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Abstract

The Visser rules form a basis of admissibility for the intuitionistic propositional calculus. We show how
one can characterise the existence of covers in certain models, by means of formulae. Through this charac-
terisation, we provide a new proof of the admissibility of a weak form of the Visser rules. Finally, we use this
observation, coupled with a description of a generalisation of the disjunction property, to provide a basis of
admissibility for the intermediate logics BD2 and GSc.
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1 Introduction

The admissible rules of a logic are those rules that can be added without making new theorems derivable. The
intuitionistic propositional calculus (IPC) has many rules that are admissible, yet non-derivable. An exam-
ple of an admissible rule of IPC is the following, shown to be both admissible and non-derivable by Mints
(1976).

(ϕ→ χ ) → ϕ ∨ ψ
/ (

(ϕ→ χ ) → ϕ
)
∨
(
(ϕ→ χ ) → ψ

)
Some rules are admissible in IPC as well as in its axiomatic extensions. An early example is the following
rule, shown to be admissible in IPC by Harrop (1960), and proven to be admissible in all intermediate logics by
Prucnal (1979).

¬χ → ϕ ∨ ψ
/
(¬χ → ϕ) ∨ (¬χ → ψ)

Some intermediate logics enjoy a nice characterisation of their admissible rules. Iemhoff (2001a) and Rozière
(1992) independently proved that all admissible rules of IPC derive from the Visser rules, a scheme of rules that
can be seen as a generalisation of Mints’ rule. The Visser rules are useful in describing the admissible rules
of many an intermediate logic. Iemhoff (2005) showed that when they are admissible in an intermediate logic,
all other admissible rules must follow from them. The intermediate logic BD2, the weakest intermediate logic
of the second finite slice, however, is not amendable to this approach. Indeed, Citkin (2012a) showed that this
intermediate logic does not admit the Visser rules.

The logic BD2 was among the first intermediate logics to be studied. Jankov (1963) introduced the logic under
the nameM (cf. Rose, 1970), and proved it to be complete with respect to a particular class of Heyting algebras.
McKay (1967) proved that BD2 derives the same implicationless formulae as IPC. The concept of finite slices
was introduced by Hosoi (1967), where BD2 appeared in the guise of LP2. BD2 also appears as one of the three
pre-tabular intermediate logics, and as one of the seven intermediate logics with interpolation, both proven by
Maksimova (1972, 1979).
*Revised on December 10 2013, June 11th 2014 and July 29th 2014.
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IPC

BD2 KC = IPC+ ¬p ∨ ¬¬p

GSc LC = IPC+ (p → q) ∨ (q → p)

G2BD2 + LC =

CPC

Figure 1: The intermediate logics with the interpolation property ordered by inclusion, as illustrated by Rothen-
berg (2010, Figure 3.1).

The seven logics with interpolation are ordered as in Fig. 1. There is much known about the admissible rules
of these logics. As per Iemhoff (2005, Theorem 5.3), we know that the classical propositional calculus (CPC),
the two-valued Gödel logic (or Smetanich logic) G2, and the Gödel–Dummett logic LC (Dummett, 1959) have
no non-trivial admissible rules. The structural completeness of LC and G2 was proven by Dzik and Wroński
(1973), and Citkin (1978) showed that these logics are hereditarily structurally complete.1 IPC and the Jankov–
de Morgan logic KC have non-trivial admissible rules, and all admissible rules follow from the Visser rules by
Iemhoff (2005,Theorem 5.1) and Iemhoff (2001a). It is known thatBD2 admits non-trivial rules, but to the best of
our knowledge, no axiomatisation of admissibility is known. We are unaware of any admissibility results onGSc
of Avellone, Ferrari, and Miglioli (1999), which is the intermediate logic defined by

GSc := BD2 + ((p→ q) ∨ (p→ q) ∨ ((p ≡ ¬q)) .

Since Jeřábek (2005), there has been interest in a notion of admissibility concerning rules with multiple con-
clusions, as already suggested by Kracht (1999). This notion encompasses the disjunction property, and as
such, it offers a convenient setting to formulate bases of admissibility.2 Cintula and Metcalfe (2010), for in-
stance, give a basis of multi-conclusion admissibility for the implication–negation fragment of IPC. Simi-
larly, Goudsmit and Iemhoff (2014) provided bases of multi-conclusion admissibility for the logics Tn with
n ≥ 2.

In this paper we introduce a scheme of multi-conclusion rules, called D¬¬
n , inspired by Skura (1992). This

scheme can be seen as a weakened version of the Visser rules. We prove that all admissible rules of BD2 follow
from the scheme D¬¬

n , and that all admissible rules of GSc follow from D¬¬
2 . This provides a positive answer

to the last two questions stated in Iemhoff (2006).

The bulk of this paper is spent on developing the machinery to smoothly tackle these problems. Of central
importance to our end goal is the notion of projective unification, as developed by Ghilardi (1997, 1999). Using
Jankov–de Jongh formulae and the universal model, we semantically characterise the admissibility of a variant
of the Visser rules Dn. With this characterisation, we prove that the rules Dn are admissible for all subframe
logics. As a particular consequence this proves that the restricted Visser rules of Iemhoff (2005) are admissible
for all subframe logics. This includes the logics IPC, BDn, Gn, LC, Mn, KC, and Sm, all discussed in the
aforementioned paper.

1For more on structural completeness from the perspective of admissibility, we refer to Rybakov (1997, Chapter 5).
2 The difference between single-conclusion and multi-conclusion rules can be felt in formulating the Visser rules. In the terminology of
Citkin (2012a), V−

n as given at the start of Section 5 is the join-extension of the rule Vn given by Iemhoff (2005).
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In Section 2, we provide the basic definitions and notation we work with. Most importantly, we define what
we mean by a basis of admissibility in terms of (multi-conclusion) consequence relations. Providing a basis of
admissibility will be our formal codification of the intuitive statement that all admissible rules of BD2 follow
from D¬¬

n .

Section 3 describes the universal model. This model allows us to comfortably provide a connection between
syntax and semantics for the intermediate logics at hand. In Section 4, we lay the groundwork for characterising
exactly in which situations D¬¬

n is admissible. Moreover, we provide the scheme of rules Dn, and show it to be
admissible for all subframe logics. We introduce all the relevant admissible rules in Section 5. In Section 6, we
finally obtain the bases of admissibility.

2 Preliminaries

We are concerned with propositional statements. Often, it will be useful to restrict the propositional variables
to a given set, X say. Typically, this set will be finite or countably infinite. The propositional language over
these variables is defined through the following Backus–Naur form.

L(X) ::= ⊤ | ⊥ | X | L(X) ∧ L(X) | L(X) ∨ L(X) | L(X) → L(X).

We say that ϕ is a formula when ϕ ∈ L(X) for someX . For clarity, we reserve ϕ, ψ, χ for formulae and Γ,Π,∆
for sets of formulae. As abbreviations, wewrite¬ϕ tomean ϕ→ ⊥, and ϕ ≡ ψ tomean (ϕ→ ψ)∧(ψ → ϕ). By
a substitution we mean a function on formulae that commutes with all connectives.

The intuitionistic propositional calculus, from here onwards abbreviated as IPC, knowns many equivalent def-
initions. For us, it is most convenient to see it as a Hilbert-style system, that is, a collection of theorems
closed under modus ponens. We assume its definition to be known, for details we refer to Troelstra and
Dalen (1988). Intermediate logics are consistent axiomatic extensions of IPC. Let us give a formal defini-
tion.

1 Definition (Intermediate Logic)
An intermediate logic L is given by a set of formulae containing the theorems of IPC, satisfying:

(i) if σ is a substitution and ϕ ∈ L then σ(ϕ) ∈ L;

(ii) if ϕ→ ψ ∈ L and ϕ ∈ L then ψ ∈ L;

(iii) ⊥ ̸∈ L.

We will often write L+ ϕ to mean the least intermediate logic extending L ∪ {ϕ}.

To reason semantically, we use Kripke models. We repeat the definition below, for details see for instance
Troelstra and Dalen (1988) or Chagrov and Zakharyaschev (1997).

2 Definition (Kripke model)
A Kripke model, on a set of variables X , is a monotone map v : K → PX , where K is a partially ordered set,
and PX denotes the set of subsets of X ordered by inclusion. We define truth at a point inductively in the
usual manner:

k ⊩ ⊤ iff ⊤
k ⊩ ⊥ iff ⊥
k ⊩ x iff x ∈ v(k)
k ⊩ ϕ ∧ ψ iff k ⊩ ϕ and k ⊩ ψ
k ⊩ ϕ ∨ ψ iff k ⊩ ϕ or k ⊩ ψ
k ⊩ ϕ→ ψ iff l ̸⊩ ϕ or l ⊩ ψ for all l ≥ k
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We often omit reference to the monotone map, and refer to the model by its underlying partial order for the
sake of brevity when little confusion is possible. Given a setW ⊆ K we define

W ↑ :=
{
k ∈ K

∣∣ there is a w ∈W with w ≤ k
}
.

Such a set is called an upset when W ↑ = W . We write W ↑↑ for W ↑ −W , where − denotes set difference.
WhenW is a singleton set, we will often omit braces, so {k}↑ will be written as k↑. An upset U is said to be
principal when there is a u ∈ U such that u↑ = U . We say that a model is rooted when K itself is principal,
and denote the root, the smallest element in K , by ρK . A model L is said to be a generated submodel of K
when L = K ↾ U for some upset U ⊆ K . The modelK is said to be image-finite when all principal upsets are
finite.3

Given a model v : K → PX and a node k ∈ K we write Th (k) for the theory of that node, defined
as

Th (k) :=
{
ϕ ∈ L(X)

∣∣ k ⊩ ϕ
}
.

For convenience, we often writeW ⊩ ϕ to mean that w ⊩ ϕ for all w ∈W . We will also writeW ⊩ Γ to mean
thatW ⊩ ϕ for all ϕ ∈ Γ.

Maps of Kripke models are commutative triangles, where the maps involved are understood to be continuous
and open. That is to say, a map between Kripke models v : K → PX and u : L→ PY is a monotone function
f : K → L such that u ◦ f = v, and for all upsets U ⊆ K the set f(U) is an upset. Such a function is often
called a p-morphism or bounded morphism, we will simply call it a map. We write f(W ) to mean the direct
image of f underW , that is, {f(w) | w ∈W}.

Given a not necessarily rooted model K , we can adjoin a new root to K . There is a choice of valuation to
this new root. The operation of adjoining a root and selecting a suitable valuation will play an important
role, so let us define it here. Note that (−)/∅ , in the notation of the following definition, is the same as the
Smoryński-operator (−)′ of Smoryński (1973).4

3 Definition (Extension)
Let v : K → PX be a model, and let Y ⊆ X be a set of variables such that K ⊩ Y . Write K+ for the partial
order of K adjoined with a smallest element denoted ∗. We define the extension of K with Y , denoted K/Y
to be the model

v/Y : K+ → PX, k ∈ K+ 7→ if k ∈ K then v(k) else Y .

A rule is a pair of finite sets of formulae, written Γ/∆. We say that such a rule is single-conclusion when
|∆| ≤ 1. In order to abstract away from all matters relating to axiomatisations, we use consequence relations,
or rather, a generalisation of the concept that also allows for non-single conclusion rules. The definition we use
below follows that of Cintula and Metcalfe (2010). For more information on consequence relations per se we
refer to Wójcicki (1988), see Scott (1974), and Shoesmith and Smiley (1978) for background on multi-conclusion
consequence relations.

4 Definition (Multi-Conclusion Consequence Relation)
A multi-conclusion consequence relation is a relation between finite sets of formulae, denoted , subject to the
following axioms. Here ϕ is a formula, and Γ,Π,∆,Θ are finite sets of formulae.5

reflexivity ϕ ϕ;

monotonicity if Γ ∆ then Γ,Π ∆,Θ;

transitivity if Γ ∆, ϕ and ϕ,Π Θ, then Γ,Π ∆,Θ;

3 For details on the general theory of image-finite models and their duals, see G. Bezhanishvili and N. Bezhanishvili (2008).
4Through the duality between finite Kripke frames and finite Heyting algebras as given by de Jongh and Troelstra (1966), this operation
is known as the Troelstra sum (Troelstra, 1965), star sum (Balbes and Horn, 1970), vertical sum (N. Bezhanishvili, 2006), concatenation
(Citkin, 2012b), and glued sum (Grätzer, 2011).

5We use “,” to denote set-union and omit braces around singleton sets for improved readability.
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structurality if Γ Π then σ(Γ) σ(Π) for all substitutions σ.

Given an intermediate logic L, weworkwith themulti-conclusion relation L defined by

Γ L ∆ iff
∧

Γ →
∨

∆ ∈ L.

We say that a rule Γ/∆ is derivable whenever Γ ∆ holds.

5 Definition (Admissible)
A rule Γ/∆ is said to be admissible for , written Γ ∆, when for all substitutions σ the following holds

if σ(ϕ) for all ϕ ∈ Γ then σ(χ ) for some χ ∈ ∆.

Note that is a multi-conclusion consequence relation such that ⊆ . Given a set of rules R we write R

to mean the least consequence relation extending both and R. We say that R forms a basis of admissibility
when R = .

3 The Universal Model

In this section we explicate some machinery convenient in discussing the universal model. Moreover, we
introduce Jankov–de Jongh formulae. Themain results of this section arewell-establishedwithin folklore. Some
of the definitions and techniques are (slightly) novel, though. Definition 8 in particular appears to be absent
from the literature, but it seems to smoothen some arguments, such as Theorem 2.

Bellissima (1986) describes freeHeyting algebra in terms of definable upsets of particular Kripkemodels (cf. Darnière
and Junker (2010) and Elageili and Truss (2012)). Rybakov (1992) considered a similar model, under the name
“characterizing model”, to prove results about admissibility. The central property of his model is that it is
complete for all formulae on a specific set of variables. When considering intermediate logics with the finite
model property, one can intuitively see that any model which contains all finite models satisfies this property.
We use this to define what it means to be a “universal model” in Definition 9. From Theorem 1, it is clear
that the common construction, as given for instance by N. Bezhanishvili (2006), is a universal model in our
sense.

6 Definition (Cover)
LetK be a Kripke frame. We say thatW ⊆ K covers k ∈ K , denotedW κ k, precisely if k↑ =W ↑ ∪ {k}.

The above definition is equivalent to the one given by Ghilardi (2004). Let us first note that ∅ κ k precisely if
k is maximal. The relation κ is reflexive in the sense that {k} κ k. We also have that (k↑↑) κ k. Not every set
W ⊆ K need have a node k such thatW κ k holds.

A set W covers a node k precisely if k is a tight predecessor of W in the sense of Iemhoff (2001b). When
K is the canonical model on a given set of variables, one can see that W covers k precisely if k is a tight
predecessor of

∩
W in the sense of Goudsmit and Iemhoff (2014). Jeřábek (2005) also has a notion of being

a tight predecessor, but this notion is irreflexive. That is to say, W covers k and k ̸∈ W precisely if k is a
tight predecessor of W in his sense. N. Bezhanishvili (2006) calls W a total cover of k in precisely the same
situation.

There is good reason to allow this reflexivity in the notion of covering. The following lemma shows that covers
are preserved bymaps, which would not be the case were we to impose irreflexivity.

1 Lemma (Ghilardi, 2004)
Let K and L be Kripke models, and let f : K → L be a monotone map respecting the underlying valuations.
The statement (i) entails (ii), and the converse holds wheneverK is conversely well-founded.
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(i) f is a map of Kripke models;

(ii) for all k ∈ K andW ⊆ K be such thatW κ k we have f(W ) κ f(k).

Proof The implication from (i) to (ii) follows from straightforward computation. Indeed, ifW κ k then f(W ) κ
f(k) follows from the equation below.

f(k)↑ = f(k↑) = f(W ↑ ∪ {k}) = f(W ↑) ∪ {f(k)} = f(W )↑ ∪ {f(k)}

Suppose (ii) holds. We prove, by well-founded induction, that for all k ∈ K we have f(k)↑ = f(k↑). Consider
k andW := k↑↑, and assume that f(w)↑ = f(w↑) for all w ∈W . It follows that f(W )↑ = f(W ↑). We know
thatW κ k, and thus f(W ) κ f(k) holds by assumption. From here we compute

f(k↑) = f({k}) ∪ f(W ↑) = f({k}) ∪ f(W )↑ = f(k)↑,

proving (i) as desired. ■

The theory of a node is determined by its valuation, and by the nodes it covers, as illustrated by the follow-
ing lemma. This property we will later use to pinpoint the existence of nodes covered by a specific set of
nodes.

2 Lemma
LetK be model, letW ⊆ K be a set, and let k ∈ K be such thatW κ k. We now have

k ⊩ ϕ→ ψ iff W ⊩ ϕ→ ψ and (k ̸⊩ ϕ or k ⊩ ψ) (1)

Proof By definition we know k ⊩ ϕ → ψ if and only if l ̸⊩ ϕ or l ⊩ ψ for all l ≥ k. Now becauseW κ k the
latter is equivalent to the statement that l ̸⊩ ϕ or l ⊩ ψ holds for l ∈ K satisfying l = k or l ∈W ↑. ■

In the canonical model, order is fully determined by the theory of the nodes. This can be the case in many
more models, in particular in submodels of the canonical model. Many consequences can be drawn from this
definability of order alone, so let us give it a name.

7 Definition (Refined Model)
A modelK is said to be refined when for all k, l ∈ K such that k ̸≤ l, there is a ϕ such that k ⊩ ϕ yet l ̸⊩ ϕ.

3 Lemma
Let K be a refined model on X , and letW ⊆ K be a finite set of nodes. If k ∈ K is such that it satisfies the
equivalence (1), andW ↑ ⊆ k↑ holds, thenW κ k.

Proof We need to show that k↑ =W ↑∪{k}. The inclusion from right to left holds by assumption. We proceed
by contradiction, so assume the existence of a node l ∈ K with k > l and l ̸∈W ↑. The former, combined with
the refinedness of K , ensures that there is a ϕ ∈ L(X) such that k ̸⊩ ϕ and l ⊩ ϕ. Through the latter and
refinedness we get ψw ∈ L(X) such that w ⊩ ψw and l ̸⊩ ψw .

We note that ψ :=
∨

w∈W ψ is such thatW ⊩ ψ, and thusW ⊩ ϕ → ψ. By the equivalence of Lemma 2, we
know that k ⊩ ϕ→ ψ, and so l ⊩ ϕ→ ψ follows by the preservation of truth. But l ⊩ ϕ, so this proves l ⊩ ψ.
By definition, this gives a w ∈W such that l ⊩ ψw , a contradiction, as desired. ■

4 Lemma
Let L be a refined model, and let f, g : K → L be arbitrary maps. It follows that f = g.

Proof If l1, l2 ∈ L are such that Th (l1) = Th (l2) then l1 = l2. This is immediate from the refinedness of L.
Pick k ∈ K and see that

Th (f(k)) = Th (k) = Th (g(k)) .

Consequently f(k) = g(k) for all k ∈ K , proving the desired. ■
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Every image-finite model on a set of variables has a unique map to the canonical model on the same set of
variables. Below we show this, making use of the existence criterion given by Lemma 3. We write can(X) to
denote the canonical model on X .

5 Lemma
LetK → PX be an image-finite model. There is a unique map ThK (−) : K → can(X).

Proof The map is defined as

ThK (−) : K → can(X), k ∈ K 7→
{
ϕ ∈ L(X)

∣∣ k ⊩ ϕ
}
.

When we can show that this is a map we are done, because uniqueness is immediate through Lemma 4.

Monotonicity of ThK (−) is clear by the preservation of truth. LetW ⊆ K be arbitrary and k ∈ K such that
W κ k. By Lemma 1 we need but prove that ThK (W ) κ ThK (k). First note that W ⊆ k↑, and so W is
finite as K is image-finite. Now also observe that ThK (W ) and ThK (k) satisfy the equivalence as given in
Lemma 2. The proof is now immediate through Lemma 3. ■

The direct image of any image-finite model must be image-finite. Consequently the above proves the following
theorem. Note that the image-finite part is not a priori equal to the upper part in the sense of N. Bezhanishvili
(2006). His Theorem 3.1.10 shows that, when considering but finitely many variables, these two notions do
coincide.

1 Theorem
Let X be a finite set. The image-finite part of can(X) is the terminal object in the category of image-finite
models on X .

We introduce an auxiliary notion, which we will show to be a special case of being refined. This notion is not
essentially new. It is, in fact, the disjunction of two notions well-established within the literature on Kripke
models.

Consider a surjective map f : K → L such that there are distinct k1, k2 ∈ K with f(k1) = f(k2) and f(k) = k
for all k ∈ K − {k1, k2}. In de Jongh and Troelstra (1966), such a map is said to be an α-reduction whenever
k2 κ k1 or k1 κ k2, and it is called a β-reduction when k1 ↑↑ = k2 ↑↑. Let us, for convenience, call such pairs
of nodes k1, k2 nodes α-redexes and β-redexes respectively. Odintsov and Rybakov (2013) call these redexes
twins and duplicates respectively. Similar configurations are described by others, see for instance Bellissima
(1986, Lemma 2.1 and 2.0) and Anderson (1969, Operation 1 and 2). We forego the distinction between these
settings, and call the nodes k1 and k2 analogous in both cases. It is easy to see that comparable analogous nodes
form a α-redex, and incomparable analogous nodes form a β-redex.

8 Definition (Analogous Nodes)
Let v : K → PX be a model, and let a, b ∈ K be nodes. We say that k and l are analogous, written a ≡ b,
whenever v(a) = v(b) and

a ≤ k if and only if b ≤ k for all k ∈ K − {a, b}.

A model is said to be concrete when all analogous nodes are equal.

We first make the connection with our motivating example in the following lemma. We call a map f : K → L
a reduction when there exists a unique doubleton {a, b} ⊆ K with a ≡ b such that f(k1) = f(k2) if and only if
k1 = k2 or {k1, k2} = {a, b}. Consider anymodelK , and suppose that a, b ∈ K are such that a ≡ b. The small-
est equivalence relationR such that a R b holds is a congruence relation with respect to the order onK . That is
to say, if a ≤ b and a R a′ and b R b′ then a′ ≤ b′ holds as well. Consequently, we can define a modelK/R on
the equivalence classes of R, and the quotient functionK → K/R is a reduction.
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6 Lemma (de Jongh and Troelstra, 1966)
Let K be a finite model. For every proper map f : K → L, there exists a chain of reductions f1, . . . , fn such
that fn . . . f1 = f .

Proof We proceed by induction on the size of the modelK . Let f : K → L be given and consider the set

E := {⟨a, b⟩ ∈ K ×K | a ̸= b and f(a) = f(b)} .

Order E by ⟨a1, b1⟩ ≤ ⟨a2, b2⟩ iff a1 ≤ a2 and b1 ≤ b2. Because f is proper we know E to be non-empty, and
as K is finite we can pick a maximal ⟨a, b⟩ ∈ E. We claim that a ≡ b. Indeed, if k ∈ K − {a, b} is given and
a ≤ k then f(b) = f(a) ≤ f(k), and so there must be a k′ ≥ b such that f(k) = f(k′). Now k = k′ must hold,
for otherwise ⟨k′, k⟩ > ⟨a, b⟩, contradicting the maximality of ⟨a, b⟩. This proves that b ≤ k′ = k, as desired.
The other direction can be proven similarly.

Now consider the smallest equivalence relation R such that a R b. Define the map f1 : K → K/R to be the
quotient map and let f ′ : K/R → L be defined on representatives by f . It follows that f ′ is a well-defined
map and f ′f1 = f . Also note that the size ofK/R is smaller than that ofK . Induction yields maps f2, . . . , fn
such that fn . . . f2 = f ′. This proves that fn . . . f1 = f , as desired. ■

It is important to note that the relation ≡ is reflexive and symmetric, but in general it is not transitive. One
can extend the notion of being analogous away from the binary into the finitary, and say that a set W ⊆ K
is analogous whenever v(w1) = v(w2) for all w1, w2 ∈ W and for all k ∈ K −W one has w < k for some
w ∈ W precisely if w < k for all w ∈ W . It is easy to see that double-ton sets are analogous when their
constituents are analogous nodes, though the converse need not hold. We entertain this digression for a bit
more, and define a generalisation of analogous based on the above notion.

7 Lemma
Let v : K → PX be a model. Define the relations ≡ and ⊑ onK as follows:

a ∼= b if and only if there is an analogous setW ⊆ K with x, y ∈W
a ⊑ b if and only if there are a′, b′ ∈ K such that a ∼= a′ ≤ b′ ∼= b

The relation ∼= is an equivalence relation congruent with ≤. The relation ⊑ is the least reflexive, transitive
relation extending both ∼= and ≤ such that x ⊑ y and y ⊑ x entail x ≡ y.

Proof Reflexivity and symmetry of ∼= are both evident. To prove transitivity, assume a ∼= b ∼= c. This gives
us analogous setsWab ∋ a, b andWbc ∋ b, c. See thatWab ∪Wbc is an analogous set, whence the transitivity
follows.

It is clear that ⊑ extends ≤ and ≡. We need to prove reflexivity, transitivity and anti-symmetry. The former is
immediate from reflexivity of ≤ and ≡.

To prove transitivity, assume a ⊑ b ⊑ c. This yields kab, kba, kbc, kcb ∈ K such that

a ∼= kab ≤ kba ∼= b ∼= kbc ≤ kcb ∼= c.

Let W be an analogous set such that kba, b, kbc ∈ W . If kcb ∈ W then kba ∼= kcb whence the desired is
immediate. Assume the contrary, then we know from kbc ≤ kcb that kba ≤ kcb. But now a ∼= kab ≤ kcb ∼= c,
as desired.

We now turn to anti-symmetry, so assume a ≤ b and b ≤ a. This yields aab, bab, bba, aba,∈ K such that

a ∼= aab ≤ bab ∼= b and b ∼= bba ≤ aba ∼= a.

Consider analogous sets Wa and Wb such that a, aab, aba ∈ Wa and b, bab, bba ∈ Wb. If these sets intersect
then we are done, so assume the contrary. It follows that aba ≤ bab because aab ≤ bab and aba, aba ∈ Wa.
Similarly, bab ≤ aba because bba ≤ aba and bba, bab ∈ W . We now have, through anti-symmetry of ≤, that
aba = bba, quod non. Minimality we leave to the reader, the proof technique is similar to the above. ■
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Let v : K → PX be a model and let ∼= and ⊑ be the relations of Lemma 7. Define CK to be the set of ∼=-
equivalence classes, ordered by⊑ on representatives, and define themodelCv : CK → PX on representatives.
The canonical quotient function p : K → CK can easily be seen to be a map of Kripke models. Moreover, to
each map f : K → L such that f(a) = f(b) when a ∼= b there is a unique map g : CK → L such f = gp.
When we apply Lemma 6 to the map p : K → CK it becomes apparent that ∼= is, intuitively, like a transitive
closure of ≡.

We do not explore this generalised notion any further, and return to the binary case. Let us first tie the
concept to that of coverings. Note again that the “non-strictness” of the covering relation is quite essen-
tial.

8 Lemma
Let v : K → PX be a model. The following are equivalent, for all k1, k2 ∈ K :

(i) the nodes k1 and k2 are analogous;

(ii) there is aW ⊆ K such thatW κ k1, k2 and v(k1) = v(k2).

Proof Assume that (ii) holds, and let k1, k2 ∈ K andW ⊆ K be such thatW κ k1, k2 and v(k1) = v(k2). If
k ∈ K − {k1, k2} is such that k1 ≤ k, then k ∈ W becauseW κ k1. AsW κ k2, this proves k2 ≤ k. We can
prove the converse through a similar argument, showing (i) to hold.

Conversely, suppose (i) holds. We distinguish two cases, either k1 and k2 are comparable or they are not. In
the latter case, we defineWi := ki↑ − {k1, k2}. Observe thatW1 =W2 because k1 ≡ k2. It is easy to see that
Wi κ ki through the incomparability of k1 and k2, proving the desired.

In the former case, we assume, for convenience, that k1 ≤ k2. Now defineW := k2 ↑ and see thatW κ k2 and
W κ k1. The first statement is trivial, the second holds because if k ∈ K is such that k1 < k then k2 < k or
k1 = k. In both cases we derived (ii). ■

The following can be shown by a straightforward computation, but is also an immediate corollary of Lemma 1
and Lemma 8.

1 Corollary
Let f : K → L be a morphism. If a ≡ b then f(a) ≡ f(b) for all a, b ∈ K In particular, if f is bijective and L
is concrete, thenK is concrete too.

Corollary 3 follows immediately from Corollary 2, and the former is a direct consequence of Lemma 8 and
Lemma 2. This shows, as promised, that concreteness is a special case of refinedness. In particular, this
proves that the universal model, as we constructed it, is concrete. Because universal models are unique up
to isomorphism, and analogousness is preserved through maps, it also follows that any universal model is
concrete.

2 Corollary
LetK be a model. For all a, b ∈ K we have Th (a) = Th (b) whenever a ≡ b.

3 Corollary
Any refined model is concrete.

Note that the universal model (on a fixed set of variables), constructed for instance by de Jongh and Yang
(2011) or N. Bezhanishvili (2006), is the terminal object in the category of image-finite models (again, on this
same fixed set of variables). We use this property as the very definition of the universal model for arbitrary
intermediate logics. In Theorem 1 we proved that such a model actually exists for IPC. Corollary 4 shows that
universal models always exist.

Do note that here there is a difference between the established definition of a characterizing model, in the sense
of Rybakov, and a universal model, in the sense defined below. A characterising model is complete, whereas a
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universal model need only be complete when the logic at hand has the finite model property. This interpretation
of what it means to be a universal model is not standard; Renardel de Lavalette, Hendriks, and de Jongh (2012,
Section 4), for instance, do require a universal model to be large enough to distinguish between non-equivalent
formulae, which entails completeness in particular.

In the case of IPC, a characterizing model needs to include the universal model, which follows immediately
from Theorem 2 below.

9 Definition
Let L be an intermediate logic and let X be a set of variables The universal model on X , written UL(X), is a
terminal object in the category of imagine-finite models on X satisfying L.

4 Corollary
Let L be an intermediate logic. Now

UL(X) :=
{
k ∈ UIPC(X)

∣∣ k ⊩ ϕ for all ϕ ∈ L(ϕ) with L ϕ
}

is the universal model for L over X . Moreover, if L has the finite model property, then the model UL(X) is
complete with respect to. L on X . That is to say, for all ϕ ∈ L(X) we have:

L ϕ iff UL(X) ⊩ ϕ.

Proof Let v : K → PX be an image-finite model, and assume that K ⊩ ϕ for all ϕ ∈ L(X) with L ϕ. There
is a unique map i : K → UIPC(X), and this map preserves the theory of K . This shows that i(K) ⊆ UL(X).
Moreover, any map f : K → UL(X) is such that f(k) = i(k). Consequently, UL(X) truly is universal for L on
X .

To show completeness, assume that ̸ L ϕ for some ϕ ∈ L(X). By the finite model property, we know of a finite
rooted model K of L on X such that K ̸⊩ ϕ. Universality ensures a map K → UL(X), and so UL(X) ̸⊩ ϕ, as
desired. ■

Let us now define the Jankov–de Jongh formulae. These formulae allow us to capture a principal upset in an
image-finite concrete model as the upset satisfying a given formula. This definition is, in essence, the same
as those given by N. Bezhanishvili (2006) and Darnière and Junker (2010). We include it here for the sake of
completeness.

10 Definition (Characteristic Formulae)
Let v : K → PX be a model, and let k ∈ K be such that the upset it generates is finite. Make the following
auxiliary definitions.

propsk := {p ∈ X | k ⊩ p},
newsk := {p ∈ X | k↑↑ ⊩ p and k ̸⊩ p}.

Now define maps up (−), nd (−) : k↑ → L(X) by well-founded recursion as follows, where W denotes the
set of immediate successors of k.

up k :=
∧
propsk ∧

((∨
newsk ∨

∨
w∈W ndw

)
→
∨

w∈W upw

)
,

nd k := up k →
∨

w∈W upw.

In the above definition, it is understood that an empty disjunction stands for falsity (⊥), and an empty conjunc-
tion stands for truth (⊤). Also remark thatW is the minimal set such thatW κ k. In particular, ifW = ∅, that
is to say, k is a maximal node, then the above specialises to

up k =
∧
p∈X

(if k ⊩ p then p else p→ ⊥) and nd k = up k → ⊥

10



2 Theorem (Characteristic Formulae)
Let v : K → PX be a concrete model, and let k ∈ K be such that k↑ is finite. The following hold for all l ∈ K :

l ⊩ up k iff k ≤ l
l ̸⊩ nd k iff l ≤ k

Proof We proceed by well-founded induction along k. For convenience, letW be the set of immediate succes-
sors of k.

By the induction hypothesis, one can see the upper statement to be equivalent to the following.

k ≤ l iff v(k) ⊆ v(l) and for allm ≥ l,
(v(k) = v(m) andW ⊆ m↑) orm ∈W ↑. (2)

The implication from left to right is straightforward. Let l ≥ k be arbitrary. Monotonicity guarantees v(k) ⊆
v(l). Now consider anym ≥ l, and note that as l ≥ k andW κ k we know that either k = m orm ∈ W ↑. In
both cases the implication holds for trivial reasons.

To prove the other direction, assume that k ̸≤ l while l ⊩ up k. By upwards persistency and the finiteness of
l↑, we can, without loss of generality, assume l to be maximal with respect to k ̸≤ l. We distinguish two cases,
either v(k) = v(l) and W ⊆ l↑, or l ∈ W ↑. The latter case is clearly absurd, because then l ∈ W ↑ ⊆ k↑
would follow, contradicting k ̸≤ l. In the former case, we know thatW κ l through the maximality of l. From
Lemma 8 we learn that l ≡ k and so k = l, quod non.

To finish our argument, we remark that l ̸⊩ nd k is equivalent to the existence of a node m ≥ l such that
m ⊩ up k andm ̸⊩ upw for all w ∈ W . By the above, we know this to hold precisely if there is am ≥ l such
that k ≤ m and w ̸≤ m for all w ∈ W . Recall thatW κ k, so if k ≤ m and w ̸∈ W ↑, then we know k = m.
This shows that l ̸⊩ nd k holds precisely if l ≤ k. ■

Observe that, by the above, we know that to each finite W ⊆ K with K concrete we have k ∈ W ↑ if and
only if k ⊩

∨
w∈W upw. We will denote this disjunction by upW from now on. We close this section with

the following corollary, relating concreteness and refinedness. The introduction of concreteness was moti-
vated as an ostensible refinement of refinedness. In the setting of image-finite models, the two notions in
fact coincide. The implication from left to right holds in general, as per Corollary 3, the converse through
Theorem 2.

5 Corollary
Every image-finite model is refined if and only if it is concrete.

4 Existence of Covers

Recall that Lemma 5 proved that to each image-finite model there is a unique map into the canonical model. By
Lemma 1, such a map must preserve covers. This suggests a close relation between the nodes covered by the
theory of a model (in the universal model) and the possible extensions of this model. Observe that all statements
in Corollary 6 still hold when replacing can(X) by UIPC(X).

6 Corollary
Let v : K → PX be a model and let W ⊆ can(X) be a set of nodes such that Th (W ) = Th (K). For all
Y ⊆ X with K ⊩ Y we have that W κ Th (K/Y ). Moreover, if k ∈ can(X) is such that W κ k then
Th (K/Y ) = k for Y = Th (k) ∩X .

Proof The first statement is immediate from Lemma 3. Let k ∈ can(X) be such that W κ k. From the first
statement we gather that W κ Th (K/Y ). It is quite clear that Th (K/Y ) and k make the same variables
true. So Lemma 8 shows these nodes to be analogous. But, as the model is concrete through Corollary 3, we
know these nodes to be equal, whence they have equal theories. ■
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Iemhoff (2005, 2006) showed that there is a correspondence between the admissibility of certain rules and
the existence of certain extensions. As per the previous lemma, this amounts to finding out which sets of the
canonical model have nodes that they cover. When restricting to logics with the finite model property, it suffices
to restrict attention to the universal model. Instead of fixating on the universal model, we often consider an
arbitrary image-finite concrete model. This gives us slightly greater flexibility, because this allows us to also
consider submodels of the universal model in particular.

Let us first start with some notions approximating the existence of covers. In Lemma 10, these properties will
all be related to one another. The following definition is a generalisation of the set ∆ of Iemhoff (2001b, page
288), as already investigated in Goudsmit and Iemhoff (2014). Here we present some more general arguments,
although the proofs have a similar flavour.

11 Definition (Vacuous Implications)
LetK be a model over X . The set of vacuous implications is defined as

I (K) := {ϕ→ ψ ∈ L(X) | K ⊩ ϕ→ ψ andK ̸⊩ ϕ }

12 Definition
Let K be a model, let W ⊆ K be a subset, and let k ∈ K be a node. We say that W is comparable above k
when for all l ≥ k one has l↑ ⊆W ↑ orW ↑ ⊆ l↑.

9 Lemma
LetK be a model, letW ⊆ K be a subset and k ∈ K be a node. IfW is comparable above k, and k is maximal
with respect toW ↑ ⊆ k↑, thenW κ k.

Proof We need to prove that k↑ =W ↑ ∪ {k}. The inclusion from right to left holds by assumption. To prove
the opposite, let l ≥ k be given. If l = k we are done, so assume k < l. This ensures thatW ↑ ̸⊆ l↑. But we
also know thatW ↑ ⊆ l↑ or l↑ ⊆W ↑, so l↑ ⊆W ↑ must follow. This proves that l ∈W ↑, as desired. ■

The following lemma illustrates the partial internalisability of being comparable above. That is to say, W is
comparable above some node in K precisely when the subtheory I (W ) of Th (W ) holds on K . We thus
capture a property of the model in propositional language. We speak of partial internalisation because the
theory need not be finite in general, so the property is not fully expressed in one propositional statement. This
can, however, be done when the modelK is assumed to be image-finite.

10 Lemma
LetK be a refined model, letW ⊆ K be finite and let k ∈ K be such thatW ↑ ⊆ k↑. The items (i) and (ii) are
equivalent. IfK is image-finite then all the following are equivalent.

(i) k ⊩ I (W );

(ii) W is comparable above k;

(iii) k ⊩
∨

w∈W ndw → upW.

Proof Assume (i) holds. We proceed by contradiction, so we assume there is some l ≥ k such that l↑ ̸⊆ W ↑
and W ↑ ̸⊆ l↑. The former ensures that for all w ∈ W we know w ̸≤ l, and the latter proves that l ̸≤ w
for some w ∈ W . By refinedness, we thus know of ϕw ∈ L(X) such that w ⊩ ϕw yet l ̸⊩ ϕw per w ∈ W .
Again through refinedness, we know of a ψ ∈ L(X) such that l ⊩ ψ and w ̸⊩ ψ for some w ∈ W . Note
that ϕ :=

∨
w∈W ϕw is a proper formula because W is finite. It follows that W ⊩ ϕ and k ̸⊩ ϕ. Moreover,

W ̸⊩ ψ and k ⊩ ψ. As a consequence ϕ → ψ ∈ I (W ), and soW ⊩ ϕ → ψ. But nowW ⊩ ψ follows, a clear
contradiction. This proves (ii).

To prove the other direction assume that (ii) holds. Suppose that k ̸⊩ ϕ → ψ for some ϕ → ψ ∈ I (W ). This
gives us a l ≥ k such that l ⊩ ϕ yet l ̸⊩ ψ. We distinguish two cases, either l↑ ⊆ W ↑ orW ↑ ⊆ l↑. In both
cases we immediately arrive at a contradiction through upwards persistency, proving (i).

12



Now suppose that K is image-finite. Because K is refined, we know it to be concrete by Corollary 3. We
prove that (iii) is equivalent to (ii). By definition (iii) holds if and only if for all l ≥ k one has l ⊩ upW
whenever l ⊩

∨
w∈W ndW . This is equivalent to for all l ≥ k we have l ̸⊩ ndw for all w ∈ W or l ⊩ upW .

Through Theorem 2, we see the former disjunct to be equivalent toW ↑ ⊆ l↑, whereas the latter is equivalent
to l↑ ⊆W ↑. This is precisely (ii), as desired. ■

7 Corollary
Let v : K → PX be a concrete, image-finite model and letW ⊆ K be finite. The following are equivalent:

(i) there exists a node k ∈ K such thatW κ k;

(ii) there exists a node k ∈ K with k ⊩ I (W ) andW ↑ ⊆ k↑.

(iii) K ̸⊩
((∨

w∈W ndw
)
→ upW

)
→
∨

w∈W ndw

(iv) there exists a node k ∈ K such thatW ↑ ⊆ k↑ andW is comparable above k

Proof Suppose that (i) holds. Note that ifW κ k then k ⊩ I (W ) by Lemma 2. From here (ii) is clear.

See that each of (ii), (iii) and (iv) ensureW ↑ ⊆ k↑, as per Theorem 2 in the case of (iii). Their equivalence thus
follows immediately from Lemma 10.

Finally, suppose that (iv) holds. Because K is image-finite we know k↑ to be finite. As such we can pick a
l ∈ k↑ maximal with respect toW ↑ ⊆ l↑. Through Lemma 9 we know thatW κ l, proving (i) as desired. ■

3 Theorem
Let v : K → PX be a concrete, image-finite model, and let n ∈ N be natural. The following are equivalent:

(i) for all k ∈ K and allW ⊆ k↑ with |W | ≤ n there exists a node l ∈ K such thatW κ l;

(ii) for all ∆ ⊆ L(X) with |∆| ≤ n and ϕ ∈ L(X) we have

K ⊩
(∨

∆ → ϕ
)
→
∨

∆ impliesK ⊩
∨
χ ∈∆

(∨
∆ → ϕ

)
→ χ

(iii) for all k ∈ K and allW ⊆ k↑ with |W | ≤ n we have that

K ⊩
( ∨

w∈W

ndw → upW

)
→

∨
w∈W

ndw implies

K ⊩
∨

a∈W

( ∨
w∈W

ndw → upW

)
→ nd a

Proof Suppose that (i) holds, and let∆ ⊆ L(X) and ϕ ∈ L(X) be such that |∆| ≤ n andK ⊩ (
∨

∆ → ϕ) →∨
∆. We proceed by contraposition, so assume thatK ̸⊩

∨
χ ∈∆ (

∨
∆ → ϕ) → χ . This gives us some k ∈ K

such that
k ̸⊩

(∨
∆ → ϕ

)
→ χ ,

for all χ ∈ ∆. From this we obtain, per χ ∈ ∆, a node wχ ≥ k such that wχ ⊩
∨

∆ → ϕ and wχ ̸⊩ χ .
DefineW := {wχ | χ ∈ ∆} and observe that |W | ≤ n andW ↑ ⊆ k↑. By assumption, this yields a l ∈ K such
thatW κ k. Upwards persistency ensures that l ̸⊩

∨
∆, so from Lemma 2 it readily follows that l ⊩

∨
∆ → ϕ.

This yields l ̸⊩ (
∨
∆ → ϕ) →

∨
∆, proving (ii) to hold.

It is quite clear that (ii) entails (iii). Now assume (iii) to hold. We distinguish two cases, either the assumption
is false or the conclusion holds. In the former case, the desired is immediate from Corollary 7. Suppose we are
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in the latter case, that is, the conclusion holds. In particular, this means that the conclusion holds in k. As a
consequence, we can pick a node a ∈W such that

k ⊩
( ∨

w∈W

ndw → upW

)
→ nd a.

Fix this a, and see that the same formula holds at a by the preservation of truth and k ≤ a. Because a ∈ W ↑,
we, through Theorem 2, know that a ⊩ upW . This yields a ⊩

∨
w∈W ndw → upW , and so a ⊩ nd a must

follow. Yet we can now derive a ̸≤ a throughTheorem 2, which is blatantly false. This proves (i), as desired. ■

5 Admissible Rules

Iemhoff (2005) investigated admissibility of the Visser rules in intermediate logics. In particular, she seman-
tically characterised when the following rules V−

n , known as the restricted Visser rules, are admissible for all
n ∈ N by means of the weak extension property.∧n

i=1 (pi → qi) → pn+1 ∨ pn+2
V−
n∨n+2

j=1

∧n
i=1 (pi → qi) → pj

Unfortunately, this result does not nicely stratify over the index n. The rule Dn as given below however does
stratify satisfactorily, hence our interest in this rule scheme. Intuitively, the mismatch between Dn and the
rules V−

n can be felt for instance in Jeřábek (2008, Lemma 3.2). It should be noted that, for logics with the finite
model property, we know all restricted Visser rules to be admissible precisely when all rulesDn are admissible,
due to Corollary 8 and the characterisation of Iemhoff (2005, Theorem 4.7). Remark that the rule rn of Skura
(1989) can, informally, be seen as a contrapositive formulation of the rule Dn.

(
∨n

i=1 pi → q) →
∨n

j=1 pj
Dn∨n

j=1 (
∨n

i=1 pi → q) → pj

In Corollary 8 below, we show that the admissibility of Dn has semantic counterparts, making heavy use of the
theory developed in the previous section. The property (i) of that corollary is, in essence, a stratification of the
weak extension property, restricted to the finite models of an intermediate logic.

8 Corollary
Let L be an intermediate logic with the finite model property. The following are equivalent:

(i) for every finite rootedK ⊩ L and everyW ⊆ K with |W | ≤ n there is an extension of W forcing L.

(ii) for all X , all k ∈ UL(X) andW ⊆ k↑ with |W | ≤ n there is a node covered byW ;

(iii) L admits Dn;

Proof The equivalence between (i) and (ii) is immediate through Corollary 6. By Corollary 4 and Theorem 3,
it is clear that (iii) and (ii) are equivalent too. ■

An intermediate logic L is said to be a subframe logic when for every model v : K → PX of L and every subset
W ⊆ K we have that v ↾ W : W → PX is a model of L, too. For details on subframe logics in general we
refer to Yang (2008), G. Bezhanishvili and Ghilardi (2007), and Zakharyaschev (1992). Let us note again that the
logics BDn, as described in Section 6, are known examples of subframe logics.

4 Theorem
Each subframe logic admits the rules Dn for all n ∈ N.
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Proof By Zakharyaschev (1996, Theorem 4.1) we know L to have the finite model property. We proceed via
Corollary 8, so let K ⊩ L be a finite rooted model and letW ⊆ K be arbitrary. See that K ↾ (W ∪ {ρK}) is
an extension ofW . But as L is a subframe logic, and this is a subframe ofK , we know this to be a model of L.
This proves the desired. ■

The above can intuitively be understood as saying that, in subframe logics, all finite models can be built in an
inductive manner by means of extensions. From here, it seems plausible enough that, if every finite model
is contained within a rooted model, then all models can be built. More formally, Iemhoff (2005) showed that
the weak extension property and the disjunction property together entail the extension property. From this
it is clear that IPC is the sole subframe logic with the disjunction property. In order to fully characterise
admissibility for subframe logics, it thus makes sense to look for generalisations of the disjunction prop-
erty.

The following lemma is a first attempt at internalising the existence of nodes below certain sets of nodes. At
first reading one can fix n = 2, think of K as any universal model, and take L = K . The lemma then gives
a semantic characterisation of the disjunction property, much like Maksimova (1986, Theorem 1) and Gabbay
and de Jongh (1974, Lemma 14). Corollary 10 investigates what happens when we let L be the set of maximal
nodes inK .

11 Lemma
Let v : K → PX be an image-finite, concrete model, let L ⊆ K be an arbitrary subset and let n be natural.
The following are equivalent:

(i) for all ∆ ⊆ L(X) with |∆| ≤ n we have

K ⊩
∨

∆ implies L ⊩ χ for some χ ∈ ∆

(ii) for allW ⊆ L with |W | ≤ n we have a k ∈ K such thatW ↑ ⊆ k↑.

Proof Assume (i) to hold, and take W ⊆ L with |W | ≤ n. Define χ w := ndw and ∆ := {χ w | w ∈ W},
and note that |∆| ≤ n. See that w ̸⊩ ndw through Theorem 2, and so L ̸⊩ χ for all χ ∈ ∆. This proves that
K ̸⊩

∨
∆. As a consequence, we know of a k ∈ K such that k ̸⊩ χ for all χ ∈ ∆. By Theorem 2, this proves

k ≤ w for all w ∈W , and so (ii) follows.

Suppose that (ii) holds. Let∆ ⊆ L(X)with |∆| ≤ n be given. If L ̸⊩ χ for all χ ∈ ∆ then this yieldswχ ∈ L
such that wχ ̸⊩ χ for each χ ∈ ∆. Consequently, there is a k ∈ K such thatW ↑ ⊆ k↑, whereW is defined
as {wχ | χ ∈ ∆}. It is easy to see that k ̸⊩

∨
∆, and so (i) follows. ■

The above Lemma 11 leads to several interesting results, in particular after applying completeness with respect
to universal models. Observe that Corollary 9 below is simply a dual formulation of Maksimova (1986,Theorem
1) restricted to intermediate logics with the finite model property.

9 Corollary
Any intermediate logic with the finite model property has the disjunction property precisely if every pair of
finite rooted models is contained in a finite rooted model.

10 Corollary
Let v : K → PX be an image-finite, concrete model. The following are equivalent for all n ∈ N:

(i) for all ∆ ⊆ L(X) with |∆| ≤ n we have thatK ⊩
∨
∆ entailsK ⊩ ¬¬χ for some χ ∈ ∆.

(ii) for allW ⊆ K consisting of maximal nodes with |W | ≤ n there is a k ∈ K such thatW ↑ ⊆ k↑;

Proof This is immediate from Lemma 11 and the observation that a formula ϕ holds at all maximal nodes if
and only if ¬¬ϕ holds in the entire model. ■
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11 Corollary (nth Doubly Negated Disjunction Property)
Let L be an intermediate logic with the finite model property and let n ∈ N be a natural number. The following
are equivalent:

(i) for all sets of formulae∆ with |∆| ≤ n we have that
∨
∆ implies ¬¬χ for some χ ∈ ∆;

(ii) given one-point modelsK1, . . . ,Kn there exists a rooted finite modelK of Lwhich containsK1, . . . ,Kn

as generated submodels.

The 0th doubly negated disjunction property states that ̸ ⊥. Written as a multi-conclusion rule this amounts to
⊥/∅, which is admissible in every intermediate logic. Let us say that a modelK satisfies a rule Γ/∆ whenever
if K ⊩ Γ then K ⊩ χ for some χ ∈ Γ. It is clear that for the empty model K we have K ⊩ ⊥, so the empty
model does not satisfy the rule ⊥/∅. As a consequence, any model that satisfies the multi-conclusion rules of
an intermediate logic must be non-empty.

6 Logics of Bounded Depth

Equipped with the above developed machinery, we are ready to tackle the problem of admissibility forBD2. Let
us start with a formal definition, as adapted fromChagrov and Zakharyaschev (1997).

13 Definition (Logic of Bounded Depth)
Define, by induction, the formula bdn ∈ L(p1, . . . , pn) by

bd0 := ⊥
bdn+1 := pn+1 ∨ (pn+1 → bdn).

For any n ≥ 1we define the intermediate logic of bounded depth n, denoted BDn, as the least intermediate logic
containing the axiom bdn.

The logics BDn are the intermediate logics complete with respect to finite Kripke models of height at most n, as
for instance proven by Maksimova (1972, Assertion 4.1). Note that BD1 is simply equal to CPC. We also make
use of the logicTn (see Chagrov and Zakharyaschev, 1997) which is complete with respect to finite Kripke trees
that branch at most n times.6

The logic Tn+1 is also known as the nth Gabbay–de Jongh logic, as described by Gabbay and de Jongh (1974).
For convenience we write Tω for the logic IPC, and we write n ≤ ω to mean n ∈ N or n = ω. The following
lemma characterises the absence of covers in the universal model of Tn. The proof is a minor adaptation of
the original proof of Gabbay and de Jongh (1974, Lemma 17 and 19). Note that the implication from (ii) to
(i) is similar to the proof of Chagrov and Zakharyaschev (1997, Proposition 2.41), but the setting is slightly
different.

12 Lemma
LetK be a rooted, concrete, image-finite model. The following are equivalent:

(i) The modelK satisfies the following for all ϕ0, . . . , ϕn;

n∧
i=0

ϕi → ∨
j ̸=i

ϕj

→
∨
j ̸=i

ϕj

→
n∨

i=0

ϕi;

(ii) for each finite anti-chainW ⊆ K there is a k ∈ K such thatW κ k only if |W | ≤ n.
6As we only consider BD2 + Tn in the following, we could also have omitted Tn altogether. Indeed, with Corollary 12 it can be shown
that T2+BWn = T2+Tn, where BWn is the intermediate logic of bounded width, as given by Chagrov and Zakharyaschev (1997).
We prefer the detour through Tn due to the connection between admissibility of Dn and Tn studied in Goudsmit and Iemhoff (2014),
which makes the logic a nice conceptual fit for this setting.
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Proof Assume (i) holds and suppose there is some finiteW ⊆ K such that |W | > n andW κ k. Pick some
U which partitionsW into n + 1 disjoint sets. We know that k ̸∈ k↑↑, and so k ̸⊩ up k↑↑ through Theorem 2.
To each U ∈ U we assign ϕU := upU , and we claim that the following holds. Assuming this claim, we
immediately obtain a contradiction through (i).

k ⊩

upU →
∨

U ̸=V ∈ U

upV

→
∨

U ̸=V ∈ U

upV

We proceed via Lemma 2, which amount to proving that the above implication holds onW , and that if k forces
the antecedent then it forces the succedent. To see the former, assume that l ∈ W ↑ is given. When l ⊩ upU
we are done, so assume the contrary. This ensures us that l ̸∈ U ↑ through Theorem 2. Pick some V ∈ U such
that l ∈ U ↑, which we know to exist, as W =

∪
U and l ∈ W ↑. It follows that both V ̸= U and l ⊩ upV

hold, so we are done.

We finish the argument by proving that the antecedent does not hold atW . Pick any w ∈ U and suppose that
w ∈ V ↑ for some V ∈ U − {U}. This would give some v ∈ V with v ≤ w, violating the assumption thatW is
an anti-chain. Consequently, we know by Theorem 2 that w ⊩ upU , yet w ̸⊩

∨
U ̸=V ∈U upV . We thus know

(ii) has to hold.

Now suppose (ii) holds, whereas (i) does not. The latter yields a k ∈ K such that

k ⊩
n∧

i=0

ϕi → ∨
j ̸=i

ϕj

→
∨
j ̸=i

ϕj

 and k ̸⊩
n∨

i=0

ϕi,

yet the implication does hold on k↑↑. We know that k ̸⊩ ϕi for all i = 0, . . . , n, so k ̸⊩ ϕi →
∨

j ̸=i ϕj
follows. This entails the existence of wi ≥ k such that wi ⊩ ϕi but wi ̸⊩

∨
j ̸=i ϕj . One can readily see that

W := {w0, . . . , wn} is an anti-chain and k ̸∈ W . We have thatW ̸κ k by assumption, so there must be some
l > k and I ⊆ {0, . . . , n}with |I| ≥ 2 and l < wi for all i ∈ I . By the choice of k we know that l ⊩ ϕi for some
i. The preservation of truth ensures wj ⊩ ϕi for all j ∈ I . But there is some j ∈ I with j ̸= i, contradicting
wj ̸⊩

∨
i ̸=j ϕi. This proves that (ii) implies (i). ■

We include the following lemma for the sake of completeness, although it is awell-established fact.

13 Lemma
Let v : K → PX be a refined model of BDn. It follows that any chainW ⊆ K satisfies |W | ≤ n.

Proof Suppose we have wn < wn−1 < . . . < w0 ∈ W . Through refinedness, we know of ϕi ∈ L(X) such
that wi ⊩ ϕi but wi+1 ̸⊩ ϕi per 0 ≤ i < n. Define a substitution

σ : L(p1, . . . , pn) → L(X), pi 7→ ϕi−1.

We prove, by induction along m, that wm ̸⊩ σ(bdm). The base case is clear because w0 ̸⊩ ⊥. Now suppose
wm ̸⊩ σ(bdm) and

wm+1 ⊩ σ(bdm+1) = σ(pm+1 ∨ (pm+1 → bdm)) = ϕm ∨ (ϕm → σ(bdm)) .

As a consequence, at least one of wm+1 ⊩ ϕm and wm+1 ⊩ ϕm → σ(bdm) must hold. The former case
contradicts the choice of ϕm. In the latter case, because wm ⊩ ϕm, we know wm ⊩ σ(bdm), which is false by
induction. This finishes the proof. ■

12 Corollary
For all k ∈ UBD2+Tn(X) we have that k↑↑ is a set of maximal nodes of size at most n.
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Proof WriteW := k↑↑ and know thatW κ k. Maximality is immediate through Lemma 13. We claim thatW
is an anti-chain. Indeed, if a, b ∈W are such that a ≤ b then k < a ≤ b, so by Lemma 13 it follows that a = b.
By Lemma 12, we now know |W | ≤ n, proving the desired. ■

Themulti-conclusion rule below is a combination of the nth doubly negated disjunction property, as per Corol-
lary 11.(i), and the rule Dn. We spend a few words explaining why these rules are admissible. Do note that the
rule D¬¬

n is similar to the rule yn of Skura (1992, Theorem 4.1), with the proviso that the rule below is multi-
conclusion whereas the rule yn ought to correspond to a single-conclusion rule.

(
n∨

i=1

χ i → ϕ

)
→

n∨
j=1

χ j

D¬¬
n{

¬¬
((

n∨
i=1

χ i → ϕ

)
→ χ j

) ∣∣∣∣ j = 1, . . . , n

}
14 Lemma

The rule D¬¬
n is admissible for L := BD2 + Tn for all n ≤ ω.

Proof Consider the rules ∨n
i=1 xi

/
{¬¬xi | 1 ≤ i ≤ n},(∨n

i=1 xi → y
)
→
∨n

j=1 xj

/ ∨n
j=1

(∨n
i=1 xi → y

)
→ xj

If both are admissible then their composition is as well, because is closed under transitivity. By Lemma 12
and Lemma 13, we know that any set of n many one-point models has an extension satisfying L. Corollary 11
thus proves that the first rule is admissible. Via Corollary 8 and, essentially, the argument of Theorem 4, the
second rule can be seen to be admissible. ■

15 Lemma
The rule D¬¬

n is not derivable in L := BD2 + Tn for all 2 ≤ n ≤ ω.

Proof Let X be any set of cardinality n. We need to prove that the rule D¬¬
n is not derivable in L. Recall

that a rule Γ/∆ is derivable whenever the implication
∧

Γ →
∨
∆ holds in the logic, so we will construct a

rooted model on which the conjunction of the assumptions of the rule is confirmed, yet the disjunction of the
conclusions is falsified. In this particular case there is but one assumption, and there are n conclusions.

Pick a maximal wx ∈ UL(X) per x ∈ X such that wy ⊩ z if and only if y = z. WriteW := {wx | x ∈ X}.
There exists a node k ∈ UL(X) withW κ k, and see that k ̸⊩ x for all x ∈ X . One can see that

k ⊩
( ∨

x∈X

¬¬x→
∨
X

)
→
∨
x∈X

¬¬x,

because the conclusion holds at W , and the assumption of the assumption does not hold at k. Consider the
following, for any y ∈ x.

¬¬

( ∨
x∈X

¬¬x→
∨
X

)
→ ¬¬y

It this formula were to hold at k, it would also hold at W − {wy}. As this set is non-empty, this can not be.
This proves that k↑ is the desired counter-model. ■

The remained of this paper is devoted to showing that the rule D¬¬
n is enough to derive all admissible rules

of BD2 + Tn for all n ≤ ω. Goudsmit and Iemhoff (2014) proved a similar result for Tn, the approach
taken there works in this setting as well. We proceed in a more general fashion than strictly necessary, in
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the hope that greater generality leads to more intrinsic arguments. In the following we fix an intermedi-
ate logic L and the corresponding provability and (multi-conclusion) admissibility relation by and respec-
tively.

We first introduce the concept of an admissible approximation.7 The definition captures the properties of a
“projective approximation” in the sense of Ghilardi (1999) we use to obtain a basis of admissibility, as shown in
Lemma 17.

14 Definition (Admissible Approximation)
An admissible approximation of a formula ϕ ∈ L(X) is a formula ψ ∈ L(X) such that the following holds for
all Y ⊇ X and finite ∆ ⊆ L(Y ):

ϕ ∆ if and only if ψ χ for some χ ∈ ∆

Such an approximation is anchored by a set of rules R if ϕ R ψ.

The following lemma shows that admissible approximations are unique up to provable equivalence. In the
future we will write Aϕ for an admissible approximation of ϕ, given that it exists. This makes sense when its
use only depends on the approximation up to provable equivalence.

16 Lemma
For all ϕ ∈ L(ϕ) and all ψ1, ψ2 that admissibly approximate ϕ we have ψ1 ψ2.

Proof We know that ϕ ψ2 from ψ2 ψ2, because ψ2 admissibly approximates ϕ. For the same reason we
derive ψ1 ψ2, proving the desired. ■

17 Lemma
Let R ⊆ be a set of rules. If each formula has an admissible approximation anchored byR then R =

Proof The inclusion from left to right holds by assumption. To prove the other direction, consider ϕ, ψ ∈ L(X)

and assume ϕ ψ. We know that Aϕ exists, and Aϕ ψ. See that ϕ R Aϕ ψ, whence the desired follows
from transitivity of R and ⊆ R. ■

15 Definition
A formula ϕ is said to be closed under a set of rulesR whenever we have ϕ R ∆ then ϕ χ for some χ ∈ ∆.

In order to obtain an admissible approximation, we first consider an ostensibly stronger notion, namely that of
projectivity. It is easy to prove that every projective formulae is closed under all admissible rules, see Iemhoff
and Metcalfe (2009, Lemma 6).

16 Definition (Projective)
Let L be an intermediate logic, and let ϕ ∈ L(X) be a formula. We say that ϕ is L-projective whenever there is
a substitution σ : L(X) → L(X) such that L σ(ϕ) and ϕ L σ(ψ) ≡ ψ for all ψ ∈ L(X). The substitution σ
is said to be the projective unifier of ϕ.

The following theorem is a straightforward generalisation of Ghilardi (1999, Theorem 5). The equivalence
between the first to items follows from the same argument as is given there. Equivalence between the latter two
items is a direct consequence of Corollary 6. With the machinery developed so far, we can readily characterise
those formulas that satisfy (iii), thus describing the L-projective formulae.

7 Our use of the term “admissible approximation” is slightly different earlier forms, as for instance Goudsmit and Iemhoff, 2014, Definition
19. Typically, onewould define an admissible approximation ofϕ to be a set of formulae∆ such that

∨
∆ is an admissible approximation

in our sense, together with the constraint that all formulae in ∆ be projective. Even though this additional constraint will be satisfied
below, we deem it unnecessary to include it in the definition. Definition 14 only appeals to the relation between derivability and
admissibility, and this is all the information we need. See also Jeřábek, 2010, Definition 3.6.
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5 Theorem
Let L be an intermediate logic with the finite model property and let ϕ ∈ L(X) be a formula. The following
are equivalent:

(i) ϕ is L-projective;

(ii) for all finite models v : K → PX withK ⊩ L andK ↾ (ρK ↑↑) ⊩ ϕ there is an extension ofK ↾ (ρK ↑↑)
that forces ϕ;

(iii) for all finite anti-chainsW ⊆ UL(X)with a l ∈ UL(X) such thatW κ l andW ⊩ ϕ, there is a k ∈ UL(X)
such that k ⊩ ϕ.

From now on, fix a 2 ≤ n ≤ ω, and let the intermediate logic at hand be L := BD2 + Tn. We will construct
an admissible approximation anchored by D¬¬

n to each formula ϕ. Let us first, in very broad brushstrokes,
illustrate howwe are about to proceed. Ifϕ ∆ thenAϕ ∆ has to hold by its very definition, so in particular, if
ϕ D¬¬

n
∆ thenAϕ ∆must hold. In Lemma 18, we show that a formulawhich is closed underD¬¬

n in a suitable
sense (see (ii) of that lemma) is in fact projective. Using this observation, we obtain admissible approximations
through iteratively closing formulae under D¬¬

n in Lemma 20, keeping in mind that this terminates, as there
are but finitely many formulae modulo L-equivalence on any finite set of variables.

18 Lemma
The following are equivalent for each ϕ ⊆ L(X):

(i) ϕ is L-projective;

(ii) for all ∆ ⊆ L(X) and χ ∈ L(χ ) with |∆| ≤ n we have

ϕ
(∨

∆ → ϕ
)
→
∨

∆ implies

ϕ ¬¬
((∨

∆ → ϕ
)
→ χ

)
for some χ ∈ ∆

(iii) for all sets of maximal nodesW ⊆ UL(X) withW ⊩ ϕ and 1 ̸= |W | ≤ n we have a k ∈ UL(X) such
thatW κ k.

Proof The implication from (i) to (ii) is immediate. Indeed, every projective formula is closed under all admis-
sible rules. The rules D¬¬

n are admissible by Lemma 14, so (ii) follows.

Suppose (ii) holds, and let W ⊆ UL(X) be such that W ⊩ ϕ and 1 ̸= |W | ≤ n. By Corollary 8 we are done
when we can find some l ∈ UL(X) such that W ⊆ l↑. This we obtain immediately through Corollary 10,
proving (iii).8

Suppose (iii) holds. LetW ⊆ UL(X) be such thatW κ l for some l ∈ UL(X) andW ⊩ ϕ. By Theorem 5 we
know that it suffices to find a k ∈ UL(X) such thatW κ k and k ⊩ ϕ. BecauseW ⊆ l↑↑, we know thatW is
an anti-chain of maximal elements and |W | ≤ n. If |W | = 1 then the desired is immediate, becauseW covers
itself. All requirements of (iii) are met, whence (i) follows. ■

We can apply the above theorem to prove that the intermediate logicsBD2+Tn have different admissible rules.
Note that the corollary does not apply to BD2+Tn for n = 0, 1. Indeed, if n = 0 then this is CPC and if n = 1
then it equals the greatest non-classical intermediate logic, known as Smetanich’s logic Sm. In both of these
logics, all admissible rules are derivable, as proven by Iemhoff (2005, Theorem 5.3).

13 Corollary
The rule D¬¬

n+1 is not admissible in BD2 + Tn for all 2 ≤ n ≤ ω.

8Observe that whenW = ∅, the statementW κ k simply means that k is maximal. In this case, one can also immediately see the proof,
because instantiating ∆ = ∅ in (ii) immediately proves that ϕ ̸ ⊥.
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Proof Suppose the contrary. Let X be a set of cardinality n + 1. There exists a set of maximal nodes W ⊆
UBD2+Tn(X)with |W | = n+1. Instantiating Lemma 18 to ϕ = ⊤ now proves that there is a k ∈ UBD2+Tn(X)
suchW κ k. But this contradicts Corollary 12. ■

19 Lemma
IfW ⊆ UIPC(X) is a set of maximal nodes of size at least two and l ∈ W then nd l and the formula below are
provably equivalent.

¬¬

(( ∨
w∈W

ndw → upW

)
→ nd l

)
Proof The implication from left to right is clear. The other implication we prove semantically through Corol-
lary 4. Now assume a node k forces the above implication, but k ̸⊩ nd l. This proves that k ≤ l by Theorem 2.
See that l ⊩ upW by Theorem 2 and l ∈ W . By upwards persistency and the fact that l ⊩ ϕ if and only if
l ⊩ ¬¬ϕ we now obtain l ⊩ nd l. Yet now l ̸≤ l by Theorem 2, a clear contradiction. ■

Take X to be some fixed and finite set of variables. For convenience, we will write Uuniv and Muniv for the
set of upsets and the set of maximal nodes in UL(X) respectively. It follows immediately from Lemma 12 that
UL(X) is finite, and so there are but finitely many upsets.

Fix some U ∈ Uuniv andW ∈ Muniv such thatW ⊆ U . Recall from Corollary 7 that there is no cover ofW
within U precisely if

U ⊩
(( ∨

w∈W

ndw

)
→ upW

)
→

∨
w∈W

ndw.

So when W does not have a cover within U , we obtain, from the above, the completeness of the universal
model, and Theorem 2 that

upU D¬¬
n

{
upU ∧ ¬¬

(( ∨
w∈W

ndw → upW

)
→ nd a

) ∣∣∣∣∣ a ∈W

}
. (3)

Belowwe define amapApproxmeant to be such that the above right-hand side equals {upV | V ∈ Approx(U,W )}.
One can verify that this indeed holds through a short computation.

Approx : Uuniv ×Muniv → PUuniv,

⟨U,W ⟩ 7→
{{

k ∈ U
∣∣ k ⊩ ¬¬

((∨
w∈W ndw → upW

)
→ nd a

)} ∣∣ a ∈W
}

Note that each V ∈ Approx(U,W ) is an upset such that V ⊂ U . It is important that this inclusion be strict,
that is to say, U ̸∈ Approx(U,W ). Suppose that U ∈ Approx(U,W ) is true. There must be some a ∈ W such
that

U =

{
k ∈ U

∣∣∣∣∣ k ⊩ ¬¬

(( ∨
w∈W

ndw → upW

)
→ nd a

)}
.

Because a ∈W ⊆ U holds, the above ensures that a ⊩ nd a, a contradiction byTheorem 2.

Another important observation to make is that U is empty precisely if there exists no k ∈ U such that ∅ κ k.
Indeed, ∅ κ k simply means that k is a maximal node, and as U is finite it has a maximal node precisely if it has
any node at all.

In the lemma below we employ the above mapping to construct an order on the set of sets of upsets in
UL(X). Naturally, each upset corresponds to a formula in L modulo derivability. We think of a set of upsets
as corresponding to a disjunction of formulae modulo derivability. The order will be such that the small-
est elements, called normal forms in the language of rewrite systems,9 correspond to disjunctions of pro-
jective formulae. Moreover, the order will be such that to each element there is a smallest element below
it.
9See Terese (2003) for background on rewriting systems.
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20 Lemma
Let 2 ≤ n ≤ ω be given and consider L := BD2 + Tn. Every formula has an admissible approximation in L.

Proof Let ϕ be a formula and take X to be a finite set such that ϕ ∈ L(X). Realise that there are but finitely
many sets of maximal nodes in UL(X). From here onwards, let Uuniv denote for the set of all upsets in UL(X).
Note that this set is finite.

Let ⪯ be the least reflexive transitive relation on PUuniv such that

U ⪯ U − {U} ∪ Approx(U,W )

holds for all sets U ⊆ Uuniv, all upsets U ∈ U and all sets of maximal nodesW ⊆ U without covers in U . A
straightforward inductive argument, using the reasoning above, shows that for all U ⪯ V

up
(∪

U
)

D¬¬
n {upV | V ∈ V} and up

(∪
V
)

up
(∪

U
)

BecausePUuniv is finite, we know every sequence on⪯ to eventually stabilise. We say that U is a normal form
whenever U ⪯ U ′ entails U = U ′. By the previous remark, it is clear that to each U there is a normal form.

We claim that every normal form U is such that for all U ∈ U the formula upU is projective. This follows from
Lemma 18 and the discussion above. Indeed, if upU were to not be projective, then Lemma 18 ensures us a set
of maximal nodesW ⊆ UL(X) such thatW ⊩ upU and 1 ̸= |W | ≤ n, yetW does not cover anything forcing
upU . See thatW ⊆ U holds by Theorem 2. As a consequence,

U ⪯ U − {U} ∪ Approx(U,W ).

This inequality is strict, violating the assumption that U is a normal form. Hence upU must be projective.
Define U := {k ∈ UL(X) | k ⊩ ϕ} and let V be a normal form associated to U . We simply set Aϕ :=∨

V ∈V upV , which satisfies all desired properties. ■

6 Theorem
Let 2 ≤ n ≤ ω be given. The rules D¬¬

m for allm ≤ n form a basis of admissibility for BD2 + Tn.

Proof This is an immediate consequence of Lemma 20 and Lemma 17. ■
7 Theorem
The rule D¬¬

2 is a basis of admissibility for

GSc := BD2 + ((p→ q) ∨ (p→ q) ∨ ((p ≡ ¬q)) .

Proof This follows immediately from the above Theorem 6, whenever GSc = BD2 + T2 holds. Let us first
prove GSc ⊆ BD2 + T2. Take some k ∈ UBD2+T2(X). We want to prove that k ⊩ GSc, from whence the
desired is entailed by the completeness of the universal model, as proven in Corollary 4. Assume the contrary,
that is, suppose there are ϕ1, ϕ2 ∈ L(X) such that

k ̸⊩ ϕ1 → ϕ2 and k ̸⊩ ϕ2 → ϕ1 and k ̸⊩ ϕ1 ≡ ¬ϕ2.

The first two conjuncts give wi ≥ k with wi ⊩ ϕi and wi ̸⊩ ϕ3−i for i = 1, 2, and so w1, w2 must be
incomparable. By Corollary 12 we know that k↑↑ is an anti-chain of size at most 2. Now see thatwi ⊩ ϕ1 ≡ ¬ϕ2
and k ̸⊩ ϕi for i = 1, 2. We obtain k ⊩ ϕ1 ≡ ¬ϕ2 per Lemma 2, a contradiction with the third conjunct.

We now prove the other inclusion. To this end, take k ∈ UBD2(X) and suppose that k ⊩ GSc. From Lemma 13
it readily follows thatW := k↑↑ consists of maximal nodes. We are done if |W | < 2, so suppose a ̸= b ∈ W
are given. See that

k ⊩ (up a→ up b) ∨ (up a→ up b) ∨ (up a ≡ ¬up b)
must hold by assumption. Due to Theorem 2 can see the first two disjuncts to be false, because a and b are
incomparable. See that if w ∈W and w ̸= b then w ̸⊩ up b and so w ⊩ up a, which proves w = a. This proves
that W = {a, b}. Consequently k ⊩ T2 follows, proving the desired through completeness of the universal
model. ■
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