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It turns out that the fact that the Heyting algebra of Heyting's Arithmetic is RE, non-

recursive, is an immediate corollary of the results of the earlier preprint. This corollary

is now worked into the text.

A secondary improvement is that the proof of 3.7 is made more accessible.
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ABSTRACT: In this paper we study embeddings of Heyting algebras (Ha's). It is pointed out that such

embeddings are naturally connected with Derived Rules. We consider the Has embeddable in the Ha of

the Intuitionistic Propositional Calculus (IPC), i.e. the free Ha on No generators, those embeddable in

the Ha of Heyting's arithmetic (HA) and those embeddable in the Ha of HA*, a 'natural' extension of

HA. We prove the following theorems. The same Has on finitely many generators are embeddable in

the Ha of IPC and in the Ha of Boolean (or: Brouwerean) combinations of !-sentences of HA. The

Has on finitely many generators embeddable in the Ha of IPC are finitely axiomatizable. There is a

non-recursive Ha on three generators, that can be embedded in the Ha of HA. Every recursively

enumerable prime Ha is embeddable in the Ha of HA*.

1 Introduction

This paper sprung from an interest in the Heyting algebra's (Ha's) of Constructive

arithmetical theories. This interest was in its turn inspired by an interest in the Proposi-

tional Derived Rules of constructive arithmetical theories. We study and compare four

specific Has in some detail:

The free Ha on N o generators, in other words: the Ha 9)IpC of the Intuitionistic

.Propositional Calculus (IPC).

The Ha Hp of Heyting's Arithmetic (HA).

The Ha CSHA of BY-1-sentences in HA (here BY1 is the set of Boolean (or perhaps

more appropriately: Brouwerean) combinations of Y1-sentences).

The Ha . HA* of HA*, an arithmetical theory studied in Visser[82].

We ask ourselves- which RE Has can be embedded in our target algebras. As we will

see the answer to this question also determines what the Propositional Derived Rules

for the various theories are. A reasonably complete answer has only been obtained for

HA*. All RE algebras of which one could reasonably expect it, i.e. those satisfying

the property of primenes (corresponding to having the disjunction property), are

embeddable in 2HA*, and in consequence, only rules directly derivable in intuitionistic

logic are rules under which HA* is closed. This property of HA* is a nice one -and in
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a surprising manner enables one to prove some properties of HA itself- but it does not

seem to hold for more usual theories. Many of these algebras cannot be embedded in

'HA, nor in . pc, since both these theories validate additional rules not derivable in

intuitionistic logic, the best known being:

-A-(BvC) / (-iA- (Independence of Premiss Rule)

We will show that all Has on finitely many generators embeddable in 90IpC are finitely

axiomatizable (i.e. are the Has of finitely axiomatized IPC-theories). In contrast there

is a non-recursive (and hence not finitely axiomatizable) Ha on three generators, that

can be embedded in HA It is an open question, whether there is a finitely

axiomatizable Ha on finitely many generators, that can be embedded in 92HA, but not in

IPC It is also open whether HA and IPC have the same derived rules. On the other

hand, we will show that the same Has on finitely many generators are embeddable in

5HA and in 52rpc. It follows that rules validated by HA, when one restricts oneself to

substitutions of propositional combinations of Y-1-sentences, and rules validated by IPC

are the same. It is open whether 5HA and . IpC are isomorphic. (We conjecture: no.)

We state some sample results with the places, where they can be found:

Any RE prime Ha 9) can be embedded in HA*. (5.1)

There are I -sentences A and B such that the subalgebra of ?HA* generated by A

and B is RE, non-recursive. (7)

There are I -sentences A and B and a sentence C, such that the subalgebra of HA

generated by A, B and C is RE, non-recursive. It follows that HA is non-

recursive. (7)

Let be a Ha on finitely many generators, which is embeddable in 9)IpC. Then

is the Ha of a finitely axiomatizable IPC-theory. (2.3)

Let 9) be a Ha on finitely many generators. Then is embeddable in 5HA iff b is

embeddable in Ipc. (6.2)

The paper is organized as follows. In section 1 we define Has in the presentation most

useful to our purposes. In section 2 we introduce the notion of embedding and a

connected notion of propositional formulas exactly provable for sentences of a theory.

Propositional formulas with no iterations of implications on the left (NNIL formulas)

turn out to play an important role. In section 3 and 4 necessary facts about HA and IPC,
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and HA* respectively, are given. In section 5 the above mentioned `RE universality' of

HA* is proved. In section 6 SHA is treated. Finally, in section 7 it is shown that, in

consequence of the previous results, there is a Ha on two generators which is RE, but

non-recursive, that can be embedded in k2HA*, whereas such an algebra could never be

embeddable in (HA or,. The theorem that there is a Ha on three generators which

is RE, but non-recursive, that can be embedded in HA is an immediate consequence of

this last result. It follows that HA is non-recursive.

1.1 Acknowledgements: Most of the results of this paper were obtained

during an exceptionally inspiring visit of both authors to the Katedra Logiky of Prague

University and the Institute of Computer and Information Science of the Czech Acade-

my of Sciences. We thank the Prague logicians for their wonderful hospitality.

Some of the main methods employed in this paper were invented by Volodya

Shavrukov (see Shavrukov[93]) and further developed and simplified by Domenico

Zambella (see Zambella[92]). The work of Shavrukov and Zambella concerns embed-

dings of RE Diagonalizable algebras into Diagonalizable algebras of Classical

arithmetical theories.

A major tool of the present paper is also Pitts's Uniform Interpolation Theorem (see

Pitts [92]).

1.2 The classical case: Before going on, let's briefly look at the Boolean

algebras of classical arithmetical theories. The Boolean algebras of all consistent RE

arithmetical theories extending Q are isomorphic to the free Boolean algebra on X o

generators, i.e. to the Boolean algebra Ocpc of the Classical Propositional Calculus

(CPC). As far as we can trace this result is folklore. It follows from three observations.

First: the Boolean algebras of all consistent RE arithmetical theories extending Q are

countably infinite and (by Rosser's Theorem, see also 1.4) atomless. Second: Ocpc is

countably infinite and atomless: Third: all countably infinite atomless Boolean algebras

are isomorphic.

It is not difficult to show that every countable Boolean algebra can be embedded into

8cpc.
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1.3 Heyting algebras: A Heyting algebra (Ha) is a structure
(H,A,V,1,-4), where (H,A,v,1) is a lattice with bottom 1. We demand that is non-

trivial, i.e. that H contains at least two elements. Let x__y be defined by xvy=y. -4 is a

binary operation satisfying: xny<_z <= x<_(y- *z). It is easily seen that if a partial order can

be extended to a Ha such an extension is unique. Has can be shown to be distributive

lattices. Conversely every finite distributive lattice determines a Heyting algebra.

There are many good sources for Has. We just mention van Troelstra & van Da-

len[88b].

We will write:

T := 1-41,

-x x-1,
xE-4y :_ (x-*y)A(Y-4x),

k) =A(x) :tom A(x)=T,

where A is a polynomial in A,V,1,-* and x is a sequence of elements of

Note that .2 can be recovered from --, since A(x)=B(y) #* S,)i--A(x)t-aB(y).

Define:

f :tom f is an embedding of . into AS f for some f

-A : 9?:-5A and
Clearly S- is a preorder on Has with induced equivalence relation

1.3.1 Example: Equivalent Has need not be isomorphic.

It is easily seen that any linear order with endpoints determines a Ha. E.g. we find:

x--->y := T if x5y, x--).y :=y if y<x. Moreover an embedding of linear orderings

determines an embedding of Has. Consider the algebras given by the real interval x[0,1].

and by [0,1/2]u{ 11. On the one hand these algebras are equivalent, on the other they

are not isomorphic. O

4
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Let T be any consistent theory in constructive propositional logic or in constructive

predicate logic. We take T to be the obvious Ha given by the T-provable equivalence

classes. Sometimes we will consider only equivalence classes of a subset X of the

language of T, which is closed under the propositional connectives. In this case we

write:

We can go from theory to algebra. Obviously it is sometimes natural to go back and

recover theories from algebras. We introduce some notions relevant to this motion,

which is executed by choosing a set of generators.

A numbered Ha H is a pair j,92), where

(i) f is a function (not necessarily injective) from either n={0,...,n-1 } or co to H92;

(ii) 92 is generated by the range of f.

A numbered Ha is finitely based if dom(f) is finite.

11 9,511 := (f,.) is finitely based and

2v is the language of IPC if v=w, and the language of IPC restricted to po,...,pn-1 if

v=n. We often write 2 for 2u,.

For AE 2dom(f): H= A : . k A[ f ], where At f ] is the result of substituting fi for pi

in A (for each relevant i). It is pleasant to use also when A contains pi for

j e dom(f ). In this case we substitute T for pi.

Th(H) {AE2dom(f)I W A}.

1.3-.2 Fact: Let H=(f,.) be a numbered Ha. Then 9.1 is isomorphic to Th(H)-

Proof: Trivial.

Define:

A numbered Ha H is RE (recursive) if Th(H) is RE (recursive).

A Ha is RE (recursive) if it can be extended to an RE (recursive) numbered Ha.

Note that the Ha of an RE (recursive) theory is RE (recursive).

1.3.3 Example: Let HpA:=(f ,SppA), where fi is the equivalence class of an

-arithmetical sentence A if i is the Godelnumber of A, and fi is T if i is not the

Godelnumber of an arithmetical sentence. Let HCpC:=(9,52CpC), where gi is the

5
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equivalence class of pi. Then HpA is RE, non-recursive and HEPC is recursive. By 1.2,

PA and CPC are isomorphic and hence 52PA is recursive. O

1.3.4 Fact: Suppose « is RE (recursive) and suppose where A is a Ha

on finitely many generators. Then S is RE (recursive). In fact every finitely based

numbered Ha (f ,A) is recursive.

Proof: Obvious.

Let T be any theory and let f be a function from the propositional variables to the

language of T. We write A[ f ] for the result of substituting the f (pi) for pi in A. Define:

AkTB :r-* `df THA[f] = TF-B[f]..

We say that the inference form A to B is an IPC-derived rule for T. Since all derived

rules we will consider in this paper are IPC-derived we will suppress the `IPC'.

IPC-derived rules are studied in detail by V.V. Rybakov. A good reference is Ryba-

kov[92], where it is shown that the IPC-derived rules for IPC are decidable.

1.3.5 Fact

i) AkTB VHE II T1 (HkA HkB)

ii) II TI1I15UI1 and AkUB AkTB.

iii) = 115,IIgiiSS11.

Proof: Obvious.

1.4 The density of Heyting algebras of arithmetical theories

Evidently many properties of Has are not captured by embeddability results (see.

example 1.3.1). Such properties are not the main subject of this paper, yet, they at least

merit a brief comment here. Moreover many properties of the Boolean algebra of

Classical arithmetical theories can be generalized to the constructive case. We briefly

illustrate this for the property of density.

Let i-Q be the constructive version of Robinson's Arithmetic.

6
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1.4.1 Fact: The Ha of a consistent RE extension of i-Q is dense, i.e. between

every two points there is a third one.

Proof: Fix a consistent RE extension of i-Q, say T. Let D stand for (the formalization

of) provability in T. Consider any two sentences A and B such that O(A--)B) and not

(B-+A).

Interpolated Remark: The usual proof of this theorem for the classical case would

be as follows. Take the Rosser sentence R of T+B+-,A. I.e. something like:

TI- R H

holds. Here 5 is the witness comparison relation, which is defined between formulas

having an outer existential quantifier. There are two witness comparison relations,

which are defined as follows:

(3x Dx <_ 3y Ey) := 3x (Dx A `dy<x -Ey),

(3x Dx < 3y Ey) := 3x (Dx A Vy5x -Ey).

The element between A and B will be: C := (Av(BAR)). In constructive logic one cannot

even conclude from the data that T+B+-A is consistent. The correct constructive proof

is just a slight variation on the classical argument. O End of Remark

Define by the fixed point theorem a sentence R such that (verifiably in T):

R H ((BAR)-*A) _< (B-*(AvR)).

Let S := (B-*(AvR)) < ((BAR)-*A) and C :_ (Av(BAR)). Clearly D(A--+C) and

(C-+B).

We have:

(C-+A) -4 ((BAR)-+A)
-* RvS.

On the other hand:

((BAR)-*A) A R -+ D((BAR)-*A) A DR

-* (B-+A).

And:

((BAR)--*A) A S -+ D((BAR)-+A) A O(B-*(AvR))

-+ (B-+A).

Combining we find: [](C-+A) -* (B-*A), Ergo not (C-+A).
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Also we have:

D(B->C) - (B-*(AvR))
-* RvS.

On the other hand:

D(B->(AvR)) A S -4 [1(B-->(AvR)) A DS

-* (B---)(AvR)) A CJ-,R

-> (B-->A).

And:

D(B->(AvR)) A R -* 0(B->(AvR)) A D((BAR)->A)

Combining, we find: (B-aC) --* (B-A). Ergo not 0(C->A).

2 Embeddings of Heyting algebras in Free Heyting algebras

Every Ha on countably many generators is the homomorphic image of 9)IpC. In other,

words: it is the Ha of some theory in IPC. On the other hand not every Ha on

countably many generators can be embedded into 92IpC. First of allIpC is prime, i.e.:

,IPC= (xvy) = ( IPC=x or or, in other words: IPC has the disjunction

property. Clearly subalgebras inherit primeness. In this section we illustrate that many

countable prime Has are not embeddable in S21pc. We provide some information about

the Has on finitely many generators that are embeddable in IpC. The problem of

giving a neat characterization of the algebras embeddable in 92IpC is still open.

Whenever `F-' is used without exhibiting a theory we intend provability in IPC.

2.1 Example: There are many non-trivial derived rules for IPC. For example:

I- (--A--->A) -> (Av-A) I- - iAv-A (De Jongh[821)

I- -iA-*(BvC) I- (-A-*B)v (-A-4C) (Independence of Premiss Rule)

This means that every embeddable algebra 9p will satisfy:

. = (-i-iA-*A) -> (Av-tA) -Av-A
-A-4(BvC) g)=(-iA- >B)v (-ABC).

2.2 Example: We give an infinitary derived rule. Let Fn(p) be an enumeration

of the formulas presenting the non-top elements of the Rieger Nishimura Lattice. (For

8
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information about this lattice, see e.g.: Troelstra & van Dalen[88a], p49.) We have:

(For allnF-Fn(A)-aB)= HB.

It follows that in an embedded Ha for any x there can be no element between the Fn (x)

and the top.

Proof: Suppose for all n l- Fn(A) - B. Let p be a propositional variable not in A and

B. It follows that for all n: F- Fn(p) -4 ((p"A)-4B). By Pitts[92] there is a uniform

pre-interpolant of ((p*-A)-*B) w.r.t. to the variables in this formula unequal to p. This

means that there is a formula C with just p free such that for any formula D containing

no variables of A or B we have:

H- D -4 ((p - A)---B) <--* F-

(Following Pitts we could write the formula C as: `dq((p-*A)--B), where q represents

the propositional variables in A,B.) It follows that for every n: H- Fn(p) -` C. Ergo

(since C only contains p): F- C and hence F- ((p - A) -+B). Substituting A for p we find:

F-B.

2.3 Theorem: Every Ha on finitely many generators that is embeddable in

is the Ha of a finitely axiomatizable IPC theory.

Proof: Suppose the generators of the algebra go to A1,...,An. We have:

F- B(A1,...,An) F- ((p1HA1)n...n(pn*An)) -4 B(pl,...,pn).

We suppose that {p1,...,pn}r VAR(Ai)=o and VAR(B)C{p1,...,pn}. Now let C be

the Pittsean post-interpolant of ((p1HA1)n...n(pnHAn)) w.r.t. the variables in the A.

So, if these variables are q, we could write C as: '3q((p1HA1)n...n(pnHAn)). The

only variables of C are the pi and we have: F- B(A1,...,An) F- C--+B.

As we will see in 7.2 there are three elements of gHA, such that the algebra generated

by these elements is not recursive. A fortiori, this algebra is not finitely axiomatizable.

Thus no analogue of 2.3 holds for 'NA-

Which formulas C are axioms of Has on finitely many generators that are embeddable

in , IpC? We call such C IPC-exactly provable. In this paper we will abbreviate IPC-

exactly provable by exact. So C(p1,...,p0) is exact if there are A1,...,An such that for

all B(pl,...,pn): F-B(A1,...,An) t* H-C-*B. The notion of exactly provable formula was I

9?,pC

t-->

#>
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introduced in De Jongh[82].

Clearly by the above the exactly provable formulas are precisely those which are

provably equivalent to Pitts' formulas of the form 3q((p1HAi)A...A(pnHAn)), where

q contains precisely the variables occurring in the Ai and where none of the pj is in q.

We say that A is prime if IPC+A is prime, i.e. IPC+A is consistent and IPC+A has

the disjunction property:

for all B,CE 2 HA-B or HA-C.

In an alternative formulation, adhering to the convention that the empty disjunction is

L, IPC is prime if for every finite set of formulas X:

I-A- VX 3B(=-X I-A-4B.

We give some properties of exact formulas and provide some special classes of such

formulas. Our primary aim is to show that the prime NNIL-formulas are all exact.

NNIL formulas are formulas with No Nestings of Implications to the Left. Let's

define NNIL more precisely. Let Sub(A) be the set of subformulas of A. We have:

A is in NNIL, iff for all (B-4C)E Sub(A): B does not contain ->.

NNIL-formulas are studied in Visser[85], Renardel[86] and in BJRV[to appear]. The

lemmas we give, can, however, also be used to establish exactness for more formulas

than our target class. The result on NNIL will be used in the proof of 6.2.

2.4 Observation: If A is exact, then A is prime.

2.5 Lemma: Suppose that A is exact via f and that B[f ] is exact via. g, then

(AAB) is exact via fog.

Proof: We have:

- (A/\B)--4C < t-A--*(B-*C)

- (B-*C)[f]

-B[f]-*C[f]
-c[f][gl 13

2.6 Observation: (i) p is exact via [p:=T]. (ii). (p-->A) is exact via [p:=pAA
.

=*

=*
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Proof: (i) is trivial. We prove (ii). Without loss of generality we may assume that p does

not occur in A, since f (p-->A)H(p-4A[p:=T]) and f-(pAA)H(pnA[p:=T]). We have:

t=:> H (p-*(PAA)) - C

t- C[p:=(pAA)J.

We say that a formula is confined if it is a conjunction of formulas of the form p-*B. A

formula is strictly confined if it is confined and if for any two distinct conjuncts the

antecedent variables are different. (We consider T as the empty conjunction, so T is

strictly confined).

2.7 Corollary: Any confined formula is exact.

Proof: Suppose A is confined. First rewrite A to a strictly confined formula A' by

merging different conjuncts p-*B and p---)C to p-*(BAC). Suppose A' is of the form

(p-*D)AE. This formula is equivalent to

A" is exact if A*:=E[p:=(pAD[p:=TJ)) is. Clearly A* is again a strictly confined

formula with less conjuncts than A. Repeat the procedure till all conjuncts are

eliminated and we end up with T. T is exact by the identity substitution.

Note that it follows that confined formulas are prime.

2.8 Theorem: Every prime NNIL-formula is exact.

2.8.1 Lemma: Suppose p does not occur in A. Then A is prime if (PAA) is.

Proof: Suppose (PAA) is prime. Let k be a finite set of formulas and suppose

I-A-*VX. Without loss of generality we may assume that p does not occur in X. It

follows that F- (pAA)--*VX and hence +- (pAA)-*B for some BE X. By substituting T for

p we find: I- A-*B.

Proof of 2.8: Let A be a NNIL-formula. We will reduce A to a formula A0. The

formula AO satisfies one of the following properties: (i) AO is confined or (ii) AO is a

prime NNIL-formula and has strictly less propositional variables than A. Moreover we

ii
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have: if A0 is exact, then A is exact. In the first case we are done, in the second case we

repeat the procedure.

Step 1: We first remove T and 1 from A by the obvious procedure. This only fails

when we end up with either T or I. We cannot end up with 1, since A was supposed

to be prime and hence non-refutable. If we end up with T, then A is exact by the

identity substitution. If we do not end up with T go on to step 2.

Step 2: Write A in disjunctive normal form (treating the implications as atoms). Since

A is prime, it is equivalent with one of its disjuncts, say A'. A' is a conjunction of

atoms and implications. If the number of atoms is zero go on to step 3. Otherwise write

A' in the form PAC. Clearly PAC is equivalent to pA(C[p:=T]). Put Ao:= C[p:=T].

Note that Ao is again prime by 2.8.1 and that A is exact if Ao is (by 2.5, 2.6).

Step 3: A' is a conjunction of implications. Reduce subformulas of the form

(BAC)-4D to (B-*(C-D)) and subformulas of the form (BvC)-4D to (B- *D)A(C-4D).

Repeat the procedure till no such subformulas are left. Let A0 be the result. Since A'

was in NNIL, clearly Ao is confined. J

3 Some useful facts about IPC and HA

In this section we provide some technical preliminaries to the result of section 5.

We suppose the reader is familiar with Kripke models for IPC (see Troelstra & van

Dalen[88a], or Smorynski[73]). To fix notations: a Kripke model is a structure a4=

(K,<_,l), where K is a non-empty set of nodes, 5 is a partial ordering, is the atomic

forcing relation: it is a relation between nodes and propositional atoms, satisfying:

and kip k'--p. The relation can be extended to the full language of IPC in the

standard way. We write III =A for: b'kE K A. A rooted Kripke model I}S is a structure

(K,ko,S, = ), where is a Kripke model and where k0E K is the bottom element

w.r.t. <_. For any kEK QS[k] is the model where K':=(k'Ik<_k'} and where

<_' and l' are the restrictions of <_ respectively to K. (We will often simply write

and for _<' and )'.)

3.1 The Henkin construction: A set X is adequate if it is finite, closed

12
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under subformulas and contains 1. A set r is X-saturated if-

(i) TX, (ii) rv 1, (iii) Fl- A, AE X, AE T,

{iv) TI-(BvC), (BvC)EX =* BE T or CET.

The Henkin model fHix has as nodes the X-saturated sets and as accessibily relation c.

The atomic forcing in the nodes is given by: rip t* per. We have by a standard

argument: for AE X: 171 A t= AE T.

3.2 Definitions

i) Let K be a set of Kripke models. M(K) is the model with nodes (k,K) for kE KE K

and ordering: (k,K)<_(m, il) :tom K=M and k<-Km. As atomic forcing we take:

(k,K)l=p :tom k1= Kp.

(In practice we will forget the second components of the new nodes, pretending the

domains to be disjoint already.)

ii) Let K be a Kripke model. B(K) is the rooted model obtained by adding a new

bottom b to K and by taking: bop :tom K1p. We write Glue(K) := BM(K).

3.3 Push Down Lemma: Let X be adequate. Suppose A is X-saturated and

Kf=A. Then Glue(HX[A],K)1A.

Proof: We show by induction on AE X that bI=A t-* AE A. The cases of atoms,

conjunction and disjunction are trivial. If (B-*C)EX and bl=(B-*C), then A1= (B-->C)

and hence (B-*C)E A. Conversely suppose (B--*C)E A. If bl# B, we are easily done. If

bI=B, then BE A, hence Cc A and by the Induction Hypothesis: b1 C. L i

We say that A is prime if it is consistent and:

for every (CvD)e 2: At- (CvD) AI- C or AF- D.

3.4 Theorem: Suppose X is adequate and A is X-saturated. then A is prime.

Proof: A is consistent by definition. Suppose AF-CvD and AVC and AV-D. Suppose

K1A, EKh C, Ml--A and MI#D. Consider Glue(HX(A),fld,M). By 3.3 we have: bro.

On the other hand by persistence: bV C and bl D. Contradiction. C]

13
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3.5 A big model: Construct a Henkin model by taking as nodes (F,X), where

X is adequate and F is X-saturated. Take ([,X) <_ (A,Y) FcA and Xc_Y. Also:

(I',X)= p for The is

the O

3.4 Formalization in HA: We first formalize Kripke completeness for finite

models in Peano Arithmetic (PA). Noting that the model existence theorem yields a

multi-exponential bound E on the size of the Henkin model we formulate the result as

follows: PA F- `VA((VK:!_E(A) fK=A) - IPC-A). Noting that the formula proved is

j12, we see that by a theorem due to Kreisel: HAk VA((VK<F(A) K = A) -4 IPCF- A).

Since the converse is readily verifiable in HA we find:

HAF- VA(('VKC E(A) K =A) H IPCf-A).

So IPC-provability is decidable in HA.

In intuitionistic theories even subsets of the singleton set are not decidable. We,

however, assume that the finite sets that we are using, e.g. in the construction of the

Henkin model, are coded as numbers and hence provably finite and decidable. Under

this convention whether a finite set is X-saturated or not becomes decidable, given the

decidability of IPC-provability.

We leave it to the reader to verify 3.3 and 3.4 in HA (assuming K to be a finite set of

finite models, etc.). Note that the reductio reasoning in 3.4 is harmless because of

decidability. O

3.7 Theorem: Let X be a prime, RE set of IPC-formulas, closed under IPC-

consequence. Without loss of generality we may assume that X is given by a recursive

increasing sequence of finite approximations Xi. We assume that Xo=o. Say, this

sequence is presented by the O1-formula t(i,x). Then we can represent X by a sequence

(Yi,Zi), where:

i) X=U Yi,

ii) i<j = (YicYi and ZicZj)

iii) Zi is adequate

iv) Yi is Zi-saturated

Our sequence can be represented by a O1-formula r(i,y,z) such that .HA verifies the

14
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functionality of the sequence, plus (ii), (iii), (iv). Let Y be given as:

Y := {Bl3i,y,z (v(i,y,z) A BEy)}.

It follows by 3.4-3.6 that HA verifies that:

Y is prime, that Y X and that ((X is prime) -4 Y=X).

In fact we will only use in this paper that ((X is prime) -4 Y=X) is classically true, not

that HA verifies this fact.

Fix an increasing sequence Ui of adequate sets such that for every A we can effectively

find an i such that Sub(A)c_Ui. Before proving 3.7, we provide a modest lemma.

Define:

Sat(n,m,k) :r-* for all (BvC)E Un (Xml- (BvC) = (Xki-B or Xkf- C)).

Note that HA proves that Sat is decidable.

3.7.1 Lemma

i) HA I- (X is prime) -4 Vn,m3k Sat(n,m,k).

ii) HA f- (X is prime) -- Vn,m3k (k->M A Sat(n,k,k)).

Proof of the Lemma: We reason informally in HA.

i) Since Un is finite we can exhaustively enumerate the Un-disjunctions EvF proved by

Xm. Since X is prime we can find for any such EvF an i such that Xif-E or Xif-F. By

the collection pronciple (which is provable in HA) we can find an upper bound k of

these is.

ii) Define F as follows:

F(p) := the smallest q?p such that Sat(n,p,q).

By (i) F is recursive. Let N:=lUnl, Consider the sequence (m,F(m),...,FN+2(m)). If this

sequence were strictly increasing, there would be N+l different disjunctions in Un.

This is impossible by the Pigeon Hole Principle for recursive injections and decidable

finite sets, which is verifiable in HA. Since everything in sight is decidable, we may

conclude that there is a k with Oak. N+2 and Sat(n,k,k). (Lemma)

Proof of 3.7: We reason informally in HA. Remember that our sets are really finite,

15



decidable sets represented by numbers. We define weakly monotonic functions,

f,g:ar-->co and take Zi:=Uf1 and Yi:={BE Z11Xgi -B }.

f0:=0, g0:=0

Consider Ufn+1 In case {BE Ufn+11Xn+1HB} is Ufn+1-saturated (i.o.w. if

Sat(fn+l,n+l,n+1)), put f(n+l):=fn+l, g(n+l):=n+1. Otherwise f(n+1):=fn,

g(n+l):=gn.

f and g are recursive, since, by 3.6, IPC-provability is (verifiably) decidable. By the

formalization of 3.4, every Yi is prime (in case i=0, this uses the fact that IPC is

prime).

We prove ((X is prime) - Y=X). Suppose X is prime. We will show that both f and g

tend to infinity (and hence Y=X). Consider any n. Let k be the smallest number such

that k?n+1 and Sat(fn+1,k,k). Then evidently the first clause of the recursion step of

the definitions of f and g will be activated at k. Hence for every n there is a lvn such

that f and g increase at k. By a simple induction it follows that f and g tend to infinity.

4 What is HA*?

In this section we describe the theory HA*. This theory was introduced in Visser[82].

HA* is to Beeson's fp-realizability (Beeson[75]) as Troelstra's HA+ECT0 is to

Kleene's r-realizability. This means that for a suitable variant of fp-realizability HA* is

the set of sentences such that their fp-translations are provable in HA. The natural way

to define HA* is by a fixed point construction as: HA plus the Completeness Principle

for HA*. (Here it is essential that the construction is verifiable in HA, see below.) The

Completeness Principle can be viewed as an arithmetically interpreted modal principle.

The Completeness Principle viewed modally is:

C I- A

The Completeness Principle for a specific theory T is:

C[T] I A -> TA.
Here T stands for the formalization of provability in T. In the statement of the

principle the syntactical variable `A' ranges over formulas. Free occurrences of

variables inside the box are interpreted according to the following convention: TA

means ProvT(t(x)), where t(x) is the term the Godelnumber of the result of substituting

the Godelnumbers of the numerals of the x's for the variables in A'.

16

0



We have:

HA* = HA + C[HA*].

We briefly review some of the results of Visser[82].

Let s21 be the smallest class closed under atoms and all connectives except implica-

tion, satisfying: AE 7-1 and BE W (A-+B)E W. Note that modulo provable

equivalence in HA all formulas of the classical arithmetical hierarchy in their

standard form are in 2T. HA* is conservative w.r.t. 21 over HA.

There are infinitely many incomparable T with T=HA+CT. However if T=HA+CT

verifiably in HA, then T=HA*.

Let KLS:=Kreisel-Lacombe-.Shoenfield's Theorem on the continuity of the effective

operations. We have: HA*- KLS -* HA*1. This immediately gives Beeson's

result that HAFfKLS (see Beeson[75]).

Consider the Lob conditions.

Ll F-A F- CA

L2 F- 1(A-*B) -*

L3 F- A- A
L4 F- CA

i-K is given by IPC+Ll,L2. i-L is i-K+L3,L4. We write i-K{P} for the extension of i-

K with some principle P. Note that i-L{C} is valid for provability interpretations in

HA*.

A principle closely connected to C is the Strong Lob Principle:

SL F- (OA--->A)-->A

As a special case of SL we have:

4.2 Fact: i-L{ C) is interderivable with i-K{ SL).

Proof: L4 is immediate from SL. "i-K { SL } F- C":

F- A -*

17
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- A.
"i-L{C}I-SL":

H (DA-A)A

-4 A

i-L { C } is a kind of Kindergarten theory in which all the well-known syntactical results

of Provability Logic have extremely simple versions. We add the proofs for

completeness. 4.3-4.6 are not essential for the rest of the paper.

4.3 Substitution Lemma: In i-L { C } we have a very powerful substitution

principle:

S++ f- (A<-->B) (CA-CB)

Proof: By a simple induction on C.

We say that p occurs only modalized in A if all occurrences of p are in the scope of .

4.4 Uniqueness of Fixed Points in i-L{C}: Suppose p occurs only mo-

dalized in Ap and q does not occur in Ap. We have in i-L{C}:

(PHAP)A(gHAq) - (ApHAq)

- (p+->q))

-* (p-*u).

4.5 Explicit Fixed Points in i-L{C}: Suppose p occurs only modalized in

Ap. We show that Ap has fixed point AT. We have:

I- AT- (ATHT)
-4AAT.

AAT -4 -4 (ATHT)
-* AT)

-* AT.

A formula of the modal language is closed if it contains no propositional variables. We

define: 01 := 1, n+11 := n±, W1 := T.

18
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4.6 The Closed Fragment of i-L{C}: Every closed formula A is i-L{C}-

provably equivalent to a formula of the form Oat l for (v<_w.

Proof: The proof is by induction on A. We have:

I- T H Dw 1, H -L"0 01
I- DalADR1 H Omin(a,a)1

t]a1vOR1 H Dmax(a,3)1

I- D01l-4Da1 H where ((x-4 ):=T if a5[3 and (a--j(3):=(3 if 0<a.

Note that min(a,y)5 3 y<_(a-> ).

F- H 1+a1

4.7 Open Problems

i) Is i-L{C} the provability logic of HA*?

ii) Prove or refute: HAI--,-,KLS.

5 A Shavrukov Style Embedding Theorem for HA*

Shavrukov proved that every RE Diagonalizable algebra satisfying an appropriate

Disjunction Property is embeddable in the Diagonalizable algebra of Peano Arithmetic.

It is clear from section 3 that there is no analogous result for Has and Heyting

Arithmetic. In this section we show that an analogue can be obtained for the theory

HA*.

5.1 Theorem: Any RE prime Ha 92 can be embedded in Moreover the

equivalence classes in the range of the embedding all contain a 11-sentence.

Before proving the theorem we briefly look at an illustrative example to give the reader

some feeling of how it is possible that an embedded algebra can completely consist of

equivalence classes of 11-sentences.

5.1.1 Example: Consider the algebra k?, IPC-axiomatized by --p->p. To be

precise: = IPC+(- ppap)( 1) We have:

can be embedded into IpC by e.g. [p := -gyp};

can be embedded into HA by e.g. [p := -10HA11

19
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On the other hand . cannot be embedded into 'NA by sending p to a
Y'1-sentence,

since for any Y'1-sentence B, we have:

HAF---B--B HA-By-B

HA- B or HA- -B.

(The first implication is proved by applying the Friedman translation for -,B to

(--,B-->B). See e.g. Visser[85].)

We turn to HA*. Let R be the ordinary 11 Rosser sentence for HA*. I.e.:

R H HA*-1R 5 HA*R.

Let S :_ HA*R < HA*-IR. We have by the ordinary Rosser property:

HA* f. RandHA*Ff S.

On the other hand we have:

HA* F- -R H S and and HA* F- -S H R.

We prove the first equivalence. "F-" Trivially HA* F- S -4 -R. "--->" Reason in HA*.

Suppose -R and HA*S. It follows from the second assumption that HA*-,R and

hence that RvS. Combining RvS with our first assumption, we get: S. By SL we may

drop the assumption HA*S.

Using the above facts it is easy to see that the subalgebra of HA* generated by R is

given by the non-equivalent 11-sentences: 1, R, S, HA*1, T. This algebra is clearly

isomorphic to . O

In 5.6.1 we show that it is definitely not the case in HA*, that the F,1-sentences are

closed under the Boolean operations (modulo provable equivalence).

Proof of 5.1: Let stand for HA* and Proof for ProofHA*

Consider the following Kripke model H, which is a variant of the Big Model of 3.5. Its

nodes are of the form (i,U,V), where:

iE{0,1}

V is an adequate set of formulas,

Uc_V, U is V-saturated.

Define -< and as follows:

(i,U,V) < (j,W,T) :tom i<_j and UcW and Vc_T and (i=1 V=T)

(i,U,V) p :t-* pE U.

20
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Using 3.3 and 3.6 it is easy to see (in HA) that:

for any formula A: (O,U,V) A UI-A,

for AE V: (1,U,V) A Uf-A.

Note that it follows that the relation k= A is decidable.

Let (Yi,Zi) be an enumeration of a propositional theory presenting . , satisfying the

properties promised in 3.7. We define a Solovay function Yj from Co to the nodes of H.

fix, the state of b at x, is defined as (bx)o. M will be set at 0. Till a certain catastrophic

Event happens, the state will remain 0 and t5 will run upward through nodes (O,Yi,Zi).

As soon as (and if) the Event happens, the state will definitively move to 1 and our

function runs upwards through nodes of the form (1,U,V). Define by the Recursion

Theorem fj as follows:

[A] :t--> 3x A

b0 (0,Y0,Z0)

Ej(n+l) := k if (*) Proof(n,[A]), 1jnl A,

k is a 1-node, fjn<k, k maximal such that kk A

1j(n+l) :_ (O,Yn+l,Zn+1) if case (*) does not obtain and n=0

1j(n+1) := fjn if case (*) does not obtain and

Since I= is (provably in HA) decidable, it follows that Ej is a well defined recursive

function.

Note that the catastrophic Event is the first time that (*) obtains. Before the Event the

function enumerates nodes representing better and better approximations of 9). After the

event it behaves like an ordinary Solovay function traveling upwards through a

converse wellfounded (w.r.t. <) part of the model.

5.2 Lemma

HA- x<_y -3 bx<(jy

HAI- (X-<y n 1jxkA) -> by= A

. Proof: Obvious. Q

21

=

= t-*



5.3 Lemma: HAH x#0 -4 3y (jx<fjy.

Proof: Reason in HA. Suppose ox#0. b must have arrived at b x by case (*). So for

some A and for some p<x: ProofHA*(p,[A]), fj(p+l)=1 xl#A. By 7_-completeness we

have: bxlOA. Combining this with 3y Tjy[--A, we obtain, using 5.2, the desired

result.

5.4 Lemma: -Fn=0 for any n.

Proof: Suppose dn#0. By 5.3: 3y rjn<rjy. Remember that HA* is 112-conservative

over HA. Thus HA* will certainly satisfy Y--reflection. It follows that for some m:

jn<Ijm. Repeating the argument we can construct an infinite strictly ascending chain

above bn. This contradicts n#0.

5.5 Lemma: [.] commutes modulo HA*-provability with the propositional

connectives.

Proof: Reason in HA*. Clearly [1] H 1 and [T] H T.

Suppose [AAB], then for some x: AAB. It follows that fjxl=A and 1jxl-- B and hence

[A]n[B]. Conversely suppose [A]n[B]. Say ljylA and tjzlB. Let u:=max(y,z), then

by 5.2: (jul= A and bud B and thus bud AAB. We may conclude: [AAB].

Suppose [AvB], then for some x: (jxlAvB. It follows that bxlA or tjxlB and hence

[A]v[B]. Conversely suppose [A]v[B]. Suppose e.g. TjylA. It is immediate that also

by[--AvB and so [AvB]. Similarly in case ijzlB.

Suppose [A-B] and [A]. Then for some x and y: txlA-*B and fjylA. Take

u:=max(x,y). Clearly bud A-4B and (jug A. Ergo: bud B and thus [B]. Conversely

suppose [A]-*[B]. We show [A-*B] using the SL. So we may also assume [A-B].

Suppose Proof(p,[A-*B]). In case b(p)i(A-.4B) we have [A-B]. Suppose
(j(p)I (A-*B). In this case fj(p+l) is a maximal k>tjp such that kl#(A-*B). It follows

that kl-- A and kko B. From fj(p+1)=kl-- A, we have: [A], and hence by assumption: [B].

But [B] imediately implies: [A-4B]. So in both cases we find [A-4B]. By the SL we
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may drop the assumtion that [A--B].

We finish our proof of 5. 1, by showing that: AE X HA* f- [A].

Suppose AE X. Then for some n: AE Yn. By 5.4: ?2n=O and hence ljn=(O,Yn,Zn). Ergo

1jn=A and so HA*) A and thus HA*I-[A]. Conversely suppose HA*- [A]. Say in

codes a proof of [A]. Suppose YmbA. Since (jm=(O,Ym,Zm) it follows that rjmi#A. So

clause (*) would become active and the catastrophic Event would take place. But 5.4

tells us this cannot happen at a standard stage.

5.6 Remarks on the proof: (i) The present proof combines the proof

strategy from Zambella[92] with an idea from Visser[85] (on how to handle implication

using the SQ. In fact our proof follows Zambella's quite closely modulo some inessen-

tial stylistic differences (like our use of a kind of Henkin model).

ii) The proof cannot be extended in any obvious way to give a completeness theorem

for the provability logic of HA*, since nodes of our Henkin model where we have 1
also satisfy Excluded Third. But, of course, HA* does not prove Excluded Third from

1.
iii) An attractive alternative formulation of the proof is to take, on the one hand, as

nodes of the Henkin model the more traditional pairs (U,V), but to work, on the other

hand, with two accessibility relations:

(U,V)-o(W,T) :tom U_W and Vc_T

(U,V)'<1(W,T) :t= UcW and V=T

Corresponding to these different accessibility relations we have forcing relations =o and

1. We define a suitably adapted Solovay function simultaneously with an auxiliary

state function. Which accessibily relation and which forcing relation is relevant, will

depend on the state. We leave it to the reader to work out more details.

iv) The [A]'s are 7,1. So our embedding is into the 11-formulas modulo HA*-provable

equivalence. The surprising property of the [Al's is that they are closed under

implication (modulo HA*-provable equivalence). It is not true in general that the

sentences of HA* are closed under implication. This is immediate from the following
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well-known fact (which is a simple adaptation of Kripke's result on flexible sentences

to the constructive case).

5.6.1 Fact: Let T be any consistent extension of HA. Then there is a Y-1-sentence

92, such that for no I1-sentence S: TF--S2 >S.

Proof: Let T be a consistent extension of HA. Take 92 such that:

HA F- 92 H *S)).

Here True] is the usual truth-predicate for 11-sentences and is the first

S such that T(-S2 5S) that we find if we run through the T-proofs. Clearly QE=- Y-1.

Suppose for some S'E 11: TH -Q<-4S'. Let S be the first such S' that we encounter,

when running through the T-proofs. We have: HAH S = and hence:

HAP Q*- TrueE(S). We may conclude that HAH- S2 - S. On the other hand TH - - S.

Ergo D- I. Quod non.

v) Note that the only place, where we used HA* in an essential way, is the application

of SL to handle the case of implication in the proof of Lemma 5.5. These applications

all have the form:

S)--->S for SE 1.

Let Try be the 7-1-truth predicate. Clearly all applications of SL, that we need, follow

from the single sentence:

SLo VxE 7-

SLo, in its turn, follows from SL, since SL is a scheme in which we allow free

variables. A pleasant lazy notation for SLo is: VS S, where the variable

`S' ranges over E1-sentences. Since HA proves f12-conservativity of HA* over HA,

SLO is HA-provably equivalent to: VS The complexity of SLo is

o ((E1-* 1)-* 1), which is both a subclass of d(r12 1) and of VBE1. By the

preceding considerations we find:

5.6.2 Fact: Every RE Ha can be embedded in the Ha of HA++SL0. O

Using the notation of 1.3, we have:

5.7 Corollary: A=HA*B t* IPCF-(A-*B).
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Proof: is trivial. Suppose IPCIf (A--->B). Then there is a finite rooted Kripke

model ll such that K4=A and KIAB. Let be the Ha of upwards closed sets of K.

Obviously go is finite and hence RE. Embedding 92 into HA* gives us an

interpretation f such that HA*I-A[f ] and HA*IfB[f ].

6 On Brouwerean combinations of 11-sentences in HA

In this section we study "HA g)HA(BY1). We show that S)IpC can be embedded in

SHA, and that the same Has on finitely many generators are embeddable in SHA and

in

6.1 Theorem: is embeddable in (25HA

Proof: Let [.] give the embedding of 5. 1 of 9)IpC into 52HA*. Let f be given by: f p

[p]. We have:

IPCI- A HAf-A[f ]

HA*4-A[f ]

HA*I-[A]

IPC}- A.

Note that 6.1 is the uniform version of De Jongh's Completeness Theorem for IPC

w.r.t. interpretations in HA using the result of 5 using only 11-sentences in the

interpretation of the propositional variables.

6.2 Theorem: Let . be a Ha on finitely many generators. Then is

embeddable in FHA iff S is embeddable in 92Ipc. It follows immediately that the IPC-

derived rules for IPC are equal to the IPC-derived rules for HA w.r.t. substitutions

involving only BY1-sentences.

To prove 6.2 we borrow three facts from Visser[85].

6.2.1 Fact: For each IPC-fromula A, there is a formula A* in NNIL such that:

i) All propositional variables of A* occur in A,

ii) For all BE NNIL: IPCI-B--*A < IPCI-B-->A*.
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Note that 6.2.1(ii) tells us in terms of k) Ipc that {BE NNIL I B<_A} both has and

contains a supremum A*. Thus A* is the greatest lower NNIL-approximant of A.

6.2.2 Fact: Let f assign 11-sentences to the propositional variables. Then for any

propositional A: HA-A[f ] HAF-A*[f ].

6.2.3 Fact: The number of NNIL-formulas in p1,...,pm modulo IPC-provable

equivalence is finite.

Proof of 6.2: Let . be a Ha on finitely many generators.

Suppose 92 is embeddable in 9)Ipc. By 6.1 '2IpC is embeddable in SHA and hence

is embeddable in -HA

Suppose is embeddable in SHA. Let the generators of be A1,...,An. These

generators are in their turn Boolean combinations of
11-sentences, say, S1,...,Sm. So

Ai = Bi(S1,...,Sm) for some propositional Bi. Let A be the subalgebra of SHA

generated by S1,...,Sm. Since. is embedded in A by assigning Bi to pi, it is sufficient

to show that A is embeddable in lpc. Let C* be the greatest lower NNIL-

approximant of C promised by 6.2. 1. We find by 6.2.2:

HAF-C(S1,...1Sm) HA-C*(S1,...,Sm).

So A= C AH C*. Since the set of NNIL-formulas in pl,...,pm is finite (modulo IPC-

provable equivalence) by 6.2.3, there are only finitely many possible C*. Let C+ be the

conjunction of the C*. We find for D in pl,...,pm, ADD '* IPCF-C+-4D. Clearly C+ is

a prime NNIL-formula. By 2.8 C+ is exact. Ergo A is embeddable in 9pIpC. U

6.3 Open question: Is C`HA isomorphic to .IpC? We conjecture: no.

7 An RE, non-recursive Ha on two generators

We show that there is an RE, non-recursive Ha on two generators. It is sufficient to

produce an infinite decidable set X of IPC-formulas in p,q such that:

for every finite X0 X and every AE X/X0: X06L A

every finite XocX has the disjunction property
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The desired algebra is obtained by taking an RE and non-recursive subset Y of X as

axiomatization.

In de Jongh[80] infinite sequences are produced of finite rooted Kripke models Li, of

formulas Ai (ti* in de Jongh[801, p107) and of formulas Bi (1pi in de Jongh[80],

p107) such that:

(Lid Ai t= i#j

Lip Bi i j
Ai is of the form Bi- *C for some C

It is decidable whether a formula is of the form Ai

(This result is originally due to Jankov, see Jankov[68])

We take X to be the set of Ai. Consider a finite XO X and AE X/X0. Suppose A=Ai.

Then clearly Li1=Xo and fLil Ai. Hence X0ILAi.

To prove the Disjunction Property, consider any finite X0SX. Suppose XoE-EvF, but

X0Ff E and Xoff F. Let Kl= X. and KIA E and Ml-- X. and M I F. Let j be such that Aj is

not in X0. We have: Li= Xo and Li I#Bi for Ai in X0. Consider G1ue(K,M,LI). Clearly

bIAE and bJF. Consider any AiE Xo. blA Bi, since LLJBi. Since Ai is of the form Bi-->C

and K, M and Li all force Ai, it follows that bi=A1. We may conclude that bl=X0, but

bIo E and boF. A contradiction.

We draw some obvious conclusions from the existence of our Ha.

7.1 Fact: There are 11-sentences A and B such that the subalgebra of bHA*

generated by A and B is RE, non-recursive.

Proof: Immediate.

In contrast every finitely generated Ha embeddable in IPC is decidable and similarly,

by 6.2, for C25HA.

7.2 Theorem: There. are 11-sentences A and B and a

sentence C such that the 'subalgebra of 'HA generated by A, B and C is RE, non-
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recursive. By 1.3.4 it follows, that "HA is non-recursive.

Proof: Let A and B be as in 7.1 and take C:=SL0. Let the algebra generated by A and

B in 'HA* be a and let the algebra generated by A, B and C in g)HA be 03. For all

propositional D(p,q) we have: g-=D(A,B) t-* (=(C-*D(A,B)). So if Ci were recursive,

then so would g,. Quod non.

7.3 Open Questions

i) Are there sentences A and B, such that the subalgebra of HA generated by A and

B is RE, non-recursive?

ii) Are there Y'1-sentences A and B and a sentence C of complexity less than

(e.g. f12), such that the subalgebra of 9)HA generated by A, B

and C is RE, non-recursive?

iii) Is there a finitely axiomatizable Ha on finitely many generators, which is a

subalgebra of >HA and not of jpc?
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