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ABSTRACT: This paper is mainly about Boolean combinations of Z-formulas (B(,)-formulas) in

HA. We prove a theorem guaranteeing that if a B(Y,)-formula is provable in HA, then a simpler one is

also provable. Our theorem yields a characterization of the derived rules of HA for Y,-substitutions.

Another application is a decision procedure for the closed fragment of the provability logic of HA. The

proof of our theorem leads us to such varied subjects as NNIL-formulas, robust formulas and preserva-

tivity notions.

1 Introduction

1.1 The problem and its solution: This paper is about the simple question:

What more do we know, when we know that a Boolean (or, if you prefer, a

Brouwerean) combination of Y,-sentences is provable in Heyting's Arithmetic?

The answer takes the form:

We often know that a better Boolean combination of the same 7--sentences is

provable in Heyting's Arithmetic. Moreover the better Boolean combination can

be found independently of the specific Y,-sentences under consideration.

Here better has two components. It means `stronger' in the sense that the stronger

sentence implies the weaker one in the Intuitionistic Propositional Calculus (IPC). It

also means `simpler' in the sense that the simpler formula lies in a specific class
NNIL, the class of propositional formulas with No Nestings of Implications to the
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Left. The NNIL-formulas are modulo IPC-provable equivalence precisely the for-

mulas preserved under sub-models in the usual Kripke semantics for IPC. The
qualification often in the answer is just a gloss for:

unless our Boolean combination is already in NNIL.

We give a more formal statement of our result. Let A be a propositional formula. We

let f range over assignments of I,-sentences to (at least) the propositional formulas

occurring in A. We write `A[f ]' for the result of substituting f (p) for p in A. Our theo-

rem says: there is an A* E NNTL such that:

a) IPCHA*-->A, and

b) for all f : HAI-A[f ] = HAH A* [f]

A better answer to our question is not possible, at least if we abstract away from the

specific I-sentences substituted. We will show:

c) For every propositional formula B such that IPCV- A*-->B, there is an f such that:

HAH A*[f] and HAILB[f]

Or contraposed:

d) For every propositional formula B:

Vf (HAHA*[f] HAHB[f]) IPCHA*-4B.

From (a),(b) we get:

e) `df (HAHA[f] t> HAHA*[f]).

And hence (d) is equivalent with:

fl For every propositional formula B:

Vf (HAHA[f] HAHB[f1)= IPCI-A*->B.

So A* is the strongest `general' improvement of A. Of course, for specific f often

better improvements are possible, but A* is the best one that works for all f. Note that

(f) implies (a) by substituting A for B. So our results are summarized by (b) and (f).

1.2 What more is there in the paper? Our main result has two immediate ap-

plications. Firstly it yields a description of the derived rules of HA for I-substitutions.

Secondly we can read off a decision procedure for the closed fragment of the prov-

ability logic of HA. Thus we solve a variant of Friedman's 35th problem (see Fried-

man[75]). (This solution occurs already in Visser[85])

Both for the smooth formulation of our main result and for its proof we have to de-

velop some further material. Part of it involves the theory of certain classes of
propositional formulas, like NNIL and ROB (to be introduced in the paper). A second

part is the study of certain relations between formulas, called semi-consequence rela-

tions. The semi-consequence relations include derived rules and preservativity rela-
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tions (dual to conservativity relations). One preservativity relation, namely 1-preser-

vativity (the `dual' of ]Z-conservativity), will be studied in some detail in a long ex-

cursion. (section 7).

The main technical result of the paper is the specification and verification of the

NNIL-algorithm in section 5. Our results in both propositional logic and arithmetic

are immediate consequences of the existence of this algorithm.

The contents of the paper is as follows:

Section 2 preliminaries to propositional logic

Section 3 consequence relations and preservativity notions

Section 4 robust formulas

Section 5 the NNIL-algorithm

Section 6 basic facts and notations for arithmetic

Section 7 digression: assorted facts on 1-preservativity

Section 8 closure properties of I-preservativity over HA

Section 9 on Y-substitutions

Section 10 .the closed fragment of the provability logic of HA

1.3 Environment and history of the paper: This paper is part of the wider
study of substitutions considered as a kind of semantics. We point to some examples

of related work. First there is, of course, the project of provability and interpretability

logic. See e.g. Smoryi4ski[85], Boolos[93], Berarducci[90], Visser[90], EA[91],

Shavrukov[93], Zambella[94]. Then there is the work on derived rules by Rybakov.

See e.g. Rybakov[92]. For a systematical exploration of the notion of derived rule, see

FHY[92]. Finally there is the most immediate environment: research on substitutions

in intuitionistic logic of propositional formulas or arithmetical sentences. See e.g. De

Jongh[82], Smoryfiski [73], Leivant[75,80,81], Van Oosten[91], DV[94], DC[?].

The present paper is, partly, a remake of the unpublished paper Evaluation, provably

deductive equivalence in Heyting's Arithmetic (Visser[85]).. The work in Visser[85]

was inspired by Dick de Jongh's results on propositional formulas of one variable, re-

ported in De Jongh[82]. Since Visser[85] was written, the development of inter-

pretability logic took place (see e.g. Berarducci[90] and Visser[90]). Interpretability

logic inspired me to give the notion of preservativity a more prominent role in the

presentation.

In Visser[85] we proved the identity of certain formula classes NNIL and ROB. Johan

van Benthem gave, independently, around 1984 an alternative proof of the fact that
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NNIL=ROB (see his Van Benthem[91]). Gerard Renardel proved (also around 1984,

see his Renardel[86]), that NNIL satisfies both left and right interpolation. The work

of both van Benthem and Renardel is contained and extended in DRVV[94]. This last

paper should be considered as a companion paper of the present paper.

Dick de Jongh and Albert Visser recently reopened the research on Heyting algebras

of arithmetical theories. A number of concerns of the present paper (derived rules, ex-

act formulas) reappear in their paper DV[941, which is another companion paper of

the present paper.

1.4 Acknowledgements: In various stages of research I benefited from the work,

the wisdom and/or the advice of: Johan van Benthem, Dirk van Dalen, Dick de Jongh,

Karst Koymans, Piet Rodenburg, Volodya Shavrukov, Rick Statman, Anne Troelstra

and Domenico Zambella.

1.5 Prerequisites: Some knowledge of Troelstra[73] or TV[88a,b] is certainly

beneficial. At some places I will make use of results from Visser[82] and DV[94].

2 Preliminaries to propositional logic: 3,i,... will be sets of propositional

variables. p,q,r,... will be finite sets of propositional variables. We define P-($) as the

smallest set such that:

$:S, T,1E C25,

If A,B E Cam, then (AAB), (AvB), (A-*B)E Cam.

SUB(A) is the set of subformulas of A. By convention we will count 1 a subformula

of any A. PV(A) is the set of propositional variables occurring in A.

We suppose that the reader is familiar with Kripke models for IPC (see TV[88a], or
SmoryAski [73]). Our treatment here is mainly to fix notations. A model is a structure

K = (K,<_,=,13), where K is a non-empty set of nodes, <_ is a partial ordering. is the

atomic forcing relation for $: it is a relation between nodes and propositional atoms

in $, satisfying: k<_k' and kip = k'kp (persistence). K is a V-model if $k=$.
Mod($) is the set of $-models.

Consider K We define kk A for AE 2($) in the standard way. We write

f}Sk A for: tike K kk A.

A model K is finite if both Kph and $K are finite.

5
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A rooted model K is a structure (K, where (K,<_,--,$) is a model and where

be K is the bottom element w.r.t. <_.. The set of rooted models is Rmod.

For any kE K K [k] is the model where K':= Tk := { k'lk<_k' } and where

<_' and i 'are the restrictions of <_ respectively k to K. (We will often simply write

and k for 5' and i':)

2.1 The Henkin construction: A set Xc2($) is adequate if it is closed under

subformulas and contains I. A set r is X. saturated if-

(i) I'cX, (ii)1 i -±, (iii) D- A, AE X .AEI',

(iv) I'F-(BVC), (BvC)E X Be r or CE F.

The Henkin model HXM is the $-model with as nodes the X-saturated sets A and as

accessibily relation c. The atomic forcing in the nodes is given by: I'kp #* pE IF. We

have by a standard argument: for AEX: Fk A <* AE F. Note that if X is finite, then
HX($) is finite. A direct consequence of the Henkin construction is the Kripke Com-

pleteness Theorem. Let $ PV(A), then:

IPC F- A #> for all (finite) $-models fly: KkA.

2.2 Futher Definitions
i) Let K be a set of $ -models. M(K) is the $ -model with nodes (k,K) for k e Kp<,
IKE K and ordering: (k,K)<m, A) :t=> K=.M and k<-Km. As atomic forcing we define:

(k,K)kp :,#> kkKp. (In practice we will forget the second components of the new

nodes, pretending the domains to be already disjoint.)

ii) Let K be a $-model. B(K) is the rooted $-model obtained by adding a new bottom

b ,to K and by taking: bop :rte Kkp. We put Glue(K) := B(M(K)). O

We will assume below that $ is fixed. We will. often notationally suppress it.

2.3 Push Down Lemma: Let X be adequate. Suppose A is X-saturated and
Kk A. Then Glue(HX[A],K)kA..

5
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Proof: We show by induction on AE X that b i A a AE A. The cases of atoms, con-

junction and disjunction are trivial. If (B-4C)E X and (B-C), then A =(B -4C) and

hence (B-->C)E A. Conversely suppose (B-C)E A. If bI= B, we are easily done. If

biB, then, by the Induction Hypothesis: BE A, hence CE A and, by the Induction

Hypothesis: b C.

We say that A is ($-)prime if it is consistent and:

for every (C vD)E 2($): AI- (CvD) =:> AI- C or AHD.

A formula A is prime if { A } is prime.

2.4 Theorem: Suppose X is adequate and A is X-saturated. Then A is prime.

Proof: A is consistent by definition. Suppose AI- CvD and AV C and AV D. Suppose
I}=A, K=C, M =A and MV- D. Consider Glue(fHIX(A),K,M). By 2.3 we have: On

the other hand, by persistence: b i C and bI= D. Contradiction.

(-C exhibited next to a node means that C is not forced; this is not to be confused

with -C exhibited next to a node, which means that -C is forced)

2.5 Theorem: Consider any formula A. The formula A can be written (modulo

IPC-provable equivalence) as a disjunction of prime formulas C. Moreover these C

are conjunctions of implications and propositional variables in SUB(A).

Proof: Consider a SUB(A)-saturated A. Let IP(A) be the set of implications and moms

of A. It is easily seen that IPC I- AIP(A) H AA. Take:

D:= V{/IP(A) I A is SUB(A)-saturated and AE A}.

Trivially: IPLH D-->A. On the other hand if IPCV A-- D, then by a standard construlcti-

on there is a SUB(A)-saturated set I' such that AEI' and rV D. Quod non.
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2.5.1 Remark: Note that in the definition of D in 2.5, we can restrict ourselves to

the c-minimal sub(A)-saturated A with AE A.

We define a measure of complexity p, which counts the left-nesting of -4, as follows:

P(P) P(1) := p(T) := 0

p(AAB) := p(AvB) := max(p(A),p(B))

p(A->B) := max(p(A)+1,p(B)).

NNIL( 3) := {AE P_($) l p(A)<_1 ]. In other words NNIL is the class of formulas with-

out nestings of implications to the left. An example of as NNIL-formula is:

(p

It is easy to see that modulo IPC-provable equivalence each NNIL-formula can be

rewritten to a NNIL0-formula, i.e. a formula in which in front of implications only

single atoms occur. For more information about NNIL, see DV[94] and DRVV[94].

3 Consequence relations & preservativity notions: An important tool of the

present paper is the use of semi-consequence relations (defined below) and preserva-

tivity relations (defined below). `D' will range over semi-consequence relations. Let

H stand for derivability in IPC.

Let T be a language (for propositional or predicate logic) and let T be a theory in 58.

A semi-consequence relation on 0 over T is a binary relation on T satisfying:

Al AI-TB = ADB

A2 ADB,andB>C= ADC
A3 CDA and CDB = CD(AtB).
The name 'semi-consequence relation' is ad hoc in this paper. We take:

A=B :,c:* A> B and B> A.

If we don't specify the theory with the semi-consequence relation, its. always sup-

posed to be over IPC.

A further salient principle is:

B1 ADC and B>C (AvB)>C.
A relation satisfying A l-A3,B 1 is called. a nearly-consequence relation. Note that E- T

is a nearly-consequence relation over T.

3.1 Conventions: We will use XF- Y, XDY for respecively AXI-VY and
AXDVY, where X and Y are finite sets of formulas..(AO:=T, VO:=1.). We treat

implications similarly. .

7
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We write X,Y for: XuY, X,A for Xu ( A 1, etc. O

Nearly-consequence relations over T can be alternatively described in Genzen style as

follows. Nearly-consequence relations are consequence relations satifying:

Al' XI-TY = XDY

Thin XDY X,ZDY,U

Cut XDY,A and Z,ADU X,ZDY,U

We take the permutation rules to be implicit in the set notation. We leave it to the

reader to check the equivalence of the Genzen style principles with Al-A3,B 1.

3.2 Fact: Let > be a semi-consequence relation on 2(3). Suppose there is a
such that for all A,BE2($): ADB (I(A)F-B. Then:

i) If for all Be 2($): A DB t-* CI- B, then I- CH(t(A).

ii) (I considered as a function on the Heyting algebra of IPC is a co-closure opera-

tion, i.e.:

(I(A) F- A (co-inductivity)

AI-B (I(A)I-c(B) (monotonicity)

F- q )(4)(A)) H (A) (idempotency).

In fact we have more than monotonicity, viz:

ADB a (I(A)F- (I(B).

iii) Suppose > is a nearly-consequence relation. Then I- (I(AvB) H ((I(A)v(I(B)).

Proof: The simple proofs are left to the reader.

Some principles involving implication play an important role in the paper. To intro-

duce them we need a syntactical operation. We define the operation [.](.) on proposi-

tional formulas as follows:

[B]P:=P,[B]T :=T,[B]1
[.](.) commutes with n and v,

[B](C-*D) := (B-*(C- *D)).

Note that [.](.) does not preserve provable equivalence in the second component. Note

also that: F- B -* ([B]C H Q. Define: [B]X := { [B]C I CE X).

We have the following principles for implication for semi-consequence relations on

2():
B2 = : *

B3 Let X be a finite set of implications and let Y:= { CI(C-*D)E X } u (B 1. Take

A:= AX then: (A-*B)D[A]Y

We give an example of an instance of B3. Let e.g.

8
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A := ((p-aq)n(r-*(svt))), C:=

then we have:

C>([A]pv[A]rv[A](uv(p-*r)), i.e.:

CD (p vrvuv(A-*(p-*r)).

3.3 Open problem: Is it possible to axiomatize B3 by a finite number of tradi-

tional schemes? We do not allow finite sets or syntactical operations to occur in such

schemes. However we do allow schematic letters ranging over arbitrary formulas and

schematic letters ranging over propositional variables. (So e.g. B2 is acceptable as a

scheme.) O

We say that a relation satisfying Al-A3,B 1-B3 is a o-relation.

Consider again any language T of propositional or predicate logic. Let XcT and let

T be any theory in that language. Let ta- be a set of functions from $ to T. We write:

For A,BE 8: ADT,XIB :<=* VCE X (Cf- TA = CF- TB),

Let AE2( 3). A[f ] is the result of substituting f (p) for p in A for each pE 3.

For A,BE 2($): A>T,X,RB :a `dfE a A[f]>T.XB[f]

If YcT and tY'=Y43, we will write DT,X,yB for DT,X,R. If X or a are singletons we

will omitt the singleton brackets. If 0=2(3) and T=IPC, we will often omitt `T' in
the index. We will call DT,X,a TX, preservativity, etcetera. We will call the DT,X,g,

and the >T.x preservativity relations. We will call the DT,X pure preservativity rela-

tions.

Clearly >T,X is a semi-consequence relation over T and >T,X,g. is a semi-conse-

quence relation over IPC.

Below we. will provide a number of motivating examples for our definitions.

3.4 Remark: It is instructive to compare preservativity with conservativity.
Define:

For A,BE : A D*T,XB :<.* VCE X TC AF- TC),

So A>*TXB means that T+B is conservative over T+A w.r.t. X. For classical theo-

ries T we-have:

A>T,XB t=> -BD*T,,X_,A, where -,X:={-CICE X}.
M

Thus classically preservativity is a superfluous notion. Constructively, however, the

reduction given in * does not work.

9
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Note that conservativity as a relation between sentences over a theory is a natural ex-
tension of the notion of conservativity between theories. There is no analogue of this

for preservativity. O

A formula A of T is T-prime if for any finite set of 8-formulas Z:

AE-TZ= 3B E=- Z A- TB.

Note that if A is T-prime, then AFFT1. A class of formulas X is weakly T-disjunctive

if every AE X is equivalent to the disjunction of a finite set of T-prime formulas Y,

with YcX.

For any class of formulas X, let DISJ(X) be the closure of X under arbitrary conjunc-

tions.

In the next fact we collect a number of noteworthy small facts on preservativity.

3.5 Fact
i) >T.x is a semi-consequence relation over T. >T,X,a is a semi-consequence re-

lation over IPC.

ii) Suppose X is weakly T-disjunctive, then DT,x and DT,X,g, are nearly-conse-

quence relations.

iii) Suppose X is closed under conjunction, then:

CE X and ADT,xB =* (C-4A)> TX (C -4B).

iv) Let range(R) be the union of the ranges of the elements of a-. Suppose
range('d)cX and X is closed under conjunction, then >T,x,is satisfies B2.

v) Suppose AE X, then: ADT,xB r-* AF- TB.

vi) Suppose XcY and Rg , then DT,y c DT,x and >T,Y,N c >T,X,a

vii) >T,DISJ(X) = >TX and hence DT,DISJ(X),a _ >T,X,R
viii) Let be the function with ib(p)=p. Then: DIpC,X,ib = DIPC,X

Proof: We treat (ii) and (iii). (ii) Suppose X is weakly T-disjunctive and ADT,XC and

B>T,XC. Let E be any element of X. Suppose Y is a finite set of T-prime formulas

from X such that E is equivalent to the disjunction of Y. We have:

EH TAvB VYF-TAvB

b'Fe Y FF-TAvB

b'FE Y FH TA or F- TB

b'FE Y F- TC

= VYF-TC

= EF- TC

B 1 for >T,x, . is immediate from B 1 for >T,x .

10
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iii) Suppose X is closed under conjunction. Suppose A> B. Let C,EE X and suppose

EH (C-A). Then (EAC)I- A and hence (EAC)F- B. Ergo E- (C-4B).

3.6 Example 1: Take X:=[ T }. We have:

For A,BE 58: ADT, TB a (F- TA F- TB),

ForA,BE2($): ADT,T,RB 4-*VfEa-(f-TA[f] F-TB[f]).

Thus. >T, T is the relation of deductive consequence for T and >T, T,R is the relation

of being a (propositional) derived rule for. T w.r.t. a. We mention the important result

due to Rybakov (see Rybakov[92]) that D,T,2(43) is decidable.

Note that if T has the disjunction property, then >T, T and DT, T,a satisfy B 1.

We repeat a well known observation.

3.6.1 Theorem: Suppose for all CE 0: F- C t* V f E t- F- TC[ f ]. Moreover suppose

9c2( $) and for any g e (33 and f E a: gof E g-. (We read composition in the order of

application, so that A.[ g][ f ]=A[g oft) Then: DT, -r,a- c DIpC,T, 03

Proof: Suppose AD T, T,RB and F- A[g]. Consider any f e a-. Clearly F-TA[ g][ f ], i.e.

F-TA[ go f ]. Since g of e a, we find: F- TB[ gof ]. Hence for all f E R: F- TB [ g][ f ] and

hence: F-B[g].

Consider e.g. HA. Let 2C be the language of HA, let . be the set of I-sentences and

let B(I) be the set of Boolean (Brouwerean) combinations of I-sentences. We have:

for all CES2X: HC<-* VfE113 H-HAC[f].

is De Jongh's completeness theorem for IPC w.r.t. I-substitutions in HA. There are

many different proofs of-, see e.g. Smoryfiski [73] or Visser[85] or DV[94]. Let a-:=

B(E)D and C33:=2(3)$ and T:=HA in 3.6.1. We find: DHA,T,B(!,) c DJPC,T,2(J3). In

DV[94] (theorem 6.2) it is shown that >HA, T,B(z) = DIPC,T,P-($) . So we have:

+ >HA, T, S1,C c >HA, T,B(F,) = >IPC,T,2(s3) C >HA, T,F,

The main result of the present paper implies that (_'_'p-*p)>FiA, T,!(pv-tp). On the

other hand we have: IPCF- (-p-4p) [p:=-+q], but not IPCF-(pv=tp)[p:=-qJ. So the

second inclusion of + is strict. It is open whether the first inclusion of + is strict.

In 3.8 we will see that is extensionally equal to a pure preservativity re-

lation. We will see in 9.2, that >HA, T,Z can be alternatively described as a pure

preservativity relation.

11
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3.6.2 Reformulation of our main result: The result we are aiming at in this paper
is (a)+(e) of the introduction. In our new notation this becomes:

there is an A* E NNIL such that:

b) A>HA, T,!A*.

f) forallBe2( 3):ADHA,T,!B= H-A*-*B.
We show that (b)+(f) is equivalent to:

g) for all B E £($): A>HA, T,!B C=t, HA**B.

Thus our main result takes the form of a characterization of >HA, T,!.

Proof: "(b)+(f)=(g)" Suppose (b) and (f). We prove (g). From left to right is trivial.

Suppose H A*_*B. Then by Al: A*>HA, T,! B. Hence by (b) and A2: A>HA, T,! B.

"(g)=(b)+(f)" is trivial. ((b)+(f)r=>(g))

By 3.2(i) and (ii) we may conclude that (.)* gives unique values modulo IPC-provable

equivalence and that (.)* is a co-closure operation on the Heyting algebra of IPC. We

will see later that >HA, T,! satisfies B 1 and that, hence, (.)* commutes with disjunc-

tion according to 3.2(iii) O

3.7 Example 2: Take X:=8, DT,x is T-provable consequence or HT.

3.8 Example 3: We show that the notion of derived rule for IPC coincides with a

pure preservativity relation.

An 2(p)-formula A is IPC,p-exact if there is an f E2(.3)P such that:

for all BE P(p): I-B[f ] t=* AI-B.

Let's say that the class of IPC,p-exact formulas is EX(p). Let EX be the union of the

EX(p)'s for all finite subsets p of $.

De Jongh & Visser show (see: DV[94], Theorem 2.3) that for any f E2($)p we can
find an A:=AfE 2(p) satisfying *. It is easy to see that At is unique modulo IPC-

provable equivalence. Let q be the set of variables occurring in the range of f. Let f +

be the result of putting f +(p):= f (p) if pE p, f +(p):=p otherwise. Inspection of the ar-

gument by de Jongh and Visser reveals that A satisfies the stronger:

® for all BE 2(pu(f 3/q)): HB[f +] #* Af- B.

To see that the variable condition is needed, let e.g. p:= f p}, f :=[p:=-iq]. It is easy to
see that At = Let B[ f +]=(-q_*-rq) and so F-B[ f +]. On the other

hand (Tp-*p)I -(-q-->p). (The proof in DV[94], employs Pitts's Uniform Interpolati-

12



on Theorem for IPC (see Pitts[92]). Inspecting the proof it can be seen that the vari-

able condition is analogous to the one of 3-elimination.)

We show: DIPC,T,2(s,) = DIPC,EX

Suppose BDIPC,T,9,(s, )C and EEEX, say EEEX(p) and let f e2($)P witness the fact

that EE EX(p). As is easily seen (by permuting 3) we can arrange that the variables in

the elements of the range of f are disjoint from PV(B)uPV(C). Construct f + as above.

We find using ®:

EF-B E-B[f+] -C[f+]. E1-C.

Conversely suppose B DIPC,EXC and consider f e Take p:=PV(B)uPV(C) and
g:=f Ip and A:=Ag. Then:

F-B[f] = hB[g] => AF-B =* AF-C =l-C[g] bC[f].

In the cases that $=Q and 3= { p }, > IPC,EX is completely understood. The case that

3={p} is the subject of De Jongh[82]. He shows that the exact formulas in one vari-

able are precisely: p, -gyp, --1p, -+p_-p, T. It follows that DISJ(EX) is finite (mod

IPC). If we set 4)(A) := the disjunction of all EX-formulas that IPC-imply A, we get:

ADWC,EXB (D (A)HB. O

3.9 Remark: It is not dificult to see that every NNIL(p)-formula can be written

as a finite disjunction of prime NNIL(p)-formulas. In DV[941 (Theorem 2.8) it is

shown that prime NNIL(p)-formulas are IPC,p-exact. So modulo IPC-provable
equivalence: NNIL(p) c DISJ(EX(p)). Ergo by 3.5(vii) and 3.8:

>IPC,T,2(l3) = >IPC,EX = >IPC,DISJ(EX) C >IPC,NNIL.

We leave it to the reader to show that the last inclusion is proper. (We will show in

5.2 and 9.2 that DEpC,jII,: DH,,, T,1. So our result here coheres with - of 3.6.) O

3.10. - Example 4: Suppose £ g$. Consider D c,p(e). By 2.5, 2(,) is weakly
IPC-disjunctive. Hence, by 3.5(ii), Dwc,2(,Z) is a nearly consequence relation. Note

that DIpC,2(,Z) also satifies:

if CE P_( C): ADB = (C-4A)D(G-->B),

if pe 2(2): (p-A)D A[p:= T ].

Andrew Pitts, in his Pitts[92], shows that for every AE 2($), there is a formula
(VA)E such that for all Be2($): ADR3C,2(Q)B t=* VAF-B. We can read VA

informally as the result of universally quantifying out the propositional variables not

in £ . Note that we may apply 3.2 to V.
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3.11 List of results on preservativity: We close this section by listing a number
of relationships between various preservativity relations.

1) DIpC,2(q3) is the minimal preservativity relation and:

>IPC,2( ) c(a) >HA, T,W c(R) DIPC,EX C(-/) >IPC,NNIL C >IPC,T.
a) Non-identity follows from the presence of non-trivial derived rules for

HA, like IP, i.e. (-p--(qvr)) >H,T,21((-p-q)v(-+p

(3) Immediate from (3) below.

-y) Non-identity follows by: (--,p-4 p)DIpC,NN,(pv-gyp) and the fact that

(-r-ip -p) is IPC,p-exact by the substitution [p:=-+q]. Hence we do not

have (--p->p)DIPC,EX(pv-p).

2) >IPC,2(V),2(43)= >IPC,2(s) =(s) >HA,cl,c =(s) >HA Y=(S) >HA*,%%,2C

3)

=(s) >HA*, %'y =(E) >HA*, T, W =(E) >HA*, T,E

8) HA* is introduced in section 6. All the identities follow immediately from

De Jongh's Completeness Theorem for 1-substitutions for HA and HA*.

See e.g DV[94].

E) The identity of D HA*, T, 2{ and D HA*, T, j with D IPC,2 ($), is corollary 5.7

of DV[94]

>IPC,EX=(71) DIPC,T,2(g3) >HA,T,BQ
See 3.8.

This is theorem 6.2 of DV[94].

4) NNIL =(b) ROB =(D) f-ROB (mod IPC), and

>IPC,NNIL =(L) >HA,y,y _(t) DHA, T,1

-a) ROB and f-ROB are defined in section 4 below. The result is proved in

Visser[85] and by a similar proof in section 5 of this paper. A different

proof, due to Johan van Benthem, is contained in Van Benthem[91]. A

version of van Benthem's proof is contained in DRVV[94].

L) See section 9.

In the next section we study robust formulas, as a preliminary to the specification of

the NNIL-algorithm in section 5.

4 Robust formulas: Consider a 3-models B and M. We say that:

KcM :tom 3f:KK-*KM, f is injective and

<Ko f c fo<_ M andVkE K UG,pE $ (kP-- Kp W)
Note that, modulo the identification of the elements of K with their f-images in M,

`O cM' means that 11 is a submodel of M.

AE ROB :=Aisrobust:raVM(MBA = VKcMKI =A)

14
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We will let range over ROB. It is easy to see that NNILcRO>. In section 5

we will see that modulo IPC-provable equivalence each robust formula is in NNIL.

In this section we will prove that >IPC,ROB is a at-relation. This result will be our

main tool (in section 5) for proving the NNIL-algorithm to be correct. Let's take as a

local convention of this section: D := DIPC,ROB

Clearly we have: 3cROB and ROB is closed under conjunction. So it follows that D

satisfies A1.,A2,A3,B2. To verify B 1, by 3.5(ii), the following theorem suffices:

4.1 Theorem: ROB is weakly disjunctive.

Proof: Consider any 6E ROB. We write a in disjunctive normal form DQ as in 2.5.1.

Consider any disjunct C(A) of D,.: here, as in 2.5.1, 0 is a C-minimal SUB(v)-
saturated set with QE 0 and C(0) is the conjunction of the atoms and implications in

0. We claim that C(0) is robust. Consider any models Kc: U= C(0). Trivially: J V A.

By the Push Down Lemma 2.3:

Glue(H

Hence:

Glue(H SUB(,)[0],M)V-- a,

Now clearly:
Glue(HSUB(a)(A),K) c Glue(HSUB(v)(0);M).

By the stability of or we get: or. Consider

I' := {GESUB(v) I Glue(HSUB(Q)(0),K)kG}.

Clearly 1 A and t is SUB (a-)-saturated and cE r. By the c-minimality of A we find:
r=A. Hence and so Kl--C(A). Ergo C(A) is robust.

4.2 Theorem: > is closed under B3.

15



Proof: Let X be a finite set of implications and let Y:= { CI(C--*D)E X) u { B } . Let

A:=AX. We have to show: (A-*B)D[A]Y. The proof is by contraposition. Consider

any o'E ROB and suppose: vif [A]Y. Let be a rooted model such that

Q and KIAV [A]Y, i.e. for all EE Y: KO [A]E.

Let be the full submodel of ft on K':={ b}u{ k'EKI kiA}.

(A submodel is full if the new ordering relation is the restriction of the old ordering

relation to the new worlds.) Note that {k'E KI A} is upwards closed and that on
{ k'E KI kl A) the old and the new forcing coincide. Moreover on this class [A]G is

equivalent with G.

4.2.1 Claim: For all F: bi'F => bl-- [A]F.

Proof of the claim: The proof is by a simple induction on F. The cases of atoms dis-

junction and conjunction are trivial. Suppose F is an implication and bt'F. Then cer-

tainly: for all kE K (kl A kt'F). Since on the k with kl A, l and l ' coincide, we

find: bt(A-*F), i.e. bl [A]F. (Claim)

We return to the main proof. Remember that:

bio and bl [A]C for all C with (C-*D)E X and br# [A]B.

We show that bt'o' and &='A and bIA'B.

It is immediate that bt'cr, since a4' is a submodel of K and or is robust.

Remember that A is the conjunction of the (C---)D) in X. So it is sufficient to show

that for each (C-- >D) in X: bi'(C--*D). Consider any (C-*D)E X and any k2'b with

k't'C. Since bl-[A]C, we have by the claim: bl#'C. So k'#b. But then k'tA, hence
k'='A and thus k'i'(C-*D). We may conclude: k'l'D and hence bi'(C-aD).

From blo [A]B and the claim we have immediately that: bt-'B. 0

16
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All the proofs in this section also work when we replace ROB by f-ROB, the set of

formulas preserved by full submodels. Note that ROBcf-ROB. Our result in section 5

will imply: ROB=f-ROB=NNIL (modulo IPC-provable equivalence).

5 The NNIL-algorithm: In this section we produce the algorithm that is the

main tool of this paper. The existence of the algorithm establishes the following theo-

rem.

5.1 Theorem: For all A there is an A*ENNIL(PV(A)) such that for all v-rela-

tions D: ADA* and A*F-A.

For convenience we reproduce the defining properties of v-relations here.

Al AI-B = ADB
A2 ADB and B DC = ADC

A3 C>AandC>B=CD(A,B)
B 1 ADC and B>C (AvB)>C

B2 ADB (p-->A)>(p->B)

B3 Let X be a finite set of implications and let Y:= { CI(C -*D)E X } u { B },. Take

A:= AX. Then: (A-*B)>[A]Y

Before proceeding with the proof of 5.1 we interpolate a corollary. Let's write "mod

IPC" for "modulo IPC-provable equivalence".

5.2 Corollary

i) Let A and A* be as promised by 5.1. Then we have:

ADROBB4* A*F- B.

It follows that (.)* has the properties promised in 3.2.

ii) NNIL=ROB=f-ROB (mod IPC)

iii) >ROB is the minimal v-relation. It follows that A1-A3,B1-B3 axiomatizes

>ROB

Proof: (i) Suppose AD ROB B. Since A* F- A, it follows by Al that A* DROB A and,

hence, by A2 that A* >13. Since A*ENNILcROB, we have, by 3.5(v), that A*F-B.

Conversely if A*F- B, then A*> ROBB. Since > ROB is a o' -relation, we have:
A>ROBA* and hence by A2: A>ROBB.

(ii) Consider AE f-ROB. We have ADf-ROBA*, so by 3.5(v): AF-A*. Since also

A*F-A, we find: F- A-*A*. Ergo f-ROBCNNIL (mod IPC). Since obviously
NN1LcROBcf-ROB, we are done.

17
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(iii) Let > be any v-relation. We have by (i), A1, 5.1, A2:

ADROBB A*f-B A*DB ADB.

5.2(ii) was proved by purely model theoretical means by Johan van Benthem. See his

Van Benthem[91] or DRVV[94]. The advantage of van Benthem's proof is its relative

simplicity and the fact that the method employed easily generalizes. The advantage of

the present method is the extra information it produces, like 5.2(iii) and its usefulness

in the arithmetical case, see sections 8, 9 and 10. It is an open question whether van

Benthem's proof can be adapted to the arithmetical case.

Proof of 5.1: We introduce an ordinal measure o of complexity on formulas as fol-

lows:

I(D) {EE SUB(D)l E is an implication},

i(D) := max{ II(E)I I EE I(D)),

c(D) := the number of occurrences of logical connectives in D,

o (D) := o.i (D) + c(D).

Note that we count occurrences of connectives for c and types of implications, not oc-

currences, for i!

We say that an occurence of E in D is an outer occurrence if this occurrence is not in

the scope of an implication.

We prove 5.1 by induction on o. Consider any v-relation D. We will exhibit the
properties of > that are used between square brackets.

Atoms: [Al] Suppose A is an atom. Take A*:=A.

[3 Conjunction: [A 1,A2,A3]: Suppose A=(BAC). Clearly o(B)<o(A) and
o(C)<o(A). Take A*:= B*AC*. Clearly A*ENNIL(PV(A)). The verification of the

desired properties is trivial.

y Disjunction: [AI,A2,B1] Suppose A=(BvC). Clearly o(B)<o(A) and
o(C)<o(A). Take A*:= B*vC*. Clearly A*ENNIL. The verification of the desired

properties is trivial.

b Implication: [A1,A2,A3,B2,B3] Suppose A=(B-*C). We split into several

cases.

18
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81 Outer conjunction in the consequent: [A 1,A2,A3] Suppose C has an outer

ocurrence of a formula DAE. Pick any J(q) be such that:

q is a fresh variable,

q occurs precisely once in J,

q is not in the scope of an implication in J,

C=J[q:=DAE].

Let C1:=J[q:=D], C2:=J[q:=E]. As is easily seen C is IPC-provably equivalent to

Cl AC2. Let A 1:=(B- >Cl) and. A2:= (B-CD- Clearly A is IPC-provably equivalent

to A1AA2. We prove: .o(A;)<A for i=0,1. Since it is clear that c(Ai)<c(A), it is suffi-

cient to show that i(Ai)<_i(A). Since A and the Ai are implications we have to show

that: II(Ai)I<_II(A)I. We treat the case that i=1. It is sufficient to construct an injective

mapping from I(A 1) to I(A). Consider any implication F in I(A1). If F=A1, we map F

to A. Otherwise Fe I(B) or FE I(J) or F E I(D) (since q does not occur in the scope of an

implication). In all three cases we can map F to itself. Since Al cannot be in I(B) or

I(J) or I(D), out mapping is injective. The case that i=2 is similar. Set A*
(A 1 *AAz*).

82 Outer disjunction in the antecedent: [A1,A2,A3] This case is completely

analogous to the previous one.

If A has no outer disjunction in the antecedent and no outer conjunction in the conse -

quent, then B is a conjunction of atoms and implications and C is a disjunction of

atoms and implications. It is easy to see, that applications of associativity, commuta-

tivity and idempotency to the conjunction in the. antecedent or to the disjunction in the

consequent do not raise o: So we can safely write: B=AX and C=VY, where X and Y

are finite. sets of atoms or implications. This leads us to the following case.

83 B is a conjunction of atoms and implications, C is a disjunction of atoms

and implications [A1,A2,A3,B2,B3]

83.1 X contains an atom: [A1,A2,B2]

83.1.1 X contains a propositional variable, say p: [A1,A2,B2] Consider:
I):=A(X/{ p }) and E:=(D-*C). Clearly F- AH(p-*E) and o (E)<o (A). Put
A*:=(p_*E*). Evidently (p_*E*) is in NNIL(PV(A)). We. have E*F-E by the
Induction Hypothesis and hence: (p_*E*) F- (p-*E) F- A. We have EDE* by the

Induction Hypothesis. It follows by B2 that: (p_*E)D(p_*E*) From AF-(p--->E), we

have by A1: A>(p-*E). Hence by A2: A>(p_*E*).
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83.1.2 X contains T : [A 1,A2] Left to the reader.

83.1.3 X contains 1: [A 1] Left to the reader.

83.2 X contains no atoms: [A1,A2,A3,B3] This case -the last one- is the truly
difficult one. To motivate it, let's solve the difficulties one by one. Let's first look at

an example.

Example 1: Consider (p--->q)-*r. B3 gives us: ((p-*q)-*r)D(pvr). However, we do

not have: (p vr) F-- ((p-*q)-*r). We can repair this by noting that (p-*q)--*r)F- (q-*r) and

So the full solution of our example is as follows.

We have: ((p-4q)-4r) D ((q-*r)A(pvr)), by:

a) ((p-*q)-*r) > (pvr) B3

b) ((p-*q)-*r) H (q--*r) IPC

c) ((p-4q)->r) > (q-*r) Al

d) ((p-*q)-*r) > ((q-*r)A(pvr)) a,c,A3

Moreover: ((q-*r)A(pvr)) F- ((p-*q)-*r) and ((q-*r)A(pvr)) E NNIL(PV((p-*q)-*r)).

O

We implement this idea for the general case. There will be a problem with o, but we

will postpone its discussion until we run into it. A is of the form B ->C, where B is a

conjunction of a finite set of implications X and C is a disjunction of a finite set of

atoms or implications Y. For any D:=(E-*F)E X, let:

BID := A((X/{D})v{F}).

Clearly and o((B.D)-*C) < o(A).

Let Z:={EI(E-*F)EX}u{C}. Put: AO := V[B]Z. We will show that our problem re-

duces to the question whether Ap* exists. So for the moment we pretend it does. We

have:

a) ADA0 B3

al) Ao > Ao* ASS

a2) A > AO* a,al,A2

b) for all D E X: A I- ((B .l-D)->C) IPC

c) for all D E X: A > ((B ID)--4C) Al

cl) for all D E X: ((BID)-*C) > ((BID)--)C)* lH

c2) for all DE X: A > ((BID)---)C)* c,c 1,A2

d) A > A{((B.I.D)-*C)*IDEX}AAO* a2,c2,A3.
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It is clear that A{((BID)->C)*IDEX}nAo* E NNIL(PV(A)). We show that:

A{((B1D)_C)*IDEX)nAo* F- A.

It is sufficient to show:

A { ((BID)->C)IDE X } A[B]E F- A for each EE Z.

In case E=C, we are immediately done by: [B]C F- B--->C. Suppose (E-*F)E X for

some F. Reason in IPC.

Suppose A { X), [B]E and B. We want to derive C. We have:

((A(X/{E-4F})AF)-->C), [B]E and B. From B we find A(X/{E-4F}) and
(E- .F). From B and [B]E, we derive E. From E and (E-->F) we get F. Finally we

infer from ((A(X/{E-4F})AF)--C), A(X/f ELF)) and F the desired conclusion

C.

So the only thing left to do is to show that Ao* exists. If i(Ao)=0, we are easily done.

Suppose i(Ao)>O. If for each E in Z with i(E)>O, we would have: i([B]E)<i(A), it

would follow that i(Ao)<i(A). Hence we would be done by the Induction Hypothesis.

We study some examples. These examples show that we cannot generally hope to get

i([B]E)<i(A). The examples will, however, suggest a way around the problem: we

produce a logical equivalent, say Q, of [B]E, such that i (Q)<i(A). So we replace Ao

by the disjunction R of the Q's, which is logically equivalent and has i(R)<i(Ao). Put

Ao*:=R*.

Example 2: Consider (p-*q)-*(r--*s). Take E:=C=(r-s). We have:

[B]E = [p--->q](r-s) =

So no simplification is obtained. However [B]E is IPC-provably equivalent to:
((rA(p-q))--s), which has lower i. By Al,A2 we can put ([B]E)*:=((rA(p-aq)) _ s)*.

We could have applied the reduction before going to [B]E. We did not choose to do

so for reasons of uniformity of treatement. O

Example 3: Consider (((p-*q)-*r)-*s). Take E:=(p-q). We find:

[B]E = [(p-q)-r](P-q) = (((p- q)-*r)- (p-- q))
[B]E is IPC-provably equivalent to ((pA(q-r))-4q), which has lower i. O

Consider [B]E for EE=Z={EI(E-F)(=-X}u{C}. [B]E is the result over replacing outer

implications (G--- >H) of E by (B --*(G-*H)). If there is no outer implication in E, we

find: [B]E = E and i([B]E) = 0. In this case [B]E is implication free and hence a for-

tiori in NNIL. We can put ([B]E)*:=E. Suppose E has an outer implication.
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Consider any outer implication (G-4H) of E. We first show: i(B-(G-3H))<_i(B-C).

We define an injection from I(B--)(G--4H)) to I(B-C). Any implication occurring in

I(B) or I(G-->H) can be mapped to itself in I(B-4C). None of these implications has as

image (B--->C), since (G-aH)EI(B)uI(C). So we can send (B-4(G--->H)) to (B--4C).

The next step is to replace (B-(G-->H)) by an IPC-provably equivalent formula K

with lower i. Let B' be the result of replacing all occurrences of (G-->H) in B by H and

let: K := ((G/\B')-4H). Clearly K is provably equivalent to (B-a(G-*H)). We show

that i(K)<i(B-*(G-*H)).

We define a non-surjective injection from I(K) to I(B --).(G-->H)). Consider an impli-

cation M in I(K). If M=K we send it to (B-4 (G Suppose M#K, i.e.
ME I(B')uI(G)uI(H). A subformula N of I(B) uI(G)uI(H) is a predecessor of M if M

is the result of replacing all occurrences of (G-->H) in N by H. Clearly M has at least

one predecessor and any predecessor of M must be an implication. Send M to one of

its shortest predecessors. Clearly our function is injective, since two different impli-

cations cannot share a predecessor. Finally (G--->H) cannot be in the range of our in-

jection. If it were, we would have M=H, but then H would be a shorter predecessor. A

contradiction.

Replace every outer implication in [B]E by an equivalent with lower i. The result is

the desired Q.

5.3 Remarks: The algorithm given with our proof is non-deterministically spec-

ified. However by 5.2 the result is unique modulo provable equivalence. I didn't try to

make the algorithm optimally quick. In practice the best thing to do is: follow the

main line of the algorithm, but, locally, apply ad hoc simplifications.

In Visser[85] a simple adaptation of the NNIL algorithm is given for DIPC,T. Here

the algorithm computes not a value in NNIL, but a value in IT, I ]. Thus we obtain

an algorith that checks for provability. It is easy to use the present algorithm for this

purpose too, since there is a p-time algorithm to decide IPC-provability of NNILQ

formulas, i.e. formulas with only propositional variables in front of arrows. The out-

puts of our algorithm are in NNIL0. It has been shown by Richard Statman (see
Statman[79]) that checking whether a formula is IPC-provable is p-space complete.

This puts an absolute bound on what an algorithm like ours can do.
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5.4 Sample computations (using some obvious short-cuts)

(--P -*P) -4 (PV-iP)

(P-*(Pv-P)) A (([TP-*p]--P) v ([=^P--*P]P) v ([TP-*P]-P))
-,ip Vpv -'P

((1--*P) A ([-PIP v[-P] 1)) v p v -p
pv-"p.

((p-*q)-*r)--s
(r-*s) A (([(P-aq)-*r](P-*q)) v [(p-*q)---r]s )

(r-*s) A( ((PA(q-3r))-3q) v s )
=-(r--- s) A ( (p-*((q-4r)-->q)) v s )

(r-+S) A ( (P-4((r-*q)A([q--->r]gv[q-*r]q))) v s )

(r-+s) A ((p--*q)v s).

6 Basic facts and notations in Arithmetic

6.1 Arithmetical Theories: The arithmetical theories T considered in this paper

are RE theories in W, the language of HA. These theories all extend i-IAo+Exp: the

constructive theory of AO-induction with the axiom expressing that the exponentiation

function is total. i-IAo+Exp is finitely axiomatizable; we stipulate that a fixed finite
axiomatization is employed. We will use T for the formalization of provability in T.

Suppose A is a formula. TA means ProvT(t(x)), where ProvT is the arithmetization

of the provability predicate of T and where t(x) is the term the Godelnumber of the

result of substituting the Godelnumbers of the numerals of the x's for the variables in

A'.

We illustrate the above by an example. We suppose Godelnumbers are assigned as

follows:

( 11

} 12

15

S 8

0 3

+ 19

* is the arithmetization of the syntactical operation of concatenation. We use underlin-

ing for our external numeral function. num is the arithmetization of the numeral fund

tion. We have e.g.: HA F- num(3) = 8*8*8*3. And:

1.

1 T(x=x) means: ProvT(1 l *num(x)* 15*num(x)* 2).
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Our notational convention evidently introduces a scope ambiguity. What is
T((x+y)=z) going to mean?

a) ProvT(H *num(x+y)* 15*num(z) *1J2 (wide scope)

or:

b) ProvT(11 * 11 *num(x)* 19*num(y)* 12* 15*num(z) * 12) (small scope)

Fortunately by standard metamathematical results, we know that as long as the terms

we employ stand for T-provably total recursive functions the different readings are

provably equivalent. So (a) and (b) are provably equivalent. In this paper we will only

employ terms for primitive recursive functions, so the ambiguity is harmless.

We write Tn for the theory axiomatized by the finitely many axioms of i-IA0+Exp,

plus the axioms of T, which are smaller than n in the standard Godelnumbering. We
write ProvT n for the formalization of provability in T. We consider ProvT n as a

form of restricted provability in T. The following well-known fact is quite important:

6.1.1 Fact: Suppose T is an RE extension of HA in the language of HA. Then T is

essentially reflexive (verifiably in HA). I.e. we have:
For all n and for all I-formulas A with free variables x: TF- Vx -4 A).

And (using UC for: the universal closure of) even:
HAF- VVxVAE FORs X A - A).

Proofsketch: The proof is roughly as follows. Ordinary cut-elimination for construc-

tive predicate logic (or normalization in case we have a natural deduction system) can

be formalized in HA. Reason in HA. Let a number x and a formula A be given.
Introduce a measure of complexity on arithmetical formulas that counts both the depth

of quantifiers and of implications. Find y such that both the axioms of TX and A have

complexity <y. We can construct a truthpredicate Truey for formulas of complexity
<y. We have: TUC(TrueYA - A). Reason inside T. Suppose we have Z.,XA. By

cut-elimination we can find a TX-proof p of A in which only formulas of complexity

<y occur. We now prove by induction on the subproofs of p, that all subconclusions

of p are Truey. So A is Truey. Hence we find A.

6.2 A brief introduction to HA*: In this section we describe the theory HA*.

This theory was introduced in Visser[82]. HA* is to Beeson's fp-realizability
(Beeson[75]) as Troelstra's HA+ECT0 is to Kleene's r-realizability. This means that

for a suitable variant of fp-realizability HA * is the set of sentences such that their fp-

translations are provable in HA. The natural way to define HA* is by .a fixed point

construction as: HA plus the Completeness Principle for HA*. (Here it is essential that

the construction is verifiable in HA, see below.) The Completeness Principle can be
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viewed as an arithmetically interpreted modal principle.. The Completeness Principle

viewed modally is:

Cs l- A -* A
The Completeness Principle for a specific theory T is:
([T] - A -* TA.

We have: HA* = HA + LY[HA*].

We briefly review some of the results of Visser[82] and DV[94].

Let A be the smallest class closed under atoms and all connectives except impli-

cation, satisfying: AE 7-1 and Be A (A-*B)E A. Note that modulo provable

equivalence in HA all formulas of the classical arithmetical hierarchy in their

standard form are in A. HA* is conservative w.r.t. A over HA. Note that
NNIL0(j) cA.
There are infinitely many incomparable T with T=HA+E [T]. However if
T=HA+Cs [T] verifiably in HA, then T=HA*.

Let KLS:=Kreisel-Lacombe-Shoenfield's Theorem on the continuity of the ef-
fective operations. We have: HA*I- KLS -4 HA*.L. This immediately gives

Beeson's result that HAIf KLS (see Beeson[75]).

Every prime. RE Heyting algebra can be embedded into the Heyting algebra

of HA*. This mapping is primitive recursive in the enumeration of the genera-

tors of w.r.t which is RE. The mapping sends the generators to (-sen-

tences. (See DV[94]).

We insert some basic facts on the provability logic of HA*. These materials will be

only needed in section 10. Clearly, HA* satisfies the Lob conditions.

L1 [--A

L2 I- (A-*B) - (DA -->

L3 f- A -4 A
L4 F-

i-K is given by IPC+L1,L2. i-L is i-K+L3,L4. We write i-K{P} for the. extension of i -

K with some principle P. We write [HA*]' in the modal contexts as C. Note that i-

L { C) is valid for provability interpretations in HA*.

A principle closely connected to C is the Strong Lob Principle:

SL I- (OA->A)---A

25
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As a special case of SL we have: H -rn 1.

6.2.1 Fact: i-L{C} is interderivable with i-K{SL}.

Proof: L4 is immediate from SL. "i-K{ SL } H C":

F- A --4 (AA

-4 AA

"i-L { C) H SL":

H (OA-*A) -4 (0A--*A)A

*A)A A

A.

As a preliminary for section 10 we study the closed fragment of i-L{ C 1. A formula of

the modal language is closed if it contains no propositional variables. We define: O J-

:= 1, n+ll := n1, a'1 := T.

6.2.2 The Closed Fragment of i-L{C}: For every closed formula A there is an

a=:a*(A), such that I- A H a1. It is easily seen that a*(A) is unique.

Proof: The proof is by induction on A. We have:

HT t-*Ow

H H min(a,R)1

I- H max(a,R)1

I- H a-*R1, where ((x-*f3):=T if o<-f3 and if (3<a.

Note that min(a,y)<_f3 t=:> y<_(a-4(3).

J-

7 Digression: assorted facts about Y,-preservativity: In this section we pause

to look in some more detail at the notion of 1-preservativity. We will transfer some

classical results about [I-conservativity to I-preservativity and we formulate some

principles of `preservativity logic'. The only result of this section that is used in the

rest of the paper is 7.1.
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Consider any consistent RE theory T, extending HA, in the language of HA. We in-

troduce some notions, closely related to 1-preservativity for T. Define (suppressing

the index for T):
Provable Deductive Consequence ADpdcB :H
Uniform Deductive Consequence ADudcB :-* Vx3y

Strong Uniform Deductive Consequence ADsudcB :H Vx
Uniform Provably Deductive Consequence ADupdcB :H Vx3y

We start with some equivalences and derivabilities.

7.1 Orey-Hajek for Y,-preservativity and Uniform Provable Deductive
Consequence: T proves that the following are equivalent:

(i) A> B, (ii) `dx *B), (iii) ADupdCB.

Proof: Reason in T. Suppose AD7-B and consider any x. We have

and Y-, hence

From we have that for some y and hence

Ergo: Clearly for any u: We

may conclude: Hence: ADupdcB

Suppose ADupdcB and (S-*A). It follows that for some x: X(S-*A)

Moreover: So Hence for some y: Ergo by re-

flection: (S-*B).

7.2 Fact: We have: T !- A> B --* A>udcB

Proof: Reason in T. Suppose AD B. Consider any x. For some y we have:
Suppose XA. Clearly for any It follows that YB.

7.3 Orey Hajek in HA*: We have: HA* I- A>p * IB H A>udc,HA*B.

Proof: Immediate by the principle (E, 7.1 and 7.2.

7.4 Fact: HA* I- ( *A -4 B) -4 ADp* XB.
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Proof-
(CA -4 B) -4 B)

-4 B)

-> AD jB.

7.5 Modal logic for Y--preservativity: Consider the language of modal proposi-

tional logic with a unary modal operator and a binary operator >. We define arith-

metical interpretations in the language of HA in the usual manner, interpreting as

provability in HA and D as T,-preservativity over HA. We state the principles valid in

HA for this logic, known at present. With the exception of E4 and Y.8 these principles

are the duals of the principles of the interpretability logic ILM.

L1 HA F-OA

L2 F- (A-*B) -- -4 CB)

L3 1- A A

L4 F-

l I- (A->B) -4 ADB
E2 HADBnBDC --*ADC
Y,3 F- CDA A CDB -* C>(AAB)

E4 F- A>C A BDC -* (AVB)DC

F5 1- AD B -4

7-6 F- AD A

D F- ADB -4

E8 Let X be a finite set of implications and let Y:={CI(C->D)EX}u{B}.

Take A:=AX. Then: F- (A-4B) D{A}Y

Here (A-*B)D{A}Y is short for: (A->B)DV{A}Y and {C}D is defined as follows:

{C}p:=(C--*p),{C}1:=1,{C}T:=T,
{C} E := E, {C}(EDF) = (C->(EDF)), {C}(E-*F) := (C- *(E- *F)),

{ C I() commutes with n and v.

The verification of L1-L4, 11-E3, 7,4-77 is routine. For Y,4 see 8.1 and for T.8 see

8.2.

From our principles e.g. Leivant's principle can be derived. (This is one of the

Stellingen of Leivant[75].)

Le F- (AvB) -4 (Av B)
We leave this as an exercise to the reader.

It is open whether our axioms are complete.

28

=>

-



7.6 Constructive versions of some results of Lindstrom and Svejdar
In his classical paper Svejdar[83], Viteslav Svejdar studies logics for interpretabil-

ity, conservativity and Rosser-orderings. Note that while the study of methods is
Svejdar's, the methods studied are for a large part both Lindstrom's and Svejdar's.

The definitions of witness comparisons between sentences are as follows:

3xAx<_eX3yBy :< 3x (AxAVy<x -By)

3xAx<eX3yBy :tom 3x (AxrVy<x. -,By).

If B is decidable these definitions are constructively as useful as classically. However

if we allow non-decidable B, the use of negation is rather heavy. I predict that more

experimentation will reveal that the following notions are more useful and more

pleasant to work with:

3xAx_<un3yBy :a Vy (By->3x<_y Ax)

3xAx<Ui13yBy :,t-> Vy (By-.3x<y Ax).

Classically we have:

3xAx<_un3yBy is provably equivalent to the negation of 3xBx<eX3yAy,

3xAx<un3yBy is provably equivalent to the negation of 3xBx<_eX3yAy,

3xAx<eX3yBy is provably equivalent to the negation of 3xBx-<,n3yAy,

3xAx<ex3yBy is provably equivalent to the negation of 3xBx<_un3yAy.

Constructively all these connections fail.

We do have:

01 F- 3xAx<_eX3yBy --

02 F 3xAx<eX3yBy -* 3xAx<un3yBy.

hex and <ex are provably transitive. We have by a `downwards induction' :

03 F- -(3xAx<ex3xAx).

But we do not even have: F- 3xAx ---> 3xAx<_ex3xAx, since this expresses precisely

the minimum principle for A, which is constructively not generally valid. (It is valid if

A is decidable.)

We have:

04 <un provably satisfies the axioms of weak partial ordering,

05 <un is provably transitive,

06 F- (3xAx<un3xAx) -4Vx-Ax,

07 F- 3xAx<un3yBy 3xAx<_un3yBy,

08 I- 3xAx_<un3YBY<un3zCz -* 3xAx<un3zCz,

09 F- 3xAx<un3YBY!5un3zCz - 3xAx<un3zCz.
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Let *A :H 3x XA. X is persistent, i.e. F- (x<y A XA) _- yA. So we have:
F- H 3x A

H H f/x H B>sudcA.

7.6.1 Svejdar Principles: We give some constructive principles in the style of
Svejdar[83]. The superiority of (iii) over (ii) is one of the arguments in favour of the

universal witness comparison relation.

i) I- B>yC
A>

iii) f-

iv) f-

Proof: Reason in T

i) Suppose B>EC. For any x:
( XA A -4 XB

--) C).
ii) A -B A

iii) Reason in T. Consider x. Reason inside the . Consider y. Suppose: XA,
and yB. We have to show: 3z<y ZA. If y<_x, then XB and

hence B. So: We may conclude 3z<y ZA. If y>x, we get 3z<y ZA
from our assumption XA.

iv) By a minor modification of the reasoning under (iii).

7.6.2 Consequence: I- A>y B).

A version of the Feferman predicate can be defined as follows:

AA :t-*

Note that e.g. F---A i .

7.6.3 Fact: H A>EAA.

Proof: Substitute 1 for B in 7.6.1(ii).

7.6.4 Orey Sentence: Let >* be n-conservativity or interpretability over T (in the

classical context). A classical Orey sentence is a sentence G such that:

T> *G and T> *-G.
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The existence of an Orey-sentence shows the non-uniqueness of extension via inter-

pretation or 11-conservative extension. Its existence also shows that the right hand

side of II-conservativity or interpretability for consistent T cannot be closed under

conjunction. By duality an Orey sentence for Y--preservativity (in the constructive

context), should satisfy:

G> L and -G>1±.
Disanalogously it does not generally follow that the left hand side of 1-preservativity

is not closed under disjunction: in fact in the case of HA it is closed under disjunction.

See 8.1.

Let G be such that TI- G<-AG. On the one hand: GDIOG and hence G>1-,G. On

the other hand G>yG. Ergo G>yl. Also: -G>1D-G>y-+LGD1G and -,G>1-,G.
So -GDll.

In case T=HA, the results of section 8.1 give us: (Gv--sG)Dy.1. O

7.6.5 Lindstrom's Theorem: Per Lindstrom proved that every equivalence class

for interpretability or fJ-conservativity contains both a E2- and a 112-sentence. We

explore his argument in our setting.

We first look at the 12-case.. Pick by the Godel Fixed Point Lemma (GFL) a Y,2-sen-

tence R with T F- we have, using the fact that >y is a semi-conse-

quence relation for T:

a) R B) 7.6.2

b) R B) a, 01, Al, A2

c) R D1 GFL, Al

d) R B)) b, c, A3

e) RD1B d, Al, A2

fl B Dl (-R--- 7.6.1(ii)

g) B >1 TR GFL, A1, A2

So we find: R > E B DE -,-,R. It is open whether we can find Q in 7-2, such that
B=-IQ.
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We turn to the r12-case. Pick by the Godel Fixed Point Lemma a f12-sentence R with

TI- RH we have:

a) R > B)

b) R > Al
c) R -4 B)) a, b, A3

d) R> B c, Al, A2
e) B >
f) B > R A1, A2

g) B=-IR d,f

So every equivalence class contains a r12-sentence. O

7.6.6 Complexity of Y--preservativity: Let U be the theory axiomatized by the set

of A such that T H A--. Then U is a consistent theory extending PA in the language of

PA. >* stands for: conservativity. Let Pp be a Tj, -sentence, say Po is equivalent to

-So, for S of 7-1. We have:

PO>T,Y-1 r- b'SE Y 1 -+PO) I-S )
VPE 11 1 0-4P) TP )

VPE r11

t* T> *U,U So.

By a result, due independently to Per Lindstrom and Robert Solovay, the set
{ S0E Y,1 I TD *U,rl So } is complete r12. It follows that { Po E r11 IPO>T,Y,1 } is complete

r1z. O

8 Closure properties of Y--preservativity over HA: In this section we verify

two closure properties of Y.-preservativity.

8.1 Closure under B1: We will show that 7,-preservativity is closed under B 1.

We produce both proofs known to us. The first employs q-realizability. This form of

realizability is a translation from 521 to 2f, due to Kleene. It is defined as follows:

xqP := P, for P atomic

xq(AAB) := ((x)ogA A (x)1gB)

xq(AvB) := (((x)o=O -4 (x)1gA) A ((x)o#0 -* (x)1gB) )
xq(A-*B) := Vy (yqA -* 3z({x}y z A zqB)) A (A-*B)

xq3yA(y) (x)ogA((x)1)
xgb'yA(y) := by 3z ({x}yz A zqA(y)) )
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The following facts can be verified in HA:

a) HA- xqA - A,
b). for every AE and {yl,...yn) with FV(A)c{yl.... yn} we can find an index e

such that: HA F- A -* 3z ({ e } (y I ....yn)_z A zqA).

c) Suppose B I ,...Bn,C have free variables among { yI ,...ym) and that { xI,...xn } is

disjoint from { yl,...ym }. Then:

BI,...BnI-HAC = 3e [xIqBI,..,xngBnF-HA3z({e}(xl.... xn,YI.... ym)=z n zqC)].

The proofs are all simple inductions. For details the reader is referred to Troelstra[73],

188-202.

We will now show that I-preservativity satisfies B 1. As is easily seen our proof is

verifiable in HA.

We reason as follows:

a) A>HA,tC Assumption

(3) BDHA,IC Assumption

y) Se Y_ and HAS S-->(AvB) Assumption.

8) xqS - HA 3z ({e}(x)_z A zq(AvB)) y, e provided by (c)

E) S F- HA 3z ({ e) (f)=z A zq(AvB)) 8, f provided by (b)

SA3z ({e}(f)-z A (z)o=0) h HA A E

SA3z ({e}(f)-z A (z)o#0) I- HA B E

if) SA3z({e}(f) zA(z)o=0)HHAC 11,01

L) SA3z ({e}(f)-z A (z)0#0) F- HA C t, R
K) S FHA 3z ({e}(f)=z A (z)o=0) v 3z ({e}(f)=z A (z)o*0) E

A) S 1--HA C if,L,K 0

The second proof employs a translation due to Dick de Jongh. For later use our defini-

tion is slightly more general than is really needed for the problem at hand. Let C be an

%-sentence and let n be a natural number. Define a translation [C] n(.) as follows:

[C] nP := P for P atomic,

[C] n(.) commutes A, v, 3,

IC]n(A-.B) ([C]nA -[C]nB) A

ICI nVYA(Y) := Vy IC]nA(y) A n(C--*VYA(Y))

Let's first make a few quick observations, that make life easier:

i) HA- [C] nA - n(C -->A)

ii) HA- [C] n((A -->B) A(A' -*B')) H

([C]nA -* IC]nB) A ([C]nA' -4 [C]nB') A n(C--->((A-->B)n(A'-4B')))
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Similarly for conjunctions of more than two implications.

iii) HA- [C] ndyVzA(y,z) H (Vydz [C] nA(y,z) A n(C --VyV zA(y,z))).

Similary for larger blocks of universal quantifiers.

iv) HAF- [C] n`dy(A(y)-*B(y)) H

VY([C]nA(Y) --* [C] nB(Y)) A n(C-*Vy(A(y)-*B(y)))
v) HAS [C] nVy<z A(y) H Vy<z [C]nA(Y)

vi) For Sc 7,: HA- S <* [C]nS

(v) is immediate from the well know fact that: HA - Vy<z nA(y) --* nVy<z A(y).
(vi) is immediate from (v).

Let's write [C]nr := { [C] nD I D e F). We have:

vii) FF- HA,n A = [C] nr I- HA [C] nA (verifiably in HA).

Proof of (vii): The proof is by induction on the proof witnessing rE HA nA. We treat

two cases.

F=O and A is an induction axiom, say for B(x), of HAn. Clearly [C]nA is HA-prov-

ably equivalent to:

[ ([C]A0) A b'x([C]nB(x) -* [C]nB(x+l)) A n(C-4Vx(B(x) -> B(x+l)))) -*

(dx[C]nB(x) A n(C-*VxB(x))) ] A n(C-*A).
We have:

HAt- nA, and hence HAI- n(C-*A).

So it follows that:

HA- n(C-*Vx(B(x) -* B(x+l))) -* n(C-*VxB(x)).
Moreover (as an instance of induction for [C] nB(x)):

HAS ([C] nB(0) A `dx([C] nB(x) -+ [C] nB(x+1))) ---) `dx[C] nB(x).

Combining these we find the promised: HA F- [C] nA.

Suppose A=(D-*E) and the last step in the proof was by:

r,D F HA,n E rl- HA,n D-*E.

From r,Dl-HA,nE, we have by the Induction Hypothesis: [C]nr,[C]nDF-HAn[C]nE

and hence: [C] nn- HA,n [C] nD-+[C] nE. Moreover for some finite rocr, we have:

ro,Dl-HA,nE. Let B be the conjunction of the elements of ro. We find:

[C] nrF- HA,n n(C-*B) and F- HAn n(B-*(D-*E)).

Hence: [C] nFH HAn n(C--->(D- *E)). We may conclude:

[C] nFE HA,n ([C] nD-*[C] nE) A n(C-*(D-E)) (vii)
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We now prove our principle. As is easily seen the argument can be verified in HA.

a) ADHA,7C Assumption

{3) BDHA,I,C Assumption

y) SE 7, and RAF-S-*(AvB) Assumption.

8) for some n S H HA n (AvB) y

E) [T]nS1-HA([T]nAv[T]nB) 8, (vii)

'rl) E, (Vi), (1)

HA H- S-*C P,,9, 7.1

8.2 A closure rule for implication: To formulate our next closure rule it is con-

venient to work in a conservative extension of HA. Let %+ be I extended with new

predicate symbols (including the O-ary case) for Y--formulas. Let f be some assign-

ment of 1-formulas of W of the appropriate arities to the new predicate symbols.

Define: [.]°n(.) and as follows:

{A}P := [A]°nP := P[f ] for P atomic,

{A}(.) and [A]°n(.) commute with n, v and 3,

{A}(B-*C) := (A-4(B-C))[f], [A]°n(B -*C) := n((A-*(B--C))[f]),

{A}b'xB(x) := (A--*`dxB(x))[ f ], [A]°n`dxB(x) := n((A-*`dxB(x))[ f ])

We have for B in %+ (in the numbering of principles for [.] of 8.1):

viii) HA}- [A[f ]]n(B[f]) -j

[A]° nB is provably equivalent to a 1-formula.

The proof of (viii) is an easy induction on B. (ix) is trivial.

8.2.1 Theorem: Suppose X is a set of implications in 21+ and let B be in +. Say,

A:=AX and let Y:={CI(C-*D)EX}u{B}. We have, verifiably in HA:

(A-*B)[f ]DHA,yV {A}Y.

Note that 7-8 of section 7 is an immediate consequence of our principle.

Proof: To avoid heavy notations we suppress In the context of HA we assume

that an %+-formula is automatically translated via f to the corresponding %-formula.

Let. S be a 1-sentence (of %). Suppose SI- HA(A-*B). It follows that for some n

SF- HA,n and hence by (vii) [A]nSF-HA[A]n(A-*B). By (ii) and (vi) we find:

S I- HA (A { [A]nC--*[A]nD I (C-*D)E X } A n(A-*A)) -4 [A] nB,

and so:

S HA [A]nC-*[A]nD I (C-*D)E X } -* [A] nB.

It follows by (viii) that:
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S I-HA A{ [A]°nC-4[A]nD I (COD)EX} - [A] °nB.

Since HA is a subtheory of PA, we get:

S I- pA A { [A]° nC-[A]nD I (C-aD)E X } - [A] °nB.

By classical logic, we get: S F-PA V [A] °nY. Remember that PA is, verifiably in HA,

conservative over HA w.r.t r12-sentences (see Friedman[77]). Since (S--> V[A] °nY) is

rig, we get: SI- HAV [A] °nY. Ergo by (viii): S I- HAV { A) Y. Q

Before closing this section we insert some remarks on the proof.

8.2.2 Remarks on the proof

i) The above proof was obtained after analyzing an argument in De Jongh[82].

ii) The step involving conservativity of PA over HA uses the Godel-Friedman

translation. Closer inspection reveals that the argument at hand just requires the

Friedman translation. We give a sketch in 8.2.3. It follows that our results gen-

eralize to all essentially reflexive RE extensions T of HA that are closed both

under the Friedman and the de Jongh translation.

From a sufficiently abstract perspective it would become clear that our present

proof is just a variant of the proof of 4.2. {GIEIn(A--G)} in the present proof

corresponds to the grey part of the Kripke model in the picture below 4.2.
[A]n(.) corresponds to the operation of adding the bottom-node in the picture
(via Smorynski's operation) to the grey part. The detour via PA corresponds to

the fact that our Kripke model argument is essentially classical. The special

behaviour of I-sentences under translation corresponds with the fact that
whether a E-sentence is forced or not (in a model of HA) is dependent just on

the node under consideration and not on other nodes.

8.2.3 Appendix to 8.2: We show that the double negation translation can be elimi-

nated from the proof of 8.2. 1. We pick up the proof from the point where we have

proved:

a) S t-HA A([A]°nC-*[A]nD I (C-D)(=X) - [A]°nB.

Let H := V[A]°nY.

The Friedman translation (E)H of an arithmetical formula E is (modulo some details to

avoid variable-clashes) the result of replacing all atomic formulas P in E by (PvH).

One easily shows:

b) HA H E = HAH (E) H;

c) HA I- H (E) H;

d) for S E Y_: HAI- (S)H H (SvH).
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By (a), (b) and (d) we have:

e) SvH I- HA A I (([A]' nC) vH)---([AIA H I (C-*D)EX} -4

By (e) and propositional logic we find:

f) S f- HA A{H-a([A]nD)H I (C-4D)EX} - H.

So by (f) and (c):

g) S H HA H.

Hence by (g) and (viii): SH HAS/ { A } Y.

9 On E-substitutions: In this section we prove our main results on I-substitu-

tions. Given the results we already have, this is rather easy.

9.1 Fact: Let f E I$. We have:

i) DHA f is a or -relation.

ii) DHA yZ is a

Proof: (ii) is a direct consequence of (i). We have:

a) Every preservativity relation, and hence PHA,I, f, satisfies Al-3.

b)

c)

d)

DHA,E, f satisfies B 1 in virtue of 8. 1

DHA,!, f satisfies B2 by 3.5 (iv)

DHA,T, f satisfies B3 by 8.2, noting that of 8.2 behaves like [.](.) of section

3 on B(I).

9.2 Theorem

ii) >ROB = >HA,I,E = >HA, Tz

Proof: By 5.2(iii) >ROB is the minimal u-relation. So by 9.1(ii): >ROB C DHA,I,Y- .

By 3.5(vi): > HA,!,!, c > HA, T,E. We show >HA, T,! c >ROB. Suppose not
A>ROBB. Then by 5.2(i): A*If iB. A* is IPC-provably equivalent to a disjunction

of prime NNIL-formulas. It follows that for some such disjunct, say C: CV gCB. The

Heyting algebra axiomatized by C is prime and RE. By the embedding theorem

proved in DV[94] (see section 6.2 of this paper) there is an f E1, such that
Q fl ] and HA*If B [ f ]. Since C[f ]E NNIL(I), we have by the NNIL(Y-)-

conservativity of HA* over HA (proved in Visser[82]; see also section 6.2 for the

statement of the full result), that HAH Q f I. Since HA is a sub-theory of HA*, we

have: HA -B[f ]. Since IPCH C->A, it follows that HAH A[f] and HAbLB[f ]. We may

conclude: not A>HA, T,!B.
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10 The closed fragment of the provability logic of HA

Let IPCuP be the theory in language 11 .:=2({ n11Q#nE w)) axiomatized by IPC plus:

n1 H n+11.
We identify 1 with 001 and T with 0101. Let The standard

interpretation u of 11 in 21 is the interpretation mapping Onl to gpn1.

We will in this section notationally confuse 0 and HA. We write * for gA*.

We reason as follows:

a for every AE NNIL(Y-) HA F- A H Visser[85]

b for every B H B* section 9

c for every CEB(Y,) HA F- C H *C* a,b (C*(=- NNIL(Y,))

d for every aE wv { w } H *011 a

e for every DE B(3) HAf- *(D H a*(D)1) d, section 6.2

f for every DE B(B) HA- *D H 1+01*(D)1 e, a

g for every DE B( 3) H l+01*(D*)1 f, c

h for every EE P-j(o) 3[3 HAt- E H 001 g

The last step is by induction on the box-depth of E. Note that we can read off from

our proof an algorithm to compute (3 from E.

10.1 Sample computations
i) Consider A:=-X01- 1. A* _ 1v 1, which is equivalent to 1. Hence:

HA- A t-3 31.
ii) Consider A= Let B:=-00 We com-

pute A*.

A = A

A

Clearly our last formula is equivalent to so via the HA* route we find:

HA-
iii) Consider A= Let We com-

pute A*, using some shortcuts involving IPCuP-principles.

A - 1)) A

1)

Clearly our last formula is equivalent to 1 v-00 1, so via the HA* route we find:

HA- AH031. O
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Define for A E 11: a(A) := a *(A*). We show that a(A) has a clear meaning in terms of

the propositional theory IPCuP: it is the maximum of the a such that:

IPCUP I- a1-4A.

10.2 Fact: For a e { 0,..., w } and A E 11:

IPC UP F- O a L ->A <- a<_a(A).

Proof: We have:

IPCUP F- 001 1--)A = B, O«L F- p A, for some conjunction B of formulas of

the form L7R1 -* R+11

Since B is in NNIL, we find:

B,Oa I. -]pC A B,D01 11-JpC A*.

Hence:

IPCUP F- 0011-4A t-* IPCUP F- D«L-*A*.

It follows that it is sufficient to prove:

For aE {0,...,w} and AENNIL({ n1115n}):

IPCUP F- D«1--+A t-* a<_a*(A).

The proof is by induction on A. We leave the simple argument to the reader. The case

of disjunction uses the fact that IPCUP + 0011 has the disjunction property.

R4""Celd-
Beeson, M.J., 1975, The nonderivability in intuitionistic formal systems of theorems

on the continuity of effective operations, JSL 40, 321-346.

Berarducci, A., 1990, The interpretability logic of Peano arithmetic, JSL 55, 1059-

1089.

Boolos, G., 1993, The logic of provability, Cambridge University Press, Cambridge,

UK.

De Jongh, D.H.J., 1982, Formulas of one propositional variable in intuitionistic arith-

metic, in: van TV[82], 51-64.

De Jongh, D.H.J., Renardel, G.R., Van Benthem, J.F.A.K., Visser, A., 1994, NNIL, a

study in intuitionistic propositional logic, Logic Group Preprint Series 111, Dept.

of Philosophy, University of Utrecht, Heidelberglaan 8, 3584 CS Utrecht.

De Jongh, D.H.J., Visser, A., 1994, Embeddings of Heyting Algebras, revised version,

Logic Group Preprint Series 115, Dept. of Philosophy, University of Utrecht,
Heidelberglaan 8, 3584 CS Utrecht.

De Jongh, D.H.J., Chagrova, L.A., to appear, The decidability of dependency in intui-

tionistic propositional logic.

Esakia, L., Artemov, S., 1991, Provability logic, Special issue of Studia Logica, L1.

39



Fagin, R., Halpern, J.Y., Vardi, M.Y., 1992, What is an inference rule? JSL, vol 57,
1018-1045.

Friedman, H., 1975, One hundred and two problems in mathematical .logic, JSL 40,
113-129.

Friedman, H., 1977, Classically and intuitionistically provably recursive functions, in:

MS[771, 21-27.

Leivant, D., 1975, Absoluteness in intuitionistic logic, PhD Thesis, University of

Amsterdam. (Corrected reprint: 1979, Mathematical Centre Tract, no 73, Amster-

dam.)

Leivant, D., 1980, Innocuous substitutions, JSL 45, 363-368.

Leivant, D., 198 1, Implicational complexity in intuitionistic arithmetic, JSL 46, 240-

248.

Muller, G.H., and Scott, D. (eds.), 1977, Higher set theory, Springer Lecture Notes in

Mathematics 669, Springer, Berlin.

Petkov, P.P. (ed.), 1990, Mathematical Logic, (Proceedings of the Heyting
Conference, Chaika, 1988), Plenum press, New York and London.

Pitts, A., 1992, On an interpretation of second order quantification in first order in-

tuitionistic propositional logic, JSL 57, 33-52.

Renardel de Lavalette, G.R., 1986, Interpolation in a fragment of intuitionistic propo-

sitional logic, Logic Group Preprint Series 5, Dept. of Philosophy, University of

Utrecht, Heidelberglaan 8, 3584 CS Utrecht.

Rybakov, V.V., 1992, Rules of inference with parameters for intuitionistic logic, JSL

57, 912-923.

Shavrukov, V., 1993, Subalgebras of diagonalizable algebras of theories containing

arithmetic, Dissertationes Mathematicae, Polska Akademia Nauk., Mathematical

Institute.

Statman, R., 1979, Intuitionistic propositional logic is polynomial space complete,

Theoretical Computer Science, vol. 9, 67-72.

Svejdar, V., 1983, Modal Analysis of Generalized Rosser Sentences, JSL 48, 986-

999.
Smorynski, C., 1973, Applications of Kripke Models, in Troelstra[73], 324-391.

Smoryfiski, C., 1985, Self-Reference and Modal Logic, Springer Verlag, Berlin

Troelstra, A.S. (ed.), 1973, Metamathematical Investigations of IntuitionisticArithme-

tic and Analysis, Springer Lecture Notes 344, Springer Verlag, Berlin.

Troelstra, A.S. and Van Dalen, D (eds.), 1982, The L.E.J. Brouwer Centenary Sym=

posium, North Holland, Amsterdam.

Troelstra, A.S. and Van Dalen, D, 1988a, Constructivism in Mathematics, vol 1,

North Holland, Amsterdam.

40



Troelstra, A.S. and Van Dalen, D,. 1988b, Constructivism in Mathematics, vol 2,

North Holland, Amsterdam.

Van Benthem, J.F.A.K., 1991, Temporal Logic, Report X-91-05, ILLC, University of

Amsterdam; to appear in Handbook of Logic in AI and Logic Programming (Dov

Gabbay et al., eds., Oxford University Press).

Van Oosten, J., 1991, Exercises in realizability, PhD Thesis, University of Amster-

dam.

Visser, A., 1982, On the Completeness Principle, Annals of Mathematical Logic 22,

263-295.

Visser, A., 1985, Evaluation, provably deductive equivalence in Heyting's Arithmetic

of substitution instances of propositional formulas, Logic Group Preprint Series 4,

Dept. of Philosophy, University of Utrecht, Heidelbetglaan 8, 3584 CS Utrecht.

Visser, A., 1990; Interpretability Logic, in:.Petkov[90], 175-209.

Zambella, D., 1994, Shavrukov's Theorem on the subalgebras of diagonalizable alge-
bras for theories containing IAO+Exp, Notre Dame Journal of Formal Logic,

vol.35, 147-157.

41


