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mean, winter (September 2011–May 2012) precipi-
tation was significantly above normal in southern 
Alaska and Iceland (see Fig. 5.9) and near normal 
elsewhere in the Arctic. Summer air temperature 
anomalies (JJA 2012 mean at 700 hPa geopotential 
height, relative to the 1948–2008 mean) were again 
strongly positive (+1.4°C to +3.6°C) over the Canadian 
Arctic Islands (including Baffin Island), and positive 
over Severnaya Zemlya (+0.41°C) and Franz Josef 
Land (+0.48°C). They were close to normal in Sval-
bard, Iceland, and southern Alaska. These patterns 
are broadly consistent with the pattern of summer 
LST anomalies and glacier mass balance. 

The region of strongly positive summer 700 
hPa air temperature anomalies in 2012 over south 
and west Greenland, Baffin Island, and Canada’s 
Queen Elizabeth Islands is associated with a region 
of anomalously high geopotential height at all levels 
of the troposphere that was centered over Greenland 
and Baffin Bay. (Figure 5.3b shows the anomalously 
high pressure in this region.) This is a feature that 
has persisted during summers of the last six years 
(Box et al. 2012a; Sharp et al. 2011). These positive 
anomalies point to another strong melt season on 
these ice caps in 2012, and it is worth noting that the 
extreme warm temperature event of 8–12 July 2012 
that produced record melt extent on the Greenland Ice 
Sheet (Box et al. 2012a; section 5g) also affected the ice 
caps in Arctic Canada. In contrast, the near-normal 
summer air temperatures in Iceland and southern 
Alaska (where summer LST anomalies were negative), 
followed heavy winter precipitation in 2011/12, and 
may therefore have resulted in relatively low summer 
melt in those regions in 2012.

g. Greenland Ice Sheet—M. Tedesco, P. Alexander, J. E. Box, J. 
Cappelen, T. Mote, K. Steffen, R. S. W. van de Wal, J. Wahr, and 
B. Wouters
1) SATELLITE OBSERVATIONS OF SURFACE MELTING AND 

ALBEDO

Melting at the surface of the Greenland Ice Sheet 
set new records for extent and melt index (i.e., the 
number of days on which melting occurred multi-
plied by the area where melting was detected) for the 
period 1979–2012, according to passive microwave 
observations (e.g., Tedesco 2007, 2009; Mote and 
Anderson 1995). Melt extent reached ~97% of the 
ice sheet surface during a rare, ice-sheet-wide event 
on 11–12 July (Fig. 5.13a; Nghiem et al. 2012). This 
was almost four times greater than the average melt 
extent for 1981–2010. The 2012 standardized melting 
index (SMI, defined as the melting index minus its 

average and divided by its standard deviation) was 
+2.4, almost twice the previous record of about +1.3 
set in 2010 (Fig. 5.13b). 

According to satellite observations, melting in 
2012 began about two weeks earlier than average 
at low elevations, and lasted as much as 140 days 
(20–40 days greater than the mean value) in some 
areas of southwest Greenland (section 5e). Melting 
day anomalies (i.e., the number of melting days in 
2012 minus the 1980–2010 average) were as much 
as +27 days in the south and +45 days in the north-
west. Areas in northwest Greenland between 1400 
m and 2000 m above sea level (a.s.l.), where melting 
is expected to be negligible or sporadic, experienced 
nearly two months longer melt duration in 2012 than 
the 1981–2010 reference period. 

The area-averaged albedo of the ice sheet, esti-
mated from spaceborne observations (MODIS), set 
a new record in 2012 (Fig. 5.14a). Negative albedo 
anomalies were widespread across the ice sheet, but 
were particularly low along the western and north-
western margins (Fig. 5.14b). The lowest albedo values 
occurred in the upper ablation zone and overlapped 
with the regions of extended melt duration. 

FIG. 5.13. (a) Surface melt extent, detected by the SSM/I 
passive microwave sensor, expressed as % of the total 
area of the Greenland Ice Sheet. (b) Standardized melt 
index (SMI) for the period 1979–2012 using the Tedesco 
(2009) algorithm.
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2) SATELLITE OBSERVATIONS OF ICE MASS LOSS

In 2012, new records for summertime and annual 
ice mass loss, as estimated from the GRACE satellite 
mission (e.g., Velicogna and Wahr 2006), occurred. 
Between June and August, the mass loss was -627 ± 89 
Gt, 2 standard deviations below the 2003–12 mean of 
-414 Gt (Fig. 5.15; Tedesco et al. 2012). The previous 

record mass loss, -516 ± 89 Gt, 0.8 standard devia-
tion below the mean, occurred in 2010. The trend of 
summer mass change during 2003–12 is -29 ± 11 Gt 
yr−1. Excluding the mass loss in summer 2012, the 
trend is -20 ± 13 Gt yr−1. The annual mass loss from 
mid-September 2011 to mid-September 2012, -575 ± 
89 Gt, 2 standard deviations below the mean, also set 
a new record, exceeding the previous record, set only 
two years earlier, by +152 Gt.

3) SURFACE MASS BALANCE OBSERVATIONS ALONG THE 
K-TRANSECT

The original K-Transect is located in western 
Greenland near Kangerlussuaq at 67°N and between 
340 m and 1500 m a.s.l. (van de Wal et al. 2005). 
During the period 1991–2012, 1500 m a.s.l. was the 
average equilibrium line altitude (ELA; i.e., the high-
est altitude at which winter snow survives). In 2012, 
the ELA reached 2687 m a.s.l., 3.7 standard deviations 
above the mean (van de Wal et al. 2012). The surface 
mass balance in 2012, between 340 m and 1500 m 
a.s.l., was the second lowest since measurements 
began in 1991. However, a weighted mass balance 
that includes a site above the former 1500 m ELA 
indicates that the 2011/12 mass balance year was the 
most negative in 21 years. At the highest station in 
2012, 1847 m, almost 350 m higher than the former 
ELA, the surface mass balance was estimated to be 
-0.74 m water equivalent. Below 1500 m elevation, 
surface mass balance values decreased gradually to 
normal values near the ice margin. 

4) SURFACE AIR TEMPERATURE OBSERVATIONS

The extensive surface melting and ice mass loss 
observed in 2012 occurred in conjunction with 
record summer (June, July, and August: JJA) air 
temperatures. The ice sheet-wide JJA surface tem-
perature estimated from space by MODIS increased FIG. 5.14. (a) Area-averaged albedo of the Greenland 

Ice Sheet each Jul from 2000 to 2012, and (b) geo-
graphic variability of the Jun–Aug 2012 albedo anomaly 
expressed as % of the mean anomaly of the 2000–11 
reference period. All data are derived from MODIS 
MOD10A1 observations. Figures are after Box et al. 
(2012b).

FIG. 5.15. Cumulative mass anomaly in Gt of the Green-
land Ice Sheet derived from GRACE satellite data 
between April 2002 and September 2012.
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3.4°C between 2000 and 2012, from an average value 
of -9°C in 2000 to -5.6°C in 2012 (Tedesco et al. 2012). 
Applying a linear fit, this suggests an increase in 
ice sheet-wide surface temperature of +0.16°C yr-1. 
Other than Tasiilaq, in southeast Greenland, where 
June 2012 was the coldest it had been since records 
began in 1895, record-setting warm JJA surface air 
temperatures occurred at long-term meteorological 
stations (records began in 1873) along the western and 
southern margins of the island and at the ice sheet 
summit. The Greenland Climate Network (GC-Net) 
automatic weather station at Summit (3199 m a.s.l.) 
measured hourly-mean air temperatures above 0°C 
for the first time since measurements began in 1996. 
Such a melt event is rare; the last significant event 
occurred in 1889, according to the analysis of ice core 
data (Nghiem et al. 2012). 

Seasonally-averaged upper air temperature data 
available from twice-daily radiosonde observations 
show anomalous warmth throughout the troposphere 
in summer 2012 (section 5f). This is consistent with 
an overall warming pattern near the surface between 
850 hPa and 1000 hPa. The recent warming trend is 
seen in the long-term air temperature reconstruction 
for the ice sheet, which also shows that mean annual 
air temperatures in all seasons are now higher than 
they have been since 1840 (Box et al. 2012a).

5) MARINE-TERMINATING GLACIERS

Forty marine-terminating glaciers have been 
surveyed daily since 2000 using cloud-free MODIS 
visible imagery (Box and Decker 2011; http://bprc.
osu.edu/MODIS/). The net area change of the 40 
glaciers during the period of observation has been 
-1775 km2, with the 18 northernmost (>72°N) glaciers 
alone contributing to half of the net area change. 
In 2012, the northernmost glaciers lost a collective 
area of 255 km2, or 86% of the total net area change 
of the 40 glaciers surveyed. The six glaciers with 
the largest net area loss in 2012 were Petermann  
(-141 km2), 79 glacier (-27 km2), Zachariae (-26 km2), 
Steenstrup (-19 km2), Steensby (-16 km2, the greatest 
retreat since observations began), and Jakobshavn 
(-13 km2). While the total area change was negative 
in 2012, the area of four of the forty glaciers did 
increase relative to the end of the 2011 melt season. 
The anomalous advance of these four glaciers is not 
easily explained, as the mechanisms controlling the 
behavior of individual glaciers are uncertain due to 
their often unique geographic settings.

h. Permafrost—V. E. Romanovsky, A. L. Kholodov, S. L. Smith, H. 
H. Christiansen, N. I. Shiklomanov, D. S. Drozdov, N. G. Oberman, 
and S. S. Marchenko
Systematic observations of permafrost tempera-

ture at many sites in Alaska, Canada, and Russia 
since the middle of the 20th century provide several 
decades of continuous data, which allow decadal 
changes in permafrost temperatures to be assessed. 
A general increase in temperatures has been observed 
during the last several decades in Alaska, northern 
Canada, and Siberia (Smith et al. 2010; Romanovsky 
et al. 2010a,b). During the last four to five years, all 
these regions show similar temporal and spatial vari-
ability of permafrost temperature. As illustrated for 
selected sites in Russia (Fig. 5.16), although tempera-
ture has been generally increasing continuously in 
colder permafrost located close to the Arctic coasts 
(Romanovsky et al. 2012a), the temperatures of 
warmer permafrost in the continental interior have 
been relatively stable or even decreasing slightly. 
Permafrost temperature has increased by 1°C–2°C 
in northern Russia during the last 30 to 35 years, but 
this trend was interrupted by colder conditions in 
summer 2009 and winters 2009/10 and 2010/2011 at 
many locations in the Russian Arctic, especially in 
the western sector (Fig. 5.16). However, the warming 
trend resumed in 2012.

In 2012, new record high temperatures at 20-m 
depth were measured at most permafrost observato-
ries on the North Slope of Alaska, i.e., north of the 
Brooks Range (Fig. 5.17a), where measurements began 
in the late 1970s. The exceptions were the coastal sites, 
West Dock, and Deadhorse (Fig. 5.17b), where tem-
peratures in 2012 were the same as the record-high 
temperatures observed in 2011 (Fig. 5.17b). Changes 
in permafrost temperatures at 20-m depth are typi-
cally lagging by one year compared to the changes in 
surface temperatures. The data suggest that a coastal 
warming trend has propagated southward towards 
the northern foothills of the Brooks Range, where a 
noticeable warming in the upper 20 m of permafrost 
has become evident since 2008 (Romanovsky et al. 
2012b). Record high temperatures were also observed 
in 2012 in the Brooks Range (Chandalar Shelf) and in 
its southern foothills (Coldfoot). However, permafrost 
temperatures in Interior Alaska (e.g., Healy, Birch 
Lake, College Peat, and Old Man; Fig. 5.17c) were 
still decreasing in 2012. These distinct patterns of 
permafrost warming on the North Slope and a slight 
cooling in the Alaska Interior in 2010–11 are in good 
agreement with air temperature patterns observed in 
the Arctic and the sub-Arctic over the last five years 


