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Abstract

This paper deals with termination proofs for Higher-Order Rewrite Systems (HRSs), introduced in
[Nip9l, Nip93]. This formalism combines the computational aspects of term rewriting and simply typed
lambda calculus. Our result is a proof technique for the termination of a HRS, similar to the proof
technique "Termination by interpretation in a well-founded monotone algebra" described in [Zan93]. The
resulting technique is as follows: Choose a higher-order algebra with operations for each function symbol
in the HRS, equipped with some well-founded partial ordering. The operations must be strictly monotonic
in this ordering. This choice generates a model for the HRS. If the choice can be made in such a way
that for each rule and for each valuation of the free variables in that rule the value of the left hand side
is greater than the value of the right hand side, then the HRS is terminating. At the end of the paper
two applications of this technique are given, which show that this technique is natural and can easily be
applied.

1 Introduction
In the field of automated proof verification one sees a development towards higher-order concepts.
In the generic theorem prover Isabelle [Pau9O], typed lambda calculus is used as the syntax for the
formulae. In other systems, as Coq [PM93], typed lambda calculus is even used for the logic, using
the Curry-Howard isomorphism which links formulae to types and proofs to terms.
This development is mirrored in the research on Term Rewriting Systems (TRS). There are different
formalisms dealing with the combination of term rewriting and an abstraction mechanism. In [K1o80]
the concept of Combinatory Reduction Systems (CRS) was introduced. These systems essentially are
TRSs with bound variables. In [Nip9l, Nip93] the formalism of Higher-order Rewrite Systems (HRS)
is described, which is very similar to CRSs in essence, but rather different in presentation. A precise
comparison is given in [vOvR93]. A more general setting is given in [Wo193]. Quite another approach
can be found in [Bre88].
Two important questions about rewrite systems are termination and confluence. For results about
local confluence of HRSs and confluence of orthogonal HRSs the reader is referred to [Nip9l] and
[Nip93] respectively. In [K1o80, C. II.3] the confluence of regular CRSs is proved. However, the
question of termination of the higher-order frameworks seems hardly to have been explored. As far
as we know, only in [K1o80, C. 11.6.2] a sufficient condition for termination of regular CRSs is given.
With this condition, stated in terms of reflexes and descendants, a termination proof for CRSs remains
a syntactical matter.

Termination of first-order Term Rewriting is already an undecidable problem. But as the termination
of TRSs is an interesting question, many semi-algorithms and characterisations of termination are
proposed in the literature.
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A nice characterisation of termination is given in [Zan93]. The function symbols of a TRS 1Z have
to be interpreted as strictly monotonic operations in some well-founded algebra. This interpretation
is extended to closed terms as a usual algebraic homomorphism. Now the associated rewrite relation
is terminating if every left hand side is greater (under the chosen interpretation) than the belonging
right hand side, for each possible interpretation of the variables in that rule.
The strength of this characterisation is that one can concentrate on the "intuitive reason" for termi-
nation. This intuition can be translated in suited operations on well-founded orderings, thus using
semantical arguments. The real termination proof consists of testing a simple condition on the rules
only instead of on all possible rewrite steps or all possible redexes. This semantical approach is more
convenient than a syntactical technique.

The aim of this paper is to generalise this semantical characterisation of termination for TRSs to one
for HRSs. We use an extension of the definition of an HRS in [Nip93] because we do not need the
restrictions of the formalism (for instance, that the rules should be of base type and the left hand sides
should be patterns). Our result is also applicable to the HRSs of the definition in [Nip9l, Nip93].
The main result is that such a generalisation is possible. The interpretation of terms can be extended
to the interpretation of higher-order terms. The orderings and the notion of strictness can also be
generalised. The techniques to achieve this are similar to those used in [Gan8O, dV87]. Moreover, the
result that termination proofs can be given with a well-founded monotone algebra in [Zan93] carries
over to HRSs with simple conditions on the well-founded ordering. With this technique some natural
HRSs are proved to be terminating (see Section 7.)

I like to thank Jan Friso Groote, who supplied some crucial ideas. I am also grateful to Vincent van
Oostrom, Jan Bergstra, Tonny Hurkens and Jan Springintveld for marking previous versions of this
document. Finally Marc Bezem and Alex Sellink helped me with various discussions and comments.

2 Term Rewriting and Simply Typed Lambda Calculus
2.1 Types and Terms of Simply Typed Lambda Calculus
In this section the sets of types and terms of simply typed lambda calculus are defined. The types are
constructed from a set of base types. The terms are constructed from typed constants and variables.
Let Ii be the set of base types. Then the set T(.) of simple types over these base types is defined as:

Definition 2.1. T(X) is the smallest set satisfying

, C 7(B)

If o, r E T(B) then also a=rET(I).

Let CT be the set of function symbols (or constants) of type r. The union UCT is written as C.
Similarly, VT and V are sets of typed variables. To collect this information we define the notion of a
signature:

Definition 2.2. A signature (F) is a triple (l3, C, V), where C is a family of typed constants and V is
a family of typed variables.

Given a signature 97 we can define the set of simply typed lambda terms, denoted by A-'(F):

Definition 2.3. Let 97 be the signature (B, C, V). The sets AT (F) (with r E T(I )) are defined
inductively by:

VT C AT (F),
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CT C AT (.F),

If m E A;'-, (1) and n E A7 (.F), then mn E AT (T) (application),

If -x E V, and rn E A,: (.F), then Xx.m E A,--, (Y) (abstraction).

The set of well-typed terms over the signature F is UTE,(,3)A,-(.F) and is denoted by A-(.F).

Definition 2.4. The set of free variables of a well-typed term t (FV(t))is defined inductively as:

FV(x) _ {x} for x E V

FV(c)=0 for c E C

FV(mn) = FV(m) U FV(n)

FV(\x.m) = FV(m) \ {x}

In the sequel we often abbreviate T(!3) and A-(.T) to 7 and A-. A variable x is called bound if
it occurs in a subterm of the form Xx.s. Terms that only differ in the renaming of bound variables
(known as a-conversion) are identified. This permits us to stick to the convention that variables never
occur free and bound as well in any mathematical context.. See [Bar84, 26] for details about the
variable convention.
A substitution is a mapping from variables to terms of the same type. More precisely:

Definition 2.5. A substitution B is a finite function {xl . -. t1, ..., xn - with ti E AT if E V.
The set xn} is called the domain of this substitution, denoted by DOM(E).

Substitutions are extended to homomorphisms on terms in the following standard way:

Definition 2.6.

O(x) = x, if x E V and x DOM(B).

9(c) = c, if c E C.

8(mn) = (B(m))(B(n))

8(.Xx.m) = .Xx.O(m).

Note that in the last case no variable can be bound due to the variable convention. Other notations
of B(t) are to or t[xi,... , xn := ti, ... , This last notation is justified because in fact we defined
simultaneous substitution in Definition 2.6.
To identify a particular subterm of a term the notion of positions is used. This notion is not formalised
here. A context is just a A-'-term, which we like to see as a context. A context is denoted by C. The
subterm of C at position p is denoted by CIp. C[s]p denotes term C with the subterm at position
p replaced by s. In this replacement free variables of s can be bound by .a-binders in C. This is an
exception of the variable convention.
We recall the fl-reduction scheme for the lambda calculus, denoted by

-+p relation {(()x.m)n, m[x := n])Im E
A- and if x E Vo then n E A;}

Standard. theory tells us that every A,--term has a unique normal form with respect to 0-conversion.
This 0-normal form is denoted by t.p. Normal forms are always of the form Axl. .xn.(atl ...tn,),
where a E V U C. The .reflexive, symmetric and transitive closure of -+p is denoted by .p. (s =p t is
equivalent to s jp).
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2.2 Higher-order Rewrite Systems
There are various definitions of higher-order rewrite mechanisms in recent literature [Bre88, K1o80,
Nip9l, Nip93, Wo193]. The definition in this subsection is not meant to add a new formalism to the
existing ones. The conditions on the rules are dropped, because they are not necessary in the proof:
The rewrite relation is as liberal as possible. Of course, our result applies to formalisms admitting
fewer rules and fewer rewrite steps. The chosen formalism is much like the formalism in [Wo193, Ch.
4.1], but it is presented in a style resembling [Nip93]. The main difference is that we do not consider
71-conversion for expository reasons. It is not difficult to extend the proof for a formalism using )377-long
normal forms instead of #-normal forms.
A Higher-order Rewrite System is given by a signature and a set of rules:

Definition 2.8. A Higher-order Rewrite System R is a tuple (.T, R), where F is a signature and R
is a set of rules in this signature. A rule is a.pair (l, r), with 1, r E Ar (F) in 3-normal form.

Rules (l, r) are denoted by l r. In this rule, 1 is called the left hand side and r the right hand side.
Note that the definition of HRS in [Nip93, p. 308] is a special case of Definition 2.8, because we do not
require that the rules are of base type and that the left hand side is a pattern. Nor do we require that
the left hand side is not a variable. These restrictions are not necessary to obtain the main theorem.

It is not enough to define rules. We also have to specify how to use the rules. In the first order
case term rewriting is just replacing subterms that are instances of left hand sides (redexes) by the
corresponding right hand sides. In the higher-order case it is not immediately clear what is meant by a
redex and it is not clear when a subterm occurs in another term. We first concentrate on occurrences.
It is desirable that the rewrite relation is compatible with 3-equivalence. One could try to define that
a redex occurs in s if it syntactically occurs in some t with t =p s. But this is not satisfactory:

Example 2.9. Let 1 --+ r be some rule of type o. The redex l occurs in every term t, because
t =p ()ix.t)l, for some fresh variable x. This rewrites to (Ax.t)r. If we look at rewriting modulo
,3-congruence we have the step t , t, which is difficult to prove terminating.

A second approach is to define that a redex occurs in a term t if it syntactically occurs (in other words:
if it is a subterm). But this delivers a rewrite relation which is not compatible with 3-conversion, as
can be seen in example 2.9: (Ax.t)1 reduces to (Ax.t)r if we ask for syntactical occurrences, but the
step t = t is impossible in general. In fact what we want are the occurrences that cannot disappear
by 3- reduction, forbidding both (Ax.t)l and t to rewrite.
In [Nip93, 308] this problem is tackled by defining that a subterm occurs in a .term only if that term
is in normal form. But this is too restrictive if the rules are not of base type:

Example 2.10. Let the only rule be )ix.cxd -* r for some constants c and d. The term (Ax.cxd)a
can not be rewritten, because the normal form of this term is cad, which does not contain the left
hand side Ax.cxd.

We can weaken this restriction by only requiring the context in normal form and not the whole term.
A context can be seen as a term with a special variable O. Then in the previous example the rewrite
step can take place, because the context is Oa, which is in normal form. Both (Ax.cxd)a and cad can
be rewritten. This approach is used in Definition 2.11.

The other open question is about redexes. In the first order case a redex is the result of a substitution
on the left hand side of a rule. The higher-order formalisms of [Klo80] and [Nip93] diverge in defining
a redex. In [Nip93, p. 308] a redex is defined to be the Q=normal form of the result of a substitution.
In [K1o80, p. 126] a redex is just the result of a substitution. The difference between them is that
in HRSs the 3-normalisation of a redex is carried out implicitly by the definition of rewriting, while
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in CRSs this Q-normalisation leads to explicit rewrite steps. In [vOvR93] a precise statement of the
difference between CRSs and HRSs is given.
We like to see simply typed lambda calculus as our meta-language and the properties of it (as 3-
reduction) should not be confused with the rewrite relation. So ,3-normalisation should take place
implicitly. In the rewrite relation only steps derived from the rewrite rules appear. However, as new
,Q-redexes can be generated by plugging a term into a context (see example 2.10) also these redexes
are to be removed. (The other extreme would be to see the fl-rule on the same level as the rewrite
rules. This gives a sort of TRS $ ,-rule. See for such a formalism [Bre88]).
These considerations lead to the following definition of the rewrite relation on #-normal forms:

Definition 2.11. Let R R) be an HRS. The relation 7z is the smallest relation satisfying: If

(1-+r)ER,

8 is a substitution,

C is a term in #-normal form and

p is a position in C

then (C[(le)]a)ts--'7z (C[(re)]p)J4.

Definition 2.12. An infinite rewrite sequence is a sequence (si)iEN, with Si E AT for some r E T,
such that si -+1 si+l for all i E N. An HRS is said to be terminating if there is no infinite rewrite
sequence.

3 An ordering which is closed under substitution
We try to apply the general idea of the proof technique "termination by interpretation" for TRSs in
[Zan93] to HRSs. The outline of this technique is as follows: The function symbols are interpreted
by operations of the same arity in an algebra, equipped with a well-founded partial order. This
interpretation is extended to the terms of the TRS in an algebraic way. The interpretation is chosen
in such a way that for all rules, the left hand side is interpreted by a greater value than the right
hand side. If such an interpretation can be found, the TRS is terminating. To prove the correctness
of this technique, first we have to show that the ordering on terms is closed under substitution. So,
if 1 > r for a rewrite rule I r, then we also have I° > re for substitutions O. The other step is to
show that the ordering is closed under placing terms into a context. This can be proved using the
fact that the function symbols are interpreted by strictly monotonic functions, thus preserving the
ordering. Now we have for any context C that C[18] > C[re]. This is the exact form of a rewrite step,
thus showing that a rewrite step can be translated to a decrease in the well-founded ordering. In this
way termination of rewriting is guaranteed.
In the higher-order case matters are more complicated. First of all, notions of interpretation, strictness
and ordering have to be extended to higher-order terms. After these definitions the same idea can
be used. It will turn out that we have to use two different orderings. The condition on the rules of
an HRS is stated in terms of one ordering, so for every rule (l - r) it must be the case that 1 >1 r.
We show that this ordering is closed under substitution, so for any substitution 1° >1 re. Now we
use a second ordering to show that for any context C, C[1°] >2 C[r°]. This second ordering will be
well-founded, thus proving termination of the HRS.
In this chapter we will define an interpretation for the terms into the hereditarily monotonic functions.
A similar idea occurs already in [Gan8O] and [dV87]. One difference is that in this paper two 3-
equivalent terms have the same interpretation.

5
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3.1 Interpretation of types by monotonic function spaces
Let us start with the type interpretation I of the set of base types B:

Definition 3.1. A type interpretation I is a set of strict partial orders {(DB, >B)IB E B}. These
sets generate a type structure in the following way: DQ_.r = {f : Da Dr}

The sets VP are function spaces with currying and usual application (denoted by f (x)) and extensional
equality: f = g if and only if for all x in the appropriate domain f (x) = g(x).
We will see that only monotonic functionals will be used. This idea is also used in [Gan80, p. 457],
which shows that terms of the typed A-I calculus denote strictly monotonic functions. The sets of
hereditarily >-monotonic functions (monotonic functions for short) are denoted by Mp and depend
on an ordering, denoted by mon>. This partial order is inherited from the partial order on the
interpretation of the base types in the way defined below. This ordering itself depends on the notion
of monotonicity, so we give a definition by simultaneous induction:

Definition 3.2. The sets Mp of monotonic functions in Dp and the relation mon>p on these sets are
defined for each p E T, with induction on p:

ForpE8:

- MP = Dp.

- a mon>pb fora,bEMpifandonly if a>pbor a=b.

Forp=o - r:
- f E Mp if and only if f EDpandforallxEMu, f(x) E M7, and for all z,y E Mu, if

x mon>o y then f(x) mon>r f(y)
- f mon>p g if and only if f,g E Mp and for all x in Mo, f(x) mon>r 9(x)

Instead of a E titp for some p we say: a is monotonic. Furthermore, a set Mp is called a domain.
Now we can define the following strict partial order:

Definition 3.3. The relation mon>p on domains Mp with p E T is defined with induction on p:

If p E B and a, b E M p then amon>pbif and only if a>pb.

If p = Q r and f, g E Mp then f mon>p g if and only if for all x E Mo, f (x) mon>T g(x)

The type subscripts in mon>p and mon>-p are omitted when this is not confusing. Note that f mon> 9
means that f is pointwise greater than g, but only for monotonic points. The reader is warned not to
confuse f mon_ g with f mon> g V f = g. We have the following fact about mon> and mon> only in
one direction:

Proposition 3.4. For all p E `Il' and f,g E Mp, if f mon> g or f = g, then f mon-- 9.

Proof: Let f mon> g, or f = g. If p E B it is trivial. If p = o- r, take an x E Mo. Then
f(x) mon> g(x) (in case f mon> g) or f (x) = g(x). But then, by induction hypothesis, f (x) mon> 9(x)
Now by Definition 3.2 f mon>- 9

The following proposition is handy:

Proposition 3.5. Transitivity between mon> and mon>_:

If f mon- g and g mon> h then f mon> h.

If f mon> g and g mon> h then f mon> 9

Proof: Simple induction on the type of f .

6
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3.2 Interpretation of terms in domains
Now we can take our next step: A term in AT has to be interpreted as a value in the domain MT To
interpret the terms we have to specify what the interpretation of the free variables and the constants
will be. The free variables are dealt with by valuations: mappings from variables to values. The
interpretation of constants is given by a constant interpretation.

Definition 3.6. A valuation a is a family of mappings ct, with ap : Vp - Vp for p E T.

Definition 3.7. A monotonic valuation a is a family of mappings ap, with a.,: Vp - Mp for p E T.

The following operation on valuations changes the value of one variable:

Definition 3.8. If a is a valuation, x E V, and a E Ma, then a[x := a] is also a valuation, with

CO := a](x) = a.

a[x:=a](y)=a(y) for y#x.

To compare two monotonic valuations we define:

Definition 3.9. Q1 > a2 if and only if for each x E V, al(x) mon>_ a2(x)

The following facts about valuations are tacitly used in the sequel:

Proposition 3.10.

1. If a is a monotonic valuation and a is monotonic then also a[x a] is monotonic.

2. If al > a2 are monotonic valuations and a is monotonic, then al [x := a] > a2[x := a].

3. If a is a monotonic valuation and a mon> b, then a[x a] > a[x := b].

Proof: trivial

The constants have to be interpreted by functionals of the right domain. Therefore the following
notion is introduced:

Definition 3.11. A constant interpretation J is a family of functions ,70 : Co - Ma for a E T.

Now we are ready to define the interpretation of terms, depending on a particular choice for the
constant interpretation J.

Definition 3.12. The interpretation of a term under the valuation a is defined inductively on the
structure of the term:

Qx]Ja = a(x) for x E V

[[c]]a=J(c)for cE C.

Qmn]]a = [mJ.Jn]a.

Qax.m]a = Aa E D(.Qm]a[y:_al for x E Vo.

It is easy to see that a term s E Ao is interpreted by a functional in Do. However, we have to
ensure that this functional is monotonic if the valuation is monotonic. This is proved by the following
conjunct. The proof is by simultaneous induction and is similar to the proof in [dV87, p. 89]:

Theorem 3.13. For each s E A- and monotonic valuations a, 0:

7
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1. [[s]a is monotonic.

2. If a > 0 then [s]a mon> dsk

Proof: (induction on the structure of s)

Ifs=xEV:

1. Is],, = a(x) is monotonic because a is so.

2. Is]. = a(x) mon> ,(x) = Qs]p. (From Definition 3.9).

Ifs=cEC:

1. Qs],, = J(c) is monotonic by definition.

2. Qs]. _ J(c) = Qs]p, so they are mon>-related (Proposition 3.4).

If s = mn:

1. By induction hypothesis (1) both Em],,, and Qnja are monotonic. Then by Definition 3.2,
also Qs]. = Qm]ja(nja is monotonic.

2. By induction hypothesis (2) Qmha mon> Qm]p. By induction hypothesis (1) In]", is mono-
tonic, so we have, with Definition 3.2, that QmJaInJa mon> We also get from
the induction hypotheses (1,2) that Qn]a mon_ QnJp and Qm1p is monotonic. Therefore,
again with Definition 3.2 Qm]]pQn]]a mon>_ Qm]p[n]]p. Now, using transitivity of mon> we
have Es]],,, mon> QsJp

If s = Ax.t: (Say xEVo)

1. Firstly, choose a E Ma, then Qax.t]a(a) = Qt]a[x:=aj. This is monotonic by induction
hypothesis (1). Secondly, let amon>o b. Then a[x := a] > a[x := b], so by induction
hypothesis (2) Qt]]a[x:=a] mon> Qt]Ja[x:-a] This is equivalent to Qax.t]a(a) mon>
so QsJ+a is monotonic.

2. Let a E Mo. We have a[x := a] mon_ Q[x := a]. So using induction hypothesis (2) we can
compute: Q.\x.t]la(a) = Qt]Ia[x:=a] mon> Qt]]p[x:=a] = Q.\x.t]]p(a). So indeed, Qs]la man? Qs]]p

a

Corollary 3.14. Q . ]a is a family of functions from Av to Mo for each c E T.

We have an ordering on the domains and an interpretation mapping terms into domains. Using this
interpretation we can define an ordering on terms. The free variables are dealt with by valuations:

Definition 3.15. For terms s, t in A-, s mon> t if for each monotonic valuation a, Ma mon> Qt].-

3.3 The ordering monk is closed under substitution
It should not come as a surprise that mon> is closed under substitution. If two terms. s and t are
mon>-ordered then for all monotonic valuations this ordering holds. Now a substitution in s and t
leads to a new valuation in the interpretation of s and t, giving the required ordering. This idea is
worked out in the rest of this subsection. Lemma 3.16 establishes the link between substitutions and
valuations. In Proposition 3.17 the desired conclusion about substitutions is drawn. Again no new
technique is used here, the following proofs resemble those in [Gan80, dV87].
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Lemma 3.16. Let 8 be a substitution and a a monotonic valuation. Define a new valuation y(a, 9)
as: y(a, 9)(x) = Qxe]a. Then for each term s E A- we have Qso]a = Qsb(« B). The new valuation is
monotonic.

Proof: (induction on the structure of s)

s = x E V: by definition of -y.

s = c E C: QCB]a=QC]a=J(c)=QC]7(ae)'

s = mn:
Qse]« = Qmono]« = Qmo]aQno]a

Qm] r(a,e)Qn]7(a,e) (by i.h.) = Qs]7(a.e)

s = Ax.m: Say x E Va.

Claim: Let a E Mo. In this case: y(a[x := a], 9) = (y(a, 9))[x := a].

Proof: This depends on the variable convention: x DOM(9), so xe = x, and for all
y E DOM(9), x FV(ye). Under this convention, y(a[x := a], 9)(x) = Qxo]a[x:=a] = a =
(y(a, 8)[x a])(x). And for y # x: 7(a[x := a], 9)(y) = Qyo]«[x:=aJ = Qyo]a = 7(a, 0)(y) =
(-t(a, 9)[x a])(y) 0

Now this case can be proved by the following calculation:

= Qax.(I lI.
= as E

Mo (Qm] (a[x:=a],e))
= as E

(by i.h.)
(by claim)

Proposition 3.17. If for terms s, t in A,-, s mon> t then for each substitution 9, se mon> to.

Proof: Let s mon> t. Then for arbitrary monotonic valuation a:

Qso]a = Qs] y(« e) by Lemma 3.16
mon> Qt]. (a,e) because s mon> t

Qto]a by Lemma 3.16,

so indeed se mon> to.

4 Hereditarily monotonic functionals serve as a model of A-
We still have to show that the interpretation is well-behaved with respect to the ,0-rule. This is the
same as showing that our interpretation is a model of A-.

Proposition 4.1. Ifs -'p t for two terms in A-", then Qs],, = Qt]« for each valuation a.

Proof: (induction on the structure of s) Let s -0 t.

s E V: impossible (contains no /3-redex)

s c- C: idem

0

-
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s = Ax.sl. Then the only possibility for a 3-redex is in sl. So t = Ax.t1, with s1 --+p ti. Now
we can compute: 1[s]. = aai[s11a[x:=al = (by induction hypothesis) aa.Qtl]a[x:=al = QAx.i1].

s = s1s2. Now we have to consider three cases:

- t = t1s2 and s1 --gyp t1. Then QS1a = Qs114s21a =(by induction hypothesis) Qt11a[S21a
H.-

- t = s1t2 and s2 -p t2. Then IS1a = QS11aFS21a =(by induction hypothesis) Qs11aft21a =
M o.

- si = )x.s3 and t = s3[x := s21. The following fact is used:

Claim: Qs31a[x:=[321.] = QS3[x := S2]1a

Proof: Define the substitution 9 = {x r4 s2}. Using the definition of Lemma 3.16,
y(a, 9) = a[x := QS21a]. Furthermore, s3[x := S2] = s3. Now, by Lemma 3.16 we have
that Qs317(«,e) = QS31a, which. is what we wanted.

Using this claim a simple calculation shows:

QS1a = (Aa.QS31a[x:=a])QS21a = QS31a(x:=[321.]
QS3[x := S211,, = Qt] a

5 An ordering which is closed under context
5.1 On strictness
In section 3 we saw that the ordering mon> on terms is closed under substitution. We would like
that this ordering is also closed under placing a term into a context. The first objective to this is the
interpretation of the constants. We have to ensure that this interpretation is order preserving. The
proof in [Zan93] also uses the condition that the constants have to be interpreted by strictly monotonic
operations. Therefore we define the following notion:

Definition 5.1.1 The predicate "f is strict for mon>" with f E MP is defined with induction on p:.

For p E 1: f E Mp is always strict for mon>

For p = o -- r: f E Mp is strict for non> if and only if for all x E Ma, fix) is strict for mon>,
and for all x, y E Ma, if x mon>a y then f(x) mon>r f(ii)

Unfortunately this is not strong enough, as the following example shows:

Example 5.2. Take the following signature: There is one base type: o. The set of constants
C= {c, d : o; La : ((o -mo o) -. o) -(o- o) -mo o}. The set of variables V = {x, y: o;f:o - o}. In this
signature we define the HRS with one rule:

First of all, this HRS is not terminating, because the left hand side is a subterm of the right hand
side. Now we choose as interpretation:

Z(0) = N '

9(c) = 2
(d) = 1

J(@) = AG E ((M N) -* IY).ag E fil -# N.G(g) + g(0)

'This definition is only used for expository reasons. It is not really used in the sequel.
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Under this interpretation we can compute the left hand side and the right hand side. It will turn out
that the left hand side equals 4 and the right hand side equals 2. Yet, J(A) is strict for in the
sense of Definition 5.1. So this notion of strictness is too weak.

This lack is caused by a problem with the variables. This is shown in the following example:

Example 5.3. Let 1 --+ r be the only rule of an HRS, with l mon> r. Choose as context C = xD, with
x E Va-.r fresh. We wonder if C[l] mon> C[r]. This is the case only if for all monotonic valuations of,
Qx11 or mon> Qxr]l a. But if we take some constant c E Cr and consider some monotonic valuation a with
a(x) = )y.c we observe that QxlJa = (Aa.Qcja)Qlja = Qc]] = (Aa:Qc]ja)Qr]]a = Qxr]]a. And because
mon> is irreflexive, C[l] mon> C[r] is not true.

Yet, this example does not show that the HRS of Example 5.3 is non-terminating (of cause it is
terminating). It is too strong to demand that the relation mon> holds for every value of x. The
variables of the context can not be instantiated during a rewrite step. So we have the freedom to
restrict the condition and to look at some particular value of x. The idea, due to Jan Friso Groote,
is to look at precisely those x that preserve the order, that is for the strictly monotonic x. This leads
to a new ordering, str>, which (intuitively) runs: f str> g if and only if for all strictly monotonic x,
f(x) str> 9(x). This new ordering is used to compare contexts.
The following example shows that the ordering mon> is necessary for the rules, so we can't use str>
only:

Example 5.4. Let 1, r E Ca and x E Vo_,.. The HRS R with the only rule ,\x.xl -+ Ax.xr is
non-terminating. Let c E CT and choose as context (Ay.c). This gives rise to the rewrite step:
((Ax.xl)(Ay.c)) jp -*p. ((Ax.xl)(Ay.c)) 1,3, which is equivalent to c -+7 c. Now we have the infinite
rewrite sequence c -+7 c -7z c -- iz .

However, if we choose an interpretation with J(l) > ,7(r), then ax.xl str> Ax.xr. Therefore, the
,t,>-relation is not strong enough for the rules.

These examples show that we need a definition of str> and a notion of strictness that switches from
the ,t,>-ordering to the mon>-ordering. These notions can be defined simultaneously and inductively
on the structure of the types:

Definition 5.5. The relation str>p and the set S,, of hereditarily strict monotonic functions are
defined with induction on p E T:

For pEI3:

- a str>p b for a, b E Mp if and only if a >p b.

- S, = Mp.

For p = v r: Let f,9 E .Mp, then

- f str>p g if and only if for all x E So, f(x) str>r 9(x)

f E Sp if and only if for all x E .Ma, f (x) E S;, and for all x, y E Mo, if x str>a y then
f(x) mon>T AY)-

If f E Sp for some p E T, we say that f is strict or strictly monotonic. Furthermore we will omit
the type subscripts for str>p. Now we can prove the following relation between the different partial
orders:

Proposition 5.6. Let p E T and f, g E Mp. If f mon>p g then f str>p g.

11
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Proof: (induction on p):
If p E 6 the two orderings coincide. Let f mon>p g for p = o -; T. Take an arbitrary strict x E So.
Then also x E Mo, so f(x) mon>r 9(x). By induction hypothesis, f(x) str>r 9(x), giving f str> g
(Definition 5.5).

Corollary 5.7. Let f be strict, then both f is strict for mon> and f is strict for str>.

Proof: If x mon> y then x str> y (Proposition 5.6) and f (x) mon> f (y), by strictness
then by strictness of f : f (x) mon> f (y) and by Proposition 5.6 f (x) str> f (y).

The notion of strictness is extended to valuations:

off. If x str> y

Definition 5.8. A valuation a is strictly monotonic (strict) if for each x E V, a(x) is strictly
monotonic.

The following fact is used without referring to this proposition:

Proposition 5.9. If a is a strict valuation and a is strict, then afx a] is also strict.

Proof: trivial.

We can lift str> from the domain level into the term level in the same way as we lifted mon>. To
keep similarity between bound and free variables we now use strict valuations only.

Definition 5.10. For terms s, t of A-, s str> t if for each strict valuation a, Qs], str> Qt,.

Proposition 5.11. For all s,t E A-", ifs mon> t then s str> t.

Proof: If s mon> t for s,t E AT then for all valuations a, Qs],, mon>r Quo. This implies (using
Proposition 5.6) that QsI« str>r Qt]a. This holds for all a, so certainly for strict a this relation holds.
Therefore s str> t.

5.2 The ordering str> is well-founded
Definition 5.12. A type interpretation I = {(DB,>B)JB E S) is called a well-founded type inter-
pretation if the following conditions on the interpretation of base types are satisfied:

For each b E B, Db is non-empty.

For each b E 8, >b is well-founded.

For each b, c, d E 8, the set Sb-c-d has at least one element, which is called Sb-c-¢.

This suggestive definition is justified by Proposition 5.14 which states that under a well-founded
type interpretation, the domains are well-founded. But first, we need'a lemma, saying that strict
inhabitants exist for all domains, if we have a well-founded type interpretation:

Lemma 5.13. If the underlying type interpretation is well-founded, then for every p E T there is at
least one inhabitant of Sp, which we will call Sp.

Proof: (with induction on the structure of p)
If p is of base type, we can choose any Sp E Dp, because the domains Db are non-empty, and elements
from Db are always strict.
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Now let p = a -} r. Then 6- and r can be decomposed in al * o-m * co and rl --.... rn
cl E By induction hypothesis there exist strict inhabitants Sa, and Sr. Because the definition

of domains, we also have the strict element With this material we can define2:

Sp = ay E Da.Ax1 E Dr, ...Ax,, E Dr, .Sco-ci-ci(yso, ...S0,,.)(Srxl ...xn)

Clearly, this functional is of the appropriate type and strict in y and x,,. Try for example:

Y1 str>o Y2
y1Sol - - -So,,, str>co y2So, So,,,
Sca_c,-ci(ylSo, ... Sam)mon>cj_.c, Seo_.c,--c,(y2So, ...Sa,n
Spy1 mon>r Spy2

A similar reasoning applies when some xi is varied.

Proposition 5.14. If the underlying type interpretation is well-founded, then for every p E the
partial order str>p) is well-founded.

Proof: (induction on the structure of p)
For P E B well-foundedness is given by the well-foundedness of >,. Let p = o --r r. Assume that
there exist {fili E N} with fi fi+i But now, using So E So we can construct the descending
chain {fi(S.)li E NJ, with fi(S.) str>r fi+i(So), which contradicts the induction hypothesis.

Proposition 5.15. The relation str> is well-founded on,terms of A-.

Proof: Let {si li E NJ of some type r be given such that si str> si+1. By Definition 5.10 this means
that for every strict valuation a, QsiJa str>r Qsi+i]a Let a be the valuation {x E E T}
(see Proposition 5.13), then a is such a strict valuation, giving rise to a descending chain in Mr,
which contradicts Proposition 5.14.

5.3 Contexts are morphisms from n,,,,> to tr>

In section 5.1 we showed that the interpretation of the constants should be strict. Therefore we define:

Definition 5.16. A constant interpretation J is strict, if j(c) is strictly monotonic for all c E C.

Now we can indeed prove, after some lemmas, that if two terms are mon>-related then placing these
terms into a context results in two str>-related terms.

Lemma 5.17. Let a E Sa, ...a mar. Let elements si E Ma; be given for 1 < i < n. Let furthermore
str> t, for some 1 < j < n. Then as1 sn mon> as1 ... Sj-lt$j+1 - Sn

Proof: By Definition 5.5 (and induction on j), as1 sj_1 is strict. So by the same definition,
asl ...sj-lsj mon> as1 .sj_1t. Now by Definition 3.3 (and induction on n - j) as1 sn mon>
as1 ... sj-1tsj+1 ... sn.

Lemma 5.18. If for two AT -terms S mon> t then Ax.s mon> Ax.t.

Proof: Let s mon> t, say x E Va. Choose k E .Ma arbitrarily. Let a be any monotonic valuation.
Then

QAx.s]]a(k) _ (. a.Qsja[.r:=a])(k)

= QS¶11a[s:=k]

mon>r Because S mon> t
_ (aa.j[t]la[s:-a])(k)

Qax.t]J (k)

This is for any k, so Qax.s]la mon>a-»r This holds for any a, so .\x.s mon> .\x.t

'See [Gan80, p. 461] and [dV87, p. 83] for comparable'functionals

i3
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Lemma 5.19. If for two AT terms s str> t then Ax.s st,> Ax.t.

Proof: Let s str> t, let x E V. Choose k E.Sa arbitrarily., Let a be any strict valuation. Now

Qax.s]a(k)

Because s str> t and a[x := k] strict.

This holds for any strict k and alpha, so )tx.s st,> Ax.t.

Proposition 5.20. Let C be a term in normal form. Let p be a position within C. Let J be a strict
constant interpretation. If s Inon> t then C[s]p str> C[t]p.

Proof: C is of the form Ax1. Ax,,. (as, s,,,) with a E C U V. Now there are three different cases
for the position p within C:

1. with 1 <i <n.

2. Cp=(as,...sj) with 0<j <m

3. CIp = Sk iq with 1 < k < m and q a postfix of p.

These cases are proved in the sequel:

1. C[s]p = Axi. Axi_i.s and C[t]p = )txi. .Axi_1.t. We know that s mon> t. Now apply
Lemma 5.18 to obtain that C[s]p mon> C[t]p. Then by Proposition 5.6 also C[s]p str> C[t]p.

2. C[s]p = ,xi....Ax,,.(ssj+l...sm) and C[t]p = Axl....)*x,,.(tsj+l ...s,,,). Now smon> t, so
(ssj+i .. Sm) mon> (tsj+i . Sm) (Lemma 5.17). But now, by Lemma 5.18, C[s]p mon> C[t]p
Then by Proposition 5.6 also C[s]p str> C[t]p

3. C is in normal form, so also sk is. Now C[s]p = Axi. .)xn.(asi . (sk[S]q) .s,,,) and C[t]p =
)x1. .)x,,.(asi . (Sk[t]q) . sm). By induction hypothesis sk[S]q str> Sk[t]q

Take a strict valuation a. We have that a E V U C. If a E C, then Qa]la = ,7(a) is strict, because
the constant interpretation is strict. Otherwise, if a E V then Qapa = a(a) is also strict, because
a is a strict valuation. Now we can apply Lemma 5.17 to obtain Qasi (sk [s]p) smla mon>
[asl . -

(Sk [t]p) ... Sm]]a,

This being true for each strict valuation a gives us that

as, ... (Sk [S]p) ... Sm str> as, ... (Sk [t]p) ... Sm

Applying Lemma 5.19 we can put the lambda binders in front to get: C[s]p str> C[s]p

6 Rewriting is Decreasing
Definition 6.1. Let R be an HRS, with signature . _ (5, C, V) and R a set of rules. We say that
R has a Reduction Interpretation if there is a well-founded type interpretation I for 5 and a strict
constant interpretation J, such that for each rule 1 -- r E R, 1 mon> r.

Now we are able to state the relation between a rewrite step and the ordering of the domains:
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Proposition 6.2. Let 1. have a Reduction Interpretation. Ifs -7z t then s str> t.

Proof: Let s -,jz t. Then s = (C[le]p) Jp and t = (C[re]p) jp, for some context in normal form C,
position p in C, rule (l , r) E R and substitution 0. Now 1 mon> r, so by Lemma 3.17 le mon> re
Now by Proposition 5.20, C[lo]p str> C[re]p. Applying Proposition 4.1 yields: s str> t.

The main theorem of this paper uses the well-foundedness of the domains:

Theorem 6.3. If a rule system 1Z has a Reduction Interpretation, then R. is terminating.

Proof: If R is non-terminating, then there exists a sequence (si)iEN, with si -7z si+i By Proposi-
tion 6.2 we get an infinite descending chain (si)iEN, with Si str> si+i. This is impossible because of
the well-foundedness of str> (Proposition 5.15). Thus R. must be terminating.

The following is a recollection of the conditions that appear in the previous sections. Theorem 6.3
suggests the following proof for the termination of an HRS:

Find convenient domains I(B) for each base type B, satisfying:

- I(B) is non-empty.

- I(B) is well-founded.

- There exist binary strictly monotonic functions with type I(a) -. I(b) -* I(c) for all
combinations (a, b, c) of base types.

Find a convenient strict interpretation ,7(c) for each constant symbol c E C.

Prove that for each rule (l -s r) in the system and for each monotonic valuation a of variables
to values, the interpretation of the left hand side is greater than the interpretation of the right
hand side, in symbols Ma mon> QrJJa.

In the next section the applicability of this proof method is shown.

7 Applications

7.1 Process Algebra
The first application comes from Process Algebra, or better an extension of it: µCRL [GP90]. We
only concentrate on the fragment of Process Algebra with choice (+), sequential composition
and deadlock (b) and the data dependent choice (E) from µCRL. The Process Algebra part can be
formulated in a first order Term Rewriting System (see for instance [AB91]). The rules for the Sum-
operator require higher-order rewrite rules to deal with the bound variables. This reformulation of
pCRL can be found in [Se193, p. 33].
There are two base types: {Proc, Data}. Furthermore, here is a list of function symbols with their
types:

+ : Proc - Proc Proc
Proc -+ Proc -r Proc

b : Proc
E : (Data - Proc) -* Proc

'15



The set of free variables is {X, Y, Z, P, Q, D}. Now we have the following set of rules, with the binary
function symbols written infix:

A3: X+X X
A4: (X

(X -Y) -Z
X

A7: (5.X 6

Sum l : E(Ad : Data.X) X
Sum3: (EP) + (PD) (EP)
Sum4: E(Ad : Data.((Pd) + (Qd))) (EP) + (EQ)
Sum5: (EP) X E(Ad :Data.((Pd) X))

To prove termination of this system we interpret both base types Data and Proc by N>1, with the
usual ordering. This is a domain, because it is well-founded, non-empty and there exists a binary
strict function, ordinary "+" for instance. The function symbols are interpreted in the following way:

Aa.Ab.a + b + 1
Aa.Ab.a x b + a
1

Af.3 x f(1)+1

This is an extension of the interpretation in [AB91] for the Process Algebra part of the system. The
first three functions are clearly strict. The last is also strict: Take f str> g, then (because 1 is strict)
f(1) n,on> g(1). But then also 3 x f(1) + 1 ,,on> 3 x g(1)+ 1. Now we compute the values of the left
hand sides and right hand sides.

interpretation of the left hand side interpretation of the right hand side
A3 2 x QXD + 1 QXD

A4 (QXD+QY]I+1) X QZD+QXD+QY]I+1 QXD X QZD+QXD+QYD X QZD+QY]I+1
A5 QXD X QYD X JZD + QXD X QZD + TX] X TYD + QXD VT X QY) X VT + EX] X TYD + QXD
A6 QXD + 2 QXD

A7 QXD + 1 1

Suml 3 x QXD + 1 QXD

Sum3 3 x QPD(1) + [PD] + 2 3 x QPD(i) + I
Sum4 3 x (QPD(1)+QQD(1D))+4 3 x (QP1 (1)+QQD(11))+3
Sum5 3 x [PI (l) x E X I x ( P ] ( 1 ) 1 3 x [PD(1) x (XD+3 x (PD(1)+1

The reader can verify that the interpretation of the left hand side is greater than the interpretation
on the right hand side on each line in the table. So this system of Process Algebra- and Sum rules is
terminating.

7.2 Quantifier reasoning
In [Nip9l] some HRSs concerning first order predicate logic are presented as an example. One of them
is called mini scoping, pushing quantifiers inwards. The base types are {Term, Form}. The function
symbols are:

V, A . Form Form - Form
V . (Term - Form) Form

The rules (with free variables {P, P', Q, Q}) are:

V(ax.P) -r P
V(Ax.((P'x) A (Q'x))) (VP') A (VQ')

V(ax.((P'x) V Q)) (b'P') V Q
V(Ax.(P V (Q'x))) P V (VQ')
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Again we take as interpretation for both base types the positive natural numbers N> 1. The interpre-
tation of the function symbols is as follows:

QA] = Qv = Aa.ab.a + b + 1
IV] =J1f.2x f(1)

It is easily verified that under this interpretation the left hand side of each rule is greater than the
interpretation of the right hand side.

7.3 Surjective Disjoint Union
Another application is given by the following example. The signature is given by the only base type
(Form}, the function symbols:

case Form (Form -* Form) - (Form -* Form) - Form
inl, inr . Form - Form

and the free variables {X, F, G, U}. The rules are:

case(inl(X), F, G) -* F(X)
case(inr(X), F, G) - G(X)

case(U, ax.F(inl(x)), )x.F(inr(x))) - F(U)

Note that this example does not fit in the framework of [Nip9l] (see page 347). Termination for this
example is less trivial, because there is a real application in the interpretation of the function symbols.
Furthermore it is not the case that the number of "case" occurrences decreases in every step: If X
contains a "case" occurrence, then F can generate many copies of it in the right hand side of the first
rule.
But the interpretation in a Termination Model is easy: Take Z(Form) = N>1. Furthermore, interpret:

[{case]] = aa.A f.Ag. f (a) + g(a) + a
QinlJ = Qinr]] = Aa.a + 1

These functions are strict: we only need to take into account monotonic f and g functionals. Take
for example a str> b. On base types this is the same as a mon> b. So by monotonicity of f we have
f (a) mon> f (b) and the same holds for g. But then f (a) + g(a) + a mon> f (b) + g(b) + b. Furthermore,
the interpretations of the left- and right hand sides can be computed:

Left hand side
QFJ](QX]+ 1) + QG](QX]+ 1)+TX + i
QFD(QX]} + 1) + QG](QX]}+ 1) + [XI + 1

2 x QF]}(QU]}+ 1) + QU]]

Right hand side
QFJ] (QXJj )

QGJ] (QX] )

QFJj (QUJ] )

The left hand sides are all greater than the right hand sides, because we may restrict to monotonic
functionals for F and G. So the system of "surjective disjoint union" is terminating.
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