x) expresses provability in Σ according to Kreisel’s Condi-
tion; that is, the following holds for every ψ:

Σ ⊢ ψ i� Σ ⊢ Bewγ(⌜ψ⌝).

Proof. If ψ is di�erent from d(n, Bewγ(x)), for all n, the claim follows from
Lemma 12; if ψ is d(n, Bewγ(x)), for some n, the claim follows from the �xed
point property of d(n, Bewγ(x)). ⊣
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We summarize our result in a theorem.

theorem 15. Suppose Σ extends Basic. Let (dn)n∈ω be a primitive recursive,
semi-injective, expansive sequence of diagonal operators. Let γ(x) be a formula
of the language with only x free. �en there is a predicate Bewγ that has the
Kreisel property such that, for each n, Σ ⊢ dn(Bewγ(x)) ↔ γ(n).

In Observation 3 it was shown that by applying to di�erent diagonal operators
with the Kreisel–Henkin property to a certain provability predicate, a provable
and a refutable Henkin sentence can be obtained. �e theorem above will give
us in�nitely many diagonal operators that yield in�nitely many nonequivalent
Henkin sentences, if Kreisel’s Condition and the Kreisel–Henkin Criterion are
accepted.

¹

It is well knownhow the story continued a�er he exchange betweenHenkin and
Kreisel: Löb (1955) proved his celebrated theorem, which we state here some-
what loosely in the following form:

theorem 16. Assume that Σ is is su�ciently strong and Bew(x) is the canon-
ical provability predicate.21 �en the following obtains for all sentences φ:

Σ ⊢ Bew(⌜φ⌝) → φ i� Σ ⊢ φ

Note that this theorem is independent of soundness conditions. Our theory Σ
is even allowed to be inconsistent.
It follows that any �xed point of the canonical provability predicate is prov-

able, whether it is self-referential or not. Hence all these �xed points are equiv-
alent.
Of course, it is not so easy to say in general for arbitrary formal systems what

their ‘natural’ provability predicates are but once the criterion for the expression
of provability is strengthened so that any formula meeting the strengthened
criterion will satisfy the Löb derivability conditions, then a criterion for self-
reference is no longer needed, because Löb’s theorem will strike irrespective of

21In our context a theory is su�ciently strong if it extends Basic and an appropriate variant of
S.
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whether a �xed point of the provability predicate says about itself that it is prov-
able or not. Hence a criterion for self-reference or sieving out the interesting
�xed points of the provability predicate is not needed for solving Henkin’s prob-
lem, as long as the provability predicate satis�es the Löb derivability conditions,
which only deviant provability predicates such as Bewγ(x) will fail.

6. Further examples for the intensionality of self-reference

Löb’s theorem has drawn away attention from the problem of intensionality of
self-reference: a criterion such as the Kreisel–Henkin Criterion for self-refer-
ence isn’t required to answer Henkin’s question for the canonical provability
predicate because – under reasonable assumptions on the theory – all �xed
points of the standard provability predicate are provable and thus equivalent.
Löb’s theorem, which eliminates all intensionality from self-reference, is spe-

ci�c to the canonical provability predicate. For other formulaewe cannot expect
something analogous. As we have seen, non-canonical provability predicates
like BewII(x) are susceptible to intensionality phenomena and �xed points can
vary in their properties, even if they satis�es the Kreisel–Henkin Criterion for
self-reference. We shall now look at further formulae that lend themselves to
questions similar to Henkin’s question about provability. First we look at Rosser
provability and then at partial truth predicates.

6.1. On Rosser provability

�e Rosser provability predicate is de�ned as follows.

BewR(x) ∶= ∃y (B(y, x) ∧ ∀z < y¬B(z,¬. x))

Here B(y, x) strongly represents the relation that y is a proof of x and ¬. rep-
resents that function that gives, when applied to a sentence, its negation. For
the sake of de�niteness, let’s say that we employ the canonical representations.
Gödel �xed points of ¬BewR(x) are Π Rosser sentences. Jeroslow (1973) �xed
points of BewR(¬. x) are (variants of) Σ-Rosser sentences. Henkin’s problem
for Rosser provability becomes:
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Is the sentence that says about itself that it is Rosser provable, refutable,
or independent?

In this case, onewill have to exploit the self-referentiality of the sentence. Unlike
in the case of standard provability, the �xed point property does not su�ce to
show that the Henkin sentence is provable or refutable or independent. �is
follows from the long-known observation that the Rosser provability predicate
has non-equivalent �xed points.

observation 17. Let Σ be consistent and let it contain Basic plus the axioms
stating that< is a linear ordering. �e set of �xed points of theRosser provability
predicate for Σ contains all Σ-provable and Σ-refutable formulae.

Proof. Assume there is a Σ-proof n of ψ. �en, Σ ⊢ B(n, ⌜ψ⌝) holds. Since Σ
is assumed to be consistent, there is, a fortiori, no proof smaller than n that is
a proof of ¬ψ, so (†) ∀z < n¬B(z,¬. ⌜ψ⌝) is true as well. �e sentence (†) is ∆
and thus provable. So, we get:

Σ ⊢ B(n, ⌜ψ⌝) ∧ ∀z < n¬B(z,¬. ⌜ψ⌝)

By existential weakening, Σ ⊢ BewR(⌜ψ⌝) follows. So, Σ ⊢ ψ ∧BewR(⌜ψ⌝), and
thus, as desired, Σ ⊢ ψ ↔ BewR(⌜ψ⌝).

Now assume Σ ⊢ ¬ψ and let n be a proof of ¬ψ. We may conclude that
Σ ⊢ B(n,¬. ⌜ψ⌝). Since Σ is consistent, we have, for all k, Σ ⊢ ¬B(k, ⌜ψ⌝).
We reason in Σ. Suppose BewR(⌜ψ⌝). Let p witness BewR(⌜ψ⌝), so we have

(‡) B(p, ⌜ψ⌝) ∧ ∀z < p¬B(z,¬. ⌜ψ⌝).

Since, < is linear, we may conclude that p ≤ n. But then, by the R-axioms, we
�nd ⋁k≤n p = k. Let p = k. �en, by (‡), B(k, ⌜ψ⌝). Quod non, since we have
¬B(k, ⌜ψ⌝). So, we may conclude ¬BewR(⌜ψ⌝).
We return to the real world. We have found that Σ ⊢ ¬ψ ∧ ¬BewR(⌜ψ⌝).

Hence, as desired, Σ ⊢ ψ ↔ BewR(⌜ψ⌝). ⊣

So = as well as  /= are �xed points.

29



question 18. What is the status of the �xed point of BewR(x) that is obtained
by the Gödel construction? Does BewR(x) have �xed points that are indepen-
dent?

Fixed points of¬BewR(x) and BewR¬. x are respectively the Π Rosser sentence
and the Σ Rosser sentence (in the last case modulo a small detail). For the
treatment of the (non)uniqueness of the Rosser sentences, see the classical pa-
per Guaspari and Solovay (1979) (and von Bülow 2008) and, for a di�erent ap-
proach, Voorbraak (1989).
For more examples of non-equivalent �xed points connected to alternative

provability predicates, the reader is referred to Visser (1989) and Shavrukov
(1994).

6.2. Partial truth predicates

Sentences stating of themselves that they are provable are Henkin sentences;
sentences stating of themselves that they are true are truth tellers. Any formula
deserving the label of a truth predicate will have many non-equivalent �xed
points. A formula φ(x) for which all sentences are �xed points would be a
total truth predicate, but such a predicate cannot exist in a consistent system by
Tarski’s theorem on the unde�nability of truth. However, there are partial truth
predicates for classes of sentences with limited quanti�er complexity.
To dot our i’s and to cross our t’s, we need to pay attention a detail concern-

ing the de�nition of Σn and Πn. In the most narrow one, e.g. Σn-formulae �rst
have a block of unbounded existential quanti�ers – or even just one existen-
tial quanti�ers — and then a ∆-formula. We could liberalize this de�nition
in various ways allowing, say, closure under conjunction and disjunction and
allowing negation of Π formulae to be Σ-formulae and vice versa. We could
even allow closure under bounded quanti�cation; however note that this last
move has costs: we need collection principles to prove the equivalence to def-
initions of the more narrow kind and to make truth predicates for formulae
satisfying the liberal de�nition work. For our present treatment, we work with
the narrow de�nition.
We consider partial truth predicates TrΣn(x) and TrΠn(x) for Σn- and Πn-

sentences de�ned in a similar way as the truth predicates in the textbooks by
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Hájek andPudlák (1993) orKaye (1991). �ere is some extra detail in developing
the partial truth predicate since we have function symbols for all primitive re-
cursive functions in our language. However since we work in PA these details
are easy. We could for example �rst eliminate the primitive recursive terms
from the given sentence and then apply the truth predicate for formulae only
involving successor, plus and times. �e truth predicates TrΣn(x) for n > 
and TrΠn(x) for n ≥  are no longer predicates with the Kreisel property, that is,
they cannot weakly represent the set of all Σn- and Πn-truths. So the question
arises in which sense they are true truth-predicates.
Usually logicians resort to the meaning postulate approach, as mentioned

on p. 8, and o�en call a formula σn a Σn-truth predicate if and only if PA ⊢
σn(⌜φ⌝) ↔ φ holds for all Σn-sentences φ. Πn-truth predicates are de�ned anal-
ogously.22 We will follow this convention, but by calling a formula a Σn-truth
predicate we don’t intend to commit ourselves to the claim that it expresses the
property of Σn-truth.
For the moment being, however, assume that σn(x) is a Σn-truth predicate

that expresses truth for Σn-sentences. Moreover we assume that σn(x) is itself
Σn. �en one can ask whether the sentence that says of itself that it is Σn-true
is provable, refutable or independent. We call such a sentence a Σn-truth teller.
Since σn(x) is a Σn-truth predicate, every Σn-sentence is a �xed point of

σn(x). So clearly there are provable and refutable �xed points and most �xed
points don’t say of themselves that they are Σn-true. However, if the canoni-
cal diagonal operator d is applied to σn(x) we obtain a Σn-sentence that is a
Σn-truth teller. Of course applying the canonical diagonal operator to ¬σn(x)
doesn’t yield a liar sentence, because d(σn(x) is Πn but not Σn. Similar remarks
apply to Πn-truth tellers.
Truth tellers are of course similar to Henkin sentences, but their status is sub-

jectmore to intensionality phenomena thanHenkin sentences. �e �xed points
of canonical provability predicates or just those satisfying Löb’s derivability con-
ditions as meaning postulates are all equivalent by Löb’s theorem, while the
�xed points of the canonical partial truth predicates TrΣn(x) and TrΠn(x) are
22In addition to the Tarski equivalences the partial truth and satisfaction predicates can be
required to satisfy the compositional axioms for truth for all sentences of the relevant class
of sentences.
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not. We will show that the status of truth teller sentences is also more sensitive
to the coding schema.
Before we turn to the canonical partial truth predicates and truth tellers ob-

tained by the canonical diagonal operators, we look at the special case of Σ-
truth, because in this case we still have formulae that express Σ-truth by the
Kreisel Condition, that is, formulae weakly representing Σ-truth.

6.3. On Σ-truth

For Σ-sentences truth and provability in su�ciently strong arithmetical systems
are coextensive properties. But we will show that applying the canonical diago-
nal operator to BewIΣ(x) and TrΣ(x) yields a PA-provable and a PA-refutable
sentence.
To this end we consider the pair of theories IΣ and PA. We stipulate that

in our versions of IΣ and PA we have the recursion equations for all primitive
recursive functions.
Let BewIΣ(x) be a predicate naturally representing provability in IΣ. �en

BewIΣ(x) is a truth predicate in PA for Σ-sentences in the following sense:

theorem 19. PA ⊢ BewIΣ(⌜σ⌝) ↔ σ for all Σ-formulae σ .

Proof. �e le�–to–right direction PA ⊢ BewIΣ(⌜σ⌝) → σ , that is, local re�ec-
tion, is well-known and can be obtained by formalising the cut elimination theo-
rem for IΣ inPA and proving re�ection in the usual way outlined in e.g. Kreisel
and Lévy (1968). See also Ono (1987). �e right–to–le� direction is formalised
Σ-completeness. ⊣

For the le�–to–right direction it is essential to work in a system that exceeds the
strength of the system encoded in the provability predicate. �is is not needed
for the converse direction. Hence BewIΣ(x) is a truth predicate for the set of
Σ-sentences in PA but not in IΣ.
�e sentences  =  and  =  are �xed points of BewIΣ(x) in PA. And thus

�xed points of BewIΣ(x) can be refutable or provable in PA. If we consider the
predicate BewIΣ(x) over IΣ the situation is dramatically di�erent. We have:

theorem 20. Let σ be a Σ-sentence. �en the following are equivalent:
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(i) σ is true.

(ii) IΣ ⊢ σ .

(iii) PA ⊢ σ .

(iv) IΣ ⊢ BewIΣ(⌜σ⌝) ↔ σ

�eeasy proof uses Löb’s theorem. �e�xed point d(BewIΣ(x)) obtained from
the predicate BewIΣ(x) by the canonical diagonalization procedure is Σ; thus
it is of the appropriate complexity and can be called a truth teller sentence. Since
the fact that canonical diagonalization works can be veri�ed in IΣ, we �nd, by
the above theorem, that PA ⊢ d(BewIΣ(x)). Hence there is a truth predicate
for the set of Σ-sentences with a provable �xed point obtained by standard
diagonalization and the existence of a provable Σ-truth teller is established.
In contrast, the �xed point obtained by canonical diagonalization of the usual

Σ-truth predicate is refutable as wewill show next.23Weassumewe use amono-
tone Gödel coding. By this we mean a coding where the code of a formula is
greater than the code of all terms contained in it and where the code of a se-
quence is greater than the code of any member of the sequence and so on.
�e truth predicate TrΣ(x) is of the form ∃y ϑ(y, x) for a formula ϑ(y, x)

not containing any unbounded quanti�er.24 In a nutshell, ∃y ϑ(y, x) says that
there is a sequence of triples of formulae, �nite variable assignments, and truth
values with certain properties. Suppose x is of the form ⌜∃⌝ ∗ v ∗ z, where ‘∗’
is our arithmetization of concatenation. In this case the pre�nal element of the
sequence y will be a triple (s, z, ), where s codes an assignment that assigns a
witness w of x to the variable v. An assignment is coded either as a �nite set
of pairs or as a sequence. In all cases we get: w < s < y. �us the following
assumption seems natural:

assumption 21. If ∃v σ(v) is a Σ-sentence, that is, if the formula σ(v) con-
tains no unbounded quanti�er and only the variable v is free in σ(v), then

23Added by Volker Halbach: Vann McGee and Albert Visser have independently communi-
cated this observation to me.

24Our truth predicate could be a truth predicate for Σ-sentences narrowly de�ned, that is,
of the form ∃x⃗ A, where A is ∆, or of a more liberal kind, where these formulae are e.g.
closed under conjunction and disjunction, etc.
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PA ⊢ ∀y (ϑ(y, ⌜∃v σ(v)⌝) → ∃v < y σ(v)) holds.

If we keep everything standard, then the Σ-truth teller becomes refutable in
PA. For the proof we use assumption above, the monotonicity of the coding
and that the �xed-point sentence satis�es the Kreisel–Henkin Criterion for self-
reference, that is, it is obtained by a diagonal operator with the Kreisel–Henkin
property in the sense of De�nition 7. Of course the Gödel’s canonical diagonal
operator has this property.

theorem 22. Suppose we employ a standard, monotone Gödel coding. If d is
a diagonal operator satisfying theKreisel–HenkinCriterion,PA ⊢ ¬ d(TrΣ(x))
obtains.

Proof. �e truth teller d(TrΣ(x)) is of the form ∃y ϑ(y, t)where t is a term de-
noting this very sentence and t = ⌜∃y ϑ(y, t)⌝ is true and, hence, PA-provable.
We reason in PA. Suppose ∃y ϑ(y, t). Let y be the smallest witness of

∃y ϑ(y, t). So (a) ϑ(y, t) and (b) ∀z < y ¬ ϑ(z, t). Since t = ⌜∃y ϑ(y, t)⌝,
our assumption above combined with (a) gives us ∃z < y ϑ(z, t). But this con-
tradicts (b). Hence our assumption that ∃y ϑ(y, t)must fail. ⊣

6.4. More truth tellers

In this sectionwe look at partial truth predicates for Σn-sentenceswith n >  and
Πn-sentenceswith n ≥  and truth-teller sentences constructed from these truth
predicates. To work comfortably with the wider class of truth predicates we
employPAwith the recursion equations for for all primitive recursive functions
here.
�eorem 22 can be generalized to Σn with n > .25 If the truth predicate

for Σn+ is constructed in a fairly straightforward way, it will be of the form
∃yϑ(y, x) where y ranges over a k-tuple typically having a witness as a compo-
nent; ymay range of over triples having a variable assignment, a formula and a
truth value as components. As in the case of Σ-truth, ϑ will then we will have
for Σn+ sentences ∃v σ(v) the following property analogous to Assumption 21:

25We thank Graham Leigh for pointing out to us that �eorem 22 generalizes to higher n for
many reasonable truth predicates.
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assumption 23. PA ⊢ ∀y (ϑ(y, ⌜∃v σ(v)⌝) → ∃v < y σ(v)) obtains for all
Σn-formulae σ(v) with at most v free.

�is assumption is more problematic for Σn with n >  than that for Σ. �ere
are reasonable Σn+-truth predicates that do not satisfy this condition aswe shall
show in a moment. However, if we make the same assumptions again, we can
generalize the above result, using the same proof idea:

theorem 24. Supposewe employ a standardmonotoneGödel coding. If d is a
diagonal operator satisfying theKreisel–HenkinCriterion,PA ⊢ ¬ d(TrΣn+(x))
obtains.

Before constructing a counterexample to Assumption 23, we look at the be-
haviour of the canonical Πn-truth tellers.
Let ∼φ be result of ‘pushing in’ the negation symbol in ¬φ as far as possible

and possibly deleting double occurrences of ¬, so that the negation symbol is
only in front of atomic formulae. If φ is in prenex normal form, then ∼φ is in
prenex normal form and logically equivalent to ¬φ. We write ∼. for the function
symbol naturally corresponding to ∼.
Given a truth predicate TrΣn(x) for Σn-sentences, we de�ne a corresponding

Πn-truth predicate TrΠn(x) as ∼TrΣn(∼. x).26 If TrΣn is in prenex form, then
TrΠn is also in prenex normal form. If TrΣn is a Σn-truth predicate in the sense
that PA ⊢ TrΣn(⌜φ⌝) ↔ φ holds for all Σn-sentences, then TrΠn is a Πn-truth
predicate as well. Under the Assumption 23 the Πn-truth tellers are provable.
�e proof is a variation of the proof of �eorems 22 and 24.

theorem 25. Suppose we employ a standard, monotone Gödel coding. If d is
a diagonal operator satisfying the Kreisel–Henkin Criterion and TrΠn is de�ned
as described above, PA ⊢ d(TrΠn(x)) obtains for all n > .

Proof. We reason in PA. Assume ¬d(TrΠn(x)), that is, ¬TrΠn(t) for some term
t with t = ⌜TrΠn(t)⌝. Using the de�nition of TrΠn we conclude ¬∼TrΣn(∼. t)
and, by logic, TrΣn(∼. t). Assume TrΣn(x) is of the form ∃yϑ(y, x), then we
have ∃y ϑ(y, ∼. t). �erefore there is a minimal y such that ϑ(y, ∼. t) and thus

26One may want to modify TrΠn(x) so that it is provable false of all sentences not in Πn . �is
doesn’t a�ect the argument below.
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ϑ(y, ∼. ⌜TrΠn(t)⌝), which is ϑ(y, ∼. ⌜∼TrΣn(∼. t)⌝) and ϑ(y, ∼. ⌜∼∃y ϑ(y, ∼. t)⌝).
Using Assumption 23 we conclude ∃v < y ϑ(v , ∼. t). �is contradicts the as-
sumption that y is minimal. ⊣

We claimed that for n >  there are reasonable Σn-truth predicates such that
Assumption 23 is not satis�ed. We show how to de�ne a Σn+-truth predicate
∃yϑ(y, x) from TrΣn such that the following holds for all Σn+-sentences:

PA ⊢ ∀y (ϑ(y, ⌜∃v φ⌝) ↔ φ(y)) (8)

So a witness for a Σn+-sentence is also a witness for its Σn+-true and vice versa.
So clearly Assumption 23 is violated because under this assumption the smallest
witness for a proper Σn+-sentence always has to be smaller than any witness
for its truth. We will require ∃yϑ(y, x) to be a Σn+-formula (and thus to be in
prenex form).
�eΣn+-truth predicateswe de�ne sensibly apply only to sentences in prenex

normal form. �e Σn+-truth predicate will be in prenex form. Sowe can simply
concentrate on sentences in prenex form and we will still be able to formulate
truth teller sentences. To obtain more general truth predicates that apply to
other sentences not in prenex form further tricks would have to be applied. Like
above, the coding schema is assumed to be monotone.
Assume we are given a Πn-truth predicate. �is can be ∼TrΣn(∼. x) as above.

�e idea is to de�ne Σn+-truth of a Σn+-sentence ∃vψ(v) as the claim that
there is a Πn-true instance of ψ(n). So TrΣn+(x) will be de�ned as a formula
equivalent to

∃y∀v < x ∀a < x (x = ∃. va → TrΠn(a( ẏ/v))). (9)

Here x = ∃. va expresses that x is a sentence and the existential quanti�cation
of the formula a with respect to the variable v; a( ẏ/v) stands for the result of
formally substituting the variable v with the numeral of y.
�e formula (9) itself cannot serve as Σn+-truth predicate because it is not

yet in prenex form. �e unrestricted quanti�ers in TrΠn(a( ẏ/v)) need to be
moved in front of the bounded quanti�ers.27 For the universal quanti�ers this
27Alternatively we can let the bounded quanti�ers be ‘eaten’ by the outer universal quanti�er
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is straightforward. For existential quanti�ers (in the case n > ) the collection
principle can be employed. For this we need the appropriate instances of the
induction schema, which are all available in PA.
�us for n >  we have constructed Σn- and, if we use the tricks from above

again, also Πn-truth predicates that do not conform to Assumption 23. De�n-
ing truth predicates along the lines of (9) also doesn’t appear to be too arti�-
cial. Moreover, that the witness of an existential formula and the witness for
the claim that it is true are the same may be seen as a desirable feature of a
truth predicate. Consequently one may conjecture that �eorems 24 and 25
depend on somewhat arbitrary features of the partial truth predicates. If the
partial truth predicates are de�ned in the way just outlined and these features
are removed, we don’t know whether the corresponding Σn-truth teller remain
refutable and the Πn-truth tellers provable. It seems that another proof idea
would be required and thus the problemof arithmetical truth tellers leaves some
open questions, even for quite natural partial truth predicates and canonical di-
agonalization.
We conclude this section with an application of the Kreisel–Henkin trick

from Kreisel’s Observation to partial truth instead of provability. If we consider
diagonal sentences that are not obtained by the standard diagonal operator and
deviant partial truth predicates, Henkin’s trick from in our proof of Kreisel’s Ob-
servation can be applied again to produce another example of the intensionality
of self-reference.
Henkin’s trick the yields a Σn-truth predicate with a provable and a refutable

truth teller.

observation 26. Assume again that a standard, monotone Gödel coding is
used. For each n there is a Σn-truth predicate σn(x), a sentence τ and a sen-
tence τ such that both sentences τ and τ ascribe to themselves the property
expressed by σn(x) by the Kreisel–Henkin Criterion and τ is provable while τ
is refutable.

Proof. Let TrΣn(x) be some Σn-truth predicate satisfying Assumption 23 and

of TrΠn using the fact that we have a pairing function. Yet alternatively we can replace
a( ẏ/v) by a function that delivers the appropriate substitution instance of a if a is of the
right form and  =  otherwise and drop the bounded quanti�ers entirely.
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write the formula x = x ∨ TrΣn(x) in strict Σ-form and call the resulting for-
mula (x = x ∨ TrΣn(x))′. By Gödel’s diagonal lemma there is a term t with the
following property:

PA ⊢ t = ⌜(t= t ∨ TrΣn(t))′⌝

Now the predicate σn(x) is de�ned as (x= t ∨TrΣn(x)))′. It’s easy to verify that
σn(x) is a Σn-truth predicate, that is, PA ⊢ σn(⌜φ⌝) ↔ φ for all Σn-sentences
φ. In particular, if φ is t = t ∨ TrΣn(t), then both sides of the equivalence are
obviously provable and therefore the equivalence is provable.
As the sentence (t= t∨TrΣn(t))′ is provable and satis�es the Kreisel–Henkin

Criterion, it can serve as τ.
If the canonical diagonal operator d is applied to the formula (x= t∨TrΣn(x))′

one can show that d((x= t ∨ TrΣn(x))′ is refutable by�eorem 24. ⊣

�e second part of the proof of Kreisel’s Observation can be used to produce
analogous examples for Πn-truth predicates.

6.5. Nonstandard truth predicates done in a di�erent way

A�er having shown that by only varying the method of obtaining a truth teller
one can obtain provable and refutable truth tellers, we are going to show in
this next section that by merely varying the truth predicate but adhering to
the canonical diagonal operator d one can obtain provable and refutable truth
tellers. �is is achieved by applying the the results of Section 5 to truth predi-
cates.
We remind the reader of a result of Section 5. Suppose Σ extends Basic. Let

γ be a sentence. For any formula φ, we constructed a formula φγ with the fol-
lowing properties, that is, Lemmata 8 and 9:

1. Σ ⊢ x ≠ d(⌜φγ(x)⌝) → (φγ(x) ↔ φ(x)).

2. Σ ⊢ d(φγ(x)) ↔ γ.

Our formula φγ has to to satisfy Equation 6, to wit:

Σ ⊢ φγ(x) ↔ (x /=d. (⌜φγ(x)⌝) ∧ φ(x)) ∨ (x=d. (⌜φγ(x)⌝) ∧ γ)
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Our main desideratum is that if φ and γ are Σn (Πn), then so is φγ. Fortunately
this is easily arranged. We can rewrite the formula

(x /=d. (y) ∧ φ(x)) ∨ (x=d. (y) ∧ γ)

in the prescribed strict Σn- (Πn-) form, say obtaining η(x , y) and then apply
the canonical diagonal construction w.r.t. y to η(x , y), �e resulting formula
will still have the strict Σn− (Πn-) form.
We consider TrγΣn . We assume that TrΣn is in the strict Σn form and that γ is

Σn. Consider α in Σn. Let β ∶= d(TrγΣn(x)). If α ≠ β, we �nd:

Σ ⊢ TrγΣn(⌜α⌝) ↔ TrΣn(⌜α⌝)

and hence Σ ⊢ TrγΣn(⌜α⌝) ↔ α. If α = β, we �nd by the �xed point property:
Σ ⊢ TrγΣn(⌜α⌝) ↔ α. So TrγΣn is a truth predicate for Σn. Moreover we have:
Σ ⊢ TrγΣn(⌜β⌝) ↔ γ, and hence Σ ⊢ β ↔ γ. �us, for a given diagonal operator
d, we can �nd a Σn-truth predicate σn such that d(σn(x)) is provable, refutable
or undecidable via appropriate choices for γ. Similarly for the Πn-case.
So as in the case of provability, we have been able to eliminate the simultane-

ous use of a deviant diagonal operator and a non-canonical formula expressing
a property in order to show that a truth teller can be provable or refutable. We
only need a deviant partial truth predicate in order to show that a Σn-truth teller
can also be provable.

7. Uniform diagonal operators

We think that Gödel’s diagonalizationmethod and certain variants of it produce
paradigmatic self-referential sentences, if there is any self-reference in meta-
mathematics at all. �e philosophical challenge is to explain why these �xed
point yield self-reference, while certain other �xed points do not.
�e Kreisel–Henkin Criterion provides at least a partial explanation in terms

of reference. If a sentence φ(t) satis�es the Kreisel–Henkin Criterion then t
refers to (the code of) the sentence φ(t) and the theory can prove this in the
sense that Σ ⊢ t = ⌜φ(t)⌝. �e criterion also allows us to generalize certain
results. To show the refutability of the Σ-truth teller in �eorem 22, we don’t
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have to retreat to the canonical diagonal operator, but can prove a claim about
all �xed points satisfying the Kreisel–Henkin Criterion. We think that this kind
of generalization should increase the signi�cance of the results, because it shows
that the result does not depend on petty details of the diagonalization method.
In this sense it also allows one to extensionalize results to a certain degree.
However all this does not imply that the Kreisel–Henkin Criterion is also an

adequate analysis of self-reference or, more precisely, self-attribution of prop-
erties. In this respect the Kreisel–Henkin Criterion may be similar to Kreisel’s
Condition: Kreisel’s Condition, that is, weak representability is hardly a satisfac-
tory analysis of what it means for a formula to express provability. It is at best
a necessary condition for the expression of provability in sound systems. For
many purposes we just need to assume that a formula satis�es Kreisel’s Condi-
tion and need not care whether the formula ‘really’ expresses provability. In the
sameway, all sentences of the form φ(t) truly saying about themselves that they
have the property expressed by φ(x) will satisfy the Kreisel–Henkin Criterion
and therefore all results on �xed-points with the Kreisel–Henkin Criterion will
include and apply to the truly self-referential �xed points.
But there remain also doubts that all �xed points φ(t) satisfying the Kreisel–

Henkin Criterion really say of themselves that they have the property expressed
by φ(x). �e criterion doesn’t rule out certain ‘deviant’ �xed points. �e sen-
tence BewII(t) from Kreisel’s Observation is refutable, while applying the ca-
nonical diagonal operator to BewII(x) yields a provable �xed point, as has been
shown in Observation 3. �e �xed point BewII(t) is not arrived at from the
predicate BewII(x) by a slight variant of the canonical diagonalization method,
but rather BewII(x) has been been constructed in a such a way that t ‘hap-
pens’ to be a �xed point satisfying the Kreisel–Henkin Criterion. �e sentence
BewII(t) surely refers to (the code of) a sentence that happens to be BewII(t).
But we are not sure whether that implies that BewII(t) states of itself that it has
the property expressed by the formula BewII(x).28
�us among the �xed points satisfying the Kreisel–Henkin Criterion one can

28One could also distinguish between two kinds of self-reference: BewII(t) would be de iure
self-referential while the application of the canonical diagonal operator to a formula gives
what one could call de facto self-reference. �e distinction is reminiscent of van Fraassen’s
(1970) betweeen accidental and functional self-reference in natural language.
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still distinguish betweenmore or less contrived. What seems to be deviant about
BewII(t) is, very loosely speaking, that it hasn’t been arrived at by some general
method that yields applied to a formula a �xed point. In order to obtain more
robust results, wemay try to imposemore conditions on the �xedpoints beyond
the Kreisel–Henkin Criterion that rule out sentences such as BewII(t).
�e following condition is supposed to bring out a nice feature of Gödel’s

canonical �xed points that is lacked by Kreisel’s sentence BewII(t).

definition 27. A diagonal operator d is uniform i� the following condition
is satis�ed for each φ(x) with a designated variable x free:

d(φ) is of the form φ(d. ⌜φ⌝), where d. represents the function d.

Of course, every uniform diagonal operator d has the Kreisel–Henkin property,
that is, the following claim holds:

Σ ⊢ d. ⌜φ⌝ = ⌜φ(d. ⌜φ⌝)⌝ (10)

holds.29 Clearly, the canonical Gödelian diagonal operator is uniform. Kreisel’s
sentence BewII(t), in contrast, cannot be the result of applying a uniform di-
agonal operator to BewII(x), if the coding is monotone.
Since it doesn’t matter for the present purposes that we are dealing with prov-

ability predicates, we slightly slightly generalize. �e example below can be ap-
plied to BewII(t) by taking φ(t, x) as x /= t ∧ Bew(x).

observation 28. Let the coding be monotone, t be some term and φ(x , x)
a formula with two marked (strings of) free occurrences of the variable x. If d
is a diagonal operator with d(φ(t, x)) = φ(t, t), then d is not uniform.

Proof. Assume d is uniform, that is, d(φ(t, v)) is the formula φ(t, d. ⌜φ(t, v)⌝).
By assumption d(φ(t, v) is the formula φ(t, t). Since then φ(t, d. ⌜φ(t, v)⌝) and
φ(t, t) are identical expressions, the term t must be the expression d. ⌜φ(t, v)⌝.
Hence the term t would contain a numeral for a formula that contains in turn
the term t, contradicting monotonicity of coding. ⊣

29Cf. also Heck’s (2007, p. 9) Structural Diagonal Lemma.
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If the diagonal operator yields only a �xed point satisfying the Kreisel–Henkin
Criterion then t and d. ⌜φ(t, v)⌝ coincide in their values, but they don’t have to
be the same expression.
We don’t expect that, by imposing the uniformity condition, all pathological

�xed points can be ruled out. But uniformitymay be a �rst hint to narrow down
the choice of diagonal operators, if a result cannot be proved for all �xed points
satisfying the Kreisel–Henkin Criterion.

8. Self-reference in other languages

In this paper we have stayed within the realm of arithmetic and, even more
speci�cally, in systems with function symbols for all primitive recursive func-
tions and their de�ning equations as axioms. Self-reference has been discussed
in many other settings: �e language may lack appropriate functions symbols
or the language may contain symbols going beyond that of arithmetic by con-
taining additional symbols such as a primitive new symbol for truth. �en there
are of course theories, set theory being an example, that contain arithmetic only
via some interpretation. Obviously questions of the kindwe have studied in this
paper arise in such settings as well. Here in this section we touch only at some
problems and possibilities of generalizing some of our remarks to other settings.
First we look at systems that do not feature function symbols for su�ciently

manyprimitive recursive functions. �eKreisel–HenkinCriterion for self-reference
and the improved versions of it in the previous section provide only a su�-
cient condition for a sentence to ascribe some property to itself. �at condition
can only be met when suitable closed terms are available. �e canonical con-
struction of the strong diagonal lemma with a closed term relies on a function
expression for the substitution function. Of course such an expression is not
available in the usual language of Peano arithmetic featuring only , S, + and
× as function symbols. Even in such languages there can be sentences that are
self-referential in virtue of the Kreisel–Henkin Criterion. In fact, even if ad-
dition and multiplication are expressed by predicates, numerals alone, that is,
the symbol for zero and successor su�ce if the coding is carefully chosen. In
Appendix A we construct a Gödel coding along with a diagonal operator with
the Kreisel–Henkin property that relies only on numerals as the terms. How-
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ever, if a monotone coding is employed and the language doesn’t contain the
appropriate function symbols – like the the usual language of PA –, then there
are no formulae that ascribe to themselves any property in virtue of the Kreisel–
Henkin Criterion.
Under a monotone coding sentences that are usually thought to be recog-

nizable as Gödel, Henkin and truth-teller sentences can still be constructed,
even if the appropriate function symbols and thus a diagonal operators with the
Kreisel–Henkin property are absent, as is the case in PA or Zermelo–Fraenkel
set theory. In such systems self-referencewill be achieved via quanti�cation and
the formulae cannot ascribe to themselves any property in virtue of the Kreisel–
Henkin Criterion via terms. It may be surmised that the Kreisel–Henkin Cri-
terion already captures an important aspect of self-reference in arithmetic and
thus one might try to generalize to the Kreisel–Henkin Criterion to sentences
φ that do not contain a term t having φ as its value by the following stipula-
tion: A formula ψ obtained from a formulae φ(t) by eliminating the function
symbols in φ(t) ascribes to itself the same properties as φ(t). By eliminating
the function symbols we mean one of the usual methods of reformulating a for-
mula that contains function symbols with a provably equivalent formula where
the functions are expressed using quanti�cation, other function symbols and
appropriate predicate expressions. However, self-reference is too intensional
and not preserved under this transformation. �e new formula ψ will still refer
to φ(t) and not to itself, except in some special fortunate cases. �erefore one
will have to adapt the method of extension in a more sophisticated way.30

However, we don’t assume that such an elimination necessarily preserves self-
reference, even if carried out properly, and, more generally, that the same self-
referential properties are shared by all provably equivalent sentences. At any
rate we don’t see an obvious way to generalize the Kreisel–Henkin Criterion to
sentences without appropriate closed terms.31

30Of course there are fully relational versions of the Gödel Fixed-Point lemma but there is not
clear reason to consider those as self-referential.

31Heck (2007) has raised some worries about the possibility of appropriately expressing self-
reference in languages lacking the function symbols and concludes on p. 1 that ‘[t]rue self-
reference is possible only if we expand the language to include function-symbols for all
primitive recursive functions.’.
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We now turn from languages that are properly contained in those of Basic
to languages that properly extend its language. Many remarks carry over in a
straightforward way. In particular, we think that many of our remarks to exten-
sions of the language with a new primitive unary predicate for truth or necessity.
In the discussion of the truth-theoretic paradoxes extensional results o�en suf-
�ce. For instance, the proof of the inconsistency of the full T-schema merely
requires a �xed point of the negation of the truth predicate. However, to arrive
at certain truth-theoretic paradoxes, it is not su�cient to workwith an arbitrary
diagonal operator, because in some cases one will require at least a sentence that
is self-referential according to the Kreisel–Henkin Criterion. Heck (2007, sec-
tion 3.2) presents an example. Further examples can be extracted from Burgess
(1986) and (Halbach, 1994, p. 313). So at least some of the phenomena we have
studied here arise also in these wider contexts.

9. Summary: Henkin sentences and truth tellers

Before trying to draw some preliminary conclusions from our observations, we
summarize some of our observations on Henkin sentences and truth tellers in
two tables.
First we turn to Henkin sentences. �e formulae BewII, Bew(x), Bew(x)

and BewR are de�ned from another provability predicate. We assume that the
canonical provability predicate is used for this purpose. In the �rst column we
list various provability predicates. �ey all express provability in Σ in the sense
of Kreisel’s Condition, that is, they weakly represent Σ-provability. In the other
three columns we describe how di�erent �xed points of these formulae behave.
�e single letter p means that �xed points of the respective kind are provable
in Σ; p,r means that there are �xed points of this kind that are Σ-provable and
others that are Σ-refutable, and so on. �e letter i stands for independent from Σ.
�e theory Σ is an extension of Basic containing at least S.
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canonical
�xed points

�xed points
with the Kreisel–
Henkin property

arbitrary
�xed points

Bew (canonical
provability)

p p p

BewII (Kreisel–
Henkin)

p p,r p,r

Bew
(�eorem 4)

r p,r p,r

Bew
(�eorem 5)

i p,i p,i

BewR (Rosser
provability)

? ? p,r,?

In the following table we summarize some results on partial truth tellers. All
the formulae in the table are partial truth predicates for the class of sentences
indicated there in the sense that the T-sentences are provable for all sentences in
the given class. Amonotone coding schema is assumed. In contrast to the above
table the letter p now stands for provable in Peano arithmetic. �e formulae TrΣn
and TrΠn are the canonical partial truth predicates for n ≥ ; the formulae TrΣn
are assumed to satisfy the Assumption 23, and the formulae TrΠn are de�ned
from them in the way indicated in Section 6.4. �e formula BewIΣ is seen here
as a truth predicate for Σ-sentences and restricted to such. All �xed points are
assumed to be of the relevant complexity.
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canonical
�xed points

�xed points
with the Kreisel–
Henkin property

arbitrary
�xed points

BewIΣ p p p,r

TrΣn r r p,r,i

TrΠn p p p,r,i

σn as in
Observation 26

r p,r p,r,i

TrγΣn p p,r p,r,i

TrγΣn (n ≥ ) i i,r p,r,i

�e truth predicates TrγΣn and Tr
γ
Σn have been de�ned for arbitrary γ in Sec-

tion 6.5. Any refutable Σn-sentence can serve as γ; γ is an independent Σn-
sentence and thus we must assume n ≥  for this case.

10. Self-reference and intensionality

Although an abundance of claims about sentences ascribing to themselves such
properties as truth, falsity or provability can be found in the literature, there is
no generally accepted de�nition of which sentences qualify as self-referential.
One possible reaction could be a rejection of the talk about such sentences.
However, this wouldmean that large parts of philosophical logic, philosophy of
logic and philosophy of mathematics would have to be rejected. Self-reference
and self-predication isn’t more elusive than many other notions in the area. If
we were to ban intensional notions from these areas, then many notions includ-
ing that of provability would have to be declared illegitimate as well, because
we are not able to de�ne extensionally what it means for a formula to express

46



provability. �e second and third source of intensionality are on a par in this
respect.
�ere are not only philosophical but also mathematical reasons for retaining

the notion of self-reference: Questions about self-referential statements have
driven progress in logic. �ey are at the root of Gödel’s theorems and Gödel
arrived, for all we know, at his proof by thinking about self-reference and self-
predication. As mentioned above, logicians became more suspicious of self-
reference, and some dismissed questions about sentences stating something
about themselves as hopelessly intensional. If Löb, however, had adopted such
a sceptical attitude and rejected Henkin’s problem as irremediably �awed, he
probably would not have proved his theorem. As so o�en, philosophical no-
tions defying a full formal analysis function as an engine driving progress in
logic and, more generally, mathematics and the sciences. �erefore they should
not be dismissed, even if they prove somewhat elusive.
It may be hoped that one can escape the problems of intensionality by set-

tling for the ‘canonical’ methods, that is, a canonical coding, a canonical way of
expressing the property under consideration and the canonical way of obtain-
ing a �xed point. But it’s far from from clear what the canonical methods are.
�ere are many reasonable codings, di�erent sensible ways to express provabil-
ity, Σn-truth and so on and even on the canonical proof of the diagonal lemma
there are variations. It would be odd, however, if the answer to question about
the status of self-referential statements depended on the historic development
of mathematics and what is seen as the standard proof. It’s a challenge to ex-
plain what makes the canonical choices most relevant for answering questions
about the status of sentences that ascribe certain properties to themselves. �e
signi�cance of the results that presuppose canonical constructions is limited, if
they are just taken as the ones most logicians happen to work with. We need
an explanation why these canonical methods yield paradigmatic examples of
sentences that ascribe a property to themselves.
Moreover, even partial analyses of self-reference may be useful in generaliz-

ing results: In�eorem 24 on the provability of Σn-truth tellers we assume that
the �xed points of the truth predicates have the Kreisel–Henkin property. Of
course we could have proved the result only for the ‘canonical’ �xed point, but
generalizations of this kind seem desirable in the same way generalizations of
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the incompleteness theorems in (Feferman, 1960) with respect to the second
source intensionality, that is, expressing a property, proved fruitful. �us we
believe that we should strive for an analysis of what it means for a formula to
state a property of itself.
Even without a full formal analysis of self-reference in formal systems, many

questions about the status of sentences ascribing to themselves a certain prop-
erty can be answered. �is is the case when we know that all sentences that
ascribe to themselves a certain property are contained in a certain class of sen-
tences and we can prove a general result about that set. So a su�cient condition
for self-reference can enable us to settle a question on self-referential sentences.
Canonical provability is a case where a very weak necessary condition will suf-
�ce: Once we settle for a provability predicate satisfying the Löb derivability
conditions, Löb’s theorem applies and all �xed points of the provability pred-
icate are provable. Since all sentences stating their own provability are �xed
points, all such sentences are provable.
�erefore when one asks about the status of the sentence that states its own

provability (in the �xed system), the intensionality of that question lies solely
in the way we express the property of Σ-provability, if we stipulate that provabil-
ity has to be expressed by a predicate satisfying the Löb derivability conditions.
Hence it is not surprising that logicians have focused on the second source of
intensionality, that is, intensionality arising from the problem of expressing a
property in the formal language. Once deviant provability predicates are ex-
cluded, the third source of intensionality, that is, intensionality of self-reference,
is also blocked.
�e case of provability, however, is very special. In most other cases we can-

not escape the intricacies of the intensionality of self-reference as easily: Fixed
points of a formula will usually behave in di�erent highly disparate ways. Of
course, this is most obvious for any formula expressing some truth-like concept,
but also for Rosser-provability, as noted in Observation 17. In order to obtain
results ascribing properties to themselves via such formulae, a better analysis of
self-reference is needed. �e Kreisel–Henkin Criterion, as we have formulated
it, aims to provide a su�cient condition for self-reference, because it only ap-
plies to formulae in which self-reference is attained in virtue of a closed term.
But it’s status remains controversial. Some, like Heck (2007), are inclined to
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think that sentences to which the Kreisel–Henkin Criterion isn’t applicable can-
not be truly self-referential, so it may well be a necessary and su�cient condi-
tion. However, we still have serious doubt whether it even provides a su�cient
condition for self-reference. �ere is surely something awkward about �xed
pointswith theKreisel–Henkin property that have been obtained usingKreisel’s
(1953) trick. If one shares our scepticism concerning the Kreisel–Henkin Crite-
rion as a necessary condition for self-reference, then uniform diagonal opera-
tors may bring us closer to an interesting and formally useful necessary condi-
tion for self-reference.
�e signi�cance of someof our results depends onwhether theKreisel–Henkin

Criterion provides a su�cient condition or even an adequate de�nition of self-
reference. For instance, in�eorem 24 on the provability of Σn-truth tellers for
n ≥  we assume that the �xed points of the partial truth predicates have the
Kreisel–Henkin property. If all sentences that say about themselves that they
are Σn-true do so in virtue of the Kreisel–Henkin Criterion, then �eorem 24
answers the question about whether Σn-truth tellers are provable, if Assump-
tion 23 and the monotonicity of coding are accepted.
�eorems 24 and 25 on partial-truth tellers demonstrate the sensitivity of

questions about self-referential statements to all three sources of intensionality
for such formulae. In the two theorems we make assumptions on the coding,
speci�c properties on the formulae expressing Σn- or Πn-truth and, of course,
on the �xed points of these formulae. �ese theorems are in stark contrast to
Löb’s theorem, which is much more robust and doesn’t rely on such speci�c
assumptions.
At least�eorems 24 and 25 are not sensitive to which diagonal operator with

the Kreisel–Henkin property is used. �ere are, however, formulae that are sen-
sitive to exactly which diagonal sentences with the Kreisel–Henkin property are
used. In Observation 3 it was noted that the formula BewII does have a diagonal
sentences BewII(t) and BewII(t) with the Kreisel–Henkin property, of which
the �rst is provable and the second refutable. Observation 26 contains an anal-
ogous result for a truth predicate σn. However, both formulae BewII and σn are
contrived and the question arises whether there are natural formulae φ express-
ing an interesting and relevant property such that φ has two �xed points with
the Kreisel–Henkin property of which one is provable and the other refutable.

49



�e problem is highly intensional and hard to make more precise.
We give an example of formula that we could not accept as an example that

would support an a�rmative answer to our question. Consider a formula ζ(x)
expressing the property that x doesn’t contain an occurrence of the successor
symbol such that there is no occurrence of the successor symbol in ζ(x) itself. If
we apply the canonical diagonal operator to such a formula, we obtain a formula
ζ(t) where t contains the successor symbol, because there will be occurrence
of numerals of Gödel codes in t. �us ζ(t) will be refutable. However, we can
avoid the use of numerals and the successor symbol and use other closed terms
instead; this is possible if we have function symbols for all primitive functions
in our language. �e resulting �xed point will be provable. However, this for-
mula does not express an interesting and relevant property in the sense of the
question. We have to look for less trivial examples. Perhaps there are no such ex-
amples, because they are either ‘trivial’ like ζ(x) or some trivializing condition
is built into them like in BewII and σn. Further work is required here.

¹

So far we have looked at the prospects and possibilities of passing from an in-
tensional question about sentences ascribing some property to themselves to
formal extensional theorems. �ere are also question in the opposite direction:
Given the provability or refutability of a supposedly self-referential statement,
which factors can be tweaked in order to arrive at a di�erent conclusion? By
investigating this kind of question, new insights into the robustness of results
and the relation between the di�erent sources of intensionality can be gained.
For instance, it is known that many intensionality phenomena from the second
source can be built into the coding. �e proofs of�eorems 24 and 25 on partial
truth tellers rely on the use of a monotone coding schema. It may well possible
to obtain provable Σn-truth tellers by using a suitable non-monotone coding.
�is would provide us with another example of intensionality arising from the
�rst source.
Here in this paper we have somewhat suppressed intensionality from coding

and focused on intensionality from the second and third source. In particular,
we have established that in some cases intensionality the second source will suf-
�ce to change results. Kreisel (1953) obtained provable and refutableHenkin sen-
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tences by exploiting simultaneously the second and third source of intensional-
ity. Observation 26 shows that at least with a deviant provability predicate, we
can obtain provable and refutable Henkin sentences by changing themethod of
diagonalization (without losing the Kreisel–Henkin property). Finally, in Sec-
tion 5 it was established that by changing the formula expressing provability
but using only the canonical diagonal operator, one can obtain provable and
refutable Henkin sentences. Section 6.5 contains analogous results for partial
truth predicates. It would be interesting to see under which circumstances it is
possible to shi� the e�ects of intensionality from one source to the other. We
know already that there are limits: Provable and refutable Henkin sentences
can be obtained by using di�erent provability predicates, but once the canon-
ical provability predicate is �xed, changing the diagonal operator won’t a�ect
the provability of the Henkin sentence.
At least we also provided a plethora of entertaining examples that show that

the analysis of self-reference in arithmetic is not as straightforward as it may ap-
pear. �ere still are somemathematical and philosophical questions concerning
formulae that as described as making statements about themselves; the answers
may be both interesting and fruitful, just as Löb’s answer to Henkin’s question
was.
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A. A Gödel numbering with built-in diagonalization

�e present construction of a Gödel numbering with built-in self-reference is
based on the earlier treatment of the same subject in Visser (2004). �e main
di�erence is that the present treatment employs e�cient numerals.
As announced above, a coding schema (and two variants) with built-in diag-

onalization are speci�ed. For any given formula φ(x), there will be a number n
such that φ(n) has n as its code. �e associated diagonal operator yields �xed
points that satisfy the Kreisel–Henkin Criterion, because the �xed points are of
the form φ(n) and the numeral n has n, that is, the code of φ(n) as its value.
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Of course the number n can be e�ectively calculated from φ(x). Moreover,
the usual syntactic operations can be de�ned in a straightforward way, so the
coding satis�es the usual conditions that a well behaved coding schema is sup-
posed to satisfy. Evidently the coding cannot be monotone.
Consider the language of arithmetic. We suppose its alphabet is A. Suppose
Ac consists of the letters a, . . . , as− (given in some ordering). We extend this
language with a fresh constant c. �e extended alphabet is Ac. Say, we treat c
as the last of the letters of the extended alphabet. LetA⋆ be the set of strings of
letters inA, and, similarly forA⋆c .
We construct a Gödel numbering as follows. We enumerate A⋆c using the

shortlex or radix ordering. �is means that we �rst enumerate the sequences of
length  alphabetically, then the sequences of length , etc. �is is the ordering
used in crossword dictionaries. Let αn be the n-th string in this enumeration.
We take e(n) ∶= αn

We will use e�cient numerals. We de�ne:

Sai(x) ∶=
i+

³¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹µ
S(. . . S((x ⋅

s
³¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹µ
S(. . . S(

s
­
) . . .) )

i+
­
) . . .) .

Now consider the number n. Suppose αn = a . . . ak−, where the a j range over
Ac. �en we take as e�cient numeral n for n:

n ∶= Sak−(. . . Sa() . . .).

E�cient numerals have the convenient property that m is a subterm of ℓ i� αm

is an initial substring of αℓ.
We de�ne βn ∶= e(n) ∶= αn[c ∶= n]. �is means that e(n) is the result of

substituting n for all occurrences of c in αn. We note that the strings in e[ω],
the range of e, are strings of letters in A. If ϑ is any string in A⋆, then it is αm

for some m. Clearly e(m) = αm = ϑ. So,A⋆ is precisely the range of e.

theorem 29. �e enumeration e has repetitions.

Proof. Suppose that c occurs in αm. Clearly for some n > m, we have αn =
αm[c ∶= m]. So, we have βm = βn = αn. ⊣
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theorem 30. Each string occurs at most twice in the enumeration e.

Let us write ∣ϑ∣ for the number of symbols in ϑ.

Proof. Suppose c occurs at least once in αm and αn andm < n and αm[c ∶= m] =
αn[c ∶= n]. We note that m cannot occur in αm, since ∣αm∣ < ∣m∣. Moreover, n
cannot occur in αm, since ∣αm∣ ≤ ∣αn∣ < ∣n∣. Since n must have at least one
occurrence in αm[c ∶= m], this occurrence has to overlap with an occurrence of
m. By a unique reading argument it follows that either m is a subterm of n or
vice versa. Since n > m, mmust be a subterm of n. From this we may conclude
that αm is an initial substring of αn. Let’s say that αn = αmϑ. (Here αmϑ stands
for the concatenation of αm with ϑ, and similarly in what follows). We �nd that:

αn[c ∶= n] = αm[c ∶= n]ϑ[c ∶= n] = αm[c ∶= m].

We can now get the desired contradiction in two ways. First, suppose αm starts
with ηc, where c does not occur in η. �en both ηn and ηm are initial in αm[c ∶=
m]. But then m is initial in n, quid impossible. For the second way, we note
that, since m is a subterm of n, we have ∣m∣ < ∣n∣. Ergo: ∣αm[c ∶= n]ϑ[c ∶= n]∣ >
∣αm[c ∶= m]∣, quid impossibile. ⊣

We treat three Gödel numberings based on the ideas introduced above.
For a string ϑ in the alphabet of the language of arithmetic, we de�ne

gn(ϑ) ∶= {m ∣ ϑ = βm}.

�is is a many-valued Gödel numbering. We note that many-valued Gödel
numberings come naturally with many valued syntactical operations. E.g. we
may de�ne:

conj(m, n) ∶= gn((βm ∧ βn)).

For a string ϑ in the alphabet of the language of arithmetic, we de�ne gn(ϑ)
as the smallest m such that ϑ = βm, that is, as the smallest element of gn(ϑ).
Suppose ϑ = αk. Clearly, the the search for m is bounded by k which is in its
turn exponential in the length of ϑ. We note, by the above observations, that,
if β = αm[c ∶= m] and c occurs in αm, then gn(β) = m. So, gn will return the
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unique self-referential Gödel number, if there is any. �e syntactical operations
can be de�ned in he obvious way. We take e.g.:

conj(m, n) ∶= gn((βm ∧ βn)).

�e third Gödel numbering is the standard numbering: gn(ϑ) = e− (ϑ),
in other words gn(ϑ) is the unique m such that ϑ = αm. Also gn(ϑ) =
max(gn(ϑ)). �e syntactical operations can be de�ned in he obvious way. We
take e.g.:

conj(m, n) ∶= gn((βm ∧ βn)).
Note that we will have, for i = , : if gni(ϑ) = m and gni(η) = n, then

gni((ϑ∧η)) = conji(m, n), as expected of a good functional Gödel numbering.
We can arithmetize the syntactical operations like conji de�ned above in such

a way that their elementary properties are veri�able in Elementary Arithmetic.
Suppose our theory is axiomatized by a scheme. As soon as we have appro-

priate arithmetized syntactical operations like conjunction, thenwe can develop
syntax in a uniform way. E.g. we have a schematic formula Bew[X ,Y , . . .] such
that Bew[conj, . . .]will be veri�ably a provability predicate provided that the for-
mulae representing the syntactical operations that we plug in for the schematic
variables veri�ably satisfy some conditions connectedwith unique reading such
as ‘a conjunction is never a negation’, etcetera. Our schema is described using
the given arithmetizations of the syntactical operations. We do not think in-
tensional correctness makes much sense for arbitrary computably enumerable
collections of axioms.
We submit that the development of syntax using gn is entirely standard. If

any development produces an intensionally correct representation of provabil-
ity, then this one does. Since, given that we have the arithmetization of the
appropriate syntactical operations, the formalization of provability is uniform,
the only point where intensional incorrectness could sneak in, is in the de�ni-
tions of functions like conj and conj. Since the de�nitions of the conji are
directly derived from the de�nition of the gni , for i = , , it seems that we just
have two options: Either we do accept Bewi for i = , , as intensionally correct,
or we conclude that some Gödel numberings do not support intensionally cor-
rect arithmetizations of provability. If we opt for the second, we should try to
articulate what it is that precludes intensional correctness . . .
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Let us suppose that we accept, say, Bew as intensionally correct. Consider
the formula ¬Bew(c). Let this formula be αg . �en g is the gn-Gödel number
of ¬Bew(g). So we have an intensionally correct Gödel sentence G where G =
¬Bew(gn(G)).

remark 31. Clearly, wewill have a de�nable function switch such that we have
switch(m) = gn(βm), and such that our theory veri�es that

∀x ∈ sent (Bew(x) ↔ Bew(switch(x))).

Note that it does not follow from the assumption that Bew is intensionally cor-
rect w.r.t. gn that also the veri�ably extensionally equal predicate Bew

′
(x) ∶=

Bew(switch(x)) is intensionally correct w.r.t. gn.

remark 32. Is conj intensionally correct w.r.t. the given Gödel numbering?
Well, we assume that we have implemented it by �rst arithmetizing concatena-
tion. Our de�nition of the syntactic operation of conjunction is based on the
following de�nition in the theory of concatenation:

conj(σ , τ) ∶= ⌜(⌝ ∗ σ ∗ ⌜∧⌝ ∗ τ ∗ ⌜)⌝.

Is this de�nition intensionally correct? People working in the Tarski tradition
like John Corcoran and Andrzej Grzegorczyk believe that this de�nition gives
in fact the essence of the conjunction operation. But isn’t the concatenation
format just imposed on us by the necessity of linear representation of syntactic
structure? Isn’t our basic understanding of the syntax that it is something like
a free algebra? For example, do we not see the di�erence between in�x and
pre�x notation for conjunction as a mere matter of implementation? Note also
that we could have implemented the syntax equally well in a theory of �nitely
branching trees or of �nite sets.
�e second step is to arithmetize concatenation in the style Smullyan. What

this operation is extensionally follows from the chosenGödel numberingwhich
corresponds to the shortlex ordering. �e chosen arithmetical operation is x ⊛
y = x ⋅ qℓ(y) + y, where q is the number of symbols in our alphabet and ℓ is
the q-adic length function. Smullyan’s clever insight is that one can de�ne qℓ(y)

without �rst de�ning exponentiation.
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Does the question of the intensional correctness of these two steps make
sense? Maybe it is simply a matter of stipulation that they are intensionally
correct, so that we can judge the other steps to be correct given the correctness
of the initial steps.
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