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Preface 
 

Infectious diseases have plagued us since time immemorial, altering social structures and language 

itself. Long held to be an unassailable divine judgement, since the 19th century infectious diseases 

have increasingly been controlled, due to improvements in sanitation, vaccines and medicine. Yet 

despite this progress, total elimination is not feasible, as evidenced by the pandemics and emerging 

infections we've seen over the last few decades. How do we best combat these threats, where should 

we invest resources, what public health interventions are optimally (cost-)effective? Answers to 

such questions can only be found if we understand the dynamics of infectious diseases: how they 

spread. This thesis aims to provide methods to increase that understanding. 

 

The thesis that lies before you is the result of work performed at the National Institute of Public 

Health and the Environment. I originally applied for the PhD position because I had always been 

interested in biology and wanted to apply my technical skills to solving actual and complex 

problems, while learning as much as possible in the process. Over the last few years, I feel these 

goals have been met. Studying infectious diseases is fascinating; I have learned much, both about 

the biology of viruses and bacteria and about science, collaborations and communication. I am 

grateful for the level of independence granted to me by both the Institute and my supervisors. Not 

only do I feel much of my work is 'my own', I have also had the opportunity to deploy a range of 

activities beyond publishing papers. These include extensive trips abroad, the organization of 

symposia and my board work for Proneri, the Institute's PhD network. 

  

I have never intended to restrict myself to one disease or one method. Rather, my focus has been on 

developing a range of methods that are able to answer different questions using different amounts 

and quality of data. The two things these methods have in common is that they combine genetic and 

epidemiological data, and that they are intended to be applied. I have endeavoured to illustrate this 

latter point by giving applications to tuberculosis, methicillin-resistant Staphylococcus aureus and 

avian influenza. I value clear communication, and have written the introduction with both scientists 

and a general audience in mind. It is my hope that few readers have either insufficient or sufficient 

background to not learn anything new from the diverse range of subjects covered. I will briefly give 

my views on future research and developments in the general discussion. 
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Living in the developed world, it is easy to feel that infectious diseases are a curiosity of history, 
rather than a serious threat today. As such, why would we study them? It is certainly true that 
mortality due to infectious diseases has dropped spectacularly over the last century.1 However, one 
in five deaths worldwide are still caused by infectious diseases.2 This might not be very visible in 
this part of the world, as the burden of infectious diseases is not evenly distributed; the highest 
burden of diseases such as HIV/AIDS,3 tuberculosis4 and malaria5 is mainly found in Africa and 
Asia. Closer to home, a cause for worry is the increase in drug resistance in hospital-associated 
bacteria, which hampers our ability to treat patients.6,7 Another reason to stay vigilant are emerging 
epidemics; the last decade alone has seen large outbreaks of 'new' diseases such as SARS,8,9 the 
H1N1 pandemic10,11 and the zoonotic avian influenza strains H5N112 and H7N9.13 Besides 
morbidity and mortality caused, infectious diseases have a serious economic impact on society,14,15 
for example due to health care costs and productivity loss. 
 
Although the need for control of infectious diseases seems clear, resources are always limited. We 
therefore want to know how effective interventions are, how effective they should be to stop spread, 
and how we can optimize them. When a vaccine is available, how expensive and effective is it? 
Should we vaccinate the whole population or certain groups, for example those most infectious or 
those most susceptible? In tuberculosis control, should we trace all contacts of all cases or focus on 
those we deem more infectious? For farm animal diseases, should we preventively cull animals, and 
if so how many and how fast do we have to be? To find answers to these questions, economic, 
ethical and practical considerations have to be taken into account. If we want this process to be at 
least partly objective, we need a quantitative understanding of the spread of infectious diseases. 
 
Traditionally, quantifying parameters of disease dynamics has been done using epidemiological 
data such as time of symptom onset and recovery, and age, sex and location of cases. These can be 
used to estimate key parameters such as R0, the basic reproduction number.16-18 Monitoring such 
parameters allows for the evaluation of interventions.19 As infectious disease dynamics will always 
be partly unobserved, e.g. due to asymptomatic or unreported cases, accurate and precise 
quantification of all parameters of interest can be difficult.20  
 
A complementary source of information is provided by molecular biologists, who are increasingly 
apt at  generating genetic sequences of pathogens, which form an alternative data source to quantify 
disease dynamics.21 The separate analyses however might not be in agreement,22,23 and only 
focusing on one of the two data types ignores the information present in the other. We would 
intuitively expect the best estimates to be given by an analysis that combines the two types of data. 
However, this combination of epidemiological and genetic data in one statistical analysis is still 
relatively rare; two reasons can be named. First, the quantity and quality of genetic data has been 
increasing rapidly in the last few years due to technical innovations and inference methods have not 
kept up. Second, the two types of data are generated in historically separated fields, complicating a 
combined approach. 
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How can we combine genetic and epidemiological data to infer infectious disease dynamics? There 
is unlikely to be one definitive answer; rather this is dependent on the specific question we are 
interested in and the type and amount of data available. For example, it is relevant whether we have 
observations on all cases or a subset, what percentage of cases was sampled, whether we established 
genotypes or full sequences, and how detailed the epidemiological data are. In general, of course, 
more detailed data allow for tackling of more detailed questions. 
 
This thesis provides methods applicable to different datasets found in practice, and illustrates their 
use through application to data. The datasets span a wide range; in surveillance settings, there is 
often little more information than genotypes of a subset of cases and their sampling dates. From 
these datasets, high-level characteristics of infectious disease dynamics such as heterogeneity in 
infectiousness can be estimated (chapter 2) and local outbreaks can be detected by assessing 
correlations found (chapter 3 and 4). In detailed retrospective studies, it is possible that most cases 
are observed and both epidemiological data and sequence data are available. It then becomes 
feasible to reconstruct the full transmission tree of an outbreak (chapters 5-7). 
 
It is my personal belief that a scientist should be able to translate or explain his or her work to a 
broad audience; one of the main goals of science is finding simple explanations for complex 
phenomena. Even more so for mathematicians, whose abstract of formal work may seem daunting 
at first glance, while their main ideas can often be explained in simple terms. Even more so for 
scientists working in an interdisciplinary field; as those working in different disciplines often have a 
different jargon, a different way of thinking and certainly a different set of basic knowledge. The 
research presented in this thesis can certainly be categorized as interdisciplinary; it uses ideas and 
concepts from mathematics, computer science, molecular biology, infectious disease epidemiology 
and population genetics. Finally, communication is, even more so, vital for scientists working on 
problems concerning our society as a whole, such as those faced in public health. It is useless to 
find all the answers if we cannot convince policy makers or the public of their worth. 
 
The rest of the introduction consists of two parts; the first is a broad introduction for a broad 
audience into the biology and epidemiology of infectious diseases and mathematical models and 
their application. To be useful these sections are highly simplified and as such could be considered 
'wrong'. I find this a fitting state of affairs for a thesis presenting models.24 The second part is a brief 
scientific review of relevant literature and existing methodology. 
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General Background 

Infectious diseases 

The mathematical models that form the core of this thesis are tools to infer characteristics of 
infectious disease dynamics from information both on cases and pathogens. We will briefly discuss 
the biology of infectious diseases, and the fields that have traditionally studied these two distinct 
types of data: epidemiology and molecular biology. 
 

Biology 

Biology is the study of living things, and as such has always been fascinating for humans around the 
globe. Relatively few biologists are theorists; mathematics is not the essential tool it is in physics or 
engineering.25 The reason is that biology isn't exactly rocket science; it's infinitely more complex. 
What follows is a simplification. 
 
The basic building blocks of life are cells, small living units less than a tenth of a millimetre in 
diameter. Although simple life forms such as bacteria consist of one cell, we humans consist of 
trillions26 (most of those however, again being bacteria27). Although the shape, size and content of 
cells varies enormously, they all use the same alphabet: DNA. 
 
The `language of life' is written in a large molecule called deoxyribonucleic acid, or DNA. DNA 
usually consists of a double helix of two strands,28 where a strand consists of a long chain of smaller 
molecules called nucleotides. These usually come in four varieties: adenine (A), cytosine (C), 
guanine (G) and thymine (T). Short sequences of these nucleotides, called genes, are read by the 
cell's machinery to form specific proteins, the molecules that do all the real work within the cell. 
Even the simplest mutation (alteration of the nucleotide sequence, or genetic code) can completely 
destroy the function of the protein that is coded for. Mutations, however, happen all the time when 
DNA is copied (for instance when the cell duplicates), as the wrong nucleotides can be accidentally 
inserted in the newly formed sequence. Some organisms, such as humans, employ ways to identify 
and repair such faulty sequences, leading to a lower 'mutation rate' (i.e. the per nucleotide 
probability of a mutation per replication or per unit of time). There are however two sides to the 
coin; although most mutations are deleterious, without them evolution could not have taken place. 
 
Infectious diseases are caused by micro-organisms, such as parasites, fungi, bacteria and viruses, 
known as 'pathogens' (deriving from the Greek for 'the causing of suffering'). To be more precise, 
viruses are not usually considered an organism, and there are some infectious diseases caused by 
misfolded proteins ('prions'). Although microbes were discovered in the late seventeenth century by 
Anthonie van Leeuwenhoek,29 a 'curious gentleman' from Delft whose letters had to be translated to 
English, their role in disease generation was not understood until the late 19th century. Most of the 
important human infectious diseases are caused by viruses and bacteria. The two exhibit marked 
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differences in where they can be found and how they reproduce that are very relevant to molecular 
epidemiological inferences. 
 
Viruses are often not considered alive, as without a host they are completely inert. They are not a 
cell, being much smaller, and usually consist of little more than a small container with some DNA 
(or RNA, a similar molecule with the interesting property that it usually exhibits higher mutation 
rates). When coming across a host cell, viruses have evolved a diverse array of techniques to enter 
the cell and use its machinery to produce a large amount of new viruses. This is usually bad news 
for the host, as resources are consumed and cells are destroyed. Furthermore, the viruses can induce 
symptoms, such as cough or diarrhoea, that are beneficial to virus spread, but not to the host. Most 
organisms therefore employ an arsenal of countermeasures, called the immune system, to find and 
destroy viruses and infected cells. Unfortunately, as the mutation rate of viruses is very high and 
their generation time is very low, new mutants can arise that are sufficiently different that the 
immune system cannot identify them.  
 
Bacteria are single-celled organisms that come in a wide variety of sizes and shapes. Many species 
are spherical, and are called cocci, or rod-shaped, and called bacilli. They are ubiquitous on our 
planet, with total biomass roughly comparable to that of all other living organisms.30 Only a few 
species cause disease in humans, and even many of those are harmless in usual circumstances and 
live on the skin or in the nose of healthy people. Most bacteria have a single piece of DNA called a 
chromosome, which they inherit from their single parent. Although their mutation rates are not as 
high as those seen in viruses, they can pick up DNA from the environment or other bacteria and 
incorporate it into their own. Furthermore, some bacteria have additional small DNA molecules 
called plasmids that can be shared with other bacteria. Such ‘horizontal gene transfer’ (the bacterial 
equivalent for sex) is relevant for public health, as it is an important way in which bacteria acquire 
genes that confer resistance to antibiotics. 
 

Sequencing technology 

The last few decades have seen an explosion in our ability to read DNA from biological samples. 
The oldest genetic techniques were able to 'type' organisms, for example by looking at variation 
within a specific region of the genome (the full DNA), or by counting the number of repetitions of a 
certain short sequence of DNA.31 The first genome to be fully read was that of a virus in 1977,32 the 
first human genome was fully sequenced in 2001.33,34 The latest technologies have become so fast 
and inexpensive that soon medical doctors might sequence your genome for diagnostic 
purposes.35,36 We might expect the abundance of genetic data being generated will tell us everything 
we want to know about any living being. Unfortunately, reading the code isn't the same as 
understanding it; although a given sequence of nucleotides always codes for a single protein, the 
actual structure or function of that protein is rarely clear.  
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The speed with which our ability to read sequences has increased has not been matched by our 
ability to derive meaningful answers from the generated data. One reason is that the sheer amount 
of data is staggering; a single run of a sequencing machine yields terabytes of data. Handling these 
large amounts of genetic data have become an important part of the field of ‘bio-informatics’, where 
the main focus is on trying to map differences in genomes to differences in organism function (such 
as the relation between particular mutations and hereditary diseases). Another reason could be that 
collaborations with different fields have to be established; genetic data might be most valuable 
when combined with different sources of information, as is the case in molecular epidemiology. 
 

Epidemiology 

The study of infectious diseases at the population level, or epidemiology (from epidemic: 'on the 
people'), is relatively young. John Snow is often credited as the father of (modern) epidemiology, 
due to his correct identification in 1854 of a contaminated water pump as the source of a cholera 
outbreak in London.37 This credit might show the bias of the field towards physicians, as the Dutch-
born mathematician Daniel Bernoulli had used statistical techniques and life expectancy tables to 
calculate the benefits of variolation38 (deliberate infection with smallpox) almost a century before. 
Today much of infectious disease epidemiology is devoted to keeping a watchful eye on the 
prevalence of known diseases ('surveillance'), finding risk factors for disease and the 
implementation and evaluation of interventions, such as vaccine programs.39 
 
Although the majority of mathematical tools used in infectious disease epidemiology consist of 
well-known statistical techniques such as regression analysis, more complex questions can be 
tackled using more specific mathematical modelling. Pioneers in this field were Ross and 
McKermack, who formulated the first Susceptible-Infected-Recovered (SIR) model,40 which 
remains one of the most used mathematical models in infectious disease dynamics. Their 'SIR' 
model consisted of three coupled differential equations, describing the change in the number of 
susceptible (S), infectious (I) and recovered (R) (and assumed immune) individuals over time: 
 

𝑆′ = −𝛽𝑆𝐼 
𝐼′ = 𝛽𝑆𝐼 − 𝛾𝐼 
𝑅′ = 𝛾𝐼 

 
Key to the equations is the non-linear term βSI, which reflects the fact that for an infection to 
happen, you need both a susceptible and an infectious individual (reminiscent of the more widely 
known Lotka-Volterra equation describing predator-prey interactions41,42). A key quantity of this 
system is the so-called epidemiological threshold, or reproductive number at time 0: 
 

𝑅0 =
𝛽
𝛾
𝑆(0) 
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which is the average number of infections caused by one infectious individual in a fully susceptible 
population; large outbreaks of an infectious disease can only occur if 𝑅0>1. Using such equations, 
epidemiological data such as case counts over time can be coupled to relevant parameters such as 
𝑅0. This means we can inform our predictions about the future course of a disease or the impact of 
interventions using measurable quantities. 
 

Molecular epidemiology 

We can measure the similarity between genetic sequences, even if we do not understand the 
functional implications of their differences. For this reason, genetic data on pathogens can inform us 
on the epidemiological relationship between the infected individuals from whom the pathogens 
were sampled, a field of study called 'molecular epidemiology'. For example, genotyping has long 
been used to assess whether a number of observed tuberculosis cases could belong to the same 
transmission chain.43  
 
How much information genetic data adds depends largely on how fast the pathogen mutates, and 
how densely a population has been sampled. Only when a mutant pathogen succeeds in begetting a 
large number of offspring, either through selection or chance, can we detect it. When a mutation is 
so successful that after some time it is present in the genome of all pathogens in a population, the 
mutation has been ‘fixed’ and is called a substitution. More information is present in genetic data 
when the substitution rate is high. For example, genetic differences between individuals can be used 
to reconstruct their ancestries or family tree (called phylogenetic tree in evolutionary studies); when 
the substitution rate is higher this tree can be reconstructed more precisely. Some viruses have a 
sufficiently high substitution rate that if we sample infected individuals in an outbreak, the genetic 
differences between the viruses inform us of the transmission dynamics of the outbreak. When the 
substitution rate is lower, we find many identical sequences, which yield less information. 
Likewise, when the sampling fraction decreases, our picture of the outbreak becomes less clear. The 
quality and quantity of the available data largely determine which questions can be answered, and 
what methods of analysis are appropriate.44 For all but the most basic of these analyses, 
mathematical models and computer implementations are essential. 
 

Mathematics 

Mathematical models 

A model is a simplified description of a system under study. A mathematical model is such a model 
formulated in mathematical language, which has the benefit of being very precise. As mathematics 
itself is rigid (it's either a tautology or it's wrong), it might come as a surprise that mathematical 
modelling can be considered closer to art than to science. Many opinions exist on what constitutes a 
'good' model. Although formal model evaluation methods exist, confidence in a model is more often 
than not based on feeling. Perhaps the most important criterion for any model is its complexity; it 
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should not be so simple that we cannot learn anything new from it or that it cannot capture some 
critical characteristic of the system studied, but should not be so complex that we cannot learn 
anything new from it. 
 
Mathematical models can be used to investigate the behaviour of a system, or to quantify certain 
aspects of it. For example, using a model of infectious disease spread and vaccine effectiveness, it is 
possible to show that only part of a population has to be vaccinated to prevent spread of the 
disease.18 Alternatively, a similar model could be used to estimate this vaccine efficiency from data 
on outbreaks.45 Such quantifications crucially depend on the availability of sufficient and accurate 
data, and thus generally call for interdisciplinary approaches (mathematicians don’t measure). The 
methods described in this thesis are data-driven, meant for quantifying infectious disease dynamics. 
It is the unique position of the Institute, where epidemiologists, microbiologists and mathematical 
modellers reside in adjacent buildings, that has made such analyses possible. 
 

Likelihood 

Central to many statistical methods used today, in particular the methods described in this thesis, 
are so-called likelihood equations. The general concept is not hard to understand, and we can 
explain it using an ornithological example.  
 
When I walk through the meadow situated next to the Institute in which I work, I usually observe a 
number of birds. Let's call this number n. Of course, the number that I observe depends on the 
probability, for any given bird, that I spot it. Let’s call this number p (it is a number between 0 and 
1). As there are 100 birds present in the meadow, if the actual value would be p=0.5 (i.e. 50%), I 
would see 100×0.5=50 birds on average. The actual number of birds I see can vary quite a bit from 
day to day; anything between 40 and 60 seems likely, although even higher or lower numbers are 
still possible on rare occasions. We can write down a formula, the so-called probability distribution 
P(n|p), that gives the probability that I observe any particular number of birds n, given my 
observation skills p. For example, with a p of 0.5, the probabilities of spotting 50, 60 or 90 birds are 
0.08, 0.01 and 0.0000000000000001 (also see figure 1). 
 
The probability distribution P(n|p) is an example of a simple mathematical model. To build it, I 
assumed the value of n depends on p, which we call a parameter. I further assumed it does not 
depend on any other factor (like, say, the weather), which is a simplification. From these 
assumptions, I could derive the precise shape of the probability distribution. Even if I had made 
different assumptions, the derived probability distribution would always return zero for any n 
smaller than zero (I can’t spot a negative number of birds), and the sum of all the probabilities are 
always one (I must spot some number). 
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Figure 1. Graphical representation of P(n|p), the probability of observing n birds given my observational skills p, 
the fraction of birds I normally spot. The distribution is given for (solid) p=0.01, (dashed) p=0.1 and (dotted) 
p=0.5. The expected number of birds spotted is equal to 100×p, so 1, 10 and 50 for the three p values. 

 
When analysing data, we are not interested in the probability of the data given the parameters (we 
already know the data!), we are interested in what the data tell us about the actual values of the 
parameters. Rather than 'what is the probability of seeing n birds given my observation skills p?', 
the more sensible question in practice is 'what are my observation skills, given that I've seen n birds 
today?'. We can answer this question using the same formula P(n|p) we had before, using a 
different interpretation. Whereas before we fixed p and put in an n to obtain its probability, we now 
fix n and put in a p to obtain its likelihood (this is sometimes denoted by P(n|p)=L(p|n)). The value 
obtained is no longer a probability, as probabilities necessarily sum to one. The likelihood values do 
not sum to one; in fact, adding the likelihoods obtained when putting in all possible values of p can 
yield any number. Any single likelihood obtained by putting in one p is therefore useless. However, 
the likelihood values for different p can be compared; these comparisons are often used to find the 
most likely p. For example, on my walk today I saw 10 birds. We can see from figure 1 that the 
most likely p value would be 0.1, as the corresponding distribution gives the highest likelihood 
value for n=10. That the most likely p value is 0.1 should not be a surprise, as the expected number 
of observed birds is exactly 100×0.1=10 when p=0.1. 
 

Bayesian statistics 

In the real world, there is often more information available than just the particular observations we 
are calculating with. For example, I am a mathematician, and it is common knowledge that all 
mathematicians generally look at their shoes whilst walking. This means we can safely assume my 
bird-spotting skills are rather poor, even before I’ve set foot in the meadow. Incorporating this type 
of knowledge that we have beforehand (or 'a priori') in our mathematical analysis is called Bayesian 
statistics (named after Thomas Bayes, an eighteenth century mathematician and Presbyterian 
minister who didn't formulate what is now known as Bayes' law, a simple theorem relating the 
probability and likelihood equations). Although no-one disputes Bayes' law, opinions differ as to if 
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and how such a priori knowledge should be incorporated. Nevertheless, Bayesian statistics is 
nowadays used throughout science.  
 
From a Bayesian point of view, the combination of data and a model are just something to change a 
prior distribution (what we believed a parameter to be) into a posterior distribution (our best guess 
as to the parameter’s value given all information). For example, I am fairly confident I spot 50% of 
all birds; from this belief I can construct a prior distribution for p, specifying precisely how likely 
each value of p is a priori, where p=0.5 is the most likely value (see figure 2A). During my walk, I 
observed 10 birds (the data). This value is much lower than the value of 100×0.5=50 predicted by 
my prior; maybe I’m less observant than I thought. Mathematically, this means the value of 10 
observed birds changes my prior assumption into a posterior distribution that deems lower p values 
more likely than the prior did (see figure 2A). If I repeat this measurement over several days, the 
actual value of p will become much clearer, and shape of the prior becomes less important (figure 
2B). If I constructed a prior distribution that was more peaked, the posterior estimate would differ 
less. For example, if I were very confident in my personal abilities (hypothetically speaking, of 
course), only a few observations would not shake my faith, and I would cling to the value of p=0.5  
(figure 2C). 
 
What is important in practice is that the more informative the data are, the larger we can expect the 
difference between the prior and posterior to be. With abundant, precise data, it hardly matters what 
we put in as prior. With a small amount of data, the best guess we can make is effectively the prior; 
what we already thought before we started measurements. It is thus possible to get very strong 
results even with terrible data; just put in very strong prior beliefs! When we are more interested in 
what the data tell us (like in this thesis), we can use uninformative priors; distributions that 
effectively say we have no idea what the actual value is. This is a concept of considerable debate; it 
turns out to be surprisingly hard to assume nothing.46 
 

Computation 

In many applications in science we can write down how likely a certain set of parameters is, given 
our observed data. This has become a useful exercise in the last few decades, as computers allow us 
to find the most likely parameter values and associated uncertainty by computing the likelihood of 
all possible sets of parameters. Unfortunately, even with fast computers this is often infeasible due 
to the large number of possible parameter values that would have to be evaluated. 
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Figure 2. In Bayesian statistics, prior beliefs (left column) are transformed into posterior distributions (right 
column) by data (middle column). (A) I believe I can spot 50% of all birds, this translates into a prior 
distribution that is highest for p=0.5 (left). Today, I spotted 10 out of 100 birds (middle), which is indicative of 
an observational proficiency of p=0.1. The mathematics tell us the truth lies somewhere in between; the prior 
distribution and data together yield a posterior with a most likely value of p=0.3. (B) When I have the same prior 
distribution as before (left), but measurements over a whole week (middle), the posterior distribution differs 
more from the prior. This most likely value now is p=0.14. (C) Being more certain about a prior belief can be 
incorporated by using a more peaked prior (left). This peaked prior distribution shows only the value of p=0.5 is 
likely; other values are not. The same data as in (B) then have less impact: the posterior distribution (right) is 
very similar to the prior, having shifted only the tiniest amount to the left. This reflects the fact that more data are 
needed to convince someone very certain of his beliefs. 

 
In many applications, varying a parameter by a tiny amount will also change the likelihood of that 
parameter by a tiny amount. As a simple example, consider three parameters a, b and c, all between 
0 and 1. Let’s use their sum as a simple example of a likelihood, so the likelihood of the set (𝑎, 𝑏, 𝑐) 
is 𝐿(𝑎, 𝑏, 𝑐) = 𝑎 + 𝑏 + 𝑐. Then all parameters close to (1,1,1) are pretty likely, whereas all 
parameter close to (0,0,0) are very unlikely. In general, the space of all possible parameters will 
have regions consisting of unlikely and (usually smaller) regions consisting of likely sets of 
parameters. A straightforward way to speed up computation is therefore to focus on those regions 
where parameters are likely. This is not always as simple as it sounds, as the space of all parameters 
can be high dimensional and we do not know beforehand where the likely parameters are. 
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One of the most popular techniques that makes use of this continuous nature of likelihoods to 
reduce computational burden is called Markov chain Monte Carlo (MCMC). An MCMC is a chain 
whose elements are sets of parameters. The chain is started at a random location in the parameter 
space, i.e. the first element is a randomly chosen set of parameters. In our example from above, let’s 
start at (0.37,0.14,0.42). The candidate for the next element is a different set of parameters 
obtained by changing all of the parameters in the first set a tiny amount. In the example, the 
candidate could be (0.31,0.11,0.47). If this new set is more likely according to the likelihood 
equation and prior, the newly chosen parameters will be the next element in the chain. If the set is 
slightly worse than our current set, we might still pick it, but with a low probability. On rejection, 
we just stick with our current set. In our example, we would switch to the new proposal with 

probability 𝐿(0.31,0.11,0.47) 
𝐿(0.37,0.14,0.42)

= 0.31+0.11+0.47 
0.37+0.14+0.42

= 0.89 
0.93

≈ 0.96. With probability 1 − 0.96 = 0.04 we 

would stick with our old set. This simple procedure achieves two important things. First, by 
preferring likely sets of parameters it quickly finds those regions of the parameter space consisting 
of likely parameter sets. Second, due to the particular construction of the chain, the fraction of times 
a certain parameter value is found in the chain is proportional to how likely this value is. Thus the 
chain gives us the information we want: the posterior distribution of our parameters.  
 
The advantage of MCMC’s is that they guarantee to give the exact solution, no matter how 
complicated the problem. The disadvantage is that this exact solution is only reached after an 
infinite calculation time. For finite computation time, in general no guarantees can be given. The 
reason the technique is used is that it can often give good approximations to the actual solution in a 
reasonable short time. How reasonable this is, depends on the complexity of the problem and on a 
number of technical details in implementing the algorithm. MCMC's are used several times 
throughout this thesis. 
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Existing methodology 
The methods presented in this thesis were explicitly designed to combine genetic and 
epidemiological data. It should come as no surprise that such methods build on, or are inspired by, 
existing methodology, much of which is focused on either of the two data types. Chapter 2 uses the 
theory of branching processes to analyse cluster sizes defined by genetic data. Chapters 3 and 4 are 
inspired by clustering techniques built to analyse spatiotemporal data, and extend them to identify 
outbreaks in molecular epidemiological datasets. Chapters 5-7 provide and illustrate a method to 
reconstruct transmission trees, which is feasible when all or most individuals in an outbreak have 
been sampled and sequenced. As chapter 7 explains, this method can be seen as a fusion of 
transmission tree reconstruction methods based on epidemiological data with phylodynamical 
methods based on genetic data. Here we will discuss each of these existing approaches. 
 

Branching processes 

A branching process is a stochastic process that models a reproducing population. Each individual 
in generation n begets a number of offspring in generation n+1, drawn from a discrete probability 
distribution P(X). A branching process can be used to model transmission of infectious disease, 
when it is reasonable to assume that each infectious individual encounters the same number of 
susceptible individuals. Typical examples are a low endemic disease or the initial phase of an 
epidemic. The average number of new infections caused by an infectious individual in a fully 
susceptible population (R0), is then equal to the expectation E(X) of P(X). The difference in 
infectiousness among infected individuals is related to the variance of the distribution. 
 
Branching processes can be used to make inferences about infectious disease dynamics by 
considering the final sizes of epidemics (i.e. the total number of individuals infected in an 
outbreak). When E(X)<1 the process will die out: the size of the epidemic will be finite with 
probability 1. When E(X)>1 the size of the epidemic can become infinite with positive probability 
(which shows that a branching process should not be used to describe large epidemics). For a broad 
class of probability distributions, we can calculate the probability that the process will reach a 
certain size.47 This feature can be very valuable when small outbreaks are observed, as the value of 
R0 can be estimated from the outbreak sizes.48 A branching process analysis was used, for example, 
to show that measles in Britain was close to causing large-scale epidemics following a drop in 
vaccination coverage.49 
 
An observed distribution of final sizes can reveal the heterogeneity in infectiousness of infected 
individuals.50 This concept is important, as a high heterogeneity ('superspreading') causes faster and 
more explosive outbreaks and calls for different intervention measures.51 Genetic information here 
can play a valuable role; we can infer the offspring distribution required to quantify superspreading 
by analysing the size distribution of clusters of cases infected by pathogens with identical genotypes 
(chapter 2).  
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Outbreak detection 

In surveillance of infectious disease, an important task is the detection of local outbreaks. A general 
statistical procedure to do this would be to compare the number of detected cases to the number 
expected when no outbreaks are present.52-54 Such approaches can be extended by also taking the 
location of cases into account.55-57 One well-known example of such a technique is the so-called 
space-time scan statistic,58 in which the number of cases in a scan window is compared to the 
expected number when there are no local outbreaks. A scan window consists of all points within a 
maximum distance in space and time away from a certain source; the windows take the shape of 
cylinders in space-time. Comparison of scan windows with a range of sizes and locations will reveal 
the windows most likely to contain outbreaks.  
 
Pathogens derived from the same outbreak will show identical or very similar genetic profiles. 
Thus, genetic data on pathogens can improve the detection of local outbreaks.59,60 However, it is 
hard to say how large a genetic difference should be before we conclude that two cases are not 
infected in the same outbreak. In general, to answer this question requires detailed information on 
pathogen substitution rates and genetic diversity worldwide, information that is often not available. 
We can work around this problem by not focussing on absolute differences but on the correlation 
between distances in the different types of data we gather: temporal, spatial and genetic. Distances 
for cases infected in the same local outbreak will be small for all three data types. This principle can 
be exploited to identify local transmission using minimum a priori knowledge on the pathogen or 
population at risk (chapters 3-4). 
 

Transmission tree reconstruction 

One intuitively clear and powerful method to infer infectious disease dynamics at a very detailed 
scale is the reconstruction of transmission trees. A transmission tree is defined as the set of 
transmissions that gave rise to an outbreak; reconstruction of this tree means estimating who 
infected whom. When the tree is known, quantities such as the effective reproduction number,19 
heterogeneity in offspring distribution51 and covariates of infectiousness can be easily estimated.  
 
When there are no missing data, the mathematical estimation of a transmission tree 𝑇 is relatively 
straightforward. Conditional independence of transmission events is assumed, meaning that the 
likelihood of a tree is given by the product of the likelihood of its links: 
 

𝑝(𝐷|𝑇) = �𝑝(𝐷𝑎,𝐷𝑏|𝑒𝑎𝑏 = 1) 

 
where 𝐷 = {𝐷𝑖} are the data for all cases i, 𝑒𝑎𝑏 = 1 denotes an edge from a to b (i.e. a infected b) 
and 𝑝(𝐷𝑎,𝐷𝑏|𝑒𝑎𝑏 = 1) denotes the likelihood of a having infected b. The exact formulation differs 
per application. For example, researchers can focus on the distribution of time between 
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infections,19,61 on geographical distance between cases62 or on the intensity of contacts made 
between different groups of people.63  
 
When information is available on susceptible individuals who escaped infection, the absolute 
infectiousness of infectious individuals can be estimated. This means we can compute, for any pair 
of infectious and susceptible individuals, the probability that an infection will occur between them 
within a defined time period. When information on susceptible individuals is unavailable, as is often 
the case, the infectiousness f is only known up to a constant. This means we can only look at the 
relative infectiousness of infectious individuals: 
 

 𝑝(𝑒𝑎𝑏 = 1|𝐷) =
𝑓(𝑎 → 𝑏|𝐷𝑎,𝐷𝑏)
∑ 𝑓(𝑖 → 𝑏|𝐷𝑖 ,𝐷𝑏)𝑖

 

 
which can still inform us on covariates of infectiousness. For example, are people more infectious if 
they are older or have more severe symptoms? 
 
When there are missing data, such as unobserved times of infection, the transmission events are no 
longer independent. For example, information on who infected an individual gives information on 
when the latter was infected, which gives information on whom the individual could have infected 
in turn. This is not a large problem for one-dimensional data like time, as infection times can be 
estimated simultaneously from dates of symptom onset or from sampling dates. Infection times are 
then considered known during computation steps and we can still use the equations above. 
 
Genetic data on pathogens can inform us on the transmission tree if the pathogen measurably 
mutates during the outbreak. This concept was pioneered by Cottam et al.,22 who restricted their 
epidemiological analysis of transmission trees for an outbreak of foot-and-mouth disease to those 
that corresponded to the phylogenetic tree (i.e. the tree of ancestral relationships among individuals) 
derived from viral sequence data. This sequential approach loses information present in the 
phylogenetic trees, as all trees with a likelihood above a certain cut-off are deemed equally likely, 
and all other trees are discarded. The problem can be overcome by considering the two data types 
simultaneously64 (chapter 5). In this approach, the evolutionary process is simplified by assuming a 
mutation is fixed only at time of transmission. This means the transmission events can still be 
considered independent, which allows for faster calculation. Note that when sequences are missing, 
they cannot be efficiently estimated simultaneously like infection times, due to their high 
dimensionality (i.e. the number of base pairs sequenced). 
 
The approach of considering all data simultaneously64 was further built on by Morelli et al.,65 who 
proposed a model that incorporated a mutation rate to model the dependence between time and 
genetic distance. In this model, the evolutionary time between to samples is taken to be the sum of 
the times between sampling and transmission, which is equivalent to the assumption that coalescent 
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events of viral lineages coincide with transmission events between hosts. The actual relationship 
between host epidemiological and pathogen genetic data is slightly more involved, and depends on 
within-host pathogen dynamics66 (chapter 7).  
 

Phylogenetic tree reconstruction 

When individuals reproduce, the genome of their offspring is rarely identical to their own. When 
the differences arise through mutations, it is possible to reconstruct the ancestry, or phylogenetic 
tree, of individuals through their genetic sequences. Reconstructing phylogenetic trees from 
sequences is a field of study in itself. The aim is to find the ancestry that best matches measured 
genetic distances between individuals.67 This can be done by finding the likelihood of a 
phylogenetic tree P and mutational model µ given sequence data S. To find an expression for the 
likelihood, we make the assumption that mutations accumulate at a certain rate.68 This rate may 
vary over parts of the tree,69,70 and some mutations can be more likely to occur than others.71 In 
particular, synonymous mutations, which do not alter the protein coded for, are assigned another 
rate than non-synonymous mutations. Furthermore, not all nucleotides are equally likely to mutate 
to all other nucleotides. Given their molecular size, the purines A and G are more likely to mutate 
from one to the other than into one of the pyrimidines C and T, and vice versa. These assumptions 
together form the substitution model µ, yielding an expression for the likelihood 
 

𝐿(𝑃, 𝜇|𝑆) = �� � 𝑃(𝑠1 → 𝑠2|Δ𝑡, 𝜇, 𝑙)
𝑒∈𝑒𝑑𝑔𝑒𝑠{𝐴,𝐶,𝐺,𝑇}𝑁

𝑀

𝑙=1

 

 
where M is the number of nucleotides sequenced, N is the number of internal nodes of the tree, and 
𝑃(𝑠1 → 𝑠2|Δ𝑡, 𝜇, 𝑙) is the probability of mutating from one state (𝑠1) to another (𝑠2) over an edge e 
of the tree. This probability depends on the substitution model 𝜇, the length of the edge Δ𝑡 and the 
position of the nucleotide 𝑙.  
 
The likelihood equation above can be used to sample the space of all trees and parameters using an 
MCMC. Calculation of the likelihood as written above is computationally costly; the number of 
elements over which the equation sums is 4N. The so-called Felsenstein’s pruning algorithm can 
substantially reduce this number using the tree structure of the phylogeny, by calculating the 
likelihood from the leaves up.72 Even with this algorithm, however, searching the entire tree space 
is a costly procedure73,74 (in fact, finding the maximum likelihood tree is NP-hard75); most 
researchers in practice use freely available software packages to do the calculations for them.76 
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Phylodynamics 

Coalescent theory 

The relationship between genetics and population biology is studied in the field of population 
genetics.77 Founded at the start of the twentieth century, this mathematically oriented field attempts 
to answer questions on evolution, with much focus on change of frequencies of mutants in 
populations. An important breakthrough for our purposes was the development of coalescent 
theory,78-80 which makes the connection to phylogenetic trees. The crucial idea of coalescent theory 
is that individuals will be more related (i.e. their most recent common ancestor will be closer in 
time) when the population to which they belong is smaller. For example, two people randomly 
selected from Bilthoven will be more likely to be related than two people randomly selected from 
Asia. 
 
The relationship between population size and phylogenetic trees can be made more specific under 
some explicit assumptions. Let's consider a clonal population of size I with discrete generations, 
where each individual has one parent in the previous generation, chosen randomly. This is a simple 
form of the so called Wright-Fisher model,81,82 named after two of the founders of the field. For any 
two individuals randomly chosen from the current generation, the probability that they have the 
same parent in the last generation is 1/I. This means the time to the most recent common ancestor 
(MRCA) is geometrically distributed with parameter 1/I; the expected number of generations we 
have to go back to find the MRCA is exactly the population size. For n individuals (where n is small 
compared to I) , the expected number of generations we have to wait for the first MRCA of any pair 

is 
�𝑛2�

𝐼
� , as �𝑛2� pairs can be formed. This means that the branch lengths of the phylogenetic tree 

reconstructed from genetic data of a number of individuals can be directly related to the, possibly 
time-varying, size of the population to which they belong.83-86 
 
Only relatively recently have coalescent approaches been applied to study infectious disease 
dynamics,87-89 by analysing phylogenetic trees constructed from pathogen sequences (hence the 
field's name:  phylodynamics90). These techniques have been used to address questions on the 
incidence and prevalence of a disease,91-94 geographical spread of disease,95,96 mode and timing of 
unobserved transmissions,97,98 sexual risk behaviour99 and population structure.100-103 These 
quantities are important to public health but can be hard to measure by standard epidemiological 
approaches.  
 

General framework 

In phylodynamical methods, the objective is generally to derive the likelihood of a particular model 
of disease transmission, given genetic sequence data. The likelihood is usually separated into two 
parts, letting the phylogenetic tree P form an intermediate between the sequence data and the 
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transmission parameters of interest.20,65,93 First, the likelihood of a phylogenetic tree P given 
sequence data S and a mutational model µ is derived as above. Second, the likelihood of the 
transmission model parameters α given the phylogeny is derived. More precisely,104,105  
 

𝐿(𝛼, 𝜇,𝑃|𝑆) = 𝐿(𝑃, 𝜇|𝑆)𝐿(𝛼|𝑃, 𝜇, 𝑆) = 𝐿(𝑃, 𝜇|𝑆)𝐿(𝛼|𝑃) 
 
where the second equality follows from conditional independence; when the phylogenetic tree is 
known, the sequence data and mutation model give no further information on the transmission 
model. The phylogeny is a nuisance parameter; it is usually integrated out to obtain the likelihood 
of the model parameters given the data.106 
  
The part of phylodynamical methods most researchers focus on is the relationship between a 
mathematical model of infectious disease transmission and the phylogenetic tree: 𝐿(𝛼|𝑃). Early 
approaches were based on coalescent theory, where 𝛼 consisted of the effective population size to 
be estimated from the sequence data. Subsequent models allowed for increasingly flexible 
population size models, going from simple constant and exponentially increasing sizes88,97,107 to 
complex approaches using semi-parametric approaches and Gaussian Markov random fields.108-111 
 

Infectious disease specific population models 

Until recently, all population models 𝐿(𝛼|𝑃) used in phylodynamics were general models of 
effective population size, not specific for infectious diseases. In analysis of infectious disease 
dynamics, such models have two shortcomings. They do not take into account the depletion of 
susceptible individuals and they assume that the fraction of sampled infected hosts is very low, 
which need not be the case for infectious diseases. Two transmission processes have been proposed 
to take the place of the Wright-Fisher model; the SIR model91 and the birth-death model.112 
 
The central notion of the SIR model is that the number of new transmissions depends on both the 
number of infected and the number of susceptible individuals. Thus the rate 𝜆(𝑡) at which 
coalescent events occur depends not only on the number of infected individuals 𝐼(𝑡), but also on the 
number of susceptible individuals 𝑆(𝑡). For the classic coalescent theory we have  

𝜆(𝑡) =
�𝑛(𝑡)

2
�
𝐼(𝑡)

�  , where by n(t) we denote the number of lineages at time t with extant progeny. 

The more general form is91,113,114  
 

𝜆(𝑡) =
�𝑛(𝑡)

2
�

�𝐼(𝑡)
2
�

� 𝑓(𝑡) 
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where 𝑓(𝑡) is the rate of new infections per unit time. The term 
�𝑛(𝑡)

2
�

�𝐼(𝑡)
2
�

�  is the probability 

that two randomly selected infected individuals have sampled offspring, i.e. are represented by one 
of the branches of the phylogenetic tree. For SIR models, 𝑓(𝑡) = 𝛽𝐼(𝑡)𝑆(𝑡), yielding 
 

𝜆(𝑡) =
�𝑛(𝑡)

2
�

�𝐼(𝑡)
2
�

� 𝑓(𝑡) ≈
2 �𝑛(𝑡)

2
�
𝐼(𝑡)2

� 𝛽𝐼(𝑡)𝑆(𝑡) = 2 �𝑛(𝑡)
2
�𝛽𝑆(𝑡)

𝐼(𝑡)�  

 
which is proportional to the rate used in the classical coalescent when S is constant. The main 
advantage of using this adjusted expression for the coalescent rate is that it forms a bridge between 
standard epidemiological models and phylodynamics. This makes it possible to estimate 
epidemiological parameters directly from sequence data. 
 
In a birth-death model, we follow a set of individuals over time. These give birth to new individuals 
at rate g and are removed (i.e. die or recover) at rate b. At death, they can be observed (i.e. sampled) 
with probability s. The advantage of this very simple model is that the full joint probability 
distribution of a birth-death process and sampled phylogenetic tree can be specified.112,115-117 
Simultaneous estimation of g, b and s turns out to be impossible, but they can be estimated when 
additional information such as the time of most recent common ancestor is available.118-120 The 
main advantage of this method is that the sampling fraction is no longer an issue, and parameters 
can be estimated even for densely sampled epidemics, such as HIV epidemics, in which sequences 
are available for more than half of the cases.119,120 
 

Character states and population structure 

A useful way to incorporate additional data into phylogenetic analyses is by considering character 
states.121,122 A character is defined as any property of the pathogen sampled (or the individual it was 
sampled from) except the sequence itself. Using the character states at the tips of the phylogenetic 
tree, the states at the internal nodes can be estimated by constructing an appropriate model of the 
evolution of the character. A clear example of this approach is seen in the field of phylogeography, 
where the character studied is geographical location. If locations are known for all sampled cases, it 
becomes possible to estimate where a new epidemic arose, or what the important geographical paths 
of transmission are.96,123-125 This technique has been used to track the spread of the 2009 H1N1 
pandemic around the globe,126 and to show that the spread of rabies virus in African dog 
populations follows human movement patterns.98 
 
Another character state now being studied by phylodynamical approaches is the stage of the 
disease. This character is relevant for viruses such as HIV and the hepatitis B virus, where cases 



Chapter 1   

20 
 

first go through an acute phase before developing a chronic infection. Relative to the chronic phase, 
the acute phase is characterised by higher viral load, distinct symptoms and possibly higher 
infectiousness.127 As the fraction of new infections caused by cases in acute versus chronic phases 
affects the effectiveness of intervention strategies, it would be valuable to estimate the relative 
infectiousness of the two stages. Using a mathematical model that describes the process of 
acquiring a chronic infection after acute infection, it is theoretically possible to use phylogenies to 
estimate the infectiousness of cases in the different phases of a disease.102 
 
Finally, a lot of attention has gone to inferring population structure from phylogenies. Structure here 
means either that a population can be divided into groups with different properties relevant to 
spread of a disease (e.g. certain age groups are more infectious) or that large heterogeneities in 
infectiousness exist among individuals. Analyses of population structure are performed by using 
character states, as mentioned above,102,128 or by assessing the shape of the phylogenetic tree, as 
measured by various tree statistics.101 
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Thesis overview 
In chapter 2 we show how the notion of 'superspreading' (i.e. some infected individuals causing a 
disproportionately large number of secondary cases) can be quantified for tuberculosis using data 
on date of diagnosis, country of origin and genotype of the sampled bacterium. The genetic data 
here is of coarse resolution; although the population can be divided in groups of cases sharing the 
same genotype, no further distinction can be made within or among these groups. A mathematical 
model derived from branching processes allows for inference of heterogeneity in infectiousness 
based on the size distribution of these groups, indicating superspreading behaviour for tuberculosis. 
 
In chapter 3 we develop and apply a method to identify cases of infectious diseases that are 
epidemiologically related, which allows for detection of local outbreaks and risk factors for local 
infection. The method builds on existing clustering methods that identify groups of related 
individuals, and adds to it by specifically including genetic data. Although the data used here are 
still genotypes rather than sequences, there is now a clear measure of similarity between the 
genotypes, which allows for inter-group comparisons. In chapter 4 we apply this method to a 
dataset on MRSA in Dutch hospitals, containing MLVA types, dates of sampling and geographical 
locations of the patients. The analysis shows marked differences between MLVA complexes, and 
suggests a high proportion of infections are imported into the hospital. 
 
Chapter 5 describes a method to estimate the transmission tree of an outbreak of an infectious 
disease, based on epidemiological and genetic sequence data. The method is applied to an outbreak 
of avian influenza, and shows differences in infectiousness for different types of farms. Chapter 6 
extends this analysis by including data on farms not infected, and shows a statistically significant 
correlation between wind direction and the direction of spread of the disease. In chapter 7, we treat 
genetic data in a more sophisticated way, allowing for within-host genetic diversity. This approach 
shows the relationship between transmission tree reconstruction and phylodynamics. The approach 
is tested on simulated data, and illustrated on data on a small outbreak of foot-and-mouth disease.  
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Molecular typing is a valuable tool for gaining insight into spread of Mycobacterium tuberculosis. 
Typing allows for clustering of cases whose isolates share an identical genotype, revealing 
epidemiological relatedness. Observed distributions of genotypic cluster sizes of tuberculosis are 
highly skewed. A possible explanation for this skewness is the concept of ‘superspreading’: a high 
heterogeneity in secondary cases caused per infectious individual. Superspreading has been 
previously found for diseases such as SARS and smallpox, where the entire transmission tree is 
known. So far, no method exists to relate superspreading to the distribution of genotypic cluster 
sizes. We quantified heterogeneity in secondary infections per infectious individual by describing 
this number as a negative binomial distribution. The dispersion parameter k is a measure of 
superspreading; standard (homogeneous) models use values of k≥1, while small values of k imply 
superspreading. We estimated this negative binomial dispersion parameter for tuberculosis in the 
Netherlands, using the genotypic cluster size distribution for all 8330 cases of culture-confirmed, 
pulmonary tuberculosis diagnosed between 1993 and 2007 in the Netherlands. The dispersion 
parameter k was estimated at 0.10 (0.088, 0.12), well in the range of values consistent with 
superspreading. Simulation studies showed the method reliably estimates the dispersion parameter 
under a range of scenarios and parameter values. Heterogeneity in the number of secondary cases 
caused per infectious individual is a plausible explanation for the observed skewness in genotypic 
cluster size distribution of tuberculosis.  
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Introduction 
Worldwide, about 9 million tuberculosis (TB) cases are reported yearly, leading to an estimated 1.4 
million deaths per year.129 Moreover, about a quarter of a million cases of multi-drug-resistant TB 
are notified annually, posing a new threat in TB control.  
 
IS6110 restriction fragment length polymorphism (RFLP) typing distinguishes between different M. 
tuberculosis strains by visualizing repetition and genomic location of the IS6110 repetitive 
sequence.130 Since the IS6110 transposition rate is low,131 cases that are in the same transmission 
chain will usually have identical DNA fingerprints; therefore genotyping of M. tuberculosis is often 
used to trace presumed epidemiological links between TB cases. Furthermore, it is thought that the 
low genetic diversity among M. tuberculosis isolates in high-prevalence areas is related to high 
levels of recent transmission.43 
 
There is thus a relationship between TB epidemiology and DNA fingerprints. We define a 
genotypic cluster as all isolates sharing an identical fingerprint. A large genotypic cluster is usually 
the result of local transmission, while rare genotypes are due to reactivation or import of cases or 
mutation. Luciani et al.132 noted that the distribution of sizes of genotypic clusters for many datasets 
found in the literature is highly skewed, featuring some very large clusters and many of size one 
(i.e. unique DNA fingerprints). The authors suggested this skewness could be indicative of an 
increasing prevalence, with older clusters being exceptionally large, and small clusters the product 
of recent mutation. 
 
An alternative explanation for the high skewness of the genotypic cluster size distribution is that a 
small proportion of all cases cause a large fraction of all infections, a phenomenon frequently called 
“superspreading”.51 There is anecdotal evidence that large TB outbreaks can be generated by a 
single case, diagnosed at a very late stage, causing many secondary cases.133 Furthermore, 
Vynnycky et al.134 estimated the variance to mean ratio of the number of individuals effectively 
contacted by a tuberculosis case in the Netherlands to be 20, indicating that some individuals could 
add disproportionately to the total number of infections caused. This heterogeneity in number of 
cases caused by an infectious individual has been observed for a range of infectious diseases.51 
 
To examine whether heterogeneity in number of cases caused per infectious individual could 
explain the observed distribution of cluster sizes, we study data on all pulmonary cases from the 
Netherlands isolated between 1993 and 2007. For this population the explanation of a growing 
number of tuberculosis cases does not hold, as there is no sustained transmission of the disease in 
the Netherlands. Instead it is regularly introduced from abroad, mostly by immigrants from high-
endemic countries, or caused by endogenous reactivation in (elderly) persons, often infected in their 
youth when TB prevalence was still high in the country.135 In the Netherlands all cases of 
tuberculosis are tested since 1993 and typed using IS6110 RFLP typing when culture-confirmed. 
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Standard tools for population genetic inference, such as the coalescent,132,136 assume random 
sampling from one large transmission tree, with a low sampling frequency. This does not apply to 
the Dutch tuberculosis data, which is sampled with a high sampling frequency from many small 
outbreaks. We therefore model spread of tuberculosis in the Netherlands as a subcritical branching 
process48 where each reactivation or introduction from abroad can trigger a minor outbreak. We 
model the number secondary cases caused by one infectious individual by a negative binomial 
distribution; the dispersion parameter of this distribution gives a measure of superspreading. 
Adapting the branching process to allow for mutation during our study period, we derive likelihood 
equations for the distribution of genotypic cluster sizes and use these to estimate the negative 
binomial dispersion parameter from the observed genotypic cluster sizes.  
 

Materials and methods 

Data 

In the Netherlands, between 1993 and 2007, 21,155 patients were diagnosed with tuberculosis, of 
which 14,818 (70%) were confirmed by culture. Samples from all of these cases were subjected to 
IS6110 RFLP typing; strains with fewer than five IS6110 copies were subtyped with the PGRS 
probe137. The Netherlands Tuberculosis Register, holding epidemiological data such as immigrant 
status, was matched with the database holding genetic data, on the basis of sex, date of birth, year of 
diagnosis, and postal code. This yielded a total of 12,222 (82%) culture-confirmed patients with 
typing information, of which 8,330 were pulmonary cases. We exclude non-pulmonary cases since 
they are not infectious, focusing on infections which lead to secondary pulmonary cases. 
 

Transmission model 

We model the spread of tuberculosis as a branching process, where the number of secondary cases 
caused by an infectious individual is given by a probability distribution, called the offspring 
distribution. Following Lloyd-Smith et al.51 we assume a negative binomial offspring distribution 
with mean R and dispersion parameter k ),0( ∞∈ . This distribution is widely used to model 

overdispersed count data, such as the number of social contacts made by people over a fixed 
timeperiod.138,139 The parameter R could be considered an ‘effective reproduction number’. The 
dispersion parameter k governs the degree of superspreading; a lower value of k means a higher 
heterogeneity (figure 1). The variance-to-mean ratio of the negative binomial distribution is given 
by 1+R/k. As k ∞→ , the offspring distribution becomes a Poisson distribution, which would result 
from all cases being equally infectious, having the same fixed infectious period, and making contact 
at random. k=1 yields a geometric distribution, which is used in many infectious disease models 
such as simple SIR models.140 While this seems a plausible assumption for common diseases such 
as influenza,141 for some diseases such as SARS and smallpox k has been estimated to be as extreme 
as 0.1 or less.51,142,143  
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Figure 1. Probability distributions used in the inference procedure, for different values of the dispersion 
parameter k. (A-C) Distribution of the number of secondary infections caused per infectious individual, given by 
a negative binomial distribution with mean R=0.5 and (D-F) final size distributions for clusters. The columns 
show results for different values of the dispersion parameter k; (A,D) k=∞, as in a Poisson distribution (B,E) 
k=1, as in a geometric distribution and (C,F) k=0.1, a negative binomial distribution. The distributions become 
highly skewed for small k, e.g. while for the Poisson distribution (k=∞) 61 percent of all cases does not infect 
anyone else, for k=0.1 this number is 84 percent, even though the average number of infections remains the 
same. 

We take a transmission cluster to be all infectious cases resulting from one index case; this could 
include infections caused by secondary, tertiary, etc. cases. When the mean number of infections 
caused by one infectious individual is smaller than one, such a transmission cluster will not go on 
indefinitely, but reach a certain final size. The probability distribution for the final size of a 
transmission cluster Y is given by47,48 (appendix A.1): 
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Deriving the transmission clusters 

The observed genotypic clusters, i.e. all cases sharing the same DNA fingerprint, are not the same 
as the transmission clusters. This is because:  

• multiple introductions into the country can share a fingerprint (without being 
epidemiologically linked); 

• complete epidemiological and molecular data is not available for all cases in the study 
period, and no data is available for cases outside of the study period of 15 years, which 
could still belong to the same transmission cluster; 

• due to mutation, epidemiologically linked patients could exhibit different DNA fingerprints. 
To derive the transmission clusters from the genotypic clusters we use the rules described below. 
 
Any case with a DNA fingerprint not seen in another patient in the preceding two years is taken to 
be an index case, since most infected persons that develop disease do so within two years.144 This 
could underestimate the number of index cases: when two cases share a DNA fingerprint, there is a 
small chance they have introduced this fingerprint independently, even if they are found within two 
years. This is especially relevant for recently arrived immigrants, who are unlikely to have been 
infected in the Netherlands. We therefore assume immigrants that have been in the country for less 
than six months at date of diagnosis are index cases themselves, having brought the bacterium from 
abroad rather than having been infected in the Netherlands. This means that if a case found in the 
two years preceding the diagnosis of a recently arrived immigrant has the same DNA fingerprint as 
the immigrant, the genotypic cluster formed by all cases with this fingerprint actually consists of 
two transmission clusters, the immigrant being the index case of one of them (figure 2). 
 

 
Figure 2. Cartoon illustrating the identification of transmission clusters from a genotypic cluster.  Puppets 
represent patients infected with the same DNA fingerprint before, during or after the study period 1993-2007, the 
underlined puppet denotes a recently arrived immigrant. By defining a new transmission cluster when there are 
more than two years between consecutive cases, the method separates this genotypic cluster into three 
transmission clusters. Each transmission cluster has at least one index case, i.e. a case not infected by another 
case from the same transmission cluster. Index cases are denoted by arrows. Clusters near the edge of the study 
period may be partially observed, e.g. the left cluster in reality has size 3, rather than the observed 1. This is 
accounted for by assuming the sizes of the left and right clusters are at least 1, rather than exactly 1. Since the 
middle cluster has two index cases (the first case and a recently arrived immigrant), it actually consists of two 
overlapping transmission clusters. 

 

Cases that belong to a transmission cluster but were diagnosed before or after the study period are 
censored48 (figure 2). As linking of the two databases used lead to a match for 82% of cases, we 
assume that for each case in the study period full data is available with probability 0.82.  
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Transpositions of IS6110, resulting in a different DNA fingerprint, can occur during transmission in 
the Netherlands.145 We denote the probability that an infected individual will show a different 
fingerprint than that of its infector when progressing to disease by pm.146 These mutations lead to an 
offspring distribution which is still negative binomially distributed with unchanged dispersion 
parameter, but with reduced mean R(1-pm) (appendix A.1.2)  This means we cannot estimate R and 
pm separately; we therefore introduce the fingerprint reproduction number Rm, defined as R(1-pm).  
 

Inference of transmission parameters 

The likelihood of parameters Rm and k when ay,n clusters of size y with n index cases have been 
fully observed, and by,n censored clusters have been observed to have at least size y and n index 
cases is then  
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where f(y|n) is the probability a cluster with n index cases has size y given the parameters, and 1-
F(y-1|n) is the probability a cluster with n index cases has at least size y (see appendix A.1.3 for 
details). Using the likelihood function (equation 3), we can find maximum likelihood estimators for 
Rm and k and obtain confidence intervals by using profile likelihood.147 To assess the impact of our 
assumptions, we perform sensitivity analyses for the number of years between time-separated 
clusters and for the percentage of cases observed. 
 
Testing method performance on simulated data 
To test the robustness of the inference procedure we use simulated data. We want to test whether 
the algorithm is able to differentiate between different levels of heterogeneity in the offspring 
distribution. We do this by generating datasets under a range of parameter values, and estimating 
the parameters Rm and k using the proposed approach. 
 
We generate index cases, spread out uniformly over a time period starting 10 years before our study 
period and ending at the same time as our study period. Each case causes a random number of other 
cases, which is given by a negative binomial distribution with R=0.3, pm=0.1 and k varying per 
simulation. We take the time between onset of disease of the source case and the infected case to be 
exponentially distributed with rate 0.8 per year.148 We take a transposition rate of 0.1 per 
year.131,149,150 In the Dutch dataset, 110 instances of an additional index case in a cluster were 
observed. These were recently arrived immigrants with a previously seen DNA fingerprint, 
resulting in genotypic clusters actually consisting of two transmission clusters. We therefore 
randomly take 110 simulated genotypic clusters and set their fingerprint to be identical to that of 
another 110 randomly selected genotypic clusters. From these simulated datasets we take all cases 
that fall in our study period spanning 15 years, and randomly remove 18% of these to mimic the 
fact that in reality we have information on 82% of cases. We stop generating index cases when we 
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have observed 8000 cases. We then apply our inference method and compare estimated parameter 
values to the actual values we simulated with.  
 
In the simulations, Rm is consistently overestimated and sensitive to the different values of 
additional variables (figure 3). However, the value of k is only slightly overestimated, and the 
estimation is not sensitive to the additional variables. There is a clear distinction between estimates 
of k from simulations where k=1 and simulations where k=0.1. 
 

 
Figure 3. Performance of the method to distinguish between different levels of heterogeneity using simulated 
data. Point estimates are given for Rm and k for 1,000 simulations as described in the main text, using values of 
Rm=0.27 and k=0.1 and 1 (large dots). Colors denote different simulation scenarios, the median of the estimates 
for each of the estimates is given by a cross. Colors are as follows: the standard scenario (red), time between 
transmission clusters of  one (light green) or three (pink) years, a transposition rate of 2 per year (dark blue), no 
(orange) or 400 (light blue) clusters with more than one index case, and an infection rate of 1.5 per year (dark 
green). There seems to be a small overestimation of k consistent over all simulations, and a large overestimation 
of Rm dependent on the simulation assumptions. Importantly, the method can clearly distinguish between 
simulations under k=0.1 and k=1. 
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Results 
The 8,330 culture-confirmed pulmonary cases in the Netherlands formed 4,945 different genotypic 
clusters; figure 4 shows the distribution of their sizes. The observed genotypic cluster distribution is 
highly skewed. 81% of all clusters consist of only one case; these clusters contain 48% of all 
isolates. The largest cluster observed consisted of 119 cases. 
 
We find estimates of the fingerprint reproduction number Rm of 0.48 (95% confidence interval: 
0.44, 0.59) and the dispersion parameter k of 0.10 (95% confidence interval: 0.088, 0.12). This 
value for the dispersion parameter k is much lower than the values corresponding to the Poisson 
distribution (k=∞) and the geometric distribution (k=1) which are typically used in transmission 
models, and is suggestive of superspreading. 

 
Figure 4. The percentage of genotypic clusters having size 1 to 10, for all cases of culture-confirmed, pulmonary 
tuberculosis in the Netherlands from 1993 to 2007. A cluster of size one is an isolate with a unique DNA 
fingerprint. There are 62 (1.3%) genotypic clusters with size greater than 10 (not shown), the largest of which 
has size 119. 

 

To test for robustness, we showed that the estimation procedure is able to differentiate between 
values of k=1 and k=0.1 under a range of parameter values (figure 3), making it unlikely that the 
estimated low value could result from a transmission process without superspreading. In an 
additional sensitivity analysis, where we vary the minimum time between transmission clusters and 
the percentage of cases observed, we find the estimate of the fingerprint reproductive number to be 
sensitive to precise assumptions. However, the estimate of the dispersion parameter is insensitive 
(figure 5). Finally, we found this estimate to be insensitive to several of our assumptions regarding 
extra pulmonary cases, immigrants and recurrent mutations (appendix A.2). 
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Figure 5. Estimates and confidence regions for the fingerprint reproduction number Rm and dispersion parameter 
k under different assumption. Estimates are given for a minimum time between clusters of 1 (dotted), 2 (solid) 
and 3 (dashed) years, and a percentage of cases with complete data of (A) 70%, (B) 82% and (C) 100%. The 
estimated value of Rm depends strongly on the minimum time between clusters, but k is consistently estimated at 
0.1. 

 

Discussion 
The cluster size distribution given by RFLP typing of pulmonary cases in the Netherlands between 
1993 and 2007 is highly skewed, and consistent with a value of the dispersion parameter k for the 
number of secondary cases caused per infectious individual of 0.10. This value indicates severe 
heterogeneity in number of secondary cases caused per infectious individual. 
 
To the best of our knowledge, the dispersion parameter k has not been estimated before for 
tuberculosis. The low value of k=0.10 found is consistent with the range of values that have 
previously been inferred for other infectious diseases, such as smallpox, measles and SARS, and 
has been taken as an indication of superspreading.51 The value found is also consistent with the 
range of values observed for the heterogeneity in the number of different social contacts that 
participants reported to have made during a day139 or during a week.138 
 
Alternative explanations for the high skewness in the distribution of tuberculosis genotypic cluster 
sizes exist. First, it has been argued that the skewness could be due to an increasing prevalence of 
the disease.132 This explanation is implausible for our dataset, as the number of TB cases in the 
Netherlands is declining.151 Second, the skewness could be due to bacteriological factors, such as 
differences in transmissibility or transposition rates between different strains. Although there is 
some evidence that such bacteriological differences exist,152,153 the differences tend to be small or 
specific to certain types such as the Beijing genotype. It is therefore unlikely that bacteriological 
factors alone could result in the high skewness observed. 
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Simulations show our estimate of k to be robust under a wide range of assumptions. The actual 
value of k is slightly overestimated for most simulations, which makes the estimator conservative 
for our purpose. The value of the fingerprint reproduction number Rm, which is a lower bound for 
the effective reproduction number, is harder to estimate reliably; different assumptions lead to very 
different estimates. This is a consequence of the fact that the time between the onset of symptoms 
for a case and its infector can be much longer than the total study period.  
 
There are several factors which could possibly contribute to a high heterogeneity in secondary 
infections caused per infectious individual in tuberculosis, the separate contributions of which are 
hard to quantify.154 For example, heterogeneity might arise because some hosts are more connected 
in a social network, because of shorter latent periods in different age groups, because of increased 
susceptibility in certain risk groups or because some cases are diagnosed at a very late stage. 
Estimating the effect of each of these factors is a challenge, since it is likely many of them are 
contributing simultaneously. One possible way to estimate these contributions is to incorporate all 
factors in one detailed model.134 Another is to compare clustering patterns between high- and low-
endemic countries, which share some factors (e.g. bacteriological) but differ in others (e.g. control 
measures and HIV prevalence).  
 
A straightforward way of estimating the extent of superspreading for a given infectious disease is 
only available in those rare instances where the whole transmission tree for an outbreak is known. 
Recent studies on viral pathogens have focused on deriving related epidemiological measures from 
detailed phylogenetic trees.101,155 We have shown this estimation can also be done using final size 
equations. Furthermore, these final sizes can be found from genotypic clusters, even when 
transmission clusters cannot be separated on purely epidemiological grounds.  
 
Superspreading can be a major concern for disease control, especially for emerging diseases. When 
superspreading is present outbreaks tend to be explosive, and can be large even when R<1.51 For 
tuberculosis, the main implication for public health is that the most cost-effective control strategy 
consists of highly targeted interventions. This provides a theoretical basis for the recent debate to 
adjust the guidelines for tuberculosis control in low incidence regions to focus resources on settings 
where transmission is more likely, such as highly infectious cases or highly susceptible persons 
surrounding a case.156  
 
We conclude that the observed size distribution of clusters of tuberculosis cases with identical 
genotype in the Netherlands is consistent with a dispersion parameter that indicates superspreading. 
Although further research is needed to elucidate the causes of the observed heterogeneity, studies 
aiming to accurately describe the spread of tuberculosis will have to take this heterogeneity into 
account. 
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Surveillance systems of contagious diseases record information on cases to monitor incidence of 
disease and to evaluate effectiveness of interventions. These systems focus on a well-defined 
population; a key question is whether observed cases are infected through local transmission within 
the population or whether cases are the result of importation of infection into the population. Local 
spread of infection calls for different intervention measures than importation of infection. Besides 
standardized information on time of symptom onset and location of cases, pathogen genotyping or 
sequencing offers essential information to address this question. Here we introduce a method that 
takes full advantage of both the genetic and epidemiological data to distinguish local transmission 
from importation of infection, by comparing inter-case distances in temporal, spatial and genetic 
data. Cases that are part of a local transmission chain will have shorter distances between their 
geographical locations, shorter durations between their times of symptom onset and shorter genetic 
distances between their pathogen sequences as compared to cases that are due to importation. In 
contrast to generic clustering algorithms, the proposed method explicitly accounts for the fact that 
during local transmission of a contagious disease the cases are caused by other cases. No pathogen-
specific assumptions are needed due to the use of ordinal distances, which allow for direct 
comparison between the disparate data types. Using simulations, we test the performance of the 
method in identifying local transmission of disease in large datasets, and assess how sensitivity and 
specificity change with varying size of local transmission chains and varying overall disease 
incidence.     
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Introduction 
An essential question in contagious disease surveillance settings is whether cases result from local 
transmission within a population or from importation of infection from outside the population. This 
distinction is of importance, as interrupting local transmission calls for different interventions than 
stopping importation of infection. Unfortunately, distinguishing cases related through local 
transmission from cases that result from importation of infection is difficult. 
 
When occurrences of a contagious disease are monitored and stored in a standardized way, 
statistical algorithms can aid in identification of local spread of the disease. For example, drug-
resistant pathogens found in hospitals either are due to nosocomial transmission or are brought into 
the hospital by the patient. The former can be identified using surveillance data by assessing the 
number of cases in a fixed time period,59 this identification is essential in optimizing hospital 
control measures.  
  
Genetic sequence data of pathogens provide an informative data source for distinguishing between 
local transmission and importation. Sampled pathogens are now routinely genotyped or sequenced 
in many settings, offering the potential to distinguish cases that were infected in a local transmission 
chain from those that were infected elsewhere by evaluating small genetic differences between 
sampled pathogens. However, existing algorithms to find clusters of related cases in large datasets 
focus only on temporal data52-54,157-160 or on spatiotemporal data.55,56,58 Although genetic data are 
already being used to distinguish between different strains of the same species,59,161 the full 
potential offered by these data has so far not been utilized.60  
 
In outbreaks of contagious diseases, cases are caused by other cases. This property results in 
clusters of cases due to local transmission of contagious diseases having a different mathematical 
structure in space and time than clusters of cases due to non-contagious diseases. Clusters due to 
contagious disease tend to have a more chain-like shape (figure 1). However, existing clustering 
algorithms that focus on spatiotemporal data do not account for this property, as they often have not 
been developed specifically for contagious diseases.  
 

Here, we present a method that identifies locally infected cases from a dataset containing genetic, 
temporal and geographical data. For each pair of cases, we assess the distance between these cases 
with respect to their locations, their times of symptom onset, and the genetic sequences of the 
pathogens isolated from the cases. For a pair of cases not related through local transmission, we 
expect the distances in the separate data types to be independent. For cases that are part of a local 
transmission chain, we expect the distances between these cases to be small for each of the separate 
data types. We employ a form of hierarchical clustering that uses an ordinal distance between cases 
based on their genetic, temporal and geographical distances, and that reflects the fact that for 
contagious diseases, cases are caused by other cases. Clusters of cases resulting from local 
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transmission are identified by testing whether they have smaller pairwise distances than would be 
expected under a null hypothesis of independence between the location, time of symptoms onset, 
and pathogen sequence of cases. As the purpose of the present paper is to introduce and explain the 
methodology, and to illustrate its use and limitations, we use simulated datasets. To test the ability 
of the method to detect local transmission of a contagious disease, by assessing the sensitivity and 
false positive rate of assigning cases to local transmission clusters.  
 

 
Figure 1. Different patterns of disease clusters. Clusters of disease cases caused by a point source (A) show a 
different pattern than clusters caused by human-to-human transmission of a contagious disease (B). (A) When 
there is a point source cases tend to be found in the region around it. Modern scan statistics exploiting this 
pattern have been developed to find evidence of point sources causing disease.  (B) When contagious diseases 
are spread by human-to-human transmission, clusters tend to be more chain-like; the relevant distances are those 
between pairs of cases rather than between case and point source. Although it is still possible to find clusters in 
situation (B) with algorithms developed for (A), the problem can be handled more naturally by taking into 
account the different cluster pattern. 

 

Methods 
We consider a contagious disease surveillance dataset that consists of a large number of cases. We 
assume that for each case we know the date of symptom onset or sampling date, the geographical 
location, and the genetic type or sequence of the pathogen. Some of the cases might be infected 
within the time and region of the study, while others are infected elsewhere. Our objective will be to 
identify transmission clusters; sets of cases related through a local transmission chain. 
 
It is infeasible to consider every possible subset of cases in the dataset as a possible transmission 
cluster, because the number of subsets grows exponentially with the number of cases. We adopt a 
hierarchical clustering approach; here the dataset is sequentially divided into subsets of increasing 
size, yielding a tree-like structure, or dendogram (figure 2). The subsets encountered in this way are 
the most plausible local transmission clusters. 
 
To perform hierarchical clustering one needs a measure of dissimilarity between sets of cases. We 
construct such a measure using both a measure of dissimilarity between individual cases and a 
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linkage criterion that gives the similarity of two subsets as a function of the pairwise dissimilarities 
of their elements. 
 

 
Figure 2. Graphical representation of hierarchical clustering. Hierarchical clustering sequentially clusters 
together elements of a set, based on inter-element distances. (A) Representation of a set of six elements. Shown 
is a minimal spanning tree: the tree that connects all elements minimizing total distance. (B) The clustering 
provided by hierarchical clustering when using single linkage clustering. Sequentially, the two current subsets 
with smallest distance are joined together, where the initial subsets are the six elements. This means the distances 
of clustering on the x-axis in (B) are the distances of the minimal spanning tree in (A). In total five distinct 
clusters are passed before all elements cluster together.  

 

Linkage criterion 

We use single linkage clustering,162-164 the oldest  and arguably simplest linkage criterion, which 
states that the distance between two sets of cases is the minimum of the pairwise inter-element 
distances. A commonly cited drawback of this criterion is that it tends to create chain-like clusters, 
with a high average distance within the cluster. Contagious disease epidemiology seems one of the 
few settings where this property is actually an advantage. Since contagious disease cases are caused 
by other cases the distance between two sets is well described by be the smallest pairwise distance 
and chain-like clusters are very plausible; for instance outbreaks spreading to another location, or 
viruses mutating in a certain direction over time. 
 

Pairwise dissimilarity 

It is not immediately obvious how a dissimilarity should be defined between two individual cases. 
We have to combine a temporal, a geographical and a genetic distance, comparing days with 
kilometers and mutations. Furthermore, the absolute values of these distances are not directly 
informative. First, because we assume no knowledge on pathogen characteristics we cannot 
interpret any absolute value. Second, because many cases in one geographical, temporal or genetic 
region might be the result of a high population density, seasonality or higher pathogen fitness, 
respectively, rather than of local transmission. The relevant notion of dissimilarity between two 
cases is therefore not an absolute distance, but the number of other cases found in between the two 
cases,165 i.e. closer to both the two cases than the two cases are to each other. For example, two 
cases living a kilometer apart are more likely to be related when this is in a rural area than in a large 
city, two cases infected at the same day are more likely to be related when they are infected during 
an off-season than during an epidemic, and two identical strains are more likely to be related when 
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this is a rare sequence than when this sequence is ubiquitous. This relevant notion of number of 
cases in between two cases is not pathogen specific and allows for combination of the three 
disparate data types. We define the dissimilarity di for a given data type i between two cases a and b 
as (figure 3):  
 

di(a,b)=|{p: Di (a,p) ≤ Di (a,b) ˄ Di (b,p) ≤ Di (a,b)}| - 1   (1) 
 
where |.| denotes the number of elements of a set, ˄ the logical AND operator, Di the absolute 
distance for data type i (time, location or genetic) and the ‘-1’ ensures di(a,a)=0.  
 
Under our null hypothesis of all cases being unrelated, the dissimilarities in the different data types 
are independent. In contrast, dissimilarities between two cases infected in the same local 
transmission chain will be small for each of the data types. We obtain the full dissimilarity d 
between two points a and b as the expected number of cases in between them under the null 
hypothesis; the product of the data type specific dissimilarities (figure 3) 
 

d(a,b) = dgen(a,b) × dgeo(a,b) × dtime(a,b)    (2) 
 

When the data are continuous (i.e. all observed values are unique) it is possible to analytically 
obtain the full distribution for d under the null hypothesis. For instance, dtime is distributed as the 
absolute value of the difference of two independent random variables following a discrete uniform 
distribution on [1,N], with N the number of cases. When cases are infected locally there will be 
more small dissimilarities than under the null hypothesis. When a data type is discrete (as genetic 
data always are) several cases can have identical values for this data type. In this case we propose 
an extension to di(a,b) in which the dissimilarity between two cases is the expected number of cases 
in between them if this identical value was due to small measurement error (appendix B.1). 
 

 
Figure 3. Graphical representation of the dissimilarity measure between cases. Shown is a dataset of nine cases 
and two (one-dimensional) data types. For each of the two data types, the dissimilarity between the two black 
cases is given as the number of cases in between them (for that data type), including one of the two black cases. 
This definition ensures the dissimilarity between a case and itself is zero. The total dissimilarity between the 
black cases is then given as the product of these, here 5×4=20.  
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Finding putative transmission clusters 

We want to assess for a given subset S of the dataset D whether it is a local transmission cluster, i.e. 
whether the cases in S are closer together than would be expected under the null hypothesis. Define 
the unique ‘weakest link’ l(S) of a cluster as the largest dissimilarity in the minimal spanning tree of 
S; the larger the dissimilarity the less likely it is that all cases in the cluster are part of a local 
transmission chain. l(S) increases with S; we therefore compare l(S) to the value we would expect 
under the null hypothesis for a cluster of at least this size. We call S a putative transmission cluster 
(PTC) if the probability of observing a cluster of at least this size with weakest link at most l(S) 
under the null hypothesis is less than 0.001. This probability can be obtained by permuting the 
dataset (see appendix B.2 for details). The upper bound for the probability (here 0.001) should be 
small but other than that is arbitrary, and could be changed depending on the application. 
 
It is important to note that the tests applied to each of the clusters encountered in the hierarchical 
clustering scheme are not independent. For example, if a set of ten cases is found to be a PTC then 
the set of eleven cases constructed by adding one random nearby case will probably also be a PTC. 
This dependence is inherent to clustering algorithms and not necessarily a problem, as finding the 
cluster is usually more important than uniquely identifying all the cases that belong to it. It could, 
however, lead to a high false positive rate when assessing whether cases are correctly assigned to a 
PTC. 
 

Testing on simulated datasets 

To gauge the strengths and limitations of the algorithm, we tested it on simulated datasets where we 
know precisely which cases were part of a local transmission chain and which were import. The 
performance of any clustering algorithm depends on how strongly the clusters are separated in the 
data. For instance, if a dataset consists of several outbreaks clearly distinguishable in time and 
place, we expect an algorithm to do well. On the other hand, when cases belonging to one outbreak 
can be found throughout the spatiotemporal and genetic space, any algorithm will struggle to 
identify the outbreak. The simulations are thus focused on the intermediate region, where clustered 
cases are not easily distinguishable based on separate data types, but are still close enough that the 
combined information from the data types yields enough information for clustering. 
 
We use two measures of the performance of the proposed method. First, we take the percentage of 
locally infected cases correctly assigned to a PTC. Second, we take the percentage of imported 
cases incorrectly assigned to a PTC. The former is a measure of the sensitivity, the latter of the false 
positive rate. If sensitivity is high whilst the false positive rate remains low, the method could be 
suitable for use in outbreak detection. As we assess performance of the method at the case level, 
while statistical tests are performed at the cluster level, the false positive rate is not guaranteed to be 
beneath the p-value of 0.001 used. If the false positive rate becomes too large the method would be 
unsuitable for outbreak detection, as too many false alarms would be given, but might still be useful 
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in assessing properties of locally infected cases. We performed simulations under different 
incidence rates and with different sizes of the transmission clusters.  
 
Each of the simulated datasets consisted of many unrelated cases and a small number of local 
transmission clusters, containing in expectation ten percent of the total number of cases for each of 
the simulations. All of the cases have a time, position and genotype associated with them. The 
geographical position of an imported case A is given by xA ~ (Uniform(0,100), Uniform(0,100)), its 
time of sampling by tA ~ Uniform(0,100), and its genotype genA is represented by a string of 8 
random bits (each can be 0 or 1 with equal probability). Locally infected cases were simulated with 
infectors chosen as specified below. An infected case B and its infecting case A are related as 
follows; xB~xA+(Normal(0,4), Normal(0,4)), tB~tA+Exponential(1), and genB is generated from genA 
by flipping each bit with probability 1/16.  
 
The absolute spatial distance between two cases was taken to be the usual Euclidean distance, with 
distances in both dimensions the minimum of |x1-x2| and 100-|x1-x2|. This makes the geographical 
region a torus, ensuring all clusters are fully observed. The absolute genetic distance was calculated 
as the number of different bits, leading to an expected genetic distance of 0.5 between infector and 
infected. The absolute temporal distance was the absolute value of the time difference. From these 
absolute distances dissimilarities were calculated for each data type, and combined into pairwise 
dissimilarities using equation (2). 
 
In a first scenario all locally infected cases belong to the same outbreak, with an index case 
randomly chosen from the unrelated cases. In a second scenario we generated smaller transmission 
clusters, by letting 1/9 of all cases generate secondary cases according to a geometric distribution 
with mean R=0.5. These were themselves equally infectious, yielding transmission clusters of 
expected size 2. In the epidemiological literature this scenario is known as ‘stuttering transmission 
chains’:166 small outbreaks occur but large outbreaks do not, since the mean number of secondary 
cases per infectious case, or effective reproduction number, R, is smaller than one. In a third 
scenario we generated even more and smaller outbreaks, with each case generating new cases 
according to a geometric distribution with mean R=0.1, yielding a dataset with many very small 
transmission clusters of expected size 1.11. For all of these scenarios, we performed simulations 
with an initial number of unrelated cases of 90, 450 or 900, representing different incidence rates, 
yielding nine simulation scenarios in total. The expected total number of cases for these simulations 
are thus 100, 500 and 1000. For each of these nine scenarios, we simulated 100 datasets, and 
applied the methodology to identify significant clusters.  
 
The results of the clustering algorithm depend on how related infector-infected pairs are in each of 
the data types. When this relation is stronger, we expect clustering results to improve. We therefore 
performed additional simulations where the distances between infector-infected pairs are smaller 
(appendix B.3).  
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Many actual surveillance datasets face the problem of missing or unobserved cases. This is similar 
to a scenario where all cases are observed, but the relation between infector-infected pairs is 
weakened. To illustrate this, we performed analyses on simulated datasets from which we randomly 
discarded 20% of all cases (appendix B.4). 
 

Results  
Figure 4 gives a graphical representation of a typical simulated dataset with small outbreaks for 
each of the separate data types, figure S1 (appendix B) gives the same information for a simulated 
large outbreak. Under the chosen parameter settings, identifying the different clusters by only 
looking at the separate data types is challenging.  
 
The results for finding local transmission for all simulation scenarios are given in figure 5 and 
table 1. For each simulation scenario, we report the distribution and median of the percentage of 
cases assigned to a putative transmission cluster (PTC), both for locally infected and for imported 
cases. For all scenarios, the percentage of locally infected assigned to a PTC is higher than the 
percentage of import cases assigned to a PTC. This means that for all scenarios the three data types, 
when combined, provide sufficient statistical signal to identify local transmission. 
 
In general, the method assigns outbreak cases to PTC’s more often when transmission clusters are 
larger. This is no surprise as the strength of the statistical signal increases with outbreak size. This 
higher sensitivity comes at the cost of a lower specificity; when assessing the large outbreaks of 
expected size 100 the median false positive rate is 0.16, while it is near 0 for most other scenarios. 
The false positives here are cases that are, coincidentally, close to the actual cluster; the number of 
such cases increases with the size of the outbreak.  
 
The method has a lower sensitivity and specificity when the incidence rate is higher. This is because 
there are more unrelated cases per unit of space, time and genetics, while the absolute inter-
outbreak case distances remain the same. Therefore, the ordinal distance between outbreak cases 
becomes larger when incidence rates are higher, which makes it harder to identify transmission 
clusters (appendix B figure S3, table S2). When inter-outbreak case distances become smaller, 
outbreaks are easier to detect (appendix B figure S2, table S1).  
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Figure 4. Graphical representation of the three data types for a typical simulation. This simulation consisted of 
1019 cases of which 119 (12%) were infected by other cases. In total, there were 158 related cases belonging to 
39 transmission chains, and 861 unrelated cases (grey). To visualize individual transmission chains, three chains 
were chosen at random and drawn in blue, green and pink. (A) Geographical location of all simulated cases. The 
geography is a torus, so the right side is equated with the left side, and the top side is equated with the bottom 
side. (B) Simulated cases over time. (C) Simulated cases have one of 28=256 possible genotypes. For clarity, the 
distribution of cases over 64 genogroups is plotted; a genogroup is defined as a set of four genotypes that are 
identical up to the last two digits. The order of the genogroups on the x-axis does not reflect genetic distance. 
Note that outbreaks cannot be accurately identified using only one of these data types. 

 
Table 1. Median of sensitivity/false positive rate of assigning locally infected cases to a putative transmission 
cluster for simulated datasets. 

 High incidence Low incidence Very low incidence 

Large outbreak 1.00/0.16 1.00/0.06 1.00/0.01 

Small outbreaks 0.49/0.01 0.58/0.01 0.60/0.00 

Very small outbreaks 0.06/0.00 0.08/0.00 0.11/0.00 
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Figure 5. Sensitivity (black) and false positive rate (grey) for analyses on simulated datasets. For each of nine 
simulation scenarios, percentage of outbreak (black) and non-outbreak (grey) cases assigned to a putative 
transmission cluster are shown. In each scenario, ten percent of all cases are an outbreak case. Total expected 
number of cases  is (left column) 1000, (middle column) 500 or (right column) 100. Outbreak cases belong to 
(top row) one large outbreak, (middle row) small outbreaks caused by 1/10 of cases being contagious with basic 
reproduction number R=0.5, (bottom row) very small outbreaks caused by all cases being contagious with 
R=0.1. For all scenarios, outbreak cases are distinguishable from unrelated cases. Sensitivity increases with 
outbreak size, at the cost of an increased false positive rate. Sensitivity and false positive rate improve when the 
incidence, or equivalently the number of cases in the same region of spacetime, decreases. Figure 4 corresponds 
to a simulation from the middle left panel. 

 

Discussion 
We have presented a method to identify transmission chains of locally infected contagious disease 
cases in large databases containing temporal, geographical and genetic data. The method does not 
require assumptions on population at risk or pathogen-specific properties. The method is novel in 
explicitly incorporating the genetic distances measured between sampled pathogens, and in 
accounting for the chain-like structure of transmission chains of contagious diseases. 
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Several methods to find locally infected cases in large datasets have been published and some are 
commonly used in epidemiological investigations.58-60,161 However, many of these methods were 
not explicitly developed for analysis of contagious diseases, and ignore the fundamental 
characteristic of contagious diseases: that each infected case can itself be a source for new cases. 
The method presented here does take this into account by focusing on the distances between cases, 
rather than on the number of cases in a particular region of space-time. This latter approach is 
suitable when cases are caused by one common source, rather than by the cases themselves.  
 
The ability of the method to correctly cluster together cases belonging to the same transmission 
chain depends on how ‘close’ these cases are to each other in time, space and genetics, relative to 
non-related cases. This depends both on the properties of the pathogen studied, the incidence of 
disease, and the size of the study region and duration. For example, a dataset resulting from a study 
period of one year on a pathogen with an average serial interval of half a week would for our 
method, due to the ordinal distances used, be equivalent to a dataset resulting from a study period of 
ten years on a pathogen with a serial interval of five weeks and ten times lower incidence. Shorter 
serial intervals, lower incidence rates and longer study periods allow for more accurate 
identification of outbreak cases.  
 
In our simulations, we have taken the Euclidean distance between geographical locations. However, 
this is not always the most relevant distance metric. For example, people are more likely to travel 
between densely populated areas than between sparsely populated areas.167 Thus, when a study 
region encompasses both urban and rural areas, more relevant measures of distance could be given 
by mobility patterns168 or road distances.98 Note that no extra correction is needed to adjust for the 
higher urban population densities leading to more cases: this is taken into account by the ordinal 
distance used. 
 
The non-parametric method introduced is able to identify locally infected cases when little is known 
about the pathogen studied. When precise pathogen-specific information or information on 
population at risk is available, a more precise description of the system can be given. More specific 
methods can be used and information can be obtained from the data types separately, which should 
lead to better identification of transmission clusters. The non-parametric method could still be of 
value in such as a scenario, as it provides a simple first-try approach: results can be compared to 
those obtained from an analysis that uses more information, and assumptions made about pathogen 
characteristics and population at risk can be tested. 
 
Here we performed validation of the method using simulated datasets, in which the origin of cases 
is known. Results obtained give confidence the method can be sensibly applied to actual 
surveillance datasets. Examples of existing large molecular epidemiological databases include 
VNTR typing datasets of tuberculosis,169 spa typing datasets of MRSA170 and short read sequencing 
datasets of hepatitis B, hepatitis A and norovirus.99,171,172 Note that the relevant spatial information 
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differs for these datasets; we might focus on place of residence for tuberculosis, but on hospital, 
ward or even bed for MRSA. Future work will have to focus on applying the method presented here 
to such datasets.  
 
The method presented has some drawbacks. First, the null hypothesis states that all cases in the 
dataset are independent. This leads to a bias when many transmission clusters are present; as the 
locally infected cases cluster together, the remaining independent cases will themselves lie closer 
together (in ordinal distance) than under the null hypothesis. Thus, especially when a high 
percentage of cases are locally infected, the statistical test could overestimate the percentage of 
clustered cases. This overestimation might be alleviated if prior information on the percentage of 
cases locally infected were available. Second, we assumed independence between the different data 
types for unrelated cases. These data are never truly independent, as all cases belong to the same 
phylogenetic tree acting over a long time scale. The local outbreaks we are interested in can be seen 
as local tips of these large trees. Whether the data can be approximated as being independent 
depends on the spatial dynamics of the pathogen, the evolutionary time separating sampled 
pathogens and the size of the region studied. For example, the approximation might be valid when 
studying MRSA at the hospital level, but not at the level of a continent as geographical structure can 
be seen in genotypes sampled.170 Third, we have not taken into account the boundaries of our 
datasets, i.e. the edges of the geographical area and time window studied. This might decrease the 
sensitivity of finding clusters near the start or end of the study period, and should be addressed 
when the method is applied prospectively.  
 
Results of clustering methods such as the one presented are important in epidemiological 
investigations for a number of reasons. First, they provide a measure of how much local 
transmission takes place. For example, if many putative transmission clusters are found in a hospital 
setting, infection control measures have to be intensified. Second, the algorithm can be used as a 
tool to find transmission clusters in large databases that can then be further investigated, removing 
the need for a detailed analysis by hand of the complete database. Third, properties of clustered 
cases can be compared to non-clustered cases. This will, for example, allow researchers to test 
whether patients of a particular age are more prone to transmit disease, or whether certain genotypes 
are more likely to spread in a hospital setting. These applications differ in their requirements on the 
sensitivity and specificity of the algorithm, where generally the second application will have the 
most stringent, and the third application the most relaxed requirements. 
 
With the decreasing cost of sequencing and genotyping techniques, the availability of genetic data 
continues to grow. In particular, in many surveillance settings large molecular epidemiological 
databases have been set up. As the size and complexity of these databases grows, we can only 
expect the usefulness of automated methods such as these to assist in answering public health 
questions will grow concordantly. 
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In the Netherlands efforts to control methicillin-resistant Staphylococcus aureus (MRSA) in 
hospitals have been largely successful due to stringent admission screening and isolation of patients 
that fall into defined risk groups. However, Dutch hospitals are not free of MRSA, whereby an 
increasing number of cases are coincidental findings that do not belong to any of the defined risk 
groups. Some may still be the result from undetected nosocomial transmission, while the origin of 
others remains unknown. Combining available information such as date of isolation, geographical 
origin and MLVA typing data for all MRSA isolates submitted between 2008-2011 to the National 
Institute for Public Health and the Environment, we applied a novel clustering algorithm to map the 
geo-temporal distribution of MRSA by MLVA clonal complex over the entire Dutch health care 
network. Of the 2966 isolates reported as coincidental findings, 579 were part of geo-temporal 
clusters, while 2387 were classified as MRSA of unknown origin (MUO). We also observed 
marked differences in the proportion of isolates from different MLVA types associated with clusters 
among hospital patients (MC45 46%, MC22 35%, MC8 27%, MC398 4%) indicating differential 
transmissibility. The majority of clustered isolates (74%) were reported from more than one 
laboratory. The frequency of MRSA of unknown origin among patients with coincidental MRSA is 
an indication of a largely undefined extra-institutional but genetically highly diverse reservoir. 
Efforts to understand the emergence and spread of high risk clones require the pooling of standard 
epidemiological information and typing data into central databases.  
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Introduction 
Occurrence of MRSA in hospitals differs markedly between countries.173 The low levels in the 
Netherlands have conventionally been attributed to the so-called Dutch search and destroy policy,174 
which stipulates that all patients who have had MRSA in the past or who are regarded at high risk 
of being colonised or infected  are screened on admission and treated in strict isolation until 
screening results become available.175 Despite of these efforts, hospitals in the Netherlands are not 
free of MRSA. Time and again, MRSA is isolated from hospitalised patients, considerable time 
after admission without obvious risk factors. This leads to extensive screening of contact patients 
and possibly even hospital staff which can be rather disruptive.  
   
Patients with coincidental MRSA findings pose another epidemiological and public health 
challenge. They either represent cases of primary introduction which are regarded as MRSA of 
unknown origin (MUO) or are the result of unobserved secondary spread. The first would be 
suggestive of a tip of the iceberg phenomenon whereby the frequency with which MUOs are 
isolated in hospitals would be a reflection of an undetermined extra-institutional reservoir, the 
second an indication of hidden intra- or inter-institutional transmission chains.  
 
Conventional hospital-based investigational epidemiology has its limitations as it can only link 
cases with an apparent epidemiological association, for instance if patients had shared a room, 
whereas data available at national public health institutes or reference laboratories contain too little 
information to make these obvious epidemiological links. However, molecular typing data, and 
information about the location and time of isolation may provide sufficient detail to address some of 
the above mentioned challenges.  
 
By combining data available at the National Institute for Public Health and the Environment of the 
Netherlands we map the distribution of MLVA types over time and space and provide clues to the 
size and clonal composition of institutional and multi-institutional MRSA clusters. We further 
determine the number and genetic diversity of MUOs as an estimate of the frequency of primary 
hospital introductions by patients without the obvious risk factors of MRSA carriage. Using the 
results of these analyses, we draw conclusions about the ability of the search and destroy policy to 
control MRSA in hospitals using the current guidelines, and the existence of unknown reservoirs 
outside of hospitals. 
 

Methods 

Data and algorithm 

MRSA Surveillance 

Primary MRSA isolates from patients admitted to Dutch hospitals are routinely sent to the National 
Institute for Public Health and the Environment by all microbiological laboratories in the 
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Netherlands for reference typing. Each isolate is investigated by Multi Locus Variable Number of 
Tandem Repeat Analysis (MLVA) and spa typing, mecA and lukS lukF PCR as part of the standard 
reference service. The health-care institutions are asked to complete a questionnaire about 
epidemiological metadata for each isolate. This questionnaire includes questions about the origin of 
the isolate, demographics of the patient, the reason for sampling, and whether or not they belonged 
to one of the risk-groups defined by the Workgroup Infection Prevention (WIP).175 We used data 
collected between 2008 and 2011 (4 years), and included only the isolates for which information for 
the following variables was available: date of isolation, MLVA type, residence postal code of 
patients, and institution. We excluded duplicate isolates from the same patient, same institution and 
same year. We used typing data partitioned at the level of MLVA clonal complex (MC). Because of 
the large number of isolates belonging to MC398, and because the algorithm is computationally 
intensive, we only used data from 2009 for this clonal complex.  
 

Cluster Algorithm 

To identify clusters of isolates with higher than expected geo-temporal occurrence in the MRSA 
surveillance database, a non-parametric clustering algorithm proposed by Ypma et al.176 was used. 
In short, this algorithm uses the ranked distance between any two samples for each of the variables, 
to calculate the combined distance between them. Each isolate is assigned to its nearest neighbour, 
being the closest isolate in the combined ranked distance. The resulting tree is subsequently 
recursively split up by its weakest link, resulting in N-1 possible clusters, where N is the number of 
isolates. The combination of cluster size and the strength of the weakest link in the cluster is then 
tested against 1000 random generated transmission trees to assess whether its weakest link was 
stronger than could be expected for a cluster of the same size under random assumption. 
 

Ranked distance 

For each variable, the pairwise ranked distance is calculated. The distance between isolate a and b is 
defined as the number of isolates between them: 
 

di(a,b)=|{p: Di (a,p) ≤ Di (a,b) ˄ Di (b,p) ≤ Di (a,b)}| - 1 
 
Where |.| denotes the number of elements of a set, Di the absolute distance in this data type and the -
1 ensures di(a,a)=0. We obtain the full distance d between two points a and b as the product of the 
data type specific distances: 
 

d(a,b) = dgen(a,b) × dgeo(a,b) × dtime(a,b) 
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Permutation test 

To assess the distribution of the weakest link-strength for each cluster size under random 
assumption, we performed a permutation test. For each of the variables, a random order of samples 
was chosen, creating random combinations of the variables per isolate. Subsequently, all weakest 
link-cluster size combinations were determined as described above. For each cluster size, we 
selected the strongest link out of the set of weakest links found for this permutation dataset.  This 
process was repeated on 1000 permutation datasets. 
 

Distance measures 

For each of the variables, a pairwise distance metric (Di) needs to be defined. For date and residence 
postal code the difference between the dates of isolation in days, and Euclidean distance between 
the centroids of the postal code areas were used. For the MLVA data, the number of VNTR loci 
difference between the isolates was used (range 0-8).  
 
As distance between health-care institutions, we used the referral distance. This is the shortest path 
between two hospitals through the national patient referral network,177 formed by the exchange of 
patients between hospitals. The shortest paths between all hospitals were determined using a 
simulated patient referral network (see appendix C).  
 

Epidemiological validation 

We first performed the cluster algorithm using isolation date, residence postal code and MLVA, 
ignoring the health-care institution. This was done because patients tend to be admitted to their local 
hospitals,178 using both residence postal code and health care institution would therefore result in 
geographical clusters even if temporal and genetic structure was absent. As a consequence, we 
performed a second algorithm using isolation date, institution and MLVA in parallel. For each 
MLVA clonal complex, we tracked the number of isolates that fall inside and outside the clusters, 
the total number of clusters, and the number of clusters that included isolates from more than one 
hospital. 
 
False positive findings of clusters, and in particular large clusters, can skew the results dramatically. 
We therefore assessed the influence of single isolates on the clustering results by repeating the 
analysis on randomly chosen subsets of the data. We selected 90% of the isolates and repeated the 
cluster algorithm and permutation test. This jack-knife process was repeated 1000 times. The 
distribution of the percentage clustered isolates was compared with the point-estimate, using the 
entire dataset. 
 
Certain risk groups defined by the WIP are more likely associated with nosocomial transmission; 
their isolates can be expected to cluster more often than those from risk groups associated with 
introductions from reservoirs outside the national health care system. The results of the clustering 
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algorithm should support this intuition. For instance, if patients were screened because they had 
previously been hospitalised outside the Netherlands, the isolates can be expected to be 
introductions, and should therefore not be clustered. Conversely, having had contact with a known 
MRSA carrier can be regarded as risk categories that would typically be part of a transmission 
chain. Isolates with multiple –opposing– risk factors, such as patients who have been in contact 
with farm animals and have had contact with a known MRSA carrier were gathered in the 
“ambiguous” group, because no definite expectation can be determined. We compared the odds of 
an isolate belonging to a cluster, stratified by risk groups, to test whether the assignment of the 
isolates to a cluster coincided with the expectations based on epidemiological profile.  
 

Results 

MRSA Surveillance 

Between 2008 and 2011, 14042 MRSA isolates were submitted to the National Institute for Public 
Health and the Environment (RIVM) for reference confirmation and typing. Of these, 2864 were 
duplicate isolates and 2226 lacked information about the patient’s place of residence and were 
excluded from the analysis.  Molecular typing grouped 7720 (86.2%) isolates into five dominant 
MLVA clonal complexes (MC, table 1). The remaining 1232 isolates belonged to an additional 11 
MCs. The MC that contained most isolates (3852, 43.0%) was MC398 coinciding with sequence 
type (ST)398 which represents livestock-associated MRSA in the Netherlands.179 Since cluster 
analysis scales exponentially with the number of isolates, inclusion of all MC398 isolates became 
computationally too intensive and only MC398 isolates for 2009 were included into the current 
study resulting in a total of 6295 isolates.  
 
For 1561 of the 6295 isolates (24.8%), no epidemiological metadata were available. A total of 1405 
isolates (22.3%) represented coincidental finding without details of their WIP risk category, 818 
(13.0%) were identified as the result of screening efforts related to contact tracing, and 754 (12.0%) 
were reported as expected cases. Of the remaining 1757 (27.9%) isolates the patient’s WIP defined 
risk group was known. The most frequent risk group was “contact with farm animals” which 
coincided with MC398. Among the other MCs the most common risk groups were “admission from 
a foreign hospital” and “known MRSA carrier” (see table 1). 
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Table 1. The number of isolates assigned to a cluster (total number of isolates), by MLVA clonal complex (MC) 
and epidemiological information, such as the risk groups defined by the Workgroup Infection Prevention (WIP). 

 
 All* MC398* MC5 MC8 MC45 MC22 

All isolates  
1724 
(6295) 52 (1195) 571 

(1416) 
356 
(1292) 285 (611) 193 (549) 

WIP Introductions  94 (1064)  33 (507) 23 (158) 12 (122) 8 (49) 9 (86) 
Unexpected Cases  276 (1405) 2 (72) 77 (321) 69 (384) 43 (139) 22 (118) 
No Information  303 (1561) 8 (362) 117 (338) 40 (305) 51 (114) 33 (120) 
WIP Ambiguous  34 (153) 1 (19) 17 (48) 5 (30) 5 (120 2 (13) 
Expected Cases  184 (754) 6 (201) 53 (146) 35 (127) 28 (59) 14 (62) 
WIP Transmission  354 (540) 1 (16) 151 (213) 77 (115) 39 (67) 57 (69) 
Contact Tracing  479 (818) 1 (18) 133 (192) 118 (209) 111 (171) 56 (81) 
Contact with Farm Animals  46 (543) 33 (497) 5 (12) 3 (8) 3 (7) 0 (4) 
Admitted from foreign hospital  31 (389) 0 (7) 12 (109) 4 (87) 4 (37) 9 (80) 
Adopted child  11 (112) 0 (2) 4 (29) 5 (25) 0 (2) 0 (2) 
>2 months ago in foreign hospital  7 (22) 0 (1) 4 (11) 0 (2) 1 (3) 0 (0) 
Foreign dialysis patient  2 (3) 0 (0) 1 (2) 0 (0) 0 (0) 0 (0) 
Known MRSA carrier  31 (149) 1 (20) 15 (46) 4 (29) 5 (11) 2 (12) 
Known HCW MRSA carrier  2 (5) 0 (0) 0 (0) 2 (2) 0 (1) 0 (1) 
Protected contact with MRSA 
carrier  10 (21) 1 (2) 1 (4) 4 (6) 0 (1) 4 (7) 

Unprotected contact with MRSA 
carrier 

 
 115 (194) 0 (5) 49 (77) 24 (34) 14 (30) 18 (21) 

Admitted to hospital with known 
MRSA problem 

 
 121(178) 0 (5) 61 (81) 31 (48) 10 (14) 13 (18) 

Shared room with MRSA patient  110 (152) 0 (4) 42 (55) 18 (27) 15 (22) 22 (23) 
*MC398 only includes isolates from 2009, all others 2006-2009. “All” denotes the sum of all included isolates. 

 

Clusters 

Combining the distances between isolation date, residence postal code and MLVA variables, we 
found 152 clusters consisting of 1724 isolates in total that were closer together than could be 
expected by chance (figure 1). Between different MLVA clonal complexes, the proportion of 
isolates that formed clusters differed considerably: only 4.4% of the MC398 isolates were part of a 
cluster, whereas 46.6% of the MC45 isolates were part of a cluster (figure 2).  The dominant 
community and animal-associated MLVA complexes show lower proportions of clustered isolates 
than the hospital-associated MLVA complexes. The identified clusters were robust since point 
estimates were within the interquartile range of the jack-knife estimates for the majority of 
dominant MLVA clonal complexes.  
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Figure 1. The result of the clustering algorithm for MC8, showing the three data sources used: A) The postal 
code of the patients’ home addresses, B) the MLVA cluster, here shown as a minimum spanning tree, and C) 
time at which the sample was received, here shown in weekly aggregate numbers. Grey denotes isolates outside 
clusters, blue and red those within clusters. Blue shows the isolates present in the single largest cluster. The three 
sources individually show no clear clustered pattern, and clusters only emerge during combined analysis. 

 
Sixty-eight clusters (45%) included isolates that originated from more than one health care 
institution. Most of the larger clusters include multiple institutions, and 74% of the clustered 
isolates are present in a multi-institutional cluster.  
 
When using the health care institution instead of residence postal code, we found 142 clusters, 
consisting of 1420 isolates, across all MLVA clonal complexes. In 47 clusters, isolates from more 
than one institution were included. The clusters in the residence postal code analysis and the health 
care institution analysis largely overlap; 1120 isolates clustered in both analyses, and the 
proportions of clustered isolates per MLVA clonal complex show a similar pattern in both analyses 
(appendix C figure S1).  
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Figure 2. The proportion of isolates part of a cluster according to the algorithm, dots show the point estimate, 
box plots (median, IQR, 95% interval) are the result of the 90% jack-knife analysis. Common hospital-associated 
MRSA strains (MC5, MC45, MC22) show higher proportions of clustered cases than community- (MC8) or 
livestock-associated (MC398) MRSA. 

 

Epidemiological validation 

The results from the cluster analysis largely correspond with the available epidemiological 
information. The majority (59%) of isolates identified as part of contact screening were part of a 
cluster, while of the isolates from patients who have been admitted after hospitalisation abroad, only 
8% clustered. Taking these numbers, we observe that the odds of isolates being clustered overlaps 
with the expectation of cases being part of a transmission chain (figure 3). Of the coincidental 
finding, both unexpected findings and those without epidemiological information, respectively 20% 
and 19% of the isolates clustered. 
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Figure 3. The odds of belonging to a cluster of isolates differ considerably between epidemiological risk groups. 
WIP risk groups were gathered on the basis of the expectation of belonging to a transmission chain 
(introductions, ambiguous and transmission). The algorithm results overlap with the predictions on the basis of 
WIP risk group. The unexpected cases and isolates without epidemiological information more often fall outside 
the clusters.  

 
The pattern in isolates positive for the Panton-Valentine Leukocidin (PVL+) gene also follows 
expectation. This marker, commonly associated with community origin,180-182 was found 
significantly more often in isolates that did not cluster than in those that did cluster (figure 4). In 
MC8, which harbours the largest part of the PVL+ isolates (40.5%), 12% of the clustered isolates 
were PVL+ against 50% among the other isolates. Taking into account that the proportion of 
clustered isolates is already low in MC8, this means that just 8% (43 of 515) of the PVL+ MC8 
isolates is present in a cluster.  The proportion of risk group categories and PVL+ isolates is not 
stable over the study period (table 2). The proportion PVL+ isolates, unexpected cases, and isolates 
collected through contact tracing clearly increased over time, while the proportion of isolates in a 
transmission-associated risk group decreased. Despite the significant trends in a number of risk 
groups, the proportion of clustered cases remained virtually unchanged over time. 
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Figure 4. The proportion of isolates positive for Panton-Valentine Leukocidin (PVL) is higher amongst cases 
outside the clusters. Black bars show clustered isolates, grey bars show non-clustered isolates. A) The proportion 
of PVL positive cases for the largest MLVA clonal complexes (MCs), B) for each of the risk groups and C) in 
the unexpected cases of the largest MCs. Unexpected cases outside the clusters, especially in MC8 isolates, 
contain the highest proportion of PVL+ isolates. It is likely that these cases are introductions into the hospitals of 
community-acquired MRSA.  

 
Table 2. The trend of categories of isolates over time, showing the Spearman’s rank correlation coefficient (ρ) 
for the monthly proportions of each of the categories from January 2008 to December 2011. (*p<0.05 **p<0.01) 

  All  MC5 MC8 MC45 MC22 
Clustered Cases  -0,036  0,185 -0,156 -0,071 0,158 

PVL+  0,640 **  0,433 ** 0,612 ** - 0,251 
WIP Introductions  -0,081  -0,195 -0,090 -0,058 0,209 
Unexpected Cases  0,355 *  0,124 0,205 0,071 0,114 

No Information  -0,314  -0,158 -0,217 -0,186 -0,343 * 
WIP Ambiguous  0,278  0,101 0,097 0,107 0,155 
Expected Isolates  -0,208  0,021 -0,163 -0,139 -0,347 * 

WIP Transmission  -0,371 **  -0,325 * -0,180 -0,217 0,007 
Contact Tracing  0,495 **  0,619 ** 0,283 0,315* 0,281 
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Discussion  
Thanks to the stringent screening of risk groups, many MRSA colonised patients are identified and 
isolated on admission to Dutch hospitals. However, a large fraction of the patients found to be 
colonised with MRSA did not belong to any of the defined risk groups and were coincidental 
findings. The corresponding isolates are often just marked as unexpected findings, or have no 
epidemiological information available at all. Some of these coincidental isolates were the result of 
unobserved transmission while others were introduced from hitherto undiscovered reservoirs. 
Isolates in the last group can be gathered under the term “MRSA of Unknown Origin” (MUO).183 
 
Utilising a novel clustering algorithm,176 we were able to map the distribution of MLVA types over 
time and space across the entire Dutch health care system, and thus determine the size and clonal 
composition of clusters of related isolates. This allowed us to infer what proportion of isolates 
belonging to any specific clone is typically associated with intra- and inter-hospital transmission 
clusters and determine the number and genetic diversity of MUOs as an estimate of the frequency of 
primary introductions. 
 
The algorithm assigned 579 of the 2966 (19.5%) coincidental findings to clusters, indicating that 
these are closely related to other isolates, probably through transmission.  The other coincidental 
findings (80.5%) did not significantly cluster with any other isolates, and could be considered to be 
MUOs. The exact reservoir remains elusive, although some indications are visible in the results. 
The high proportion of PVL+ isolates among the MUOs in MLVA clonal complex 8 (MC8) for 
instance hints towards a community origin.180-182 The likely fact that a number of isolates resulting 
from transmission were initially classified as coincidental findings illustrates the inability of the 
surveillance system to identify all nosocomial transmission events. 
 
The shortcomings in the epidemiological data are a reflection of how conventional epidemiological 
methods rely heavily on data collected on-site by doctors and nursing staff. Although the gathering 
of data for a single case may seem a small task, the combined task for all cases may prove difficult 
to incorporate in the tight schedule of a hospital. This reduces the sensitivity of the standard 
surveillance and investigational epidemiology because cases will be missed and direct links 
disappear. The autonomous nature of the clustering algorithm is therefore one of its key advantages, 
it only needs the most basic information: time, place and genetic profile. It can find related cases, 
even -and especially- when their relation is not obvious from the separate data sources. 
 
The results indicate that cluster algorithm correctly identifies the related isolates; those generally 
considered to be the result of independent introduction are more often found outside the clusters, 
while isolates taken as part of contact tracing efforts, typically related, are often found within 
clusters. Despite the obvious ascertainment bias in the contact tracing isolates, these results do show 
that the algorithm correctly identifies epidemiologically linked isolates. However, the sensitivity of 
our algorithm depends on the sampling effort in hospitals. If fewer isolates from a single outbreak 
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are collected, it will become harder for the algorithm to distinguish it from the independent 
introductions. This would mainly apply to small clusters; large transmission chains will still be 
detected, because the chance of finding two related cases increases with the number cases in the 
chain. It is therefore possible that some of the isolates assigned as independent introductions are 
part of a small, but largely unobserved, transmission chain which has been missed.  
 
Using a cluster algorithm to identify clusters of related isolates also delivers novel insights in the 
dynamics of MRSA in the Netherlands that can aid the design of novel intervention strategies and 
guidelines. Firstly, many of the clusters comprise of isolates from multiple health-care institutions, 
which would have remained hidden if only the isolates of a single institution were analysed. These 
multi-institutional clusters are likely caused by transmission through exchanged patients 
transferring MRSA between hospitals. It shows how the occurrence of nosocomial pathogens in 
hospitals cannot be viewed as happening in single, independent units. Rather, hospitals are 
interconnected in a larger, nation-wide, network. Any interventions strategy or surveillance system 
can only deliver sensible results if it is organised at national or regional level. 
 
Secondly, the proportion of clustered isolates reflects propensity of a clone to spread through the 
hospital population, as nosocomial transmission will result in clustered isolates. The isolates 
belonging to MC398, which include ST398, show very few clusters. These Livestock-Associated 
MRSA isolates are considered to spread easily within animal herds,184 but apparently only spread 
through the human population on a very limited scale. Most of the MC398 isolates would therefore 
be the result of independent introductions from the animal reservoir. This same pattern is seen in 
MRSA strains described to spread in the community, MC8, albeit to a lesser extent. More often than 
in the hospital-associated strains, the isolates seem to be the result of introductions, in this case 
probably from the general population. Novel intervention strategies could take this differential 
transmissibility into account and differentiate patients according to the clonal type of their MRSA.  
 
Finally, the large fraction of MUOs among the coincidental findings paints a bleak future for the 
Dutch “search and destroy” policy. If MRSA is increasingly spreading through the community, as 
seems to be the case with PVL+ MC8, hospitals will have to cope with an ever-increasing amount of 
MRSA introductions. These unidentified introductions will lead to more transmission, because the 
patients without obvious risk factors admitted from the community are not isolated and screened on 
admission, and as a consequence lead to more MRSA of unknown origin. This may ultimately lead 
to the Dutch search and destroy success story to collapse on itself. The fact that the risk factors for 
community-acquisition of MRSA are diffuse complicates screening efforts, as no clear risk group 
can be identified. To break this circle of increasing transmission, more efforts have to be made to 
identify the source of the MRSA infections of unknown origin. We have shown that in order to be 
effective, these efforts require pooled epidemiological information and typing data, gathered in 
central databases.  
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Knowledge on the transmission tree of an epidemic can provide valuable insights into disease 
dynamics. The transmission tree can be reconstructed by analysing either detailed epidemiological 
data (e.g. contact tracing) or, if sufficient genetic diversity accumulates over the course of the 
epidemic, genetic data of the pathogen. We present a likelihood-based framework to integrate these 
two data types, estimating probabilities of infection by taking weighted averages over the set of 
possible transmission trees. We test the approach by applying it to temporal, geographic and genetic 
data on the 241 poultry farms infected in an epidemic of avian influenza A (H7N7) in the 
Netherlands in 2003. We show that the combined approach estimates the transmission tree with 
higher correctness and resolution than analyses based on genetic or epidemiological data alone. 
Furthermore, the estimated tree reveals the relative infectiousness of farms of different types and 
sizes. 
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Introduction 
Estimating the transmission tree for an epidemic of an infectious disease can provide valuable 
insights; it has been used to evaluate effectiveness of intervention measures,19,61,185,186 to quantify 
superspreading,51 to identify mechanisms of transmission187 and to study viral evolutionary 
patterns.188,189 
  
Unfortunately, estimating the transmission tree is rarely trivial. Generally one needs detailed 
epidemiological data, such as contact structures, while for many epidemics only general statistics, 
such as case lists with time of symptom onset, are known. Furthermore, data is often missing for 
some cases. Luckily, another valuable source of information, genetic data on the pathogen, is 
becoming increasingly available. The amount of genetic diversity observed between samples taken 
from different cases informs us of the distance in the transmission tree between these cases.  
  
Estimates of the transmission tree will be best when all available data is combined in one analysis; 
however methods to achieve this are still largely lacking.66 One approach proposed by 
Cottam et al.22 is to use genetic data to exclude certain potential transmission trees, and then 
evaluate the remaining possible trees with epidemiological data. Jombart et al.190 followed a similar 
approach, contrasting the construction of transmission trees with the construction of phylogenetic 
trees. 
 
We argue that a more consistent approach can be obtained by combining both genetic and 
epidemiological data in one likelihood function when reconstructing the transmission tree. This 
likelihood function can then be used in a Bayesian setting to sample from the space of all 
transmission trees, allowing the simultaneous estimation of both the tree and the parameters of the 
function itself. These parameters themselves can be used to describe the dynamics of the epidemic. 
Such an approach would be able to handle missing data, e.g. cases for which no genetic data is 
known.  
   
We develop the approach to obtain a more detailed understanding of an epidemic of avian influenza 
A (H7N7) in different types of poultry farms in the Netherlands in 2003. This epidemic spread over 
a large area and infected 241 farms and 89 humans in total, with one human fatality,191-193 even 
though a movement ban was promptly imposed upon confirmation and both infected and suspected 
farms were culled. The epidemic also spread abroad, infecting 8 farms in Belgium and 1 in 
Germany. This specific H7N7 strain has not been detected since, indicating the epidemic formed a 
dead end for virus spread.  
 
Using only epidemiological data, previous studies showed there is a strong spatial component to 
spread194 and small hobby farms are less susceptible to infection than large commercial farms.195 
However it remains unclear how the virus spread from farm to farm or how farm size and type 
relate to infectiousness. Previous studies for other farm animal disease such as foot-and-mouth-
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disease found a clear relation between the number and type of animals on a farm and its 
infectiousness.185,196,197 We might expect similar differences in infectiousness for avian influenza 
H7N7 as well, for example because the transport structures are different for different farm types 
(e.g. food transports, egg rearing) and the different host species react differently to the virus. Here 
we quantify the infectiousness of farms of different types and sizes, using transmission trees we 
reconstructed from genetic, geographic and temporal data. 
 

Methods 

Data 

Influenza A (H7N7) virus was detected on in total 241 farms in the Netherlands. These consisted of 
205 commercial chicken farms, 14 hobby farms (defined as flocks of less than 300 animals), 19 
turkey farms and 3 duck farms. The 9 farms infected abroad have not been included in this analysis 
because virus sequences of these outbreaks, exact location and or date of infection were not known 
to us and the farms are considered dead ends for this epidemic. 
 
For all 241 farms the geographical location and the date of culling have been recorded, the date of 
infection has been estimated using animal mortality data198 for all farms but the hobby farms, for 
which we take the estimates from Boender et al.194 Results in this paper were found to be robust to 
small variations in infection dates. Data on the number of animals kept was available for 220 farms. 
All available data are provided online (although we are only allowed to specify the geographical 
location in terms of the closest town, due to privacy restrictions).  
 
For 185 farms the RNA consensus sequence of the haemagglutinin, neuriminidase and polymerase 
PB2 genes was determined from a pooled sample of five infected animals199 (GISAID accession 
numbers EPI_ISL_68268-68352 and EPI_ISL_82373-82472). We will refer to these farms as 
sequenced farms, to the remaining 56 farms as unsequenced farms. 
 

Model 

The first farm to be infected in the epidemic is taken as the index case, infected by some unknown 
source; all other farms are assumed to be infected by a previously infected farm through an 
unknown route. We make the simplifying assumption that all three types of data are independent 
from each other, e.g. knowing the geographical distance between a farm and the farm that infected 
it tells you nothing about the genetic distance between the sequences sampled at those farms or the 
time between infections of the two farms. Figure 1a illustrates how the approach works. For every 
farm B we evaluate which of the previously infected farms could have been the source. The 
likelihood L that a certain farm A infected B increases if A is not yet culled when B is infected, if A 
is located close to B, if the sequence taken from farm A is similar to that taken at farm B, and if no 
other viable candidates exist that could have infected farm B. When genetic information is 
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unavailable for one of the farms, we look at the sequence of the farm that infected this farm (figure 
1b). 

 

 
Figure 1. Examples of transmission trees. Circles denote farms, full arrows denote estimated infections, dotted 
arrows denote possible infections. Filled circles denote farms from which no sequence data was available. (a) 
When all data is available, the probability that B infected C is proportional to the likelihood L(δBC) given in (1). 
(b) When genetic data is missing for B, we can infer this by looking at the sequence of the farm A that infected 
B. We then assess the likelihood for the whole subtree: A infecting B, infecting C. (c) When genetic data is 
missing for multiple farms, we look at the subtrees containing those farms. Here two transmission trees are 
possible; B is infected by either A or C. The likelihood that A infected B is proportional to the likelihood of S1, 
while the likelihood that C infected B is proportional to the product of the likelihoods of S2 and S3.  

 

Likelihood without missing data 

When there is no missing data, the likelihood of a transmission tree is simply the product of the 
likelihoods of the links it consists of. Therefore we construct a likelihood function L which gives 
the likelihood for our set of parameters w = (b,r0,α,p) and the event δAB that a certain farm A 
infected another farm B, given our data D consisting of a temporal, geographical and genetic 
component, t, x and RNA respectively. This function consists of a product of contributions given by 
the temporal, geographical and genetic data.  
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Time 

We assume farms are infectious starting one day after infection due to a latent period,198,200,201 and 
remain equally infectious until they are culled (a sensitivity analysis for the length of the latent 
period can be found in appendix D.3). Date of infection and culling are denoted by tinf and tcull 
respectively. Due to decay of contaminated particles, and the possibility of an infection mechanism 
which introduces time lag, infectiousness drops exponentially after culling with rate of decline b. 
This gives us the likelihood of the parameter b and farm A infecting another farm B given their 
temporal data:  
 

 
 

Geography 

We assume farms are more prone to infect farms close by than far away, with the likelihood 
contribution of infecting a farm a certain distance |xA-xB| kilometers away given by the best-fitting 
distance kernel taken from Boender et al.:194 
 

 
 
We performed the analysis with a wide range of different shapes for this kernel, and found the 
results to be robust to the specific choice of kernel (see appendix D.2) 
 

Genetics 

We assume the sequence sampled to be the most prevalent sequence on the whole farm. Additional 
cloning experiments performed by Bataille et al.199 showed this to be very probable for four out of 
five farms tested, where the fifth was the first farm to be infected when the epidemic spread to the 
south of the country, thus having an exceptionally long infectious period. We assume there is a 
fixed number of nucleotides N that can mutate independently of each other, and any mutations get 
fixed during or shortly after infection. Since many mutations will drastically lower the fitness of the 
virus, we set N at one third of the total number of nucleotides sequenced. We take pts and ptv to be 
the expected number of transitions and transversions per infection respectively. We assume there is 
a fixed probability pdel of a deletion occurring during any infection. Although such a deletion could 
decrease N, the length of the deletions is small enough to ignore this effect. Let the number of 
transitions and transversions needed to go from the sequence of A to that of B be denoted as dts and 
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dtv respectively, and let 1del be an indicator function: 1 if a deletion occurred, 0 if it did not. We then 
have for the likelihood contribution 
 

 

Likelihood with missing data  

If all data were available for each farm, the likelihood of any transmission tree would be the product 
of the likelihoods of the links it consists of. However, when data is missing for a certain farm, we 
have to incorporate information on the neighbouring farms in the tree to assess the likelihood. 
Figure 1c illustrates this concept. To make it precise, let T be the transmission tree to be evaluated. 
T consists of a set of links, one for each of the farms except the index case. Let i be a certain data 
type in the analysis, and let Si be the largest partition of T into subsets, called subtrees, such that for 
each farm that misses data type i all links connected to that farm are in the same subtree. Then the 
likelihood of T is the product over all data types i of the product of the likelihoods of each of the 
subtrees in Si: 
 

 
 
The likelihood of a subtree is again the product of the likelihoods of its links, where for each of the 
farms with missing data we sum over all possible data values. Note that if all data of a certain type 
is known for all farms, which for the epidemic of avian influenza is the case for both temporal and 
geographical data, the subtrees for that data type are just the individual links. 

 

Calculation  

We construct a Monte Carlo Markov chain (MCMC) to sample from the space of all possible 
transmission trees and parameters w = (b,r0, α, pts, ptv, pdel), using flat priors for all parameters on 
the positive real numbers and for all transmission links. Subtrees containing unsequenced farms, i.e. 
farms without genetic data, are handled by summing over all data values consistent with the least 
amount of mutations needed to explain the subtree. Note that we don’t have to sum over all 
unsequenced farms: firstly genetic data is irrelevant for farms that infect no other farms (Y in figure 
1). Secondly farms that infect only one other farm (X in figure 1) can be handled by extending (4) 
to allow for a farm indirectly infecting another farm where there are x transmissions in the chain: 
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To correctly assess the likelihood of the parameters we have to normalize the likelihood functions, 
i.e. divide the likelihood by the integral over the entire parameter range. Since the geographical 
locations of the farms are fixed we normalize (3) for each farm by dividing by the total infecting 
potential for that farm, i.e. the sum over all other farms of the product of (2) and (3).  
 
We take a burn-in of 500.000 iterations, checking for convergence, and then sample ten thousand 
times, at every 500th iteration. Averaging over the posterior density over the space of trees gives the 
probability for each possible infection event. We obtain a point estimate for parameters by taking 
the median of their posterior densities and construct a 95% credibility interval by taking 95% of the 
posterior probability mass.  
 
For each of the sampled trees we can estimate the infectiousness of each farm by dividing the 
number of infections caused by this farm by the length of its infectious period. Taking the average 
for each farm type gives us an estimate of relative infectiousness of different types of farms.  

 

Evaluation of the estimated tree 

To evaluate how much information is contained in the geographical and genetic data respectively 
we exclude the geographical (3) or the genetic (4) likelihood from the full likelihood function (1), 
rerun the analyses, and see how much our results differ from the full picture obtained by using all 
data. Two important properties of the estimated tree to look at are correctness and resolution; how 
close the tree is to the actual transmission tree and how many links can be established at or above a 
certain probability level respectively. Although correctness is the most important one, it is also the 
hardest to measure. Resolution tells us how well we can distinguish between potential source farms; 
if our assumptions on the disease dynamics are reasonable an increased resolution should also be 
indicative of an increased correctness. 
 
To test whether the method correctly handles cases with missing data we analyse the position of the 
unsequenced farms in the estimated transmission tree.  
 

Results 
From our analysis we obtain an estimate of the transmission tree; for each pair of farms A and B we 
get the probability that A infected B. A graphical representation of the estimated tree is given in 
figure 2a, which shows the high-probability transmissions on a map of the region. Figures 2b and 2c 
do the same for the trees obtained when excluding geographical and genetic data respectively from 
the analysis. The decrease in estimated transmissions relative to figure 2a shows that combining all 
data leads to an increase in resolution. An increase in correctness is also shown: the combined 
approach suggests only one introduction of the disease into the southern part of the country (figure 
2a), while the analysis based on genetic data predicts multiple introductions (figure 2b). However, 
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additional cloning experiments199 have made clear that the disease was transmitted to the south of 
the country only once and then spread locally. 
 
The resolution of the estimated trees is depicted in more detail in figure 3: it shows more resolution 
can be contained when using the genetic than when using the geographic data, but combining these 
gives the highest resolution. Furthermore the figure makes clear that the 56 unsequenced farms 
cannot be placed in the tree with high confidence. 
 
There is a subtle point that can be made about the placement of unsequenced farms in the estimated 
tree. That is, if an unsequenced farm in reality infected another farm that we did sequence, we 
would observe a relatively large genetic distance between the farm that infected the unsequenced 
farm and the farm that was infected by it. Therefore we would expect a sequenced farm that has a 
large genetic distance to all other farms to be actually infected by an unsequenced farm with higher 
probability, although in general we cannot identify which of the unsequenced farms was 
responsible. Indeed, in the estimated tree, we see that sequenced farms that have a large genetic 
distance to other farms are more likely to be infected by an unsequenced farm (figure 4).  
 
Table 1 gives our estimates of the parameters used to describe the dynamics of the disease. The 
estimated value of b=0.28 shows infectiousness drops by (1-exp(-0.28))*100% ≈ 26% every day 
after culling. This low decay rate could be partly due to errors in the estimation of the infection 
dates. The values of r0 and α give the infection pressure exerted by a farm to farms a certain 
distance away: the pressure exerted at 1 km is 24 times higher than that exerted at 10 km. The 
expected number of point mutations per transmission is pts+ptv ≈ 1.4, reflecting the high genetic 
diversity found in this epidemic.  
 
 

Table 1. Estimates of the parameters used, with 95% credibility intervals (CI). 

Parameter (units) Interpretation Estimated value (95% CI) 
b (day-1)  Rate of decline of infectiousness 0.28 (0.23, 0.34) 
r0 (km) Scale parameter of spatial kernel 2.4 (1.2, 3.7) 

α Shape parameter of spatial kernel 2.3 (1.7,  2.8) 

pts  Average number of transitions 1.1 (0.88, 1.3) 
ptv Average number of transversions 0.32 (0.22,0.43) 
pdel Probability of deletion 0.069 (0.027, 0.13) 
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Figure 2. Infection events with posterior probability >0.5. The analysis was run separately three times using (a) 
temporal, genetic and geographic, (b) temporal and genetic or (c) temporal and geographic data. Red dots denote 
infected farms, yellow dots denote farms not infected in the epidemic. A higher opacity of arrows corresponds to 
a higher estimated probability. The lack of arrows in (c) tells us geographical information alone is not enough to 
establish transmission links. Although genetic information yields quite accurate results, we obtain more certainty 
for many links when also incorporating the geographical data. Furthermore in the combined analysis we can 
correctly show there was only one introduction into the southern province of the Netherlands rather than multiple 
as suggested by the genetic data (indicated by the red arrows). A zoomed in version of the northern part of the 
outbreak is given in appendix D figure S1. 

 

 
Figure 3. Resolution of the estimated trees. For each level of probability, the percentage of farms for which the 
farm that infected it can be estimated at or above this level is plotted. Estimates are based on temporal and (blue) 
genetic, (red) geographical or (black) both data. Striped and dotted lines give the same information for 
sequenced and unsequenced farms respectively.  The graph for genetic data (blue) is much higher than that for 
the geographic data (red), which shows the former yields more resolution than the latter. This is confirmed by 
the fact that unsequenced farms are hard to place accurately in the transmission tree, resulting in a small surface 
under the dotted lines. However, combination of all data types results in the highest resolution, shown by the 
largest surface being under the black line.  
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Figure 4. Scatterplot illustrating the position of unsequenced farms in the estimated tree. For each sequenced 
farm, we plot the minimum of the genetic distances to the sequenced farms infected earlier than this farm 
(horizontal axis) against the probability it was infected by an unsequenced farm (vertical axis). The small 
horizontal lines give the average probability per distance, the large horizontal line gives the fraction of 
unsequenced farms (=0.23). The increasing trend shows the placement of unsequenced farms in the estimated 
tree is more likely to be between farms whose genetic distance is relatively large. This is probably due to large 
genetic distances being indicative of farms in the actual transmission tree not being sequenced. 

 
The transmission tree can be used to estimate the infectiousness of the different types of farms 
involved in the epidemic, and to look at the relation between farm size and infectiousness (figure 5). 
We see that hobby farms on average caused less, and turkey farms caused more infections per day 
than chicken farms. This last observation could be partly explained by the fact that turkey farms 
were among the first to be infected when the epidemic spread to the south of the country, where the 
infections remained undetected for some time. Although there is a relation between farm size and 
infectiousness, it takes a peculiar form. It seems farms with less than 1000 animals (this includes all 
hobby farms) are hardly infectious when compared to the larger farms, but above this boundary 
infectiousness does not increase with size. 
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Figure 5. Estimated average infectiousness for (a) different types of farms and (b) number of animals on the 
farm, as measured by number of infections caused divided by the time period in days between infection and 
culling of the farm. All farms to the left of the dashed line in (b) are hobby farms by definition (these are farms 
with less than 300 animals). (a) We see hobby farms are less infectious than other types of farms, while turkey 
farms are more infectious than chicken farms. This can possibly be explained by the fact that many of the turkey 
farms in the epidemic were among the first to be infected when the disease spread to the southern part of the 
country, where control measures were not yet in place. (b) There is a correlation between total animals present 
on a farm and its infectiousness, however the exact relationship remains unclear. 
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Discussion 
We have estimated the transmission tree for an epidemic of avian influenza by combining genetic, 
geographic and temporal data using one likelihood function. We have shown the increased 
correctness and resolution obtained by using all data types in one analysis, illustrated that the 
approach correctly handles missing data, and estimated the infectiousness of farms of different 
types and sizes.  
 
The results we obtained on the epidemic of avian influenza fit well into previous results. 
Bavinck et al.195 found hobby farms to be less susceptible, but lacked the data to assess 
infectiousness, which we additionally showed to be lower than that of other farms. The 
dichotomous relation we found between farm size and infectiousness might be explained by large 
farms being detected and culled before a substantial number of animals could get infected, or by a 
mechanism of spread which is not very sensitive to the amount of infectious particles present in a 
farm. Boender et al.194 used epidemiological data on all poultry farms in the Netherlands to estimate 
the parameters of the distance kernel (3). Even though they did not have any genetic information 
available, their estimates of r0 and α, 1.9 (1.1, 2.9) and 2.1 (1.8, 2.4), are very close to our estimates, 
2.4 (1.2, 3.7) and 2.3 (1.7, 2.8). The similarity of these estimates, based on different datasets, 
increases our confidence in both analyses. Further research on this H7N7 epidemic should focus on 
how the virus spread; knowledge on which farm infected which coupled with information on for 
example human movement and/or historical wind direction could answer long-standing questions 
on what mechanisms are responsible for spread of avian influenza. Furthermore, it will be 
interesting to look at different predictors for infectiousness; although we lacked the data to do so, it 
might be very worthwhile to look at the impact of for example different contact structures or trading 
practices. 
 
In modelling evolutionary drift, the usual assumption is that of a (relaxed) molecular clock, i.e. a 
constant rate at which new mutations fix in the population. This assumption appears valid on long 
timescales; however it is unclear whether this assumption holds on short timescales such as the 
duration of one avian influenza epidemic. We make the simplifying assumption that mutations only 
fix in the viral population during or shortly after infection, independent of time. The rationale 
behind our assumption is that the infection of a farm constitutes a population bottleneck for the 
virus. If infectious periods are short, these bottlenecks are exactly where the emergence of new 
dominant strains is to be expected, even though the particular mutations could have been present 
before the bottleneck. A more sophisticated evolutionary model that depends both on time and on 
infection events would be highly desirable, constructing and fitting one will be a challenging 
improvement to the analysis in this paper. 
 
When using different types of data, a natural question is how to ‘weigh’ these different types. We 
argue that the most natural approach to weighing is by constructing intuitively plausible likelihood 
functions for each of the data types and then combining these in a straightforward matter such as in 
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our analysis. There is then a weighing of data types implicitly done by the choice of function. For 
example the number of nucleotides that could mutate, N in (4), is not known exactly; increasing or 
decreasing this value puts more or less weight on the genetic data respectively. Plausible numbers 
for N range from the total amount of nucleotides seen to mutate (214) to the total amount of 
nucleotides sampled (5354). We found the results described in this paper to be robust to changes in 
N for this range.  
 
An alternative approach to estimating transmission trees using genetic and epidemiological data that 
has been suggested by Cottam et al.22 is to assess the data types sequentially; first using genetic 
information to exclude possible transmission trees, then assessing the likelihood of these using 
epidemiological data. In our terminology this is equivalent to assigning each possible transmission 
tree a likelihood based solely on genetic data, and discarding the trees with likelihood values below 
a certain level. Not only is this choice of level arbitrary, but since the remaining trees are only 
evaluated using epidemiological data any further information in the likelihoods that was derived 
from the genetic data is lost. A third approach was presented by Jombart et al.,190 who nicely 
contrasted the construction of transmission trees with the construction of phylogenetic trees, making 
the link to the field of phylogeography. They however only look at epidemiological data when 
genetic sequences for multiple cases are identical, disregarding this data otherwise. Furthermore the 
method lacks a way to handle missing data.  
 
The general framework presented in this article is applicable in a wide range of settings. Although 
we have looked at infections between farms, the same techniques are also applicable when the 
infections are between individual host organisms, such as humans, animals or plants. Different 
types of epidemiological data such as day of symptom onset, age or area code could be handled by 
constructing an appropriate likelihood function.19,139 Furthermore, the ability to handle missing data 
makes the method suitable for use in many practical settings. Since the information contained in 
genetic data increases with genetic diversity, the method is probably more suitable to analyse 
epidemics of rapidly mutating pathogens such as viruses; however there are no theoretical 
objections to apply it to epidemics of other types of pathogens, which could be worthwhile if much 
epidemiological data is available. 
 
The framework presented in this paper reflects our belief that all data gathered on an epidemic can 
provide clues to what actually happened. How much information each data type holds is usually 
hard to determine, but the better we can extract this information, the clearer our picture of the 
epidemic becomes. Ultimately, techniques such as presented here coupled with our increasing 
capacity to build up large (genetic) datasets will allow for the accurate and correct estimation of 
transmission trees in a variety of settings, increasing our understanding of disease dynamics. The 
real challenge then lies in not only understanding these dynamics, but in also putting this knowledge 
to use in our efforts to combat diseases. 
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Outbreaks of highly pathogenic avian influenza in poultry can cause severe economic damage, and 
represent a public health threat. Development of efficient containment measures requires an 
understanding of how these influenza viruses are transmitted from one farm to the next. However, 
the actual mechanisms of inter-farm transmission are largely unknown. Dispersal of infectious 
material by wind has been suggested, but never demonstrated, as a possible cause of transmission 
between farms. Here we provide statistical evidence that the direction of spread of avian influenza 
A(H7N7) is correlated with the direction of wind at date of infection. We find the direction of 
spread by reconstructing the transmission tree for a large outbreak in the Netherlands in 2003, using 
detailed genetic and epidemiological data. We conservatively estimate the contribution of a possible 
wind-mediated mechanism to the total amount of spread during this outbreak to be around 18%. 
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Introduction 
Avian influenza is endemic in many wild bird species, which harbour all known subtypes of 
influenza A viruses. The virus can be transmitted from wild birds to poultry, thereby crossing the 
species boundary. Although most virus strains cause no or few clinical symptoms in poultry, highly 
pathogenic (HPAI) variants can arise through mutation.202-204 These highly virulent strains, the most 
notorious of which is HPAI H5N1, can cause large outbreaks with high mortality, posing a major 
(economic) threat to poultry farming around the globe. The virus can cross over to human hosts, 
potentially resulting in severe disease or even death.205 Therefore, HPAI is considered to be a 
serious public health threat.206,207  
 
There have been several large outbreaks of avian influenza in Western countries, involving clusters 
of large commercial poultry farms. Due to the ease with which the disease seems to spread between 
farms, the high mortality rates among poultry, and the public health threat posed by an outbreak,208 
rigorous control measures have to be implemented. These typically consist of a complete transport 
ban of poultry and depopulation of all farms that either have infected animals or are at risk of 
infection, resulting in substantial economic losses.  
 
Poultry farms emit large quantities of particulate matter,209,210 which could be driven by wind to 
transport viable virus from an infected to an uninfected farm.211 However, opinions differ widely on 
whether this actually causes new infections during an outbreak; the mechanism has never been 
demonstrated conclusively.211-214 Humans, trucks or wild birds could also act as a vector, carrying 
the virus from one farm to the next.215 Knowledge of the actual transmission mechanisms and their 
relative importance could lead to more efficient and more effective control strategies. For example, 
spread by humans could be reduced by stricter enforcements of biosecurity procedures, whereas 
wind-mediated spread could be combated by adjusted ventilation systems. Insight as to the 
mechanism of spread would also lead to more precise estimates of which farms are at risk of 
infection. This knowledge is highly valuable during an outbreak, for example when planning the 
order in which to cull farms.216 
 
Here, we use detailed genetic and epidemiological data from an outbreak of HPAI A(H7N7) in the 
Netherlands in 2003 to test the hypothesis that wind aided in transmission of the pathogen. In this 
outbreak 241 poultry farms were infected (confirmed by virus isolation), 30 million birds were 
culled, and there was one human fatality.191,192 For 231 of the infected farms isolated virus RNA has 
been sequenced.199,208 These unique genetic data, in combination with time of infection and time of 
culling, allow us to reconstruct which farm infected which. To test for the role of wind, we compare 
the direction of these individual farm-to-farm transmission events to the wind direction at the date 
of infection, accounting for any bias induced by the geography of the farm locations. We conclude 
by giving an estimate for the percentage of infections that can be attributed to wind-mediated 
transmission. 



Chapter 6   

82 
 

Materials and methods 
There were 5360 poultry farms in the Netherlands in 2003, for all of which geographical 
information is available. For 1531 farms the flocks were culled, for all of these the date of culling is 
known. For 227 of the 241 infected farms the date of infection has been estimated, based on 
mortality data.198 The remaining 14 farms are hobby farms, defined as farms with less than 300 
animals, for which no mortality data are available. For these we use the infection date as estimated 
by Boender et al.194 The HA, NA and PB2 genes of viral samples from 231 farms have previously 
been sequenced.199,208 Sequence data can be found in the GISAID database under accession 
numbers EPI_ISL_68268-68352, EPI_ISL_82373-82472 and EPI_ISL_83984-84031. Available 
meteorological data include wind speed and direction (with a ten degree precision) for every hour of 
every day of the outbreak, measured at five weather stations close to the infected farms (figure 1). 
These data are available from the Royal Dutch Meteorological Institute at www.knmi.nl. 
 

Estimation of transmission events 

To estimate which farm infected which, we used the genetic and temporal data on the infected 
farms, following the method described by Ypma et al.64 We describe the likelihood of a possible 
transmission tree given the data, by arguing that the tree is more likely if the source farms are more 
infectious at the putative dates of infection, and if the total number of mutations needed to explain 
the genetic data is lower, using a simple substitution model which differentiates between transitions 
and transversions.64,199 We then sampled from the space of all transmission trees using a Markov 
chain Monte Carlo approach, and obtained the probability of a certain transmission event by the 
proportion of sampled trees that includes this event. We denote transmissions with a posterior 
probability of at least 0.9 as observed transmissions; results for different cut-off values are similar 
(appendix E.5). 
 

Correlation of wind and transmission directions 

To measure whether observed transmissions are in the same direction as the wind, we compared the 
direction of transmissions with the wind direction. We took the vector average wind direction as 
measured at the station closest to the infecting farm at the date of infection. To check for a 
correlation between the wind direction and direction of transmission, we calculated the circular 
correlation coefficient,217 and compared the value of this coefficient with values obtained under the 
null hypothesis that wind direction and direction of transmission are independent and uniformly 
distributed over all directions. 
 
A correlation found between wind and transmission could arise as an artefact of the geographical 
location of poultry farms. For instance, if the index farm of the outbreak lay in the west of an area 
dense with poultry farms, and the prevailing wind in this region was a western wind, we could get a 
correlation even in the absence of any causal relationship. To construct the correct null model for 
the relation between direction of transmissions and direction of wind when wind plays no role, we 
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used simulations. We used the coordinates of poultry farms corresponding to the Netherlands in 
2003, and infected the farm corresponding to the index farm in the real outbreak. Every farm 
infected in the 10 ten days of the simulation was culled (and thus removed from the simulation) 10 
days after transmission, as were all farms in a 1-km region around it 2 days later. Farms infected 
later than 10 days into the simulation were culled after 7 days, ring culling again following 2 days 
later. The probability of infecting another farm decreased with distance, as estimated 
previously.64,194 Only simulations that led to a total number of infections between 200 and 280 were 
used for the subsequent analysis. From each of these simulated outbreaks we randomly sampled as 
many transmission links as there were observed transmissions in the actual data. We used these 
sampled transmissions from 1000 simulations to calculate correlation with wind direction. 
Furthermore, we compared the simulation results to the actual data using two additional statistics 
that are relevant for a possible wind-mediated mechanism of spread. First, we looked at the angle 
between wind and transmission by taking the cumulative distribution function of P(x), the 
probability that the angle between transmission and wind direction is x, and performed a one-sided 
Kolmogorov-Smirnov test to test if this distribution was significantly larger for the actual dataset. 
Second, we compared the average number of hours that wind coincided with the direction of a 
transmission, which could be interpreted as the time window for transmission due to wind.  
 

Quantification of wind contribution to spread 

We quantify what proportion of the transmission events could be attributed to a wind-related 
mechanism of transmission, assuming that such a mechanism exists. Here we use the term "wind-
mediated transmission" to denote transmission events that can be attributed to a wind-related 
mechanism of transmission if such a mechanism would exist. 
 
An observed transmission was defined to be in the direction of the wind when the average wind 
direction was in the direction of spread, up to five degrees, for at least one hour on the date of 
infection. The proportion of transmissions mediated by wind can then be estimated by comparing 
the fraction of observed transmission events that are in the direction of wind, to the fraction of 
transmissions expected to be in the direction of the wind if wind played no role. This expected 
fraction can be found from our simulations. The observed fraction will be a combination of 
transmissions actually due to wind, and some that were in the same direction as wind due to chance. 
From this we estimate the percentage of transmissions mediated by wind (see appendix E.4.1 for 
details). 
 
To test the robustness of this simple estimation procedure, we also performed a more detailed 
analysis that uses all available data, but needs additional assumptions. In this approach, uncertainty 
in estimated infection dates was accounted for by using a prior of several days centred on the 
estimated date. The probability per day of infecting a farm at a certain distance can be found by 
looking at the ratio of the number of farms at that distance that were and could have been 
infected.194 Here, we take this distance-related probability to consist of a ‘wind-related part’ W, 
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assuming a Gaussian plume model for wind-related spread,218 and an ‘unknown mechanism part’ U. 
The percentage of transmissions related to wind can then be estimated as the W/(U+W) (see 
appendix E.4.2 for details). 
 

 
Figure 1. Observed transmission events of avian influenza A(H7N7) between farms in the Netherlands, 2003. 
Transmissions that coincide with wind direction (measured at the closest meteorological station) are in blue. 
Observed transmissions are defined as transmissions estimated at a posterior probability of at least 0.9. (A) 
Transmission events on a map of the region. Dots denote infected poultry farms, triangles denote the five closest 
meteorological measuring stations. (B) Density plot of wind direction (measured at station IV) against time, with 
red regions indicating wind is predominantly in one direction. Dots denote estimated time and direction of 
transmissions. Wind direction and direction of transmissions appear to be correlated. For example at the start of 
the outbreak, around March 1st, wind direction is predominantly south east (red region); in this time period most 
transmission events are also in this direction (dots).  

 

Results 
For all farms infected in the avian influenza A(H7N7) outbreak, we identified the most probable 
infecting farm using infection date, culling date, and viral RNA sequence data of the HA, NA, and 
PB2 genes. For 83 farms we could identify a single infector farm with a probability of at least 0.9; 
we call these 83 pairs of infected and infector farms the ‘observed transmissions’. Figure 1A shows 
the location of the farms, the distance over which the observed transmissions occurred, and the 
direction of observed transmissions on a map of the region. Most transmissions occurred over short 
distances in a central high-density farm area. Figure 1B shows the wind direction over the course of 
the outbreak, together with the direction of the observed transmissions.  
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The circular correlation coefficient between direction of observed transmissions and wind direction 
was 0.051, significantly higher than expected when directions were uniform and independent 
(p=0.01) (appendix E figure S1). The circular correlation coefficient was also significantly higher 
than expected based on geography of farm locations, as we found the 0.975 quantile for the circular 
correlation coefficient under the simulations to be 0.043. We further found that the angles between 
the direction of observed transmissions and the vector average wind direction at the date of 
infection are significantly smaller than the angles between the direction of simulated transmissions 
and wind direction (one-sided Kolmogorov-Smirnov test p<0.01) (figure 2). Likewise, the average 
number of hours for which wind is in the same direction as the observed transmission at the date of 
infection is significantly higher for the actual dataset than for the simulations. We therefore 
conclude that the correlation between direction of transmission and direction of wind is higher than 
can be explained by chance and location of farms.  
 

 
Figure 2. Comparison of observed transmissions with simulations in which transmission was unrelated to wind. 
(A) The cumulative percentage of transmissions having an angle with the vector average wind direction of a 
certain degree, for observed transmission events (red) and 1000 simulations (grey). The distribution for the 
dataset lies significantly outside the range generated by the null hypothesis given by the simulations (one-sided 
Kolmogorov-Smirnov test, p<0.01). (B) The average number of hours for which wind direction was equal to 
direction of spread at the date of infection. Since there are 24 hours in a day, and hourly average wind directions 
are available with 10-degree precision, we expect the mean number of hours when wind plays no role to be 
24/(360/10)=2/3. The histogram gives the values for the simulations; the red line gives the value for the observed 
transmission events. Both graphs show that the correlation between wind direction and direction of spread 
cannot be explained by chance or farm geography alone.  

 
The strong positive correlation between wind direction and direction of influenza transmission 
suggests that a substantial proportion of the transmission events are mediated by wind. To estimate 
this proportion of transmissions mediated by wind we compared the percentage of observed 
transmissions in the direction of the wind with the percentage expected by chance. In our analysis 
of the actual data, 34% of the posterior probability was on transmissions in the direction of the 
wind. We assumed this 34% was made up of transmissions that were and transmission that were not 
mediated by wind. The first would all be observed to be in the direction of the wind, while of the 
latter only a percentage would be observed to be in the direction of the wind by chance. From our 
simulations we know that on average 24% of transmissions not related to wind will be in the 
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direction of the wind by chance. Using these numbers and maximizing a likelihood equation (see 
appendix E.2), we estimate the percentage of transmissions caused by wind at 18% (95% 
confidence interval (CI): 6.3, 30). To test for robustness, we also performed a more detailed 
analysis, which assumes a Gaussian plume model for wind spread, puts a prior on the infection 
dates, and takes uninfected farms into account. From this model we obtain an estimate of the 
percentage of transmissions of 20% (95% CI: 9.8, 29), consistent with the first analysis (figure 3). 
 
 

 
Figure 3. Estimation of the percentage of transmissions mediated by wind. Comparing the fraction of observed 
transmissions in the direction of wind to the fraction expected when wind plays no role yields an estimate of 
18% (dashed line). Using a mechanistic model, which assumes a Gaussian plume model for wind-related spread, 
yields an estimate of 20%. The full posterior distribution is given by the bars. 

 

Discussion 
We have shown that for the outbreak of HPAI A(H7N7) in the Netherlands in 2003, inter-farm 
transmissions are more often in the direction of the wind than can be explained by chance and 
coordinates of poultry farms. Based on the proportion of estimated transmissions for which wind 
direction was observed to be in the same direction of spread, we estimated the percentage of 
transmission related to wind at 18%.  
 
Wind-related spread of avian influenza has direct consequences for containment efforts. Farms emit 
vast quantities of particulate matter,209 which could well carry viable virus.214 Several systems, such 
as air scrubbers, water or oil sprinkling, changes in ventilation rate, and ionization systems have 
been shown to reduce dust concentrations209,219 and could be an efficient way to stop infectious 
particles from getting in or out. Alternative wind-related mechanisms cannot be excluded on the 
basis of our analysis. Wild birds or insects acting as vectors for the disease,220 flying preferentially 
in the direction of the wind,221,222 would explain our observations as well, but call for different 
control strategies. Furthermore, culling strategies may take into account the role of wind. First, care 
should be taken to ensure contaminated material does not get into the environment during culling 
activity. Second, wind direction should be taken into account when estimating the risk of infection 
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for farms; the most efficient culling order will first target those farms that are at higher risk of 
infection and, when infected, will pose higher risks to other farms themselves.216 Thus increased 
knowledge of which farms are at risk, provided by current and forecasted wind direction, allows for 
a more efficient culling strategy. 
 
There are several sources of error in our estimation of the transmission tree. The assumed constant 
infectiousness of farms over the course of infection, the substitution model and the assumption of 
independence between mutations and time are simplifications. Furthermore, there is uncertainty in 
the estimation of the infection dates, and there may be errors in the geographical and genetic data. 
These limitations will lead to errors in the inference of transmission events. Counter intuitively, 
these limitations only strengthen our conclusion. If wind-mediated transmission played only a 
minor role, there is a negligible probability that the cumulated small errors in the data and in the 
inferential procedures could have produced the observed strong positive correlation between wind 
direction and direction of transmission. The main reason for this is that the transmission tree was 
reconstructed without using the meteorological data; only afterwards were transmissions compared 
to wind directions. It is much more likely that the cumulated errors would reduce any existing 
strong positive correlation. Therefore our conclusion of wind-mediated spread holds in the presence 
of small errors and the value of 18% should serve as a lower bound for the actual percentage of 
transmissions related to wind.  
 
The type of analysis presented here may have potential to identify and quantify transmission 
mechanisms for other farm animal diseases. However, the resolution we obtained here, tracking 
individual transmissions, could only be achieved through the high percentage of farms sampled and 
high genetic diversity found. This resolution was necessary; an analysis looking solely at prevailing 
wind direction and farm coordinates would not have shown any significant effects. We therefore 
argue efforts should be made to gather genetic data for outbreaks of other infectious diseases as 
well. We do however note that usefulness of such data will depend on the genetic diversity that 
accumulates over the course of the outbreak, which might be lower for other pathogens, and 
depends on the methods used. 
 
Identifying the mechanisms responsible for the transmission of livestock disease between farms is 
challenging: first, because data have to be collected during the outbreak, when the first priority will 
be control rather than research; second, because there are probably several different mechanisms at 
play, making their identification troublesome. The key to identifying transmission mechanisms is 
the reconstruction of detailed transmission networks, made possible by the joint analysis of detailed 
genetic and epidemiological data.  
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Transmission events are the fundamental building blocks of the dynamics of any infectious disease. 
Much about the epidemiology of a disease can be learned when these individual transmission events 
are known or can be estimated. Such estimations are difficult and generally only feasible when 
detailed epidemiological data are available. The genealogy estimated from genetic sequences of 
sampled pathogens is another rich source of information on transmission history. Optimal inference 
of transmission events calls for the combination of genetic data and epidemiological data into one 
joint analysis. A key difficulty is that the transmission tree, which describes the transmission events 
between infected hosts, differs from the phylogenetic tree, which describes the ancestral 
relationships between pathogens sampled from these hosts. The trees differ both in timing of the 
internal nodes and in topology. These differences become more pronounced when a higher fraction 
of infected hosts is sampled. We show how the phylogenetic tree of sampled pathogens is related to 
the transmission tree of an outbreak of an infectious disease, by the within-host dynamics of 
pathogens. We provide a statistical framework to infer key epidemiological and mutational 
parameters by simultaneously estimating the phylogenetic tree and the transmission tree. We test 
the approach using simulations, and illustrate its use on an outbreak of foot-and-mouth disease. The 
approach unifies existing methods in the emerging field of phylodynamics with transmission tree 
reconstruction methods that are used in infectious disease epidemiology. 
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Introduction 
Estimating who infected whom for an outbreak of an infectious disease can provide valuable 
insights. Estimated transmission trees have been used to evaluate effectiveness of intervention 
measures,19,61,185,196 to quantify superspreading,51 to estimate key parameters62,223,224 and to identify 
mechanisms of transmission.187,225 Transmission trees can be statistically reconstructed using 
epidemiological data from outbreak investigations, such as time of symptom onset, geographical 
location and social ties; these data generally have to be very detailed to allow for accurate 
reconstructions. 
 
For many pathogens, in particular RNA viruses, evolutionary processes occur on the same timescale 
as epidemiological processes.66,226 This makes it possible to draw conclusions about epidemiology 
from genetic analysis. The field that infers epidemiological characteristics from genetic sequences 
by simultaneously considering host dynamics and pathogen genetics has been dubbed 
‘phylodynamics’.227 In practical applications researchers have considered a specific epidemiological 
model dependent on the phylogenetic tree inferred from sequence data, simultaneously estimating 
mutational and epidemiological parameters. This allowed them to answer questions on relative 
population sizes and dates of introduction of pathogens. Initially the epidemiological models used 
were classical models from population genetics such as the Wright-Fisher model.228 Recently more 
realistic epidemiological models such as the SIR model91,229 and birth-death model112 have been 
suggested. In these methods, the sampled hosts are thought of as the leaves of the phylogenetic tree, 
while the internal nodes coincide with transmission times to unobserved hosts. The phylogenetic 
tree is thus equated with the partially observed transmission tree. 
 
Although the transmission tree and the phylogenetic tree of an outbreak may appear as two 
incarnations of the same tree, they are in fact different in interpretation and in local characteristics. 
The phylogenetic tree represents the clonal ancestry of sampled pathogens; its leaves are sampled 
pathogens, its internal nodes are most recent common ancestors of the sampled and transmitted 
pathogens (figure 1).66 As a pair of lineages corresponding to two transmitted pathogens can 
coalesce together before coalescing to the lineage sampled from the infecting host, the topology of 
the two trees need not be the same (figure 1A). The difference between phylogenetic trees and 
transmission trees is closely related to the difference between phylogenetic trees and species trees; 
in the latter context this phenomenon is known as ‘incomplete lineage sorting’.106,230 While the 
timing of nodes in the transmission tree corresponds to transmission times, the timing of internal 
nodes of the phylogenetic tree corresponds to coalescent events which take place prior to 
transmission. The absolute difference in branch length between the two trees depends on the 
epidemiological generation interval and within-host dynamics. As the branch length of the 
phylogenetic tree decreases with sampling rate of hosts, the relative difference between the partially 
observed transmission tree and the phylogenetic tree is largest when the sampling rate is high 
(figure 1).  
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Figure 1. Schematic for viral dynamics. In all panels, time progresses from left to right. Hosts are depicted as 
grey pods, virus particles as blue dots and sampled virus particles as red dots. (A) The timing of coalescence of 
viral lineages depends on within-host viral dynamics. Virus (blue) numbers within hosts (grey) rapidly increase 
at onset of infection and decrease near the end of the infection, influencing coalescent rates. A possible ancestry 
between sampled viruses (red) is given in black. Although the initial host infects the latter two, the sampled 
viruses from these latter two are more closely related, as they coalesce with each other before coalescing with the 
virus sampled from the initial host. (B) When viruses are sampled from only a few hosts in a large outbreak, the 
timing of the coalescence of the sampled viruses is nearly identical to the timing of transmission immediately 
following the coalescence. The timing of coalescent events is mainly governed by inter-host infection dynamics, 
and the phylogenetic tree derived from the sequences (blue) is very similar to the one derived when internal node 
times are equated with transmission times (red). (C) When viruses are sampled from all hosts in an outbreak, 
coalescent times and transmission times are very different. The phylogenetic tree derived when approximating 
coalescent times by transmission times (red) is very different from the actual phylogenetic tree (blue). 

 
Recently, methods have been proposed that focus on including genetic information in transmission 
tree reconstructions.64,65 However, these approaches either ignore the phylogenetic tree, or they 
assume internal nodes of the phylogenetic trees coincide with transmission events. As these 
approaches require a high sampling fraction, the within-host genetic diversity can contribute to the 
genetic diversity observed between the sampled sequences. Because this contribution is ignored in 
the analyses, it can lead to incorrect inference of the transmission tree and biased estimates of 
parameters. 
 
Here, we present a consistent way to use pathogen genetic sequence data in transmission tree 
reconstruction, by simultaneously estimating the phylogenetic tree of the pathogens. This requires 
inclusion of a model of within-host pathogen dynamics. In this paper we will describe the likelihood 
framework for such a joint estimation of the transmission tree and the phylogenetic tree. We 
investigate the performance and robustness of the methodology using simulations of an influenza 
outbreak in a confined setting. In these simulations, we also investigate the sensitivity of the 
outcome to unsampled or unobserved hosts. Finally, we illustrate the use of the method by applying 
it to a previously published dataset on an outbreak of foot-and-mouth disease (FMD). 
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Methods 

Joint likelihood of the transmission tree, phylogenetic tree and within-host dynamics 

We focus on outbreaks for which nearly all cases are observed, host characteristics such as time of 
symptom onset are known and sequences are obtained from pathogens sampled from a proportion 
of the hosts. The transmission events are not observed. From these data we will simultaneously 
estimate both the transmission tree and the phylogenetic tree, by writing down the likelihood for 
any pair of these trees. Throughout, we assume the first infected host, or index case, introduced 
infection, and all other infected hosts are infected by another host in this outbreak. We assume 
every host is infected at most once. 
 
Define a transmission tree T as the set of all transmissions between infected hosts, including 
transmission times.19 The transmission times could be observed or unknown, in which case we will 
estimate them simultaneously. The phylogenetic tree P is the usual dichotomous tree, with timed 
internal nodes. The function W(t,h) gives a measure of within-host genetic diversity, as the product 
of the pathogen generation time and the within-host effective pathogen population size in host h at 
time t. W(t,h) can be thought of as being proportional to the total number of virus particles in host h 
at time t. Let θ be the epidemiological parameters and μ the mutational parameters, and let the data 
D consist of genetic sequences DG and epidemiological data DE.  
 
The probability of the transmission tree T, phylogenetic tree P, within-host dynamics W and 
parameters θ and μ can be found by first applying first Bayes’ theorem, and then the chain rule of 
probability: 
 

 
 
where π denotes the prior probability. We can further simplify this equation by using conditional 
dependencies. In particular, if we know the full transmission tree, epidemiological parameters and 
within-host dynamics, the phylogenetic tree and mutational parameters give no further information 
on the probability of the epidemiological data: 
 

 
Likewise, when the ancestry of sampled pathogens and the mutational parameters are known, the 
epidemiological data and parameters give no further information on the sequence data: 
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Also, the mutational and epidemiological parameters give no further information on the ancestry 
when the transmission tree and within-host dynamics are known (we assume there is no information 
on selection pressures): 
 

 
 
We thus get 
 

 
 
The amount of prior information will differ per application; prior information on parameters and 
within-host dynamics might be available due to previous studies, prior information on the 
transmission tree might be available through contact tracing. 
 
We point out the similarity of equation (1) to previous methodologies. The first term on the right 
hand side is, up to the inclusion of the within-host model W, identical to the likelihood equations 
found in transmission tree reconstruction methods.19 The second and third terms together resemble 
the likelihood equations found in many phylodynamic approaches,21,66 with the difference that the 
epidemiological model in such approaches is replaced here by the combination of the transmission 
tree and the within-host model.  
 

Numerical implementation: sampling from the probability distribution 

Equation (1) defines (up to a constant) a probability distribution on the space of transmission trees, 
phylogenetic trees and parameters. We can sample from this distribution using Markov Chain 
Monte Carlo (MCMC) methods. The initial state consists of a transmission tree, phylogenetic and 
parameters with probability larger than 0. We construct the initial state as follows. We first ensure 
every host has a time of infection, by assigning one if the time was unobserved. We then construct a 
transmission tree by assigning an infector to all infected hosts, apart from the host infected first. The 
infecting hosts are randomly taken from the set of hosts that are infectious at the time of infection of 
the infected host. We construct a phylogenetic tree that is consistent with this tree, and take initial 
values for the parameters from their prior distributions.  
 
In each iteration of the MCMC, the trees and parameters are updated. An iteration consists of five 
different steps: 

• for a host infected in the outbreak, pick a new infector. In this step we also alter the 
phylogenetic tree, to make sure it’s compatible with the proposed transmission tree; 

• consider a new root for the transmission tree, switching infection times between the current 
and proposed root; 

• update infection times; 
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• per host, update the phylogenetic tree contained in that host; 
• update parameter values. 

See appendix F.3 for technical details. Below, we illustrate this general concept using simulated and 
real data. 
 

Testing the approach on simulated datasets 

To illustrate the method and assess robustness to missing data, we apply it to simulated data on an 
influenza outbreak in a confined school-based population of 200 individuals. Such confined 
outbreaks are amenable to analysis as, due to the low number of cases, individual infections can be 
tracked using only epidemiological data.63,224  
 
Each simulation starts with one infected and 199 susceptible individuals, half of them children; only 
outbreaks with at least 50 cases were used for further analysis. We use a latent period of two days, 
and a gamma distributed infectious period with a mean of three days and a variance of two. During 
their infectious period, individuals exert an equal and constant force of infection on all susceptible 
individuals, i.e. we assume homogeneous mixing, such that the expected number of infections 
caused by an infectious individual is 0 for adults and 2 for children at the start of the outbreak. We 
assume that symptom onset coincides with the start of the infectious period. See appendix F.1 for 
details. 
 
We take a simple analytically tractable function, a quartic kernel, for the product of pathogen 
generation time and effective population size:  
  

 
 
where Th is the time between infection and recovery of host h, and (t-th) is the time since infection th 
of h. Note that the model assumes an effective size of 1 at transmission, ensuring only one strain 
can infect a host. We take a substitution rate of 0.003 substitutions/site/year. 231 
 
For each case, we record the time of symptom onset, the recovery time, a sequence sampled one day 
after symptom onset, and whether the case is a child or adult. These data are then used for 
inference, as described below. 
 

Inference 

We estimate the transmission tree and parameters θ and μ using the proposed likelihood equation 
(1). To this end, we need to specify the three components of the likelihood. 
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Likelihood component for the transmission tree 

We assume the incubation period, defined as the time between infection and developing symptoms, 
is gamma distributed with mean 2 and variance 1. The likelihood of the transmission tree then 
becomes the product over all infected hosts of the infectiousness of the infecting host relative to the 
total infectiousness of all hosts times the probability distribution s for the length of the incubation 
period: 
 

 
 
where H is the set of all infected hosts, H- is the set of all infected hosts minus the index case, tx and 
ox are the start of the infection and the start of the infectious period of host x, v(x) is the infector of 
host x, and It(a|θ,DE) is the infectiousness of host a at time t. Here we take infectiousness to be the 
rate at which a host infects any other host. The infectiousness It(a|θ,DE)= θ if t>sa and a has not 
recovered at time t, 0 otherwise. Note that the infectiousness does not depend on the infected host, 
as we assume homogeneous mixing and we do not want to a priori assume a difference in 
infectiousness between adults and children. 
 

Likelihood component for the phylogenetic tree  

The likelihood of the phylogenetic tree can be obtained from coalescent theory for haploid 
organisms. Going backwards in time, two events can take place that alter the number of lineages of 
the phylogenetic tree contained within one host. First, the number can decrease by one due to a 
coalescent event. Second, the number can increase by one due to an incoming lineage: a 
transmission event from this host to another, akin to a new sample in standard coalescent models. 
The first case is described by the likelihood that the lineages did not coalesce for a time, and finally 
coalesced, the second case is described by the likelihood that the lineages did not coalesce. Using 
forward time we get  

 
 
where H is the set of all infected hosts and Cx is the set of all intervals 𝜏 = [𝜏1, 𝜏2] where the 
number nτ of viral lineages within host x with sampled offspring is constant and larger than 1. The 
indicator function 𝕝𝑐𝑜𝑎𝑙 is 1 if the interval starts with a coalescent, 0 otherwise. Here, we assume W 
to be fully known. 
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Likelihood component for the mutational parameters  

We take the simplest feasible substitution model; all mutations are equally likely and happen with 
rate μ. We therefore get 
 

 
 
where the first product is over all base pairs, the sum is over all possible assignments of each of the 
nucleotides to each of the N internal nodes, the second product is over all branches of the 
phylogenetic tree, t denotes branch length, and the indicator denotes whether a mutation occurred 
on that branch. We omit the Jukes-Cantor correction because time-scales are very short and 
selection pressures absent, and hence the probability of multiple mutations at the same locus is 
negligible (see appendix F.1.1); including other, perhaps more realistic substitution models would 
be straightforward. 
 

Evaluating performance 

We examine how well the transmission tree can be reconstructed by evaluating the probability 
assigned to the actual transmission events. We estimate the probability that host j infected host i by 
the proportion of sampled trees in which j infected i. We assess false positives by evaluating, for 
each infected host, whether the infector assigned the highest probability is the actual infector. We 
further evaluate how well the method estimates the substitution rate, and whether the method is able 
to find the reduced infectiousness of adults. The latter is done by counting the fraction of infections 
caused by adults among transmission events estimated at probability at least 0.9. As we are 
interested in the parameters and transmission tree, the phylogenetic tree can be considered a 
nuisance parameter, and we do not further investigate its estimation. 
 
To assess robustness of the estimation procedure, we simulate data, estimate parameters and 
evaluate performance for seven different simulation scenarios. In the baseline scenario, all data are 
available. In the second and third scenario, we examine the impact of incomplete sampling by 
randomly discarding 0 per cent or 50 per cent of sequences. In a fourth scenario, we examine the 
impact of unobserved hosts by randomly discarding 20 per cent of infected hosts. To keep the 
number of observed hosts comparable, we start these simulations with 20 per cent more 
susceptibles. In a fifth scenario, we examine sensitivity to an increased substitution rate of 0.01 
substitutions/site/year. In a sixth scenario, we examine sensitivity to a decreased substitution rate of 
0.001 substitutions/site/year. In a seventh scenario, we examine the impact of a misspecified within-
host model, by setting W(t,h)=1 in the analysis. Specifying this within-host model is equivalent to 
making the incorrect assumption that coalescent events coincide with transmission events. 
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Application to an outbreak of foot-and-mouth disease 

To illustrate the use of the method in practice, we re-analyze data on an outbreak of foot-and-mouth 
disease (FMD) in 2001 in Durham county, England.22,65,232 Here, for a cluster of 12 infected farms, 
spatial information, date of symptom onset, culling date and one full genome sequence is known for 
all 12 farms in the cluster. Both the phylogenetic tree and transmission tree have been estimated 
before for this outbreak separately, giving inconsistent results.22 We apply our method to illustrate 
how to estimate both trees simultaneously, using the same epidemiological model and substitution 
model as were used in a previous study.65 We assume an exponentially increasing function for W 
(see appendix F.2 for details), as at time of culling the disease is still spreading within the farms. 
 

Results 
We first test the proposed method by estimating the transmission tree from the simulated datasets.  
Figure 2 shows how well individual transmissions can be estimated, table 1 shows the average 
probability assigned to the actual transmissions. When all data are available on average half of the 
transmissions in the reconstructed transmission tree are correct (figure 2), this number is almost one 
if we restrict ourselves to transmission events assigned a high probability. Few transmissions can be 
correctly estimated when the percentage of infected hosts sampled decreases. When instead the 
percentage of hosts observed decreases transmissions can be estimated correctly quite often, but the 
percentage of incorrectly estimated transmissions increases strongly. More transmission events can 
be estimated when the substitution rate is higher, fewer transmission events can be estimated when 
the substitution rate is lower. Nearly as many transmission events can be correctly estimated when 
we assume coalescent events coincide with transmission events as when we know the correct 
within-host model. However, the percentage of transmissions that is incorrectly estimated increases. 
 
We now turn to estimation of mutational parameters from the simulated datasets. The substitution 
rate can be estimated well even when data are missing (figure 3A); the mean estimated rate was 
0.0033, the actual value of 0.003 was contained in the 95% credibility interval for 90% of the 
simulations. Assuming coalescent events coincide with transmission leads to a large overestimation 
(mean 0.0067, coverage 15%); this is because the total branch length of the phylogenetic tree is 
underestimated, leading to an overestimate of the substitution rate (figure 1).   
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Figure 2. Accuracy of estimating transmission trees using genetic sequences of pathogens, for different 
simulation scenarios. Solid lines give the average percentage of infected hosts for which the actual infector has 
been assigned a probability of at least the level indicated on the x-axis. Dashed lines give the average percentage 
of infected hosts for which the infector has been incorrectly identified, with a probability at least the level 
indicated on the x-axis. (A) Results when 100% (black), 50% (blue) or 0% (purple) of infected hosts have been 
sampled. When fewer hosts are sampled, only a few infectors can be identified at a high probability level. (B) 
Results when all (black) or 80% (turquoise) of hosts are observed. When fewer hosts are observed fewer 
infectors are identified correctly, and incorrect inferences are made even at high probability levels. (C) Results 
when substitution  rate is 3×10-3 (black), an increased 1×10-2 (yellow) or a decreased 1×10-3 
substitutions/site/year (green). At higher substitution rates the inference is more accurate. (D) Results when 
coalescent events are allowed to differ from transmission events (black) or when coalescent events are 
incorrectly assumed to coincide with transmission events (pink). The incorrect assumption leads to incorrect 
estimations even at a high probability level. 

 
Next, we focus on performance in estimating the relative infectiousness of adults from the 
simulated datasets. Figure 3B gives, for each of 100 simulations under each of the seven scenarios, 
the point estimate and confidence interval for p, the fraction of infections caused by adults. Most 
estimates of p are close to the correct value of 0, except for the scenarios where only 80% of hosts 
are observed (mean p=0.05), or when transmission times are equated with coalescent times (mean 
p=0.11). More importantly, the confidence interval for p becomes larger when there is more 
uncertainty about the transmission tree, most notable under the two scenarios with decreased 
sampling rates. 
 
Having tested the method, we apply it to infer transmission trees from epidemiological and genetic 
sequence data collected during an FMD outbreak in Durham county, England, in 2001. Figure 4A 
illustrates a typical sample from the MCMC, consisting of a transmission chain connecting the 
infected farms and a phylogenetic tree connecting the sampled sequences. The results are broadly 
similar to those obtained from previous analyses on the same dataset (appendix F.2). The mean 
latency period was estimated at 7.8 (95% credibility interval (CI): 4.9, 12) days (figure 4), which is 
in agreement with a typical latency period of 5 days (95% CI: 1-12 days) of FMD virus.233-235 
Ignoring the within-host genetic diversity would have led to an unrealistically large estimate for the 
latency period of 24 (95% CI: 17, 35) days.65 The substitution rate was estimated at 1.1×10-2 (95% 
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CI: 8.7×10-3, 1.5×10-2) substitutions per site per year, which is higher than a typical value of 
7.7×10-3 based on genetic data only.22 We found the value to be sensitive to the precise specification 
of the within-host dynamics. See appendix F.2.3 for further results and comparison to previous 
estimates. Together, these results confirm the method is able to estimate plausible parameter values, 
whilst reconstructing the transmission tree and a consistent phylogenetic tree of the outbreak. 
 

 
 

 

Figure 3. Robustness of estimates of genetic and epidemiological parameters under various scenarios. (A) 
Distribution of point estimates of the substitution rates for 100 simulations, for three simulation scenarios. Actual 
value is 0.003 (black line). Estimates are accurate when all information is available (black) and when 50% of 
hosts are sampled (blue), although the latter leads to a broader distribution. Assuming coalescent events coincide 
with transmission events (pink) however leads to a large overestimation, since the total branch length of the 
phylogenetic tree is underestimated. Mean estimates are 3.3×10-3, 3.3×10-3 and 6.7×10-3 respectively. (B) Point 
estimate (black) and 95% confidence interval (grey) of the fraction of infections due to adults, actual value is 0. 
Shown are 100 sorted estimates, for each of seven scenarios (complete data, missing sequences, unobserved 
hosts, altered substitution rate and incorrect within-host model). Estimates are away from the actual value of 0 
when only 80% of hosts are observed, or when coalescent times are equated with transmission times. The width 
of the confidence interval largely depends on the amount of information available, e.g. when less genetic 
information is available due to incomplete sampling the point estimates are accurate, but the confidence interval 
can become very broad. 
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Figure 4. Results from the analysis on the foot-and-mouth disease datasets. (A) A typical transmission tree 
sampled from the MCMC. Shown are infected farms (labelled pods), their latent periods (grey) and infectious 
periods (green), samples viruses (red) and the phylogenetic tree connecting these viruses (black). The 
phylogenetic tree is contained within the transmission tree; due to the exponentially increasing within-host 
effective pathogen population size assumed, most coalescents occur early during an infection. (B) Posterior 
distribution for the mean latency period β1. Solid black line gives the median, striped black lines give the 2.5th 
and 97.5th percentile. Blue line gives a previous estimate from the literature, green line gives the estimate 
derived from the same dataset in a previous study that ignored within-host genetic diversity. The estimate (solid 
black) is higher than we would expect from the literature (blue). The overestimation could be due to unobserved 
infected farms. Not allowing for within-host genetic diversity gives an overestimation (green). (C) Posterior 
distribution for the substitution rate μ. Solid black line gives the median, striped black lines give the 2.5th and 
97.5th percentile, blue line gives a previous estimate from the literature. The higher estimate we obtained could 
be due to an overly simplified within-host model. 

 
 
 
 

 

Table 1. Accuracy of estimating transmission trees from genetic sequences of pathogens average 
probability assigned to actual transmission events. 

Scenario Percentage correct 
all data  50 
50% sampled  31 
0% sampled   24 
80% observed   44 
high substitution rate  77 
low substitution rate   37 
coalescent at transmission   48 
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Discussion 
We have shown how the within-host dynamics of pathogens relate the phylogenetic tree of sampled 
pathogens to the transmission tree of an outbreak of an infectious disease. We use this relationship 
to estimate key parameters by combining genetic data on the pathogen with epidemiological data. 
The advantage of this estimation procedure is that estimates are more accurate, and estimation is 
feasible even when hosts are unsampled or unobserved.   
 
The method is able to correctly estimate epidemiological and mutational parameters, and can infer 
individual transmission events. Although the methods performs best when all infected hosts have 
been observed and sampled, simulations show that even when 20 per cent of infected hosts are 
unobserved the transmission tree can still be estimated reasonably well. Note however, that 
estimation of some epidemiological parameters might become biased. For example, in the FMD 
example, the slight overestimation of both duration of the latency period and substitution rate could 
well be due to unobserved farms.65 As expected, the accuracy of the estimates increases with 
substitution rate. The method therefore seems most suited to analyse datasets on RNA viruses. 
Analysis for DNA viruses or bacteria might still be feasible if the times between infection are large 
enough, as sufficient genetic diversity might still accumulate over the course of the outbreak. 
 
To correctly estimate both the transmission tree and the phylogenetic tree, knowledge on the within-
host effective pathogen population size and pathogen generation time is needed. This knowledge 
will however not be available in general. On the short timescales we are considering, we expect it 
will be challenging to estimate the shape of the time-varying population size from the data. 
Conversely, the impact of a misspecification of the within-host effective pathogen population size is 
minor. Even the extreme case of taking a constant population size of 1 (i.e. equating transmission 
times with coalescent times) leads to reasonable estimation of the transmission tree. We see this in 
our application to FMD; although the substitution rate is overestimated, the estimated 
epidemiological parameters agree very well with previous estimates. It is possible that within-host 
dynamics are easier to estimate for chronic infections. However, for chronic infections the 
epidemiological data are usually less informative of the transmission tree. 
 
In proposing this methodology, we extend previously proposed methods that aim to reconstruct 
transmission trees using both epidemiological and genetic data. The field was pioneered by 
Cottam et al.,22 who considered a sequential estimation procedure for the phylogenetic tree and the 
transmission tree; an approach that leads to loss of information contained in the phylogenetic tree. 
More recent approaches considered both data types simultaneously,64,65,190 but implicitly or 
explicitly associated sequences with hosts, rather than with individual pathogens within the host. 
This means transmission times coincide with coalescent times, an approximation that is inaccurate 
when the sampling fraction is high. Our simulations show this leads to suboptimal inference of the 
transmission tree, and to a large overestimation of the substitution rate. 
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Transmission tree reconstruction methods focus on individual transmission events, whereas many 
published phylodynamical approaches66 typically focus on finding general characteristics of an 
outbreak, e.g. epidemiological parameters, from sampled sequences. To estimate individual 
transmissions detailed data are needed; we expect that the number of outbreaks that are studied in 
such detail will increase. More importantly, transmission tree reconstruction allows for an 
understanding of the outbreak at a high level of detail; for example hypotheses regarding the 
transmission mechanism can be tested using the reconstructed transmission tree.225  
 
Reconstructing large outbreaks at the detailed level of individual transmissions is only feasible 
when highly informative data are available. These could either take the form of detailed 
epidemiological data on who infected whom, informative genetic data, i.e. a large number of 
sampled sequences exhibiting high genetic diversity, or a combination of both. The method we have 
presented uses both data types to estimate simultaneously the transmission tree and the phylogenetic 
tree, acknowledging the fact that these two are, in fact, different. With the decreasing cost of 
sequencing technologies it is likely that more and more of such detailed molecular epidemiological 
datasets will become available for a range of pathogens, a trend we have already seen in the last few 
years.199,236,237 We therefore expect that the usefulness of this combination of two historically 
separated fields will become even more apparent in years to come. 
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The aim of this thesis has been to develop methodology to quantify infectious disease dynamics by 
combining genetic and epidemiological data. In chapter 2 we showed how data on date of diagnosis 
and genotype can be used to quantify the notion of 'superspreading' (i.e. some infected individuals 
causing a disproportionately large number of secondary cases). In chapters 3 and 4 we developed 
and applied methodology to detect local outbreaks of infectious diseases from large databases 
containing temporal, spatial and genetic data. In chapters 5-7 we showed how the transmission tree 
of an outbreak can be estimated, using information on times of infection, case characteristics and 
genetic sequences of the pathogen. 
 
The studies presented in this thesis have offered several new insights into the dynamics of the 
diseases studied. First, the analysis in chapter 2 revealed a high heterogeneity in the number of 
secondary cases of tuberculosis caused by one infectious individual in the Netherlands. This has 
implications for allocation of resources in tuberculosis control, since an optimal strategy might be to 
focus resources on highly infectious cases. Second, the analysis in chapter 4 suggested that MRSA 
carriers for whom health care staff could not provide a risk category were likely to have acquired 
their MRSA in the community. Third, the analysis in chapter 5 showed that infectiousness of farms 
harbouring avian influenza increases with the number of animals. Lastly, the analysis presented in 
chapter 6 showed a likely role of wind in spreading avian influenza between farms. In more general 
terms, the methods developed in this thesis provide ways to detect outbreaks (chapter 3), follow 
infections (chapters 5, 7), elucidate correlates of infectiousness (chapters 4, 5) and find 
improvements for control (chapters 2, 6). As the methods are generically applicable, more results 
might be added to this list in the near future.  
 
An analysis combining genetic and epidemiological data can be said to yield more than the sum of 
its parts;238 it can give results beyond those obtained from the separate analyses. This is particularly 
clear for the branching process method and clustering method presented in chapters 2 and 3 of this 
thesis. In chapter 2, we used genetic and epidemiological data to separate transmission chains for 
tuberculosis in the Netherlands. Such an analysis would have been impossible using 
epidemiological data alone, as many transmission chains occur at the same time, and we would 
have no way to separate them. The genetic data alone is enough to separate the dataset into 
genotypic clusters, but these are not equal to the transmission clusters needed as final sizes of the 
branching process. Thus, the separate data sources would not have yielded an estimate of the 
heterogeneity in infectiousness, whereas the combination of the two does. 
 
The analysis presented in chapter 3 makes use of the correlations found between geographical, 
temporal and genetic data. Although it can be carried out by using only two of the three,58 
performance would no doubt strongly decrease; small distances between two cases are much more 
likely to occur simultaneously by chance in two data types than in three data types. This leads to a 
strongly reduced signal for finding related cases when only two of the three data types are used. As 
an illustration, not distinguishing the various clonal complexes of MRSA in chapter 4 would have 
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led to a hugely decreased signal. This decrease is due to both the percentage of clustered cases 
varying strongly per clonal complex, and to the discarding of the small genetic differences within 
clonal complexes, which hold much of the information. 
 
Likewise, the transmission tree reconstruction methods from chapters 5-7 can be performed using 
just epidemiological19 or just genetic190 data. However, the former yields results only when very 
few cases are involved, the latter only when the substitution rate is extremely high. Using both types 
of data, the analysis of transmission events in an outbreak of avian influenza (chapter 5) yielded 
reliable estimates for almost 50% of the edges in the transmission tree; using epidemiological data 
alone, this fraction decreased to less than 10%. Similarly, in chapter 6, the combined data were 
sufficient to identify a wind-mediated mechanism of disease spread, but either type alone was not. 
Extensive simulations in chapter 7 also show that combining the two data sources in one analysis 
markedly improves results. 
 
The pattern that arises is the following: epidemiological data are informative on small outbreaks, 
whereas genetic data allow us to differentiate between different outbreaks. The concept of outbreak 
I use here is context-dependent. An epidemic can be considered one outbreak; indeed, 
epidemiological data such as case counts over time can inform us of the general characteristics of an 
epidemic. However, an epidemic itself consists of several outbreaks which occur simultaneously. 
Epidemiological data cannot distinguish between them, but genetic data can. Once an epidemic has 
been subdivided into separate outbreaks, these can be further analysed using epidemiological data. 
Mathematically, the reason for this ‘separating ability’ of genetic data is its high dimensionality (i.e. 
the number of base pairs sequenced). Such separation of outbreaks hinges on two factors. First, the 
evolutionary time separating outbreaks has to be long enough for mutations to have fixed (this need 
not be the case during fast outbreaks, see chapter 7). Second, the dimensionality of the genetic data 
has to be high enough that back mutations do not play a large role (this need not be the case for 
genotyping data, see chapter 2, or when there is strong positive selection). 
 
To predict future developments in the field of molecular epidemiology, we should note that 
historically, new developments in the field of molecular biology and, by extension, molecular 
epidemiology, have been technology driven. In recent years, we have seen relatively coarse 
genotyping techniques being replaced by more advanced sequencing methodology. It is natural to 
assume that in a few years, studies will focus on whole-genome sequencing or even deep 
sequencing.35 Whole-genome sequencing reads every base pair of a genome. Deep sequencing reads 
all base pairs several times and can thereby establish the frequency of any mutation, giving 
information on the complete population of pathogens present in a sample. Whole-genome 
sequencing is increasingly applied to bacteria, which have a large genome and low mutation rate 
relative to viruses; this technique holds the promise to allow some of the more detailed 
phylodynamic methods developed for viruses to be applied to bacteria.236,239-241 Deep sequencing 
provides information on intra-host genetic diversity. Whether this technique will also increase our 
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understanding of inter-host transmission, compared to conventional sequencing, will depend on the 
speed with which individual mutations fix.242,243 For example, the data will not add anything if the 
fixation times are shorter than the times between sampling. In general, as sequencing techniques 
become faster and cheaper, we expect an increasing role for analyses that focus on densely sampled 
outbreaks, such as those in chapters 5-7. 
 
One interesting development in the field of reconstructing transmission trees from epidemiological 
and genetic data (cf. chapters 5-7) is that new methods seem to fall into one of two classes. The first 
class of methods focuses on epidemiological data and adds genetic data in a very simplified way (as 
in chapter 5). The second class focusses on phylogenetic trees constructed from advanced 
mutational models and adds epidemiological data (similar to chapter 7). It remains to be seen if the 
extra realism added in these latter analyses by allowing for dependence between time and genetic 
distance is worth the corresponding increase in computational effort. I would conjecture this to be 
the case for chronic infections, where times between subsequent infections can be variable, but 
maybe not for acute infections, where generation intervals are more predictable. Although the 
observed mutations are a clear marker of transmission tree topology, the short timescales seen in 
outbreaks can lead to a high variance in the number of mutations among individuals. The mutations 
then are not very informative of actual timing, particularly as we seldom know the within-host 
dynamics needed for a proper calculation of evolutionary time. 
 
As the methods described in this thesis are data-driven, it is important to consider the variety of data 
sources. We can expect the highest quality data to be generated from research projects set up 
specifically to study a pathogen or outbreak in detail. However, the largest amount of data is 
generated in surveillance and clinical settings. For example, the large number of HIV sequences 
available to researchers have been generated because of their clinical relevance in assessing drug-
resistance markers.244-246 Furthermore, initiatives are being raised that do not target a specific 
outbreak or epidemic, but aim to sequence an enormous amount of 'background' microbes.248,249 
Finding ways to convert these data into useful information will present many interesting challenges. 
 
The scientific standard in the field today is that sequences described in the literature should be 
freely available through public repositories, which is a great way to facilitate the sharing of data. 
However, as noted before250 and emphasized by this thesis, research could benefit even more if 
available 'metadata' (e.g. epidemiological data) were likewise shared on a routine basis. Information 
on sampling time is invaluable and not always reported. Additionally, sampling location and 
demographic and clinical host characteristics could be very useful, but are only sporadically 
available. Focus should be given to encourage researchers to collect and share these additional data. 
 
One aspect that has not been touched upon in this thesis is the need for ethical reflection.251,252 
When genetic data become so informative that it becomes feasible to estimate who-infected-whom, 
research and data intended to aid public health can raise legal and societal issues. For example, HIV 
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sequence data have been used in a court case where the defendants were accused of deliberately 
transmitting the virus. Scientists working with pathogen genetic data should consider not only the 
scientific merit of their research, but also the societal effects it could have. 
 
Combining genetic and epidemiological data in one analysis can be a powerful way to learn more 
about spread of infectious diseases. As the technology that drives this field is moving fast, future 
research should focus not only on refining existing methodology, but on anticipating the high 
quantity and quality of data that will be generated in the next few years. Extracting useful 
information from these data truly is an interdisciplinary endeavour, with the potential to unravel 
infectious disease dynamics at unprecedented levels.  



 

 



 

 

 
Chapter 9 

 

 

To Conclude 

  



To conclude   

112 
 

Summary 
Infectious diseases are studied both to cure the ill and to prevent new infections from occurring. To 
achieve the latter, it is often very valuable to know how, when, where and between whom infectious 
diseases spread. For example, if we knew hospital bacteria were transmitted among patients by 
health care workers we could increase hygiene measures. If we knew young people were 
responsible for most new tuberculosis infections, we could increase contact tracing efforts around 
them. And if we knew avian influenza was predominantly spread by wind, new filters could be 
installed in farm ventilation systems. Unfortunately, such knowledge can be hard to come by, as 
transmission of pathogens is often invisible and we generally only observe them indirectly, through 
the illness they cause. Fortunately, even indirect observations hold valuable information. The field 
of infectious disease dynamics focusses on obtaining this information from such observations. 
 
A relatively new source of information is formed by genetic data. It has become possible to isolate 
pathogens from samples taken from cases, such as blood or saliva, and establish the DNA sequence 
of the pathogens. These sequences can tell us what type of pathogen we are dealing with, and 
whether we have found a new mutant or a well-known strain. The sequences also hold information 
on the relationships between the different samples taken, and can thus also inform us on the 
dynamics of the disease. However, combining these genetic data with more traditional 
epidemiological data (such as time of symptom onset or location of cases) to unravel infectious 
disease dynamics is not straightforward. 
 
The goal of this thesis has been to devise mathematical methods to combine epidemiological and 
genetic data to unravel infectious disease dynamics. The thesis presents three methods, differing in 
how much information is assumed to be present in the genetic data. An important criterion has been 
whether methods are applicable in practice; all methods have been applied to actual datasets to 
illustrate their use. 
 
The first method assumes that genetic data is very coarse: able only to separate distinct clusters of 
pathogens of the same species that are closely related. The sizes of these clusters are then 
informative of the dynamics of the disease. In chapter 2 we used such genetic data on tuberculosis 
in the Netherlands, together with temporal data on cases, to infer groups of cases probably linked 
through transmission. The presence of both many small and some very large groups indicated that 
the disease spreads in a very heterogeneous way. This means that most infected people cause no 
new infections, but some people will cause many. An effective way of combatting the disease might 
thus be to allocate most resources to identifying these disproportionally infectious individuals.  
 
In the method described in chapter 3, we again assumed the genetic data to consist of genotypes 
which separate the dataset into clusters, but we additionally assumed a measure of genetic similarity 
between these clusters to be available. We further assumed there was temporal and geographical 
information on clusters. We then devised a statistical method that could identify cases that were 
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more closely related, based on the three data types, than would be expected by chance. In practice, 
this means we might be able to identify chains of disease transmissions, in a setting where the 
infectious agent is usually imported from outside. One example of this is drug-resistant pathogens 
in hospitals that either can be carried into the hospital by the patient or result from spread within the 
hospital. We applied the method to data on MRSA in Dutch hospitals to find patient characteristics 
that are associated with within-hospital spread of this pathogen (chapter 4). 
 
The final method we presented has the most stringent demands on data quality and quantity. Both 
sequence and epidemiological data on a large fraction of individuals infected in an outbreak are 
assumed available. We then use these data to estimate who-infected-whom (chapter 5). We applied 
this method to the outbreak of avian influenza A(H7N7) in the Netherlands to show that the 
direction of transmission coincided with wind direction, which indicates that wind plays a role in 
spreading the disease (chapter 6). Finally, we show how full phylogenetic trees can be incorporated 
in the analysis by duly taking into account the within-host genetic diversity that can accumulate 
during an infection (chapter 7). The final model builds a bridge between transmission tree 
reconstruction and phylodynamics, between the epidemiology of infectious diseases and the 
population genetics of pathogens. 
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Samenvatting 
We bestuderen infectieziekten niet alleen om zieken te genezen, maar ook om nieuwe infecties te 
voorkomen. Om effectieve maatregelen die infecties voorkomen te verzinnen is het nuttig te weten 
hoe, wanneer, waar en tussen wie infecties plaatsvinden. Bijvoorbeeld: als we wisten dat 
ziekenhuisinfecties tussen patiënten verspreid werden door verplegers en artsen konden we de 
hygiëne-maatregelen aanscherpen, als we wisten dat tuberculose-infecties vooral door jongere 
mensen veroorzaakt werden konden we het contactopsporingsonderzoek rond jonge mensen 
verzwaren en als we wisten dat aviaire influenza tussen boerderijen vooral verspreid werd door 
wind konden we filters installeren om de uitstoot van virusdeeltjes tegen te gaan. Dit soort kennis is 
echter lastig te vergaren, aangezien transmissie van pathogenen in het algemeen onzichtbaar is en 
we het pathogeen zelf vaak pas zien als mensen er ziek van worden. Dit soort indirecte observaties 
kunnen echter nog steeds erg waardevol zijn. In het veld van de infectieziektedynamiek proberen 
onderzoekers deze observaties te gebruiken om nuttige informatie over ziekteprocessen te 
verkrijgen. 
 
Genetische data vormt een relatief nieuwe bron van informatie. In de afgelopen jaren zijn 
technieken ontwikkeld en verbeterd die in staat zijn de DNA sequentie van een pathogeen te 
bepalen van monsters genomen van ziektegevallen, zoals bloed- of speekselmonsters. Deze 
sequenties kunnen niet alleen gebruikt worden om het pathogeen te identificeren, maar ook om te 
bepalen of het een bekende variant of een mutant betreft. Verder bevatten de sequenties informatie 
over de relatie tussen de verschillende monsters, en dus over de verspreiding van de ziekte. Idealiter 
zouden we deze genetische data willen combineren met meer traditionele epidemiologische data 
(zoals eerste ziektedag of locatie van gevallen), hoe deze combinatie eruit zou moeten zien is echter 
niet voor de hand liggend. 
 
Het doel van dit proefschrift is het ontwikkelen van wiskundige methodes om genetische en 
epidemiologische data te combineren, om hiermee de verspreiding van infectieziekten beter te 
begrijpen. In het proefschrift worden drie methodes gepresenteerd, die verschillen in het soort 
genetische data dat ze gebruiken. Een belangrijke eigenschap van elk van deze methodes is dat ze 
verder gaan dan alleen theorie; alle drie de methodes worden in het proefschrift toegepast op echte 
data om het gebruik te illustreren. 
 
De eerste methode gaat uit van genetische data met een lage resolutie, slechts in staat pathogenen in 
te delen in clusters van nauw verwante pathogenen. De verdeling van groottes van de clusters blijkt 
informatief over de verspreiding van de ziekte. Hoofdstuk 2 richt zich op tuberculose in Nederland. 
Met behulp van genetische en temporele data worden gevallen van tuberculose ingedeeld in 
groepen waarbinnen de ziekte zich vermoedelijk verspreid heeft. Het feit dat er heel veel hele 
kleine, maar ook een aantal zeer grote groepen zijn geeft aan dat de ziekte zich op heterogene wijze 
verspreid. Hiermee wordt bedoeld dat de meeste gevallen bijna niemand infecteren, maar sommigen 
juist vele nieuwe gevallen veroorzaken. Een effectieve wijze van bestrijding van de ziekte zou dan 
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ook kunnen zijn om de meeste middelen te richten op deze buitensporig besmettelijke 
ziektegevallen. 
 
 De tweede methode (hoofdstuk 3) richt zich wederom op genetische data die gevallen opdeelt in 
clusters, maar nu is er ook een maat van genetische verwantschap tussen de clusters bekend. Verder 
zijn de bemonsterdag en locatie van gevallen bekend. De methode is dan in staat om gevallen te 
onderscheiden die nauwer verwant zijn, op basis van de drie datatypes, dan op grond van toeval 
verwacht kan worden. Hierdoor is het mogelijk om lokale uitbraken van een ziekte te detecteren, in 
omgevingen waar de meeste gevallen hun infectie elders opgelopen hebben. Een goed voorbeeld 
van zo’n omgeving is het ziekenhuis, waar veel antibioticaresistente bacteriën door patiënten 
binnengebracht worden, maar patiënten elkaar ook kunnen besmetten. In hoofdstuk 4 passen we de 
methode toe op MRSA in Nederlandse ziekenhuizen, om patiëntkarakteristieken te identificeren die 
gerelateerd zijn aan binnen-ziekenhuis verspreiding van dit pathogeen. 
 
De derde methode stelt de hoogste eisen aan de kwaliteit en kwantiteit van de data; de methode gaat 
uit van beschikbaarheid van epidemiologische en sequentie data van een groot gedeelte van de 
gevallen besmet in een uitbraak. Hiermee kan berekend worden wie wie infecteerde (hoofdstuk 5). 
Door deze methode toe te passen op een grote uitbraak van aviaire influenza A(H7N7) konden we 
laten zien dat windrichting gecorreleerd was met richting van verspreiding van de ziekte, wat een 
rol voor wind in de verspreiding impliceert (hoofdstuk 6). De methode kan verder verfijnd worden 
door ook binnen-gastheer genetische diversiteit mee te nemen (hoofdstuk 7). Deze verfijning slaat 
een brug tussen transmissieboomreconstructie en phylodynamica, twee velden binnen de 
wetenschappelijke disciplines van infectieziekte epidemiologie en populatiegenetica. 
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Appendix A

A.1 Likelihood derivation

A.1.1 Final size distribution

We consider a branching process with a certain distribution for the number of offspring X. It is
well-known that this process dies out with probability 1 if E(X) < 1. Let Π(s) =

∑∞
x=0 f(x)sx

be the probability generating function of X, we can then write Πy(s) = (
∑∞

x=0 f(x)sx)y =∑∞
x=0 g(x)sx for some function g(x). Let Y denote the total number of individuals generated by

the branching process, including the starting individuals. Becker [2] showed that the probability
that Y = y, when the process started with n individuals, is given by the coefficient of sy−n in
Πy(s) multiplied by n

y
:

P (Y = y|n) =
n

y
g(y − n)

This result is useful when Π(s) has a mathematically tangible form. This is the case for the
so-called power series distribution, given by

P (X = x) =
a(x)θx

A(θ)

with
∑
a(x)θx = A(θ); here Π(s) = A(θs)

A(θ)
. The negative binomial distribution has two pa-

rameters, p and k, and is a special case of this distribution; θ = p, ak(x) =
(
x+k−1
k−1

)
and

Ak(θ) = (1− p)−k. Let ΠNB denote its generating function, we then have

Πy
NB(s) =

(
Ak(sp)

Ak(p)

)y
=

(1− p)ky

(1− sp)ky
= (1− p)kyAky(sp) = (1− p)ky

∑
x≥0

(
x+ yk − 1

yk − 1

)
pxsx

where for the last equality we used Aky(sp) =
∑
aky(x)(sp)x. Taking the coefficient of sy−n

and multiplying by n
y

gives, for y ≥ n,

P (Y = y|n) =
n

y

(
y − n+ yk − 1

yk − 1

)
py−n(1− p)ky

=
n

y

(
y + yk − n− 1

yk − 1

)
Ry−nkky

(k +R)(k+1)y−n

(A.1)

with R = E(X) = kp
1−p . Obviously, P (Y = y|n) = 0 for y < n. Note that this distribution

is only proper if R ≤ 1. However it still holds for larger R if we define P (Y = ∞|n) =
1−

∑
y∈N P (Y = y|n) [11].

A.1.2 Mutation

It is possible that mutation (e.g. a transposition) occurs during infection in the Netherlands,
resulting in offspring belonging to a different genotypic cluster. We model this by saying that
for each infection event a mutation occurs with probability pm. Let Xcl denote the number of
offspring of a certain individual having the same DNA fingerprint as that individual. Since each
of the offspring has a different type with probability pm, having x offspring of the same type
means either having x offspring and no mutations, or x+1 offspring and one mutation, or x+2
offspring and two mutations, etc. This is the convolution of a negative binomial distribution
with a binomial distribution

P (Xcl = x) =
∑
i≥x

P (X = i)

(
i

x

)
pi−xm (1− pm)x
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which is again a negative binomial distribution with parameters R(1− pm) and k (Lemma 1).
Thus the final size of each of the clusters is described by equation (A.1), with R replaced by

R(1− pm). This means it will be impossible to estimate R and pm separately from the dataset.
Note that, although the value of the dispersion parameter k does not change, the value of the
variance-to-mean ratio 1 + R

k
does.

Lemma 1. The convolution of a negative binomial distribution with a binomial distribution is
again a negative binomial distribution.

If we write A(x)(θ) for the x-th derivative of A(θ), we have that for the negative binomial
distribution

P (Xcl = x) =
∑
i≥x

P (X = i)

(
i

x

)
pi−xm (1− pm)x

=
∞∑
i=x

(
i+ k − 1

k − 1

)
(

k

k +R
)k(

R

k +R
)i
(
i

x

)
pi−xm (1− pm)x

=
∞∑
i=x

(
i+ k − 1

k − 1

)
(1− p)kpi

(
i

x

)
pi−xm (1− pm)x

= (1− pm)xpx
(1− p)k

x!

∞∑
i=x

(
i+ k − 1

k − 1

)
(pmp)

i−x

(i− x)!
i!

= (1− pm)xpx
(1− p)k

x!
A(x)(pmp)

= (1− pm)xpx
(1− p)k

x!

Γ(x+ k − 1)

Γ(k − 1)
(1− pmp)−k−x

=

(
x+ k − 1

k − 1

)
(

1− p
1− pmp

)k(
p− pmp
1− pmp

)x

=

(
x+ k − 1

k − 1

)
(

k

k +R(1− pm)
)k(

R(1− pm)

k +R(1− pm)
)x

which is just the negative binomial distribution again, but now with mean E(Xcl) = R(1 −
pm).

A.1.3 Dealing with unobserved cases

We assume each individual which is not an index case is seen with probability pseen. The
probability distribution for the observed cluster size Yobs given n index cases becomes

P (Yobs = y|n) =
1∑∞

i=1 P (Ycl = i|n)(1− pseen)i

∞∑
i=y

P (Ycl = i|n)

(
i
y

)
pyseen(1− pseen)i−y

for y > 0, since clusters of size 0 are unobserved. It would be more elegant to allow
for unobserved index cases as well, however this would need additional assumptions on the
distribution of index cases over clusters. This is not straightforward, particulary because these
additional index cases in our study are immigrants, typically from a few countries with high
prevalence of tuberculosis; their DNA fingerprints are highly correlated.

A.1.4 Full likelihood

The likelihood of parameters R, k, pm when ay,n clusters of size y with n index cases have been
fully observed, and by,n censored clusters have been observed to have at least size y and n index
cases is
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L(R, k, pm|a,b) =
∏

y

∏
n P (Yobs = y|n)ay,nP (Yobs ≥ y|n)by,n

=
∏

y

∏
n


∑∞

i=y P (Ycl = i|n)

(
i
y

)
pyseen(1− pseen)i−y∑∞

i=1 P (Ycl = i|n)(1− pseen)i


ay,n

∏
y

∏
n

1−
∑y−1

j=1


∑∞

i=j P (Ycl = i|n)

(
i
j

)
pjseen(1− pseen)i−j∑∞

i=1 P (Ycl = i|n)(1− pseen)i



by,n

and

P (Ycl = i|n) =


n

i

(
i+ ik − n− 1

ik − 1

)
(R(1− pm)i−nkki

(k +R(1− pm))(k+1)i−n if n ≤ i

0 if n > i

A.2 Sensitivity analysis

To construct our model we made several assumptions regarding TB epidemiology, here we will
explore the sensitivity of our results to these assumptions.

A.2.1 Recently arrived immigrants

In our model we assumed that the 933 immigrants that had been in the Netherlands for less
than six months at date of diagnosis were infected elsewhere. We consider three alternatives to
this assumption, and estimate the parameters Rm and k under these alternative assumptions.

First, we assume all recently arrived immigrants were infected in the Netherlands, and
treat them the same as all other cases in our dataset. We would expect that this assumption
slightly increases our estimate of Rm, as more infections are needed to explain all cases. Indeed,
the assumption leads to estimates of Rm = 0.5, k = 0.11, where our original estimates were
Rm = 0.48, k = 0.10. The slightly larger value of k is probably due to an increase in the number
of ’average sized’ clusters (i.e. size 2,3,4,...), which point at moderate values of k. The increase
in k however, is minor.

Second, we exclude all transmission clusters that contain a recently arrived immigrant from
our dataset. As larger clusters are more likely to contain such an immigrant, we expect to find
a lower value of Rm. Indeed, this assumption leads to estimates of Rm = 0.39, k = 0.10. Note
that the estimated value for k is identical to our original estimate.

Third, again assuming that the recently arrived immigrants were infected abroad, we in-
clude any additional cases abroad that never immigrated to the Netherlands by regarding all
clusters containing a recently arrived immigrant as censored. Our interpretation of the esti-
mated parameters would then change slightly, as infections abroad are now also included. With
additional censoring, we find estimates of Rm = 0.61, k = 0.09.

Summarizing, we find that different assumptions regarding the role of recently arrived im-
migrants lead to different estimations of Rm, but nearly identical estimates of k.

A.2.2 Extra pulmonary tuberculosis cases

In our model we assumed extra pulmonary tuberculosis (EPTB) cases were non-infectious, and
discarded them from the analysis. Thus the parameters estimated in the main text describe the
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number of pulmonary cases caused by one pulmonary case. It is possible that some infections
have been caused by (possibly misdiagnosed) EPTB cases. We consider the extreme scenario
in which EPTB cases are as infectious as pulmonary TB cases.

We added the 3892 EPTB cases to our dataset and analysed the full dataset of 12222 cases.
We found 8221 clusters, 7070 (86%) of which consisted of only one case. We find estimates of
the parameters of Rm = 0.50, k = 0.094. The results appears to be insensitive to the assumption
regarding EPTB cases.

A.2.3 Homoplasy/recurrent mutation

In our model we assumed that all RFLP types generated through a mutation are unique, i.e.
lead to new clusters. However, it is possible that several mutation events lead to the same RFLP
type, either through homoplasy or recurrent mutations. The net result of such mutations would
be one large genotypic cluster, rather than several small clusters. Thus any given case might
not have been infected within its genotypic cluster but could be the result of transmission from
a different cluster and a recurrent mutation; it is then an additional index case for its genotypic
cluster.

Each cluster of size y with nobs observed index cases contains y − nobs cases that could
actually be an index case, due to the mechanism described above. Assume this happens for
each case with probability pr. Then the actual number of index cases n for a cluster of size y
with nobs observed index cases is distributed as nobs + nr, with nr ∼ Bin(y − nobs, pr).

The likelihood equation in section (A.1.4) that we use to obtain estimates is based on
{ay,n} and {by,n}, the number of clusters completely/partially observed having precisely/at
least y cases and n index cases. Taking recurrent mutations into account, we note that some of
the clusters will in reality have more index cases than observed. We define Ay,n as the expected
number of clusters of size y and n index cases, given the observed clusters. We get

Ay,n =



0 if y < n

ay,n +
∑n−1

nobs=1 ay,nobs

(
y − nobs
n− nobs

)
pn−nobsr (1− pr)y−n if y = n

∑n
nobs=1 ay,nobs

(
y − nobs
n− nobs

)
pn−nobsr (1− pr)y−n if y > n

and equivalently we define By,n:

By,n =



0 if y < n

by,n +
∑n−1

i=1 by,nobs

(
y − nobs
n− nobs

)
pn−nobsr (1− pr)y−n if y = n

∑n
i=1 by,nobs

(
y − nobs
n− nobs

)
pn−nobsr (1− pr)y−n if y > n

We then replace ay,n and by,n in the likelihood equations of section (A.1.4) by Ay,n and By,n

to obtain estimates for Rm and k. For pr ∈ [0, 0.5] the adjusted likelihood equation yields
estimates of Rm in [0.40, 0.48] and k in [0.10, 0.052] (figure S1). This means the method is
insensitive to recurrent mutations.
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Figure S1. Estimates of the dispersion parameter k under different values for pr, the probability
that a non-index case in an genotypic cluster was infected by a case with a different RFLP type.
In the main text pr = 0, yielding an estimate of k = 0.10. For higher values of pr, i.e. higher
rates of recurrent mutations, the estimate of k decreases. This shows the initial estimate of k
was conservative.
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Appendix B

B.1 Pairwise dissimilarities

Let Dm
i (a, b) be the measured distance between two cases a and b for data type i. There could

be identical values in our dataset (i.e. Dm
i (a, b) = 0). As we use ordinal distances to detect

cases lying close together, detection of local transmission clusters will be more challenging when
many values are identical; no ordering exists on these. To be able to make comparison between
cases with identical values and those with distinct values, we will assume that for all cases for
which the same value was measured, the actual value lies a random infinitesimal distance away
from this measured value. This is actually true for the temporal data, which is always interval
censored, as dates but not exact times are given. It is not true for genetic data, which are
discrete. However, these can be seen as a proxy for evolutionary time separating two samples,
which is again continuous.

We define the dissimilarity di(a, b) between two cases a and b as the expected number of
cases between them, plus one:

di(a, b) = |{p : Dm
i (a, p) < Dm

i (a, b) ∧Dm
i (b, p) < Dm

i (b, a)}|
+
|{p:Dmi (a,p)=0}−1|+|{p:Dmi (b,p)=0}−1|

2
+ 1

= |{p : Dm
i (a, p) < Dm

i (a, b) ∧Dm
i (b, p) < Dm

i (b, a)}|
+
|{p:Dmi (a,p)=0}|+|{p:Dmi (b,p)=0}|

2

when Dm
i (a, b) 6= 0, and

di(a, b) =
|{p : Dm

i (a, p) = 0}| − 2

3
+ 1 =

|{p : Dm
i (a, p) = 0}|+ 1

3

when Dm
i (a, b) = 0. Here ‘∧’ denotes the logical AND operator; A ∧ B is true if and only if

both A and B are true. To see that the definition above coincides with the expected value
plus one, consider three points a, b and c, with a and b having the same observed value
()Dm

i (a, b) = 0), each lying a random infinitesimal distance away from their measured values.
Then the probability that any two of the actual pairwise distances are equal is zero. Therefore,
if Dm

i (a, c) 6= 0, the probability that b is in between a and c is 1
2
. If Dm

i (a, c) = 0, the probability
that b is in between a and c is 1

3
. Further note that, for distinct cases, when identical values

do not occur in our dataset the definition above is equivalent to equation (1) in the main text.
As in the main text, the full dissimilarity between two cases a and b is given by

d(a, b) = Πidi(a, b)

B.2 Putative transmission clusters

For any subset S ⊆ D, define l(S) as the largest dissimilarity in the minimum spanning tree of
S. Note that several minimum spanning trees can exist, but l(S) is unique (see lemma 2). To
test the null hypothesis of independence between data types, we construct the set D′ from D
by randomly permuting the values of the data types. D′ is identical to D for each of the data
types, but satisfies the null hypothesis. We then define the p-value for S as the probability
that a subset with at least that size and at most that largest dissimilarity exists under the null
hypothesis:

P (∃S ′ ⊆ D′ : |S ′| ≥ |S|, l(S ′) ≤ l(S))

and we call S a putative transmission cluster (PTC) if this p-value is beneath a threshold of
0.001.

We can limit the number of clusters we have to test using hierarchical clustering, a technique
that yields a dendogram of the dataset. A dendogram can be defined as a function h : [0,∞)→
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PD, where PD is the set of all partitions of the dataset D, with the properties that m ≤ m′

implies h(m) ≤ h(m′) (i.e. every element of h(m) is a subset of an element of h(m′)), and h
is eventually the whole dataset (h(m) = D for sufficiently large m). h(m) here is the set of
subsets S of D such that l(S) ≤ m and the only set S2 that contains S and has l(S2) ≤ m is S
itself. Let S be the set of subsets of D that are in h(m) for some m. By lemma 3, subsets of
D that are a PTC are always contained in an element of S which is also a PTC. Since we are
interested in whether cases belong to a cluster or not, we only have to test the elements of S
for being a PTC.

Lemma 2. For any weighted graph G, all minimal spanning trees have the same maximum
edge weight.

To prove this, let’s assume T1 and T2 are minimal spanning trees of G, such that their
maximum edge weights are different. Without loss of generality, let the maximum edge weight
of T1 be larger, and let e ∈ T1 be an edge with this weight. Now select an edge e′ from T2 such
that e′ is in the cut induced by e in T1. As the maximum edge weight of T2 is smaller than that
of T1 by assumption, the weight of e′ is smaller than that of e. The tree (T1 − {e}) ∪ e′ is a
spanning tree of G, with total weight less than T1. This is a contradiction, as T1 was a minimal
spanning tree.

Lemma 3. If S ⊆ D is a putative transmission cluster (PTC), ∃T ∈ S with S ⊆ T and T a
PTC.

Either S ∈ h(l(S)) ⊆ S and we are done, or ∃T ∈ h(l(S)) ⊆ S, with S ⊂ T . Because S is
a PTC we have

P (∃S ′ ⊂ D′ : |S ′| ≥ |S|, l(S ′) ≤ l(S)) < 0.001

since furthermore |T | > |S|, l(T ) = l(S) and l is monotonically increasing in cluster size, we
have that

P (∃S ′ ⊂ D′ : |S ′| ≥ |T | > |S|, l(S ′) ≤ l(T ) = l(S)) <=
P (∃S ′ ⊂ D′ : |S ′| ≥ |S|, l(S ′) ≤ l(S)) < 0.001

which shows that T is also a PTC.

B.3 Details of simulations

B.3.1 Generating simulated datasets

In our first simulation scenario, all locally infected cases belong to one large outbreak. One
index case was generated near the start of the study period so the outbreak would be completed
within the time window. As the variance in the final size of a large outbreak generated by
branching processes is quite large, we restricted this outbreak to be of size exactly one tenth
of the size of the total simulated dataset. We therefore generated cases until the number was
reached, and picked an infector for each from the set of previously generated cases. As assigning
cases randomly from the set of already generated cases would amount to strong superspreading
behavior (the index case would get a large number of infectees assigned), we preferentially
picked more recently generated cases. In particular, we set the probability for any generated
case to be assigned as an infector as twice the probability of picking the case generated before.
For example, when three cases had been generated, they would be picked as an infector with
probabilities 1/7, 2/7 and 4/7. This procedure is arbitrary, but simple and keeps the expected
number of infections per infected individual bounded. For example, the expected number of

infections caused by the index case would be
N∑
i=1

1
2i−1 ≈ 1.61.
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The small and very small outbreaks were generated using branching processes, as explained
in the main text. Below we calculate the expected size of the outbreaks generated in this way.

B.3.2 Final size calculations

To find the expected value of the final size S of the outbreaks in the second and third scenario, let
f(x) be the probability that one infectious case infects x others. For the geometric distribution
we use, f(x) = px(1 − p), where p = R

1+R
and R is the expected number of infections per

infectious case. As each case infected again infects new cases, we have

E(S) = 1 +
∞∑
x=0

f(x)xE(S) = 1 +RE(S)

which simplifies to E(S) = 1
1−R , yielding expected sizes 2 and 10

9
for the R values of 0.5 and

0.1 used.
As only outbreaks of value of at least 2 are characterized as clusters in our analysis, we

might also want to find the expected size of these clusters: E(S|S > 1). This is equivalent to
conditioning on the index case causing at least one infection. We get

E(S|S > 1) = 1 +
∞∑
x=1

f(x)

1− f(0)
xE(S) = 1 +

R

1− f(0)
E(S) = 1 +

1 +R

1−R

yielding 4 and 20/9≈2.22 for the two scenarios.

B.4 Additional simulation results

In this section we give the results obtained by applying the proposed method to simulations
where the absolute distances between infector-infected pairs are smaller than in the main text,
and to simulations where 20% of cases are unobserved.

B.4.1 Small distances

The statistical signal left by clusters of cases depends for a large part on the relation for each of
the data types between infector-infected pairs. When distances in these data types are smaller,
the statistical signal is stronger. To illustrate this, we performed additional simulations in which
these distances are smaller. We simulate as described in the main text, but the time distance
is now exponentially distributed with expectation 0.5 (1 in the main text), the geographical
distance is N(0, 2) (N(0, 4) in the main text), and the expected number of mutations is now
0.1 (0.5 in the main text). Clustering performance is given in figure S2 and table S1. As
the statistical signal is much stronger, the distinction between outbreak and unrelated cases is
much clearer than in the main text.

B.4.2 Unobserved cases

Many datasets face the problem of missing or unobserved cases. Here, we tested the performance
of our method when facing unobserved cases. We do this by performing simulations as described
in the main text, and then separately discarding each of the cases with probability 0.2, thus
discarding 20% of cases at random. We applied our method to this reduced datasets, results are
given in figure S3 and table S2. Datasets with missing cases are similar to complete datasets
with larger distances between the cases; thus this scenario constitutes the opposite of the one
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in the previous section. As expected, clustering performance decreases for most scenarios. A
notable exception are the very small clusters, where sensitivity actually increases. As these
transmission clusters are mainly of size two, discarding a case does not lead to larger distances,
but to elimination of the cluster. Thus the number of cases and transmission clusters is affected,
but not the intra-cluster distances. Outbreak cases and unrelated cases can be distinguished
for all scenarios, showing that the method can provide useful results even when cases are
unobserved.
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Figure S1. Graphical representation of the three data types for a typical simulation
containing one large outbreak. This simulation consisted of 1000 cases of which 10%
pertained to one large outbreak (black). (top left) Geographical location of all simulated cases.
The geography is a torus, so the right side is equated with the left side, and the top side is
equated with the bottom side. (top right) Simulated cases over time. (bottom) Simulated cases
have one of 28=256 possible genotypes. For clarity, the distribution of cases over 64 genogroups
is plotted; a genogroup is defined as a set of four genotypes that are identical up to the last
two digits. The order of the genogroups on the x-axis does not reflect genetic distance.
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Figure S2. Sensitivity (black) and false positive rate (gray) when distances between
pairs of infector and infected are small. Percentage of (black) outbreak and (gray) non-
outbreak cases assigned to putative transmission clusters for simulations under nine different
scenarios, when the distance between a locally infected case and its infector is smaller than
in the simulations given in the main text. In each scenario, ten percent of all cases is an
outbreak case. Total expected number of cases is (left column) 1000, (middle column) 500
or (right column) 100. Outbreak cases belong to (top row) one large outbreak, (middle row)
small outbreaks caused by 1/10 of cases being infectious with R0=0.5, (bottom row) minor
outbreaks caused by all cases being infectious with R0=0.1. Sensitivity and specificity increase
with respect to simulations in the main text, as smaller distances lead to a stronger statistical
signal.
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Figure S3. Sensitivity (black) and false positive rate (gray) when 20% of cases
are unobserved. Percentage of (black) outbreak and (gray) non-outbreak cases assigned to
putative transmission clusters for simulations under nine different scenarios, when 20 % of cases
is unobserved. In each scenario, ten percent of all cases is an outbreak case. Total expected
number of cases is (left column) 1000, (middle column) 500 or (right column) 100. Outbreak
cases belong to (top row) one large outbreak, (middle row) small outbreaks caused by 1/10 of
cases being infectious with R0=0.5, (bottom row) minor outbreaks caused by all cases being
infectious with R0=0.1. As expected, performance decreases when the distance between cases
increases. A notable exception are the very small clusters, where sensitivity actually increases.
As these transmission clusters are mainly of size two, discarding a case does not lead to larger
distances, but to elimination of the cluster. Thus the number of cases and clusters is affected,
but the intra-cluster distances are not.
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Table S1. Median of sensitivity/false positive rate of assigning locally infected cases to a
putative transmission cluster for simulated datasets where distances for infector-infected pairs
are small.

high incidence low incidence very low incidence
large cluster 1/0.22 1/0.01 1/0

small clusters 0.68/0.01 0.71/0 0.71/0
very small cluster 0.16/0 0.18/0 0.16/0

Table S2. Median of sensitivity/false positive rate of assigning locally infected cases to a
putative transmission cluster for simulated datasets where 20% of cases are unobserved.

high incidence low incidence very low incidence
large cluster 1/0.3 1/0.09 1/0.03

small clusters 0.57/0.03 0.64/0.03 0.69/0.01
very small cluster 0.10/0 0.13/0 0.2/0
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Figure S1. The proportion of isolates part of a cluster according to the algorithm.
The results of the analysis using the postal code are shown in black, results from the analysis
using the patient referral network in grey. Using the network as distance measure generally
delivers less and smaller clusters.

C.1 Simulating the hospital network

In order to measure the distance between hospitals, we simulated the national patient referral
network of the Netherlands. The general structure of this network is known, however, the exact
position of each of the hospitals is not known, because they are only known by their semi-
anonymous identifier. We therefore calculated the pairwise distance between the coordinates
of all hospitals, measured on the Dutch national grid. These distances (Dij) were then used to
calculate the link strength between hospitals:

Lij =
wij
Dij

Where wij is a weight factor (See table S1) to compensate for the disassortative mixing between
hospital categories. The resulting metric is similar to the patient flow between hospitals, a high
value indicates hospitals close together, a low value hospitals further apart. It is, however, not
a direct reflection of the number of exchanged patients, but the resulting network has a similar
structure to the original measured one (Figure S2).
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A

B

Figure S2. The structure of the patient referral network shown as a minimum
spanning tree. A) The patient referral network constructed from the Dutch Medical Registry
2004. B) The network reconstructed using geographical distances between hospitals, weighted
by a hospital category-specific factor. Squares denote university hospitals, triangles teaching
hospitals, and black dots general hospitals. The structure of both networks is more or less the
same, with groups of general hospitals around university hospitals, and a back-bone structure
consisting of mostly University and teaching hospitals.

Table S1. To simulate the patient referral network, the geographical distance between hospitals
was compensated by a weight depending on the types of hospitals, to account for the disassor-
tative mixing between hospitals in the network (i.e. general hospitals tend to refer to teaching
or university hospitals, not to other general hospitals).

General Hospital Teaching Hospital University Hospital
General Hospital 1 3 5
Teaching Hospital 3 1 7
University Hospital 5 7 1
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Appendix D

D.1 Representing the transmission tree

A graphical representation of the estimated transmission tree was given in the main text (figure
2). To increase clarity for the area with highest farm-density, figure S1 gives a zoomed-in version
of figure 2 for this area.

D.2 Testing different spatial kernels

The form of the spatial kernel used in the main text was taken from Boender et al. [3], who
tested a number of parameterisations and found this kernel to fir the data best. To see whether
this choice of parametric form influences our results, we test a range of kernels found in the
literature (table S1, second column). The first five kernels tested are taken from Boender et al.
[3], where kernel 5 is the kernel from the main article, and kernel 1 is identical to the analysis
given in the main text using only genetic and temporal data. Kernels 6-8 are from a family of
kernels featuring an exponential decay term. These have for instance been used for modelling
the spread of foot-and-mouth disease [14, 16] and the dispersal of plant seeds [23, 21]. To
calculate the effect of using different kernels, we substitute them in equation (3) in the main
text, and rerun the analysis.

Table S1 gives estimates of parameter values for all kernels tested, figure S2 gives the
resolution of the estimated trees (comparable to figure 3 in the main text) and the estimated
average infectiousness of different types of farms (comparable to figure 5 in the main text).

We see that, although analyses using different kernels result in different values for the
probabilities of transmissions, the results on resolution of the tree and infectiousness of farm
types remain the same. Resolution is slightly lower for kernels 1 and 6. The first is the analysis
without geographical data, the second comes close to this analysis since its two parameters are
both estimated to be very close to zero (table S1). These parameters c and d in the exponential
decay factor are consistently estimated very low, which is an indication that the exponential
decaying function does not fit this epidemic well. The high estimated value for d in kernel
7 is probably due to very low estimates for c. Estimates of parameter values for genetic and
temporal parameters are robust for different spatial kernels (table S2), which is probably due
to the relatively low amount of information contained in the geographical data (main text).
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Table S1. Spatial parameter estimates for models with different spatial kernels

Spatial kernel α (95% CI) r0 (95% CI) c (95% CI) d (95% CI)
1 1 - - - -
2 (1 + x)−1 - - - -
3 (1 + x2)−1 - - - -
4 (1 + xα)−1 1.7 (1.5,2.0) - - -
5 (1 + x

r0

α)−1 2.3 (1.7, 2.8) 2.4 (1.2, 3.7) - -

6 e( − cxd) - - 0.039 (0.00075, 0.65) 0.12 (0.00087, 1.2)

7 (1 + xα)−1e−cx
d

2.3 (1.7, 2.9) - 0.046 (0.0037, 0.13) 10 (4.0, 13)

8 (1 + x
r0

α)−1e−cx
d

2.4 (1.8, 3.1) 2.3 (1.3, 4.7) 0.14 (0.0051, 0.71) 0.46 (0.0064, 2.3)

Table S2 Temporal and genetic parameter estimates for models with different spatial kernels

Spatial kernel b (95% CI) pts (95% CI) ptv (95% CI) pdel (95% CI)
1 1 0.25 (0.20, 0.31) 1.1 (0.86, 1.3) 0.30 (0.20, 0.41) 0.060 (0.028, 0.11)
2 (1 + x)−1 0.28 (0.22, 0.35) 1.1 (0.88, 1.3) 0.31 (0.22, 0.42) 0.063 (0.031, 0.11)
3 (1 + x2)−1 0.29 (0.24, 0.35) 1.1 (0.89, 1.3) 0.32 (0.22, 0.42) 0.068 (0.030, 0.12)
4 (1 + xα)−1 0.29 (0.23, 0.35) 1.1 (0.88, 1.3) 0.31 (0.21, 0.41) 0.066 (0.029, 0.12)
5 (1 + x

r0

α)−1 0.28 (0.23, 0.34) 1.1 (0.88, 1.3) 0.32 (0.22, 0.43) 0.069 (0.027, 0.13)

6 e( − cxd) 0.24 (0.20, 0.30) 1.1 (0.87, 1.3) 0.30 (0.20, 0.41) 0.063 (0.029, 0.12)

7 (1 + xα)−1e−cx
d

0.29 (0.23, 0.35) 1.1 (0.89, 1.3) 0.31 (0.22, 0.42) 0.068 (0.031, 0.11)

8 (1 + x
r0

α)−1e−cx
d

0.28 (0.23, 0.34) 1.1 (0.88, 1.3) 0.31 (0.22, 0.42) 0.066 (0.030, 0.12)

Another possibility is to use distance over road rather than Euclidean distance as a mea-
sure for geographical distance, such as done for foot and mouth disease by Savill et al. [22].
Unfortunately we lack the data to do this analysis thoroughly; to our knowledge there is no
extensive database containing all (minor) roads in the particular area. However, we believe the
analysis would yield results similar to the one we performed using Euclidean distance, as this
is a very road-dense area with no large geographical obstacles. Furthermore it is quite likely
that several different mechanisms were responsible for spread of the disease, some following the
road- and others the Euclidean distance. For FMD this mixture of transmission mechanisms
was given as a possible explanation for the fact that Euclidean distance gave the better fit,
unless a geographical obstacle was present [22].

D.3 Latent period

Although the assumption of a latent period seems valid for the avian influenza epidemic [4,
10, 9], the exact length for this latent period is not known. In the main article we assumed a
length of one day; here we test this assumption for robustness. We do this by increasing the
length of the latent period in equation (1) in the main text, and rerunning the full analysis.

Table S3 gives estimates of parameter values for the different analyses, figure S3 gives the
resolution of the estimated trees (comparable to figure 3 in the main text) and the estimated
average infectiousness of different types of farms (comparable to figure 5 in the main text).

Although analyses using different latent periods result in different values for the probabilities
of transmissions, the estimates of parameter values as well as the resolution of the tree remain
the same. Estimates of infectiousness of farm types vary slightly, especially for the types
that included fewer farms. This is probably due to the fact that some transmissions become
impossible in the model when the latent period is increased, which can have a large impact on
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Table S3 Comparison between models with different length of latent period

Length of latent period
(days) b (95% CI) α (95% CI) r0 (95% CI)

1 0.28 (0.23, 0.34) 2.3 (1.7, 2.8) 2.4 (1.2, 3.7)
2 0.29 (0.24, 0.35) 2.3 (1.8, 2.9) 2.4 (1.3, 3.9)
3 0.22 (0.18, 0.26) 2.4 (2.0, 3.0) 2.4 (1.5, 3.5)

Length of latent period
(days) pts (95% CI) ptv (95% CI) pdel (95% CI)

1 1.1 (0.88, 1.3) 0.32 (0.22,0.43) 0.069 (0.027, 0.13)
2 1.1 (0.91, 1.4) 0.30 (0.21, 0.42) 0.074 (0.034, 0.12)
3 1.2 (1.0, 1.5) 0.33 (0.24, 0.45) 0.078 (0.040, 0.11)

Figure S1. Infection events with posterior probability>0.5, in the northern part of the outbreak.
This is a zoomed-in version of figure 2 in the main text. Results are for a model using (a)
temporal, genetic and geographic, and (b) temporal and genetic data. Red dots denote infected
farms, yellow dots denote farms not infected in the epidemic. A higher opacity of arrows
corresponds to a higher estimated probability. We see the two analyses give roughly the same
transmission links, although the addition of geographic data allows for more precise estimations.

the average infectiousness of a small group of farms. However all conclusions remain unchanged.
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D. Unravelling transmission trees

Figure S2. (Left) Resolution of the estimated trees, using different spatial kernels. For each
level of probability, the percentage of farms for which the farm that infected it can be estimated
at or above this level is plotted. Kernels 1-8 (table S1) are coloured blue, yellow, orange, grey,
black, cyan, magenta and brown respectively. Kernels 5 and 1 (black and blue) are the analyses
from the main text using all data and only using genetic and temporal data. Striped and dotted
lines give the same information for sequenced and unsequenced farms respectively. All trees
have roughly the same resolution, apart from those resulting from kernels 1 and 6 (blue and cyan
lines). The former uses no spatial information, while the latter comes close to this analysis since
the kernel solely consists of an exponential decrease, whose parameters have been estimated
close to zero. This is an indication exponential decay does not fit this data well.
(Right) Estimated average infectiousness for different types of farms, as measured by number
of infections caused divided by the time period in days between infection and culling of the
farm. Results are for models using different spatial kernels, kernels 1-8 (table S1) are coloured
blue, yellow, orange, grey, black, cyan, magenta and brown respectively. Kernels 5 and 1
(black and blue) are the analyses from the main text using all data and only using genetic and
temporal data. Estimates are similar for all kernels, kernels 1 and 6 (blue and cyan) have less
discriminatory power and therefore less variation in their estimates.
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Figure S3. (Left) Resolution of the estimated trees, assuming the latent period is one (black),
two (orange) or three (red) days. For each level of probability, the percentage of farms for
which the farm that infected it can be estimated at or above this level is plotted. Striped and
dotted lines give the same information for sequenced and unsequenced farms respectively. All
trees have roughly the same resolution.
(Right) Estimated average infectiousness for different types of farms, as measured by number
of infections caused divided by the time period in days between infection and culling of the
farm. Results are for models using a latent period of one (black), two (orange) or three (red)
days. We can see some small differences, especially for duck farms. This is probably because
some transmissions become impossible in the model when a longer latent period is assumed.
However the conclusions of low infectiousness of hobby farms and high infectiousness of turkey
farms remain unaltered.
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Appendix E

Table S1. Overview of data used.

variable description available for
x farm location all 5360 poultry farms
tcull date of culling all 1531 culled farms
tinf estimated date of infection all 241 infected farms
RNA sequences of the HA, NA and PB2 genes 231 of the 241 infected farms
wdir average wind direction (precision of 10 degrees) every hour of every day of 2003
wv average wind speed (precision of 1 m/s) every hour of every day of 2003
r fraction of time without precipitation every hour of every day of 2003

E.1 Overview of data

For the outbreak of avian influenza A(H7N7) in the Netherlands in 2003, much data are avail-
able. Here we give a description of the data used in our analyses, and give an overview in table
S1.

E.1.1 Epidemiological data

There were 5360 poultry farms in the Netherlands in 2003, for all of which geographical infor-
mation x is available. For 1531 farms the flocks were culled, for all of these the date of culling
T cull is known. For 227 of the 241 infected farms the date of infection tinf has been estimated,
based on mortality data [4]. The remaining 14 farms are hobby farms, defined as farms with
less than 300 animals, for which no mortality data are available. For these we use the infection
date as estimated by Boender et al. [3].

The geographic and temporal data together have previously been used to estimate the
critical farm density, i.e. above what density of farms outbreaks are can occur [3].

E.1.2 Genetic data

The HA, NA and PB2 genes of viral samples from 231 farms have previously been sequenced
[1, 17]. Sequence data RNA can be found in the GISAID database under accession numbers
EPI ISL 68268-68352, EPI ISL 82373-82472 and EPI ISL 83984-84031.

These data have previously been used to give general characteristics of the outbreak [1], to
reconstruct the transmission tree [26] and to assess the public health threat due to mutations
of the virus in the animal host [17].

E.1.3 Meteorological data

Available meteorological data include wind speed wv and direction wdir (with a ten degree
precision) and the fraction of time r without precipitation for every hour of every day of the
outbreak, measured at five weather stations close to the infected farms (figure 1). These data
are available from the Royal Dutch Meteorological Institute at www.knmi.nl.
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E.2 Inference of transmission events

Our objective is to estimate which farm infected which in the outbreak of avian influenza
A(H7N7) in the Netherlands in 2003, using temporal data t = (tinf , tcull) on the infected farms
and genetic data RNA on virus sampled from 231 of the 241 infected farms. Following the
approach by Ypma et al.[26], we will obtain joint estimates for the transmission tree and the
parameters par describing the transmission process. To do this we need the likelihood of the
transmission tree and parameters, given the available data D. If we had complete data, the
likelihood for the whole transmission tree T would be the product of the likelihoods for the
individual transmission events δ:

L(T,par|D) =
∏
δ∈T

L(δ,par|D)

Denote the event that a certain farm A infected another farm B by δAB. We then take the
likelihood L of this event to be the product of the likelihood given the temporal data, Lt, and
the likelihood given the genetic data, Lgen:

L(δAB,par|DAB) =

Lt(δAB, b|tA, tB)Lgen(δAB,p|RNAA,RNAB)

where b and p are parameters explained below.
Note that we could include geographical information in this likelihood to better estimate

the transmission tree [26]. However, we want to use the transmission events estimated here by
comparing them with wind directions. Since spread due to wind will be distance-dependent,
already including geographical information in estimating the transmissions could lead to circular
results. To check whether this would influence results, we also estimated the transmission
tree including geographical information. We still found a significant correlation between wind
direction and direction of transmissions as in the main text. The estimate of the percentage of
transmissions (described in section E.4.1) due to wind changed from 18% to 17% (figure S3).

E.2.1 Likelihood given temporal data

After the date of infection tinf , we assume a latent period of one day, and then a constant
infectiousness until the date of culling tcull. After culling infectiousness decreases exponentially
with rate b. The likelihood of A infectingB based on temporal data is given by the infectiousness
IA of A on the infection date tinfB of B:

Lt(δAB, b|tA, tB) = IA(tinfB ) =


0 tinfB ≤ tinfA
1 tinfA < tinfB ≤ tcullA

e−b(t
inf
B −tcullA ) tinfB > tcullA

Note that we are only looking at relative infectiousness here, the absolute infectiousness
could be determined by adding information on farms that could have been infected but were
not [3].

It was previously shown that changing the latent period to 2 or 3 days did not much influence
the estimation of the parameters and the transmission tree [26]. However, uncertainty in the
transmission dates could influence the estimate of the effect of wind (due to changing wind
directions). Here we use the estimated dates to test for a significant correlation with wind,
later we explore the influence of changing the transmission dates (section E.4.2).
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E.2.2 Likelihood given genetic data

For each infection, we assume a deletion can occur with probability pdel, and for each of N
nucleotides a transition or transversion can occur with probabilities pts and ptv [18]:

Lgen(δAB,p|RNAA,RNAB) =(
pts
N

)dts
(1−

(
pts
N

)
)dts−N

(
ptv
N

)dtv
(1−

(
ptv
N

)
)dtv−N

p1deldel (1− pdel)1−1del

Here p = (pts, ptv, pdel), dts and dtv are the number of transitions and transversions between
the sequences found at farm A and B, and 1del is 1 when a deletion has occured, 0 otherwise.
More elaborate substitution models can also be incorporated, but here could easily lead to
over-parametrization [1].

E.2.3 Estimation of the transmission tree

For some farms no genetic data is available. We can still evaluate the transmission tree when
it contains such a farm F , by looking at the genetic data of the farm that infects F , and the
farms infected by F . We then sum over all possible sequences F could have had which are
consistent with the least amount of mutations needed to explain this subtree. Thus we split
the transmission tree T into the set of smallest subtrees Sgen such that the root and leaves of
all S ∈ Sgen are farms for which genetic data is available. The likelihood for a transmission
tree T and parameters par is then given by

L(T,par|D) = Lt(T, b|t)Lgen(T,p|RNA)

=
∏

δAB∈T

Lt(δAB, b|tA, tB)
∏

S∈Sgen

Lgen(S,p|RNAS)

We sample from the space of all possible transmission trees and parameters using a Monte
Carlo Markov Chain (MCMC), taking flat priors for all parameters on the positive real numbers
and uniform priors for all transmission links. We take a burn-in of 500 000 iterations, checking
for convergence, and then sample 10 000 times, at every 500th iteration.

For any two farms A and B, the probability that A infected B can then be obtained as the
fraction of sampled transmission trees in which A infects B.

E.2.4 Double infections

A critical assumption in the approach described is that the 241 farms (apart from the index
farm) were infected exactly once, by a previously infected farm. Farms could have been infected
multiple times. However, due to the high virulence of the virus, any second introduction would
have to follow the first very swiftly to still be able to spread within the already infected farm.
Cloning performed on samples from 6 farms showed no signs of multiple introductions [1].
However, from one farm in the beginning of the outbreak, sequences have been determined from
two available samples. These two sequences differ by 9 SNPs, while for both sequences related
viruses (1 SNP difference) have been sequenced from other farms. These genetic distances are
indicative of two separate introductions; we have taken this farm to be infected twice. Thus we
have 241 transmission events. We redid our analysis excluding the second sample of the doubly
infected farm; this does not influence our results (figure S3).
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E.3 Correlation between wind direction and direction of transmission

The correlation between directions can be computed using circular correlation coefficients.
These are extensions of the concept of correlation to the circle, e.g. a value of 1 indicates
complete correlation. Several versions exist, we take the often used coefficient proposed by
Fisher and Lee [15]

c(a, b) =

∑n−1
i=1

∑n
j=i+1 sin(ai − aj) sin(bi − bj)√∑n−1

i=1

∑n
j=i+1 sin2(ai − aj)

∑n−1
i=1

∑n
j=i+1 sin2(bi − bj)

where a and b are vectors of directions, expressed in radians, and c(a, b) is the correlation
between them.

We take a to be the vector of directions of the 83 observed transmissions found, and b the
vector of wind directions at the date of infections, with a time lag ∆ ∈ {−5,−4, ..., 4, 5}. As
wind speeds are usually sufficient to cover a typical transmission distance within an hour, we
expect the wind direction at the date of infection to be the most relevant, and thus the corre-
lation to be highest for time lag 0. We compare the values found against the null hypothesis of
no correlation, which we find by calculating the correlation between two vectors of 83 randomly
generated directions, and repeating this 1000 times. We also compare the correlation to the
simulation results described in the main text.

Results are shown in figure S1. The correlations found are significantly higher than expected
by chance for all non-positive time lags. Interestingly, the correlation is highest for a lag of -3,
meaning that the correlation is highest for wind directions three days prior to the estimated
date of infection. This could indicate that there either is a bias in the estimation of the dates
of infection, or there is a lag inherent in the infection mechanism (e.g. transported particles are
only taken up by animals a few days after wind-mediated transportation). Note that, if wind-
mediated transmission indeed took place several days before the estimated date of infection, our
estimation of the contribution of wind to disease transmission is actually an underestimation
(also see Discussion of main text).

E.4 Quantification of the effect of wind

The main result of our study is that direction of transmissions and wind coincide more often
than can be explained by chance. This could be due to a causal relationship; a wind-mediated
mechanism of spread. Assuming such a wind-mediated mechanism of spread indeed exists,
we estimate the percentage of transmissions attributable to this mechanism. We propose two
methods.

The first method makes minimal assumptions on how the mechanism works. Rather, the
method compares the fraction of transmissions that are in the direction of the wind with the
fraction expected when wind plays no role (obtained from simulations). The difference between
these fractions is informative of the percentage of transmissions caused by wind.

The second method assumes a specific mechanistic model for wind-mediated spread. This
method repeats the whole inference procedure, jointly estimating the transmission tree and
parameters (which now include parameters describing wind-mediated spread). Although this
is a much more refined model, a mismatch between the assumed mechanistic model and the
actual mechanism of wind-mediated spread could lead to an underestimation of the percentage
of transmissions due to wind.
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E.4.1 A heuristic approach

We estimate the percentage of transmission events due to wind. To do this, we compare the
fraction of estimated transmissions (weighted by their probability) that are in the direction of
the wind to the fraction expected if none or all of the transmissions were due to wind. The
finest resolution metereological data available gives average wind directions for every hour, up
to ten degrees. We take a transmission event from farm A to B to be ‘in the direction of the
wind’ if at the date of infection of B at least one of the hourly average wind directions is the
same as the direction from A to B, allowing for a maximum deviation of five degrees.

We say each transmission has occurred due to wind with probability p, and due to any other
mechanism with probability (1 − p). Let pw be the probability that a transmission caused by
wind was also observed to be in the direction of the wind. We expect this probability pw to
be close to one, although it can be smaller due to noise in the data and variability in wind
direction.

Let pnw be the probability that a transmission not caused by wind was observed to be in
the direction of the wind. If the average wind direction in a certain hour were unrelated to
the wind direction the hour before, pnw would be 1 − (1 − 1

36
)24 ≈ 0.49, since there are 24

hours in a day and 36 possible wind directions for each hour. However, since wind direction is
heavily autocorrelated the actual value of pnw will be lower. To obtain its actual value we use
simulations in which wind plays no role. In silico, we infect the index case of the outbreak, and
use the transmission parameters previously estimated [3] to simulate an outbreak. We do this
1000 times, and for each of the simulations count the fraction of transmissions in the direction
of the wind. This value was found to be 0.244, which we take as an estimate for pnw.

If farm A actually infected farm B, the probability of wind to be observed in the direction
of A to B on the estimated infection date of B is ppw + (1− p)pnw. If A did not infect B wind
plays no causal role and we approximate the probability of observing wind to be in the direction
of A to B as pnw. Let F be the set of all farms, and P (δAB) be the posterior probability for
the event that farm A infected B. Let 1w(AB) be 1 if wind was observed to be in the direction
of A to B at the date of infection of B, 0 otherwise. Then the probability of observing and
estimated transmission to be in the direction of the wind is

f(A,B) = P (δAB)(ppw + (1− p)pnw) + (1− P (δAB))pnw

and the likelihood of p given our posterior probabilities P and the wind data w is

L(p|P,w) =
∏

A∈F
∏

B∈F
(
1w(AB)f(A,B) + (1− 1w(AB))(1− f(A,B))

)
Now p can be estimated by maximum likelihood, and confidence intervals can be obtained

by using profile likelihood. When we set pw conservatively to 1 and pnw to 0.244, p is estimated
at 0.18 (95%CI 0.063,0.30). For lower values of pw this value increases, making our estimate
conservative.

E.4.2 A mechanistic approach

We now extend the transmission tree estimation from chapter (E.2) by assuming a specific
model to describe the spread of disease due to wind. This allows us to differentiate between
spread due to wind and spread due to an unknown mechanism, and to estimate the proportion
of transmission events due to wind.

Likelihood given epidemiological data

To describe the spread of infectious particles by wind we take a Gaussian plume model. This
type of model is often used to describe spread of particles by wind. We use the model by
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Ssematimba et al. [25], which was specifically fitted to this outbreak. This model assumes
particles leave a farm through a chimney, and gradually descend due to gravity. The particles
randomly drift in all directions, but their movement will be dominated by the current wind;
movement will predominantly be in the direction of the wind wdir at the wind speed wv. This
results in a plume of particles in the direction of the wind (hence ‘plume’ model).

We take wind to be constant in speed and direction during each hour of every day. The
total force of infection exerted by a farm A to another farm B is then the sum of two parts.
The first part is due to an unknown mechanism independent of direction, well described by a
hyperbolic relation [3]

λUAB =
h0

1 +
(
||xA−xB ||

r0

)α
where ||xA−xB|| is the distance in km between the two farms, and h0, α and r0 are parameters.

The second part is due to wind, which we take to be linearly related to the number of
particles settled according to the Gaussian plume model G

λWAB = hw

24∑
h=1

1dir(A,B)=dirhrhG(||xA − xB||, vh)

where dir(A,B) is the direction from A to B, and dirh and vh are the wind direction and speed
at a certain hour h. rh is the fraction of time without precipitation during a certain hour,
which we put in since dust will settle quickly when it is raining. Excluding this factor does
not influence results. Note that in the previous analysis wind speed was not included; as we
could not discern a clear pattern from the data and it is not clear how wind speed influences
transmission [25, 24], we opted for the most parsimonious model and left this variable out.

We take the formulation above since dispersion in the lateral direction will be small com-
pared to the 10 degree precision of the data [25]. The complete likelihood of parameters
h = (h0, r0, α, hw, b) and farm A infecting farm B given the temporal and geographical data is
then

Lt+geo(δAB,h|xA,xB,w) = 1− exp
[
−IA(tinfB )(λUAB + λWAB)

]
where

IA(tinfB ) =


0 tinfB ≤ tinfA
1 tinfA < tinfB ≤ tcullA

e−b(t
inf
B −tcullA ) tinfB > tcullA

as before (section E.2.1).

Estimating infection dates

The dates of infections were estimated based on mortality data [4]. These estimates can be
incorrect, which might have a large effect on the estimated contribution of wind, although this
effect will be negated by the fact that wind directions on two consecutive days are correlated.
We jointly estimate the dates of infection, taking a prior ranging from four days before to four
days after the estimated date. We took a triangle-shaped distribution, where the originally
estimated date is most likely and the other dates are 2n less likely, where n is the number of
days difference with the originally estimated date. For the 14 farms for which no mortality data
was available, we took a uniform prior on the 9 days. To test the dependence of results on this
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prior, we performed the same analysis with the different priors. Firstly, by taking the prior to
be 5 days wide, rather than 9. Thirdly, by taking a uniform prior of 9 days for all farms.

Taking the prior too wide could lead to an overestimation of the contribution of wind, since
for any putative transmission the algorithm can put the infection date of the receiving farm
on a day when the wind is blowing in the direction of the transmission. Figure S3 shows that
taking wider and flatter priors increases our estimate of the contribution of wind.

Estimation of the transmission tree

There is additional information in farms that were not infected, i.e. when wind plays a role in
transmission we expect these to be underrepresented in the downwind direction. We therefore
take into account farms that could have been infected but were not [3]. Let F be the set of
all poultry farms in the Netherlands during the outbreak and FI the set of all infected poultry
farms, such that FI ⊂ F. Let tF be the date for which farm F was no longer at risk: this is
its culling date, or ∞ if F was never culled. The total likelihood for a transmission tree T ,
the estimated infection dates tFI and parameters par given the data D is then given by the
likelihood of the tree times the likelihood that the uninfected farms did not get infected:

L(T, tFI ,par|D) =
∏

S∈Sgen Lgen(S,p|RNAS)
∏

δAB∈T

1− e−IA(t
inf
B )(λUAB+λWAB)×

∏
F∈F

∏
FI∈FI

tF−1∏
t=0

e
−IFI (t)(λ

U
FIF

+λWFIF
)

For computational purposes, we work with the log likelihood, turning the above products
into sums. Furthermore, we first precompile a matrix of transmission events that could have
happened but did not, specified for distance and wind speed, so the triple product above for
uninfected farms does not have to be calculated fully in every iteration [6].

Quantification of the effect of wind

To quantify the effect of wind, we note that for any transmission event the probability this
event was due to wind is given by the proportion of the force of infection from the infecting
to the infected farm which is due to wind. For any iteration of the MCMC, the proportion of
transmissions mediated by wind can then be estimated as the average of these probabilities

1

#T

∑
δAB∈T

λWAB
λUAB + λWAB

where by #T we denote the number of transmission events. Figure S3 gives the posterior
densities of the estimates of the proportion of transmission events due to wind.
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E.5 Sensitivity analyses

E.5.1 Cut-off value for observed transmissions

In the main text a significant correlation between transmission events and wind direction is
shown using ‘observed transmission events’, defined as transmission events estimated at a pos-
terior probability of at least 0.5. Since this is an arbitrary cut-off value, we performed the
same analysis with different cut-off values to test for robustness. Figure S2 gives the same
information as figure 2 in the main text, with cut-off values for observed transmission events
of 0.1, 0.2,..., 0.9. Since we do not use any weighing of these observed transmission, we would
expect the correlation between observed transmissions and wind direction to increase with the
cut-off value. This is because at low cut-off values many of the observed transmissions will have
a low posterior probability and are likely to be estimated incorrectly. As described in the main
text, we performed a one-sided Kolmogorov-Smirnov test to test if the angles between trans-
mission events and the vector average wind direction were significantly smaller for the actual
dataset than for the simulations (figure S2, left graphs). We also compared the average number
of hours that wind coincided with the direction of a transmission, which could be interpreted
as the time window for spread due to wind (figure S2, right graphs). For both, we found a
significant (p < 0.01) difference between the actual data and the simulations for cut-off values
of 0.4 and greater.

Note that the variance of the simulation results increases with cut-off value. This is because
we sample, from each simulation, as many transmissions as we have observed transmissions.
This sampling reflects the fact that we need a more stringent test when we have less measure-
ments.

E.5.2 Metereological stations

In the main text, we took the wind direction at the date of transmission, as measured at the
metereological station closest to the transmitting farm. Wind directions measured where very
similar for all five stations; results changed little when taking the meteorological station closest
to the receiving farm, or when taking all wind directions from one of the five metereological
stations.

E.5.3 Quantifications

In our heuristic approach to quantify the percentage of transmissions mediated by wind, we
assumed pw, the probability of observing a transmission due to wind to be in the direction
of the wind, to be 1. It could be lower, due to uncertainty in the infection date and wind
variability. The value of 1 is actually conservative; the estimate of the magnitude of the role of
wind increases when pw decreases.

Figure S3 gives the same quantification under various assumption; estimates from the heuris-
tic approach when excluding the double infection (section E.2.4), and when including the geo-
graphic information in reconstructing the transmission tree, and posterior distributions under
the mechanistic model using different priors for the infection dates. Although the spread of
these estimates shows it is hard to pinpoint the exact number, the range of plausible values
(6%-30%) seems well supported.
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Figure S1. Circular correlation coefficient of directions of observed transmission and wind
directions and, at estimated date of infection (time lag = 0) and five days before or after.
The horizontal solid line indicates the 0.975 percentile for the distribution of the correlation
coefficient under the null hypothesis of two independent uniform distributions, the dotted line
indicates the same quantile under a second null hypothesis explored using simulations that takes
into account farm geography (main text). As the value for time lag 0 is above both lines, wind
direction and direction of transmission are statistically significantly correlated. The correlation
is highest for wind directions three days prior to the estimated date of infection. This could
indicate a wind-mediated transmission mechanism that is not instantaneous but takes some
time to lead to infection, or a systematic bias in the estimation of the infection dates.
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Figure S2. Correlation between observed transmissions and wind direction for (red) actual
data and (grey) simulations. Left graphs give the cumulative distribution for the angle between
transmission events and the vector average wind direction at the estimated date of transmission.
Right graphs give the average number of hours at the date of transmission for which wind was
in the direction of the transmission. Observed transmissions are those transmission events
estimated at a posterior probability larger than a certain cut-off value. Panels give results
for cut-off values of 0.1, 0.2,..., 0.9. The value of 0.9 is used in the main text. Observed
transmissions are significantly correlated with wind direction (p < 0.01) for cut-off values 0.4
and greater.
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Figure S3. Estimates of the percentage of transmissions due to a wind-mediated mechanism,
under various assumptions. The blue line gives the estimate under the heuristic approach
(section E.4.1). The yellow line gives the same estimate when geographic data is included in
estimating the transmission events, the red line gives the estimate when the putative double
infection is discarded (section E.2.4). Histograms give posterior density when assuming a
specific wind model (section E.4.2), with a (yellow) narrow prior on the transmission date,
(pink) wider prior on the transmission date, (blue) flat prior of 9 days on the transmission
date. See section E.4.2 for details. The blue line and pink distribution are given in the main
text (figure 3).
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Appendix F

F.1 Test of estimation procedure on simulated data.

F.1.1 Simulating outbreaks

To illustrate the method and assess robustness to missing data, we apply it to simulated data
based on an influenza outbreak in a confined school-based population. A common question in
such a setting is whether one group of individuals (e.g. children) is more infectious than another
(e.g. adults). To emphasize the difference, we performed simulations where only children were
infectious.

We start with a population of 200 hosts, of which one is infected. Each individual belongs
to one of two groups (children and adults). The outbreak is generated using a simple stochastic
SIR model with homogeneous mixing in continuous time. For each infected host x an infectious
period of length ipx is drawn from a gamma distribution with a mean of three days and a
variance of two days [5]. The infectiousness of host x is then

Bt(x) =

{
βx if tx + 2 < t < tx + 2 + ipx
0 else

where βx = 2
3∗200 if x is a child (i.e. R0 = 2), 0 otherwise.

Using the (known) transmission tree, we generate sequences as follows; we assume each
infected individual is sampled one day after symptom onset (tx + 2 + 1). We construct a
phylogenetic tree using these timepoints as tips, by backwards simulation of the tree using
p(P |T,W ) as specified in the main text. We then generate point mutations on this tree using
a simple molecular clock; the number of mutations per edge of the phylogenetic tree is Poisson
distributed with expected value L × µ × t = 10000 × 0.003 × t for the baseline scenario, with
L = 10000 the number of base pairs and µ = 0.003 the substitution rate. Note that the
approximation of a Poisson distribution is valid here due to the short timescales. In fact,
the probability of a recurrent mutation ocurring is approximately equal to the probability any
nucleotide mutates twice in 5 days, times the number of nucleotides, which is (0.003× 5

365
)2 ×

10000 ≈ 1.7× 10−5.
A quantity of interest is the genetic distance between the sequences sampled from an infected

host and its infector, as this is ultimately the data we are working with. The evolutionary time
separating the samples taken from a host and its infector is roughly between 3 and 11 days, so
the expected number of mutations separating the sequences is between 10000∗0.003∗ 3

365
= 0.25

and 10000 ∗ 0.003 ∗ 11
365

= 0.9, which seems plausible for an RNA-virus [19, 1, 7].
We investigated a total of seven scenarios. To improve comparability between results from

the different scenarios, we re-used the same simulated outbreaks for the different scenarios.
This re-usage eliminates variation resulting from the stochastic nature of the simulations. For
example, the same phylogenetic tree was used in different scenarios to generate sequences based
on different substitution rates. The exception is formed by the scenario where 20% of cases
were discarded. As we wanted to keep the number of infected individuals comparable, sepa-
rate simulations were performed for this scenario, which started with an increased susceptible
population of 200/(1− 0.2) = 250.

F.1.2 Simulated data

For each case, we assume we know the time of symptom onset, the recovery time, a sequence
sampled one day after symptom onset, and whether the case is a child or adult. The likelihood
equations used in the MCMC are given in the main text. For efficient calculation of the
likelihood p(DG|P, µ) of the phylogenetic tree and mutation rate given the sequences we use
Felsenstein’s pruning algorithm [12]. We use a Uniform(0,1000) prior for all parameters.
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F.2 Application of the estimation procedure to data on foot-and-mouth

disease.

F.2.1 Data

In 2001, a large epidemic of foot-and-mouth disease (FMD) occured in the United Kingdom.
A subset of 15 farms of this large epidemic, the so-called ‘Darlington cluster’ has been ex-
tensively studied [7, 8, 20]. Three of the farms are not epidemiologically linked to the other
12, and subsequently dropped from the analysis [20]. The remaining 12 farms are labelled
F = {C,D,E, F,G,H, I, J,K, L,M,O}. For each of the farms we have

• T obsi , the date of detection of the virus,

• Dobs
i , the estimated age of infection at date of infection, as assessed by a visual exam of

the clinical state of lesions found,

• T endi , the date of culling,

• xi, the spatial location (as latitude/longitude),

• Sobsi , an 8000 bp DNA sequence sampled at T obs.

All these data are freely available from the open-access publication by Morelli et al. [20].

F.2.2 Model

The likelihood component for the transmission tree is based on an epidemiological model used
by Morelli et al. [20]. In particular, after infection farms enter a latent period, whose duration
Li is gamma distributed with expectation β1 and variance β2

2 . After the latent period, the
farms enter an infectious period, as infected animals develop lesions. After a certain time Di,
the farm is detected as being infected. The data contain an estimate of Di, which is assumed to
be gamma distributed with mean Dobs

i and variance Dobs
i /4. Infectiousness of farms is assumed

to stay constant during the infectious period, but to decrease exponentially with distance,
with a mean transmission distance of 2α2. A vague prior is assumed for all epidemiological
parameters; an exponential distribution with mean 100. Letting DE = (T obs, Dobs, T end,x), we
get

p(DE|T, θ,W ) =
∏
i∈F−

e
−
|xi−xv(i)|

α2

2πα2
2

1tv(i)+Lv(i)<ti<T
end
v(i)

∏
i∈F

g(Li, β1, β
2
2)g(Di, D

obs
i ,

Dobs
i

4
)

where F− is the set of all farms except the index case, ti is the time of infection of farm i,
v(i) is the infector of farm i, and g(x,m,w) is the probability density function of the gamma
distribution with mean m and variation w.

In this application, the hosts we consider are actually farms. These farms themselves contain
a large number of animals. Per farm, several animals were infected [8]. We can thus view the
host (i.e. farm) to be strongly compartmentalized, resulting in most coalescents occuring just
after infection. We therefore take the within-host pathogen effective population size times
pathogen generation time W at time t in host h to be exponentially increasing

W (t, h) = er(t−th)

if h is infected at time t, 0 otherwise. We set the growth rate r at 1.02.
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With this model, we get

L(P |T,W ) =
∏

x∈F
∏

[τ1,τ2]∈CxW (τ1, x)−1coale
−(nτ2 )

τ2∫
τ1

1
W (t,x)

dt

=
∏

x∈F
∏

[τ1,τ2]∈Cx e
−(r(τ1−tx)1coal)e−(nτ2 )( 1r e−r(τ1−tx)−

1
r
e−r(τ2−tx))

where τ1 and τ2 are the start and end of coalescent intervals.
Following [20] we use a one parameter substitution model, yielding

p(DG|P, µ) =
∏
bases

∑
{A,C,G,T}N

∏
edges

(1− e−µt)1mut + (e−µt)(1−1mut)

which can be efficiently evaluated using Felsenstein’s pruning algorithm [12]. The prior for the
substitution rate µ is uniformly distributed on (0,1000).

F.2.3 Results

Posterior distributions for the transmission tree and epidemiological parameters (α2, β2) are
given in figure S1. To allow for comparison to previous studies, we also show the two trans-
mission trees estimated before [8, 20], and the point estimates previously obtained for the
parameters [20].

F.3 Sampling from the joint posterior distribution using MCMC

F.3.1 Initial state

As an initial state, a random permissable state was chosen, as follows. For each host x but the
first, we chose a random infector v(x) from the set of hosts infectious at the time of infection
of x. We then constructed a phylogenetic tree consistent with this transmission tree (thus
ignoring sequence data). Inital values for parameters were randomly sampled from their prior
distributions.

F.3.2 Update phylogenetic tree

We update the phylogenetic tree P per host. We choose a host x at random, and update
both the topology of the part of P contained within x, and the timing of the internal nodes
contained in x. The number of internal nodes nix of P contained in x is equal to the number of
pathogen lineages that coalesce within x minus one, which is equal to the number of sequences
nsx sampled from x plus the number of hosts infected by x that have a sequence minus one.
More formally, let T (x) be the smallest subtree of T such that

• x ∈ T (x),

• for any node i other than x, if its infector v(i) ∈ T (x), then i ∈ T (x).

So T (x) is the subtree that consists of x and the hosts directly or indirectly infected by x. Let
l(T ) be 1 if T contains at least one host which has at least one sampled sequence, 0 otherwise.
Then the number of coalescent events cx that happen within host x is

cx = max {0, nsx − 1 +
∑
y∈T

1v(y)=xl(T (y))}
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Figure S1. Posterior distribution for the transmission tree, mean transmission distance 2α2 and
standard deviation of latency duration β2. (Top) Posterior distributions for the transmission
tree, with infecing farm on the x-axis and infected farm on the y-axis. The size of the blobs
corresponds to the posterior probability assigned to this pair. Estimates are given for the
proposed method (left) and taken from previous studies (right) by Cottam et al. (pink) and
Morelli et al. (green)[8, 20] which ignore within-host dynamics. The transmission tree cannot
be established with high certainty for this outbreak, possibly due to unobserved infected farms.
Allowing for within-host dynamics captures this uncertainty, in contrast to previous analyses
(top right) which yield trees mainly containing pairs with posterior probability close to one.
(Bottom) Posterior distributions for the mean transmission distance 2α2 (left) and standard
deviation of latency duration β2 (right). Lines are point estimate (black solid), 95% credibility
interval (black striped) and previous estimates obtained by Morelli et al. (green)

189



Appendix F

If cx = 0, we do nothing. Otherwise, we propose a phylogenetic tree P ∗ which differs from P
only in the nodes contained in x, where we sample these nodes and their topology from the
probability density function

f(x) =
∏

[τ1,τ2]∈Cx

W (τ1, x)−1coale
−(nτ2 )

τ2∫
τ1

1
W (t,x)

dt

where Cx is the set of all intervals [τ1, τ2] where the number nτ of viral lineages within host x
with sampled offspring is constant and larger than 1. We then accept P ∗ with probability

p(accept) = min{1, p(DE |T,θ,W )p(DG|P ∗,µ)p(P ∗|T,W )π(T,θ,W,µ)
p(DE |T,θ,W )p(DG|P,µ)p(P |T,W )π(T,θ,W,µ)

q(P |P ∗)
q(P ∗|P )

}
= min{1, p(DG|P

∗,µ)f∗(x)
p(DG|P,µ)f(x)

f(x)
f∗(x)
}

= min{1, p(DG|P
∗,µ)

p(DG|P,µ)
}

where q(P |P ∗)
q(P ∗|P )

is the Metropolis-Hastings ratio.

F.3.3 Update transmission tree

We randomly choose a host x. If x is not the index case, let v(x) be its infector. We propose a
new infector v∗(x) randomly from the set of hosts that are

• infectious at time of infection tx,

• not v(x),

• not x (although this is usually already ensured by the first condition).

We could then try to construct the new transmission tree T ∗ generated by accepting v∗(x) as
the new infector of x. Note that T ∗ contains no cycles, as hosts are never infectious before
being infected.

However, the phylogenetic tree will in general no longer correspond to T∗. More precisely,
if both l(T (x)) = 1 and l(T − T (x)) = 1, then there must be an edge of the phylogenetic tree
with one node contained in a host in T −T (x), and one in T (x). If all hosts have sequences, the
nodes are contained in v(x) and x. In general, this edge causes P to be inconsistent with the
new tree T ∗. We therefore simultaneously propose a new tree P ∗ that is consistent with T ∗, by
removing the older of the two nodes of this edge from its current location, and relocating it to
the first host y in the infection chain leading up from v∗(x) (i.e. {v∗(x), v(v∗(x)), v(v(v∗(x)))})
that contains at least one pathogen lineage. This is a particular form of a pruning and regrafting
operator [13], also see figure S2. If all hosts are sequenced, y = v∗(x). We then update the
phylogenetic tree contained in y as described above. The proposed pair of trees (T ∗, P ∗) is
accepted with probability

p(accept) = min{1, p(DE |T
∗,θ,W )p(DG|P ∗,µ)p(P ∗|T ∗,W )π(T ∗,θ,W,µ)

p(DE |T,θ,W )p(DG|P,µ)p(P |T,W )π(T,θ,W,µ)
q(T,P |T ∗,P ∗)
q(T ∗,P ∗|T,P )

}

= min{1,
s(ox−tx)

Ix(v
∗(x)|θ,DE)∑

y∈H Ix(y|θ,DE)
p(DG|P ∗,µ)f∗(y)f∗(y∗)π(T ∗)

s(ox−tx)
Ix(v(x)|θ,DE)∑
y∈H Ix(y|θ,DE)

p(DG|P,µ)f(y)f(y∗)π(T )
f(y)f(y∗)
f∗(y)f∗(y∗)

}

= min{1, Ix(v
∗(x)|θ,DE)p(DG|P ∗,µ)

Ix(v(x)|θ,DE)p(DG|P,µ)
}

as we take π(T ) equal for all trees.
If x is the index case, we let v∗(x) be the first host it infects, and we switch infection times

for the two hosts [20]. We then follow the procedure above.
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Figure S2. Example of a proposal transmission tree/phylogenetic tree (T ∗, P ∗) pair. A new
infecting host v∗(x) is proposed for host x. A new phylogenetic tree is then also proposed,
by removing the branch from v(x) and drawing a new phylogenetic subtree for v∗(x) which
includes the branch.

F.3.4 Update infection times

If not all infection times are observed, pick a host x at random and propose a new infection
time t∗x, sampled from the latency period distribution s. This creates the proposal transmission
tree T ∗. If v(x) is not infectious at t∗x, or T ∗ is inconsistent with P , reject. If not, accept with
probability

p(accept) = min{1, p(DE |T
∗,θ,W )p(DG|P,µ)p(P |T ∗,W )π(T ∗,θ,W,µ)

p(DE |T,θ,W )p(DG|P,µ)p(P |T,W )π(T,θ,W,µ)
q(T |T ∗)
q(T ∗|T )}

= min{1,
s(ox−t∗x)

I∗x(v(x)|θ,DE)∑
y∈H I∗x(y|θ,DE)

f∗(x)f∗(v(x))π(T ∗)

s(ox−tx)
Itx (v(x)|θ,DE)∑
y∈H Itx (y|θ,DE)

f(x)f(v(x))π(T )

s(ox−tx)
s(ox−t∗x)

}

= min{1,
I∗x(v(x)|θ,DE)∑
y∈H I∗x(y|θ,DE)

f∗(x)f∗(v(x))

Itx (v(x)|θ,DE)∑
y∈H Itx (y|θ,DE)

f(x)f(v(x))
}

F.3.5 Update epidemiological parameters

We create a proposal θ∗ by choosing i from 1,...,|θ| and adding Y ∼ Normal(0, σi) to θi. The
value of σi is calibrated in the burn-in period. We accept with probability

p(accept) = min{1, p(DE |T,θ
∗,W )p(DG|P,µ)p(P |T,W )π(T,θ∗,W,µ)

p(DE |T,θ,W )p(DG|P,µ)p(P |T,W )π(T,θ,W,µ)
q(θ|θ∗)
q(θ∗|θ)}

= min{1,
s(ox−tx)

Itx (v(x)|θ∗,DE)∑
y∈H Itx (y|θ∗,DE)

π(θ∗)

s(ox−tx)
Itx (v(x)|θ,DE)∑
y∈H Itx (y|θ,DE)

π(θ)
}

F.3.6 Update mutational parameters

We create a proposal µ∗ by choosing i from 1,...,|µ| and adding Y ∼ Normal(0, δi) to µi. The
value of δi is calibrated in the burn-in period. We accept with probability

p(accept) = min{1, p(DE |T,θ,W )p(DG|P,µ∗)p(P |T,W )π(T,θ,W,µ∗)
p(DE |T,θ,W )p(DG|P,µ)p(P |T,W )π(T,θ,W,µ)

q(θ|θ∗)
q(µ∗|µ)}

= min{1, p(DG|P,µ
∗)π(µ∗)

p(DG|P,µ)π(µ)
}

F.3.7 Convergence

For all analyses, we ran an inital burn-in period of 105 iterations. Convergence of parameters
was checked by eye. The variance of the proposal distributions of the parameters was adjusted
during this time, such that the acceptance probability was around 0.5. The chain was then run
for 3 × 105 iterations, and sampled every 200th iteration. This yields a chain of 1500 samples
from the posteriod distribution. Increasing these values gave no observable difference in results.
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F.3.8 Estimation

Point estimates of parameters were obtained as the median of the posterior distribution sampled
from the Markov chain. 95% credibility interval boundaries were computed as the 2.5th and
97.5th percentile.
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