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Preface

The present volume contains the proceedings of the Third International Workshop on Folk Music Analysis. As
the third in a series, this workshop offers an excellent opportunity to present and discuss ongoing research in
the area of computational ethnomusicology. There are two important motivations. Firstly, recent advances in
computer science, artificial intelligence, etc. have great potential to be employed for (ethno)musicology. This
implies an empirical approach to music studies. The current research in this area is only in its beginnings.
Therefore, much attention should be paid to explore these methods and their relation to the research traditions
of musicology. Secondly, most of the current research in music information retrieval is exclusively aimed
at western music. With this workshop we want to stimulate a broader focus that also includes non-western
musics.

Computational study of music is inherently interdisciplinary. Musicologists, computer scientists, engineers and
programmers need to collaborate. Therefore, we are exited that this workshop will bring together researchers
from different backgrounds.

We are grateful to everybody who made this event possible, including The Meertens Institute, for hosting the
workshop and for practical support (in particular Hetty Garcia and Marianne van Zuijlen); The members of
the program committee; The members of discussion panel; The e-Humanities Group of the Royal Netherlands
Academy of Arts and Sciences for sponsoring the keynote talk; the Study Group on Digital Musicology of the
International Musicological Society; and of course the authors and participants.

Amsterdam, June 2013

The organizers
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TEMPO AND PROSODY IN TURKISH TAKSIM IMPROVISATION

André Holzapfel
Boğaziçi University, Istanbul, Turkey

{xyzapfel}@gmail.com

ABSTRACT

Instrumental improvisation in Turkish makam music, the taksim,
is considered to be free-rhythm, that is its rhythm develops with-
out the underlying template of a meter or continuous organized
pulsation. In this paper, we want to examine how in this set-
ting, rhythmic idioms are formed and maintained throughout a
performance. For this, we will apply a simple signal processing
approach. We show differences that can be observed between
performers, and raise the question if a tempo could be evoked by
certain regularities in the occurring rhythmic elaborations.

1. INTRODUCTION

In Makam music of Turkey, we can distinguish between
metered pieces and free-rhythm improvisation. In our pa-
per, we focus on the latter in the form of instrumental im-
provisation, which is called taksim in Turkish art music.
While rhythm in metered pieces of Turkish music was an-
alyzed previously by Holzapfel & Bozkurt (2012), a de-
tailed study of rhythm in Turkish improvisation still re-
mains to be approached. Until now studies on taksim con-
centrated on aspects of melodic development (Stubbs, 1994),
and scale aspects (Bozkurt, 2008). A study on rhythm is
timely because improvisation in Turkish music is widely
considered as free-rhythm (Clayton, 2009), which means
that its surface rhythm is not related to an organized and
continuous pulsation. Instead, it has been mentioned that
taksim is characterized by pulsations in non-metrical flow-
ing rhythm (Feldman, 1993). To the best of my knowledge
it has not been investigated how such a pulsation is formed;
i.e. how it appears throughout a performance, and if there
is some degree of continuity of such pulsation as it was
observed by Widdess (1994) for a specific Hindustani alap
performance.

In the presented work we apply a simple signal pro-
cessing framework in order to investigate the occurrence
of pulsation in taksim. We restrict ourselves to taksimler
(plural of taksim) played on the instrument tanbur, which
is a plugged string instrument. This restriction is imposed
in order to avoid any variance in style possibly encountered
on different instruments, and because the sound of the tan-
bur has the advantage, from a signal processing point of
view, that the strokes of the pick can be detected relatively
easily. This enables us to study some basic rhythmic prop-
erties of taksim using a fairly simple signal processing ap-
proach.

We compiled a dataset of 52 tanbur taksimler played by
five renowned masters, and observe how pulsation devel-
ops over the individual taksim. Interesting differences are
pointed out that seem to be related to personal style, or to

the style predominating the recording period. The creation
of a tempo in taksim is discussed, and relations to speech
utterances are pointed out.

2. PROCESSING APPROACH: DESCRIPTION,
MOTIVATION AND EXAMPLES

First, we need to emphasize signal transients which are
positioned at the time instances where the player hits a
string. For this, we convert our original audio signal to an
onset function by examining positive changes in its spec-
tral magnitude (Holzapfel et al., 2010). Then autocorrela-
tions of this onset function are computed in small shifting
windows of 3s length and a hop size from one window to
the next of 0.5s, similar to Holzapfel & Stylianou (2011).
The obtained autocorrelation vectors are stringed together
in a two-dimensional representation, referred to as pulsa-
tion matrix hereafter. This matrix has the time of the initial
recording on its x-axis, and the lags of the autocorrelations
(in seconds) on the y-axis.
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Figure 1: Example for a pulsation matrix derived from an arti-
ficial signal, containing a series of noise bursts

We clarify this process using a simple artificial example.
We generate a signal, which contains a series of equidis-
tant impulsive sounds (here: noise bursts, could be also
e.g. hand claps). In the first half of the signal, each sound
is 0.6s from its neighbors apart, while in the second half
this period is increased to 0.75s. The onset function de-
rived from this signal has peaks only at the onsets of the
impulsive sounds and is zero, or at least very small, other-
wise. An autocorrelation of a 3s excerpt from the first half
of this signal will have peaks at the period of 0.6s, and at
its multiples. This can be seen in Figure 1 from the bright
colors located at these lags (0.6s,1.2s,1.8s, higher multi-
ples not shown in the Figure). These lags l, in seconds,
can be interpreted as specific tempo locations s in beats
per minute (bpm), by the simple conversion s = 60/l. For
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example, the series of sounds in the first half of our ex-
ample is related to the tempo of 100bpm, meaning that we
have a regular sequence of 100 impulses per minute. How-
ever, in the middle of our example we change this period,
which causes the shown pulsation matrix to have its peaks
related to this second series of pulses, which has a period
of 0.75s or a tempo of 80bpm. We can see in this simple
example that if a pulsation is maintained stable over a pe-
riod of time, we will observe a relatively stable comb-like
structure over several columns of the matrix, which are re-
lated to the tempo of the pulsation in this signal. If, as
usually in music interpreted by humans without the use of
metronomes, the tempo changes gradually, we will observe
bright parallel lines that do not remain at a constant posi-
tion as in our example but change their place gradually. On
the other hand, if we have a signal that has no pulsation at
all, we will end up with a matrix having an almost uniform
color.
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Figure 2: Two examples of pulsation matrices for recordings of
Turkish makam music

In Figures 2a and 2b, we depict such pulsation matri-
ces for a metered piece of Turkish music, and for a tak-
sim, respectively. The lines on top of the pulsation matri-
ces have been obtained by running a beat tracking algo-
rithm (Davies & Plumbley, 2007) (bold black line), and by
manually tapping to the piece of music (dotted red line).
Both tapping and the beat tracker provide us with a series
of time values for the position of the pulses. The value
on the y-axis of these lines represents the time-interval be-
tween these pulses. For the metered piece in Figure 2a,
equidistant horizontal lines are characteristic for the pulsa-
tion matrix, with mutual distances of about 0.2s. We can
observe that the black and the red lines of the annotations
are exactly on top of one of the ridges formed by the hori-
zontal lines. This clarifies that the piece has indeed strong,
continuous and relatively stable periodicities in its surface
rhythm. For the taksim, on the other hand, Figure 2b shows

parallel line structures which imply the existence of pul-
sation in the piece. Here, however, they are less stable,
which means that they change rapidly, and they are inter-
rupted with sequences that lack pulsation completely (e.g.
at about 50s). Neither beat tracker nor manual annotation
follow the pulsation indicated by the ridges in this matrix
consistently. This example indicates that, while pulsation
occurs in taksim, this does not lead to a clearly trackable
pulse throughout a performance.

These two examples seem to be representative for the
“behavior” of beat tracking algorithms; In our recent work (Srini-
vasamurthy et al., 2013) we observed that two different
beat tracking algorithms often estimate either the true tempo
or a tempo related to ground truth annotation with a factor
of 2 on a collection of 63 Turkish makam music record-
ings. This confirms that for metered pieces of Turkish
makam music, tempo obtained from algorithms and hu-
man performance tend to be strongly related. For pieces
with no or highly ambiguous meter, our work on the mu-
tual agreement of beat tracking algorithms documents that
algorithmic output on such signals changes randomly be-
tween approaches, which is reflected in the arbitrary rela-
tion between algorithmic and human tempo annotation in
Figure 2b.

Regarding human behavior it is less apparent how the
two examples generalize to other metered pieces or tak-
sims, and the beat or tempo humans would generally per-
ceive in such pieces. We are currently conducting a se-
ries of experiment to evaluate for the sensorimotor syn-
chronization (Repp, 2005) of Turkish musicians to metered
pieces. We can observe that musicians tend to differen-
tiate between clapping to music in a “technical“ way by
aligning their strokes to the underlying usul (i.e. rhythmic
mode), or by freely accompanying the surface rhythm with
their claps. While the claps can show a wide variety of
behavior, the technical way of clapping is less limited in
its variation because musicians are aware of the alignment
between rhythm and rhymic mode (usul). For taksim, such
a behavioral study is even more complex, if not impossi-
ble. There is no doubt among practicing musicians that
a taksim has no meter. When asked about the rhythmic
elaboration of taksim, they usually state that they not con-
sciously maintain a tempo. On the other hand, some of
them do not want to exclude that at least in some examples
a continuous pulse might exist.

We believe that an access different from a sensorimotor
synchronization experiment has to be found to shed light
on the elaboration of rhythm in taksim. The first reason
to assume that is the observation that musicians already in
a free-form tapping experiment to metered music showed
little enthusiasm for tapping rhythmic patterns in an exper-
imental setup. Furthermore, language impedes an explicit
access needed in such an experiment, as a term like ”pulse“
or ”beat“ is hard to translate to Turkish. Its meaning would
be either interpreted as not musical, or as related to a rhyth-
mic mode. However, as the taksim obviously do not have
a rhythmic mode, a direct access using language to form
a suitable question for an experiment seems impossible.
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Finally, sensorimotor synchronization tasks were usually
conducted using highly simplified sounds (Repp, 2005). It
can be expected that the complexity of taksim sounds in
terms of rhythm and other aspects represent another rea-
son to hesitate in conducting such a study.

For these reasons, we want to apply our simple signal
processing approach in order to obtain some insights into
the rhythmic structure of taksim, as this might help us to
form a more precise hypothesis about rhythmic elabora-
tion in taksim. We observe that some periods seem to be
prominent throughout a performance, which is exemplified
in Figures 3a and 3b, which depict the mean over time of
the pulsation matrices in Figure 2a and Figure 2b, respec-
tively. Clear peaks related the tempo exist for the metered
piece (Figure 3a) at the lag related to the tempo (at a pe-
riod of 0.77s) and at multiples and 1/2 and 1/4 if 0.77s.
The taksim shows some clear maxima as well (Figure 3b),
however they are not spread over a wide range as for the
metered piece. The sharp peak at 0.76s is caused by the pe-
riodic noise from the record of the original historic record-
ing. The two peaks below 0.5s are caused by the rhythmic
properties of the performance, which might be indicative
for a tempo impression in this form. While it is apparent
that the pulsation in our example frequently changes its pe-
riod (the pulsation matrix in Figure 2b is not characterized
by parallel, continuous lines over time), we would like to
take this observation as a starting point for a stylistic com-
parison between players and for developing a hypothesis
about tempo that is evoked at least in some taksim perfor-
mances.
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Figure 3: Pulsation profiles, which are obtained by computing
the mean over time of a pulsation matrix.

We will first describe the collection of taksim perfor-
mances which we use in our experiments in Section 3.
In Section 4 we will determine the pulsation profiles for
all the performances in the collection and use them to ob-
tain a first orientation among the possibly existing different

rhythmic idioms in the recordings. Based on these find-
ings, we will focus on comparing two specific players in
the collection, and address the question if the differences
in their pulsation profiles are indeed in some way related to
different styles in rhythmic elaboration. In Section 5, we
will give some perspective on how pulsation matrices can
be used to evaluate for the existence of a tempo in the sense
of a continuous pulsation in some taksim. We will discuss
how our representations motivate for searching relations to
signals of human speech. Finally, Section 6 concludes the
paper.

3. MUSIC COLLECTION

Our music collection contains 52 recordings of taksim by
five renowned masters of tanbur in Turkey. The players
and the numbers of recordings from each player are given
in Table 1. These players cover a range of a century of
recordings, with Tanburi Cemil Bey marking the beginning
of recording history for Turkish music in the beginning of
the century. His recordings became influential for gener-
ations of players since then, which is why we hope to be
able to shed some light on the rhythmic aspects of his play-
ing, and how it possibly differed from other players.

Table 1: Tanbur players and numbers of pieces in the col-
lection

Name Number of pieces
Ercümend Batanay 11
Mesut Cemil Bey 8
Murat Aydemir 5
Necdet Yas̆ar 15
Tanburi Cemil Bey 13

4. FATHER AND SON

As a first step we computed all the pulsation profiles for
the 52 taksim recordings. In order to compare the pro-
files we chose the cosine distance, which converts the an-
gle between two vectors to a distance measure in the range
between 0 and 1. As we detailed previously (Holzapfel
& Stylianou, 2011), this measure is adequate for rhythmic
descriptors that contain information about a range of peri-
odicities present in a music signal.

In order to obtain a first orientation, we computed all
the mutual distances between the pulsation profiles. We
then ordered the distances according to their size, and de-
termined for each taksim which other recording is most
similar. In Table 2 shows the results of that experiment,
which can be interpreted as a k-nearest-neighbor (kNN)
classification with k=1.

It is not the goal to derive some means to classify a
recording of a taksim to a specific player, and therefor
we will rather try to interpret the meaning of the numbers
shown in Table 2. The highest accuracy in kNN classifi-
cation is related to the taksimler played by Tanburi Cemil
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Table 2: Nearest neighbor classification (kNN), with k=1

Player Batanay Mesut C. Aydemir Yaşar Tanburi C.
Acc. 72.7% 37.5% 80.0% 20.0% 84.6%

Bey. They seem to be related to pulsation profiles with a
very consistent shape, and therefor they should be charac-
terized by pulsations that are concentrated at specific val-
ues. As we will see in the following, this is related to
a quite characteristic way, in which rhythm is elaborated
in his improvisations. While a similar conclusion can be
drawn for Ercümend Batanay and Murat Aydemir, the sit-
uation seems to be different for Mesut Cemil and Necdet
Yaşar. The latter two players seem to be characterized by a
wider variety of pulsation profiles, what however does not
yet enable us to say anything specific about their rhythmic
idioms.

At this point, we would like to take a turn from the
overview over the music collection towards a more focused
comparison. This more focused comparison will shed light
on the reasons for the differences in the pulsation profiles.
We chose to compare two players, namely Tanburi Cemil
bey and Mesut Cemil. The former became a legend with
his recordings in the beginning of the last century, in the
last phase of the Ottoman empire. The latter was his son,
and contributed significantly to many changes in style in
Turkish music with the beginning of the Turkish republic.
Therefor, as shortly pointed out by Feldman (1993), their
musical styles in taksim differed in terms of the applied
rhythmic idioms. This might be a cause for the differences
we observe in their pulsation measurements. A comparison
of two examples taken from Mesut Cemil’s taksimler (Fig-
ure 4) with two taksimler by Tanburi Cemil Bey (Figure 5)
reveals some differences. For this, we focus on the lags
smaller than 1s, as according to Figure 2b for non-metered
pieces these short period pulsations seem to be important.
Tanbur Cemil Bey’s taksimler seem to contain strong pul-
sations concentrated at 0.15s and 0.3s, indicated by the
maxima at these values in Figure 5. For Mesut Cemil’s
taksimler, the peaks are clearly less concentrated which in-
dicates a larger variation of the pulsations in his taksimler.
Especially in the Hisarbuselik taksim, the leftmost peak (at
0.16s) is not accompanied by a second, harmonically re-
lated and clear peak. These aspects indicate a difference in
the rhythmic content in the related pieces.

The pulsation profiles cannot tell us anything how pul-
sation develops throughout a piece. While the clear peaks
for Tanburi Cemil bey imply strong pulsation, the lack of
them for Mesut Cemil does not necessarily imply the ab-
sence of pulsation, but might as well indicate a high varia-
tion of pulsation tempi throughout a piece. In order to un-
derstand more about the temporal development, we need
to look at the pulsation matrices of the pieces in question.

They are depicted in Figures 6 and 7 and reveal clear
differences in rhythmic elaboration between the two tak-
simler by Mesut Cemil and the taksimler by Tanburi Cemil.
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Figure 4: Pulsation profiles for two taksim of Mesut Cemil Bey.

0.2 0.4 0.6 0.8 1
−20

−10

0

10

20

30
M

e
a
n
 a

u
to

c
o
rr

e
la

ti
o
n

Lag (s)

(a) Rast taksim

0.2 0.4 0.6 0.8 1
−20

−10

0

10

20

30

M
e
a
n
 a

u
to

c
o
rr

e
la

ti
o
n

Lag (s)

(b) Suzidil taksim

Figure 5: Pulsation profiles for two taksim of Tanburi Cemil
Bey.

In the taksimler by Tanburi Cemil pulsations are main-
tained over large durations, especially in the example of
the Rast taksim. This conclusion can be drawn by ob-
serving the bright horizontal line patterns in Figures 7a
and 7b. In both figures, the second lines (from the top)
of these patterns are graphically emphasized by overlaying
them with white polygons. We can observe, that e.g. in the
Rast taksim a continuous pulsation is established at about
20s, which is then increased in tempo until 70s, and then
slowly fades out. The other depicted taksim by Tanburi
Cemil does not have such a clear continuous development,
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Figure 6: Pulsation matrices related to the taksimler depicted in
Figure 4. The first two minutes are depicted for better compara-
bility.
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Figure 7: Pulsation matrices related to the taksimler depicted in
Figure 5. The first two minutes are depicted for better compara-
bility.

but still e.g. from 100s-115s a continuous area is marked.
The establishment of such a continuous pulsation seems to
occur rarely for Mesut Cemil, which is exemplified by the
lack of such line patterns in the depicted two pulsation ma-
trices for the Müstear and the Tahirbuselik taksim. Only
after 10s of the beginning of the Tahirbuselik taksim, we
can observe such a short pattern in Figure 6b.

5. PROSODY OF TAKSIM

As we discussed in the previous section, some players,
such as Tanburi Cemil bey, seem to emphasize pulsations
of specific frequencies in their playing, which seems to
make them differ regarding their style from other players.
We were able to observe that this emphasis is expressed
by a continuous pulsation of up to 50s for Tanburi Cemil
bey, while Mesut Cemil seems not to elaborate rhythm in
such a continuous way. There might be two reasons for
such differences, the first simply being differences in in-
dividual playing style, and the second, a difference that is
caused by the changed stylistic preferences of the society at
different historic periods. The second hypothesis is attrac-
tive, because Mesut Cemil is widely known to have broken
with many concepts of the court music tradition of the for-
mer Ottoman empire. He contributed to defining the new
national identity of Turkish music by introducing chorus
singing, and by banning styles such as the vocal improvi-
sation gazel that were considered not to fit to an orientation
towards Europe. However, while our results might indicate
such a direction, other recordings from the final period of
the Ottoman empire would have to be examined.

The peaks in the pulsation profiles, and their temporal
continuity for some taksim motivates to ask if these phe-
nomena evoke the impression of a tempo in the listener.
We could ask if listeners can perceive a tempo develop-
ment in a taksim that follows the shape of the patterns we
observe in the pulsation matrices. It is difficult, however,
to quantify the agreement of a listener with the measure-
ments. Therefor, we might establish a tempo curve for a
taksim, which follows e.g. the white shaded area in the
Rast taksim by Tanburi Cemil bey depicted in Figure 7a.
Then, a stimulus in form of a click sequence can be gener-
ated that follows this tempo curve, and the resulting click
sequence can be superimposed to the sound of the taksim,
to ask listeners regarding the relation between the click
sound and the music. This way we could for the first time
establish some rules how a tempo is established in taksim.

Obviously, a taksim is not based upon a musical meter.
This is apparent for various reasons; First, musicians are
absolutely clear in the differentiation of forms that follow a
rhythmic mode (usul), and forms that do not have any usul,
such as the taksim. Furthermore, in literature taksim was
always referred to as free-rhythm. When intending to un-
derstand in more detail how rhythm in taksim is shaped, in-
vestigating relations to rhythm in speech might be helpful
instead. Relations between musical expression and speech
were frequently used in music seminars of Turkish makam
music, which I attended. For instance, teachers might mo-
tivate their students to play a short phrase, or their names,
on a musical instrument, expressing the sound of the name
with the instrument. For that reason, it appears as an in-
teresting question if the pulsation in taksim is in some way
related to syllable and word rates in Turkish language. It is
interesting to observe that the poetry of the Ottoman was
mainly following quantitative meter, hence being based on
schemes of syllable durations. This poetry, in the form of
gazel, had surely an influence on artists like Tanburi Cemil,
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while in the times of the Turkish republic a stronger em-
phasis was given on folk poetry with its qualitative meter.

The discussed relations between poetry and taksim, as
well as the potential perception of tempo in taksim can
only be examined after a careful annotation of timing in
related recordings. As a next step, we intend to manually
annotate for some taksimler the time instances, at which
the player hits the string. This will enable us to obtain
more detailed insights into the rhythmic elaboration of the
pieces. Furthermore, it appears meaningful to attempt the
same for recitations of poetry or some free speech samples
in Turkish language, to be able to eventually compare the
occurring timing patterns.

6. CONCLUSION

By applying a simple signal processing approach, we were
able to observe differences in the ways two renowned mas-
ter players of Turkish makam music shape(d) rhythm in
their free-rhythm improvisations. Differences are related
to the continuity in which a pulsation is encountered over
time. These differences might be related to personal style,
or to style preferences of different historical periods. The
following steps that will help to illustrate these aspects in
more detail will lie in conducting some interviews with
listeners, and by detailed manual annotations of onset in-
stances in some of the taksim. We will have to address
the question, if there are some general styles present in the
prosody of taksim, and if the two examined masters might
be representative for such styles.
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ABSTRACT

In this paper, we investigate inter-flute and inter-player timbral
variations in traditional Irish flute playing. A scale of individ-
ual notes played by three players by using six dimensionally and
materially different flutes are digitally recorded and sound tim-
bre is analysed by their spectral harmonic content. The long-term
average spectrum (LTAS) and the short-term magnitude values
at harmonic peaks are used to characterise the spectral harmonic
content. The latter avoids the effect of any fluctuations in the fun-
damental frequency of played notes. The analysis quantifies the
amount of variations across the flute players and flute models at
each harmonic and explores the consistency of the timbral profile
of each player. Experimental results demonstrate that there are in
overall larger differences across the flute players than across the
flute models from different manufacturers.

1. INTRODUCTION

The flute is a popular instrument within traditional Irish
music, having a long history and enduring popularity (Breath-
nach, 1971; Duggan, 2009). Most analysis of flute timbre
so far has focused on the cylindrical metal flute, developed
in 1847 by Theobald Boehm, as it is regarded as the stan-
dard in classical and jazz (Coltman, 1971; Widholm et al.,
2001).

Traditional Irish musicians predominantly play a wooden
concert flute of the type used commonly by classical play-
ers before Boehm’s metal flute. Whilst the wooden concert
flute can have up to eight keys to make it fully chromatic,
many of the flutes played by traditional musicians are un-
keyed and play diatonically in the key of D, having a bot-
tom note of D4. The popular corpus of traditional tunes re-
lies heavily on melodies collected by O’Neill (1998), pub-
lished in 1907, and this includes mostly melodies that can
be played on a model without keys. Notes outside the key
of D can be produced by partially covering toneholes or
using alternative fingerings.

Many current models are based on designs that were
originally developed by Rudall & Rose and Boosey (Prat-
ten), both London flutemakers in the mid 1800s (Larsen,
2003; Hamilton, 1990). In comparison to the standard de-
sign of metal “Boehm System” flutes, the wooden or con-
cert flute preferred by traditional encompasses a range of
designs that deliver the same notes. There are differences
in materials, bore profiles and lengths, and variances in use
of keys, tonehole and embouchure hole dimensions and po-
sition.

The role of the instrument in the production of a flute
players’ overall timbre has been studied on a number of oc-
casions in a classical context. The work of Backus (1964)
and Backus & Hundley (1966) initially developed the ar-
gument that wall material and thickness make little differ-
ence to the overall timbre of the flute by testing a range
of artificially blown instruments. Coltman (1971) tested
three unkeyed flutes made from silver, copper and wood
and found that listeners, whether musically trained or not,
were not able to distinguish between flutes made of the
different materials or with different wall thicknesses. This
work was followed by Widholm et al. (2001) who tested
seven flutes manufactured by Muramatsu that were identi-
cal apart from their material. Widholm also found that the
material used to manufacture a flute has a negligible effect
on the overall timbre. The study did however find that indi-
vidual players produce an almost consistent timbre across
a range of flutes.

The aim of this study is to explore the timbral varia-
tions between diffrent players and a range of typical flute
designs in traditional Irish flute playing, to ascertain which
has more influence on the overall sound. We made record-
ings of a range of individual notes played by three differ-
ent players with six different flute models. The analysis
in this paper is performed using the sustained part of note
G4 recordings. Due to using only the sustained parts of
individual note recordings, the sound timbre is determined
by the spectral harmonic content. We perform the analysis
by employing the long-term average spectrum (LTAS) and
the short-term magnitude values at harmonic peaks. The
LTAS is a classical method in speech and audio process-
ing. It provides representative information of sound timbre
and has been employed in a number of studies on analysis
of speech (White, 2001; Leino, 2009; Sergeant & Welch,
2009) and music (Boersma & Kovacic, 2006). As fluc-
tuations in the fundamental frequency of a played sound
affect the conventional LTAS, and slight fluctuations were
observed in our recordings, we also perform the analysis
using the short-term magnitudes of the harmonic peaks.
The harmonic peaks are localised semi-automatically. Ex-
perimental results show that the differences in individual
players’ timbres are larger than the timbral differences be-
tween flute models from different manufacturers. The tim-
bral profiles of individual Irish flute players are distinctive
even when playing various flute models.
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2. DATA COLLECTION

For this analysis a set of flutes were selected to reflect the
varying properties possible in wooden concert flutes. This
was aimed at being reflective of the full representation of
concert flutes available and cover several alternatives in
manufacturing material and style. The flutes used, with
their specifications, are presented in Table 1.

Recording controls were maintained throughout the ex-
perimentation, these included the use of a semi anechoic
chamber, and a controlled microphone position, 20 cm away
from and approximately one third of the distance between
the head and the foot. The position was chosen to main-
tain tonal balance and minimize direct wind noise from the
embouchure hole. Recordings were performed using the
DPA 4090 microphone – this has a flat frequency response
between 20Hz and 20kHz (+/-2dB) (Robjohns, 2006) and
is therefore suitable for recordings of this type. The audio
signal was sampled at 44100 Hz.

Three players were selected for the experiment. The
players chosen varied from a beginner level, with under
a year experience, to a player with over fifteen years of
experience. All players were asked to maintain tonal con-
sistency for all the recordings across each flute and to play
a scale of individual notes from D4 to B5. Recordings
of single notes were edited to remove the attack and decay
sections as these areas are harmonically less stable (Keeler,
1972). As noted by Bamberger (2004), playing the lower
notes on the flute require attention to the pressure as well as
the size of the lip opening. Playing an unfamiliar flute also
adds to this difficulty. Thus, the note G4 was selected for
analysis in this paper as it is further up the scale and not as
susceptible to timbral differences based on these difficul-
ties.

3. ACOUSTIC ANALYSIS

First, the volume differeces between the recordings are nor-
malised out to ensure that each recording has the same av-
erage energy.

The sampled audio signal of each recording is then pro-
cessed using the short-term Fourier analysis. The signal
x(n) is segmented into short overlapping analysis signal
frames, with the length of the frame N set to 2048 samples
(corresponding to approx. 46 ms) and the shift between
adjacent frames L set to 512 samples. Each signal frame
is multiplied by the Hamming window function. The win-
dowed frames are then zero padded to have R samples, set
to 4096 in our case, and the Fourier transform is aplied to
provide the short-term Fourier spectrum X(l, k) as given
below

X(l, k) =

N−1∑

n=0

x(n+ lL)w(n)e−j 2πkn
R (1)

where k and l is the frequency bin and frame-time index,
respectively, and w(n) denotes the analysis window func-
tion. Taking the absolute value of the X(l, k) gives the
short-term magnitude spectrum. The range of magnitude

values is usually compressed by applying 20log10, result-
ing in decibel scale. The collection of the short-time mag-
nitude spectrum over time is also referred to as spectro-
gram. An example of the time domain signal (with the
attack and decay sections being removed) and its corre-
sponding spectrogram is depicted in Figure 1 for player
A playing G4 note on flute ‘Wallis’. It can be seen that
the magnitude values at frequencies above approximately
5 kHz are small. Since similar trend was also observed for
all other recordings, only the frequencies up to 5 kHz were
used in our analysis.
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Figure 1: Flute ‘Wallis’ playing note G4: waveform (a)
and the corresponding spectrogram (b).

In order to obtain information about average spectral
properties of the instruments and players, each recording
was subjected to a long-term average spectrum (LTAS) anal-
ysis. LTAS analysis can provide information on sound
timbre and is particularly useful when persistent spectral
features are under investigation (White, 2001). LTAS is
computed by averaging the short-term Fourier magnitude
spectra over time, resulting in a single feature vector rep-
resenting each of the recording.

In addition to using the LTAS, we also conducted the
analysis using only the information on the short-term mag-
nitudes of the first few harmonics. In this paper, the har-
monics were identified semi-automatically based on the
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Flute ID Manufacturer Keys Material Details
1 deKeyser 0 African Blackwood C foot, Pratten
2 Dixon 0 Polymer D foot, Rudall & Rose
3 McMahon 0 African Blackwood C foot, Rudall & Rose
4 Sweetheart 0 Maple One piece body, D foot
5 Vignoles 0 Blackwood Body, Polymer Head C foot, Pratten
6 Wallis 8 African Blackwood C foot

Table 1: Types of flutes used in the study.

knowledge of the note played, i.e., the harmonics were lo-
cated by finding peaks around the multiples of the note
frequency. In an automated system, the harmonics could
be identified by employing methods for detection of sinu-
soidal components we presented in (Jančovič & Köküer,
2007, 2011b). These methods do not require the informa-
tion about the fundamental frequency and have been em-
ployed for processing of speech and audio signals, e.g.,
(Jančovič & Köküer, 2009, 2011a).

4. EXPERIMENTAL RESULTS

4.1 Analysis employing the LTAS

Here we use the long-term average spectrum (LTAS) to
analyse the inter-flute and inter-player timbral differences.
This is performed by calculating the mean LTAS of each
player, obtained by averaging over the flutes, and of each
flute, obtained by averaging over the players. The result-
ing mean LTAS are depicted for each player in Figure 2(a)
and for each flute in Figure 2(b). It can be seen that the
mean LTAS of individual players vary mostly in the 2nd,
3rd and 5th harmonic, while the mean LTAS of individual
flutes vary mostly in the 3rd, 4th, and 5th harmonic. In
overall, the mean LTAS of individual players differ more
than those of individual flutes. Closer look at Figure 2(a)
reveals that player A is weaker on the 2nd harmonic, while
player B has a strong 2nd and 5th harmonic and player C is
weaker on the 3rd and 5th harmonic. Having observed the
differences between the players in the mean LTAS aver-
aged over all flutes in Figure 2(a), we examine in Figure 3
the LTAS of all the six flutes for each player A, B and C.
It can be seen that there are common traits in the timbre
of each player across all of their recordings with different
flutes, for instance, player B has strong the 2nd harmonic
consistently over all the flutes.

4.2 Analysis employing the short-term harmonic
peaks magnitudes

While the conventional LTAS as used above can provides
useful information, it is susceptible to variations in the fun-
damental frequency. We have noticed that in our record-
ings there were some small fluctuations in the fundamen-
tal frequency of the played note, resulting in the harmon-
ics (especially the higher ones) of each short-term spec-
trum not being accurately aligned. This effect of misalign-
ment of the harmonics could be avoided by using a pitch-
corrected LTAS, similarly as in (Boersma & Kovacic, 2006),
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Figure 2: The LTAS of each player averaged over six flutes
(a) and of each flute averaged over three players (b).

or alternatively by localising the harmonic peaks in the
short-term specrum and using their magnitudes only. Our
analyses in this section are performed using the latter, i.e.,
magnitudes of the harmonics peaks.

First, we quantify further the timbral variances between
the players and flutes. For each recording, we calculate
the mean magnitude value of each localised harmonic peak
over all the signal frames. Then the standard deviation of
these mean magnitudes of harmonics is calculated for each
player across the flutes, presented in Table 2, and for each
flute across the players, presented in Table 3. It can be
seen that in most cases there are smaller variations across
the flutes than across players. Figure 4 shows the average
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Figure 3: The LTAS of six flutes for player A (a), B (b)
and C (c).

standard deviations for each player and each flute, in both
cases averaged over the first five harmonics. The overall
average standard deviation across the flutes is 3.7 dB while
across the players is 6.1 dB.

Next, we perform evaluations using the short-term har-
monic magnitudes of all the signal frames. In addition
to the effect of players and instruments, this will also re-
veal the effect of frame-to-frame variations. Figure 5 de-
picts 2-dimensional scatter plots of the magnitudes of one

Standard deviation Index of the harmonic
across flutes for 1 2 3 4 5

Player A 0.2 4.4 1.7 1.9 7.0
Player B 0.9 1.6 5.7 6.4 7.4
Player C 0.2 1.8 5.4 5.1 5.5
Average 0.4 2.6 4.3 4.5 6.6

Table 2: The standard deviations (in dB) across flutes for
the first five harmonics.

Standard deviation Index of the harmonic
across players for flute 1 2 3 4 5

deKeyser (1) 2.0 5.5 14.0 2.7 9.4
Dixon (2) 1.5 5.7 9.4 6.0 9.3

McMahon (3) 1.1 6.1 7.2 3.1 9.0
Sweetheart (4) 0.8 9.8 11.3 2.0 5.9
Vignoles (5) 1.2 6.0 5.9 3.2 12.7

Wallis (6) 0.6 10.0 5.7 8.2 8.7
Average 1.2 7.2 8.9 4.2 9.2

Table 3: The standard deviations (in dB) across players for
the first five harmonics.
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Figure 4: The standard deviations (in dB) of the harmonic
peaks magnitudes for each player (a) and flute (b), aver-
aged over the first five harmonic peaks.
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harmonic peak against other harmonic peak for all signal
frames of all recordings. The individual players are indi-
cated by different shape and colour markers. It can be seen
that the individual players can be well separated using a
combination of the first five harmonic magnitudes. The
figures show that the Player A, denoted by green square
mark in Figure 5, is contained in few sub-clusters, which
we found to correspond to different flutes. This can be ob-
served in Figure 6 depicting the same scatter plots of the
2nd against the 3rd and the 2nd against the 4th harmon-
ics with the markers indicating now the individual flutes.
The variations for Player A within each flute are the small-
est across the players, which indicates that the Player A
plays each given instrument in most consistent way, i.e.,
most stable timbre. This is in contrast to Player C, who
shows large variations for most of the flutes, especially,
Sweetheart and deKeyser. Figure 6 also shows that the
inter-player differences are larger than the inter-flute dif-
ferences, confirming the results of variance analysis pre-
sented earlier.

5. CONCLUSION

This paper presented an analysis of the timbral variations
in traditional Irish flute playing. The analysis were per-
formed using isolated recordings of note G4, played by
three different players with six different flutes. The attack
and decay sections of the recordings were not used in the
analysis due to being harmonically less stable. The anal-
ysis was performed by employing the long-term average
spectra (LTAS) and also employing the short-term magni-
tudes of the harmonic peaks. The latter avoids the effect
of any fluctuations in the fundamental frequency of the
played notes. Experimental results demonstrated that the
LTAS of individual players differ more than those of indi-
vidual flutes. The analysis of variations of the harmonic
magnitudes showed that in most cases there are smaller
variations across the flutes than across the players, with the
overall average standard deviation being 3.7 dB across the
flutes and 6.1 dB across the players. The short-term anal-
ysis of harmonic magnitudes of all signal frames revealed
how consistent the timbral profile of each player was when
using a particular flute.

Our near future work will focus on timbral analysis of
other individual note recordings as well as further statis-
tical analysis of the short-term harmonic magnitudes, for
instance, an employment of the principal component anal-
ysis to determine the main eigenvectors representing the
timbral variations due to players and due to instruments.
Our overall aim is to research novel methods for analysis
of musical styles in continuous song recordings.
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Figure 5: Scatter plots of the short-term magnitude values (in dB) at the harmonic peaks, indicated for individual players.

Proceedings of the Third International Workshop on Folk Music Analysis, June 6-7, 2013. Amsterdam, Netherlands. P. van Kranenburg, C. Anagnostopoulou, and A. Volk (Eds.).
Amsterdam: Meertens Institute, Utrecht: Department of Information and Computing Sciences, Utrecht University.

12



−40 −35 −30 −25 −20 −15 −10
−60

−55

−50

−45

−40

−35

−30

−25

−20

−15

−10

2nd Harmonic Magnitude

3
rd

 H
a

rm
o

n
ic

 M
a

g
n

it
u

d
e

 

 

DeKeyser

Dixon

McMahon

Sweetheart

Vignoles

Wallis

−40 −35 −30 −25 −20 −15 −10
−50

−45

−40

−35

−30

−25

−20

−15

2nd Harmonic Magnitude

4
th

 H
a

rm
o

n
ic

 M
a

g
n

it
u

d
e

 

 

DeKeyser

Dixon

McMahon

Sweetheart

Vignoles

Wallis

(a) (b)

Figure 6: Scatter plots of the short-term magnitude values (in dB) at the harmonic peaks, indicated for individual flutes.
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ABSTRACT 
 

In this paper, a novel chord transition representation (Cam-
bouropoulos 2012) is explored in a harmonic recognition task. 
This representation allows the encoding of chord transitions at a 
level higher that individual notes that is transposition-invariant 
and idiom-independent (analogous to pitch intervals that repre-
sent transitions between notes). A harmonic transition between 
two chords is represented by a Directed Interval Class (DIC) 
vector. The proposed 12-dimensional vector encodes the num-
ber of occurrence of all directional interval classes (from 0 to 6 
including +/- for direction) between all the pairs of notes of two 
successive chords. Apart from octave equivalence and interval 
inversion equivalence, this representation preserves directionali-
ty of intervals (up or down).  

A small database is constructed comprising of chord 
sequences derived from diverse music idioms/styles (tonal 
music, different traditional harmonic idioms, 20th century non-
tonal harmonic idioms). The proposed DIC representation is 
evaluated on a harmonic recognition task, i.e. we examine the 
accuracy of recognition of harmonic queries in this database. 
The results of the algorithm are judged by human music 
analysis experts. 

It is suggested that the proposed idiom-independent chord 
transition representation is adequate for representing harmonic 
relations in music from diverse musical idioms (in equal tem-
perament) and, therefore, may provide a most appropriate 
framework for harmonic processing in the domain of computa-
tional ethnomusicology. 

1. INTRODUCTION 

In recent years an increasing number of studies propose 
computational models that attempt to determine an 
appropriate representation and similarity measure for the 
harmonic comparison of two excerpts/pieces of music, 
primarily for music information retrieval tasks (Allali 
2007, 2010; de Haas, 2008, 2011; Hanna et al., 2009; 
Paiement 2005; Pickens et al. 2002). Such models assume 
a certain representation of chords and, then, define a 
similarity metric to measure the distance between chord 
sequences. Chords usually are represented either as 
collections of pitch-related values (e.g., note names, 
MIDI pitch numbers, pitch class sets, chroma vectors, 
etc.), or as chord root transitions within a given tonality 
following sophisticated harmonic analysis (e.g. roman 
numeral analysis, guitar chords, etc.).  

In the case of an absolute pitch representation (such as 
chroma vectors) transpositions are not accounted for (e.g., 
twelve transpositions of a given query are necessary to 
find all possible occurrences of the query in a dataset). 

On the other hand, if harmonic analytic models are used 
to derive a harmonic description of pieces (e.g., chords as 
degrees within keys or tonal functions), more 
sophisticated processing is possible; in this case, however, 
models rely on complicated harmonic analytic systems, 
and, additionally, are limited to the tonal idiom.  

All the above models rely on some representation of 
individual chords. There are very few attempts, however, 
to represent chord transitions. For instance, de Haas et al. 
(2008, 2011) represent chord transitions as chord distance 
values adapting a distance metric from Lerdahl’s Tonal 
Pitch Space (2001); however, a chord transition being 
represented by a single integer value seems to be an 
excessive abstraction that potentially misses out 
important information.  

This paper explores a richer chord transition 
representation that can be extracted directly from the 
chord surface and that is idiom-independent 
(Cambouropoulos 2012). In the newly proposed chord 
transition representation, a harmonic transition between 
two chords can be represented as a Directional Interval 
Class (DIC) vector. The proposed 12-dimensional vector 
encodes the number of occurrence of all directional 
interval classes (from 0 to 6 including +/- sign for 
direction) between all the pairs of notes of two successive 
chords. As melodic intervals represent a melodic 
sequence in an idiom-independent manner, so does the 
DIC vector represent chord transitions in an idiom-
independent manner. This means that, given a dataset 
comprising music pieces represented as sequences of 
chords, a given chord sequence query can be searched for 
directly in the chord progressions without any need for 
harmonic analysis.  

In this study, a small database is constructed 
comprising of chord sequences (i.e. the main chord notes 
that form the underlying harmonic progression of any 
piece without root/key knowledge) derived from diverse 
music idioms/styles. More specifically, we include 
standard chord progressions from Bach chorales and 
along with harmonic progressions from modal Greek 
rebetiko songs, polyphonic songs from Epirus, Beatle 
songs and non-tonal pieces by B. Bartók, O. Messiaen, C. 
Debussy, E. Satie. 

The proposed DIC representation is evaluated on a 
harmonic recognition task, i.e. we examine the accuracy 
of recognition of harmonic queries in the above database. 
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Both the query sequence and the chord progressions in 
the dataset are converted to DIC vectors and exact 
matching for recognition is employed (approximate 
matching is also considered).  The results of the 
algorithm are judged by human music analysis experts.  

In the first section below the new Directed Interval 
Class (DIC) representation is introduced and some of its 
potentially useful properties are highlighted. Then, the 
DIC representation will be used as the basis for a prelim-
inary test on a harmonic recognition task for different 
musical idioms. Finally, a brief discussion will summa-
rise the importance of the proposed representation along 
with problems and shortcomings, and will suggest inter-
esting new avenues for further exploration. 

2. THE DIRECTED INTERVAL CLASS (DIC) 
CHORD TRANSITION REPRESENTATION 

A novel chord transition representation is proposed. A 
harmonic transition between two chords can be represent-
ed as a Directional Interval Class (DIC) vector. The pro-
posed 12-dimensional vector encodes the number of oc-
currence of all directional interval classes (from 0 to 6 
including +/- sign for direction) between all the pairs of 
notes of two successive chords. That is, from each note of 
the first chord all intervals to all the notes of the second 
chord are calculated. Direction of intervals is preserved 
(+,-), except for the  unison (0) and the tritone (6) that are 
undirected. Interval size takes values from 0-6 (interval 
class).  If an interval X is greater than 6, then its comple-
ment 12-X in the opposite direction is retained (e.g. as-
cending minor seventh ‘+10’ is replaced by its equivalent 
complement descending major second ‘-2’).  

The 12-dimensional DIC vector features the following 
directed interval classes in its twelve positions: 0 (unison), 
+1, -1, +2, -2, +3, -3, +4, -4, +5, -5, 6 (tritone). For in-
stance, the transition vector for the progression I→V is 
given by the DIC vector: Q = <1,0,1,1,1,1,0,1,0,0,3,0> 
(which means: 1 unison, 0 ascending minor seconds, 1 
descending minor second, 1 ascending major second, etc.) 
– see Figure 1, and further examples in Figure 2. 
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Figure 1  The DIC vector: <1,0,1,1,1,1,0,1,0,0,3,0> for 

the chord transition I→V depicted as a bar graph. 
 
The DIC vector is unique for many tonal chord transi-

tions. However, there are a number of cases where differ-
ent tonal transitions have the same vector. For instance, 
the transitions I→V and IV→I share the same DIC vector 

as their directed interval content is the same; it should be 
noted, that, heard in isolation (without a tonal centre ref-
erence), a human listener cannot tell the difference be-
tween these two transitions. 

The proposed DIC representation preserves direction-
ality of intervals (up or down), and, therefore, it incorpo-
rates properties of voice leading. For instance, the DIC 
vector naturally accommodates chord transition asym-
metry. If the two chords in a chord transition are reversed, 
the absolute values of intervals are retained; however, the 
directions of intervals are reversed. This way, the vectors, 
for instance, for the I→V transition and the V→I transi-
tion, are different (compare, DIC vectors of Figure 1 and 
Figure 2a-top). 

It was initially hypothesised that the DIC vector 
(Cambouropoulos, 2012) uniquely determines the two 
chords that comprise the transition (except for cases when 
one of the two chords is symmetric, such as augmented 
chord, or diminished seventh chord). This is actually not 
true. Any specific chord transition has the same DIC vec-
tor with its retrograde inversion. This is an inherent prob-
lem in the DIC representation that introduces certain limi-
tations in specific contexts. See next section for further 
discussion. 
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I -> V7 chord transition
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Figure 2  DIC vectors for four standard tonal chord tran-
sitions: V→I,  IV→V, ii→V, I→V7. 
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3. HARMONIC RECOGNITION 

In this study the proposed DIC representation is tested on 
a harmonic recognition task, i.e. we examine the accuracy 
of recognition of harmonic queries in a small diverse-
style harmonic database. The results of the algorithm are  
judged qualitatively by human music analysis experts. 
The music database, the DIC-vector-based harmonic 
recognition prototype and results will be presented in the 
sections below. 

3.1 Test Dataset 

A small database is constructed comprising of chord se-
quences (i.e. the main chord notes that form the underly-
ing harmonic progression of any piece without root/key 
information) derived from diverse music idioms/styles. 
More specifically, this purpose-made collection compris-
es of 31 chord reductions of music pieces reaching an 
overall number of 957 chords (4 Greek modal rebetiko 
songs, 3 polyphonic songs from Epirus, non-tonal pieces 
by B. Bartók, O. Messiaen, C. Debussy, E. Satie, 11 
Beatle songs, and 5 chorales by J.S.Bach). Below is a 
brief description of the main harmonic features of each 
style. Examples of chordal reductions are illustrated in 
Figure 3. The dataset comprises of the following chord 
sequences: 
 Five chorales by J. S. Bach, after their rhythmical reduction 

to a quarter-note harmonic rhythm and the removal of non-
harmonic tones. The following chorales were used (the 
numbers correspond to the Breitkopf Edition): 20, 80, 101, 
138, 345. Two different harmonizations (80 & 345) of "O 
Haupt..." were used, one in D major and the other in A mi-
nor. This material typically represents tonal harmonic pro-
gressions of the Baroque period.  

 Erik Satie's Gymnopedie no 1, reduced to chordal progres-
sions (one chord per bar). This material represents diatonic 
modal harmony of the early 20th century and the modal in-
terchange/modulation procedure, where different diatonic 
modes are used, either with the same or with different pitch 
centers. One characteristic difference of this idiom from the 
tonal harmonic idiom is that the chord progressions are 
more unrestricted and do not adhere to standard functional 
relations and progressional formulae (for further discussion 
and analyses see Tsougras 2003). 

 Excerpts of music by Claude Debussy, reduced to chord 
progressions: selected  chordal sequences (b. 1-5, b. 13-16, 
b. 17-21, b. 42-43) from Nuages (1st movement of Noc-
turnes for orchestra) and the opening bars (b. 1-14) from 
Claire de Lune (nr. 3 from Suite Bergamasque for solo pi-
ano). This material represents the fluent "impressionistic" 
harmony of the early 20th century, with its relatively free 
dissonances and frequent planning procedure (parallel har-
mony, either diatonic or real/chromatic). 

 Olivier Messiaen's chordal sequence from the piano part of 
Liturgie du Cristal (1st movement of the Quartet for the 
End of Time). This 17-chord sequence corresponds to the 
17-part isorhythmic pattern of the piece (talea), and is part 
of the full 29-chord pattern that is in constant repetition 
(color). This material represents Messiaen's idiomatic mod-
al harmony, based on his system of seven symmetrical 
chromatic modes of limited transposition. 

 Béla Bartók's Romanian Folk Dances for piano nr. 4 
(Mountain Horn Song) and nr. 6 (Little One, b. 1-16). These 
pieces are essentially harmonizations of original Romanian 
folk tunes from Transylvania, recorded and transcribed by 
Bartók himself. The original tunes are modal, either diatonic 
of chromatic, but the harmonizations create more complex 
sonorities and involve mixing of modes and symmetrical 
pitch structures. This material represents the initial stage of 
Bartók's "polymodal chromaticism" (a term used by the 
composer to describe modal mixing). For further discussion 
and analyses see Tsougras 2009. 

 Three Polyphonic Songs from Epirus (Epirus is a region of 
northwestern Greece), reduced to vertical sonorities, and 
without the idiomatic glissandi or other embellishment types 
featured in the idiom. The reductions were produced from 
transcriptions made by K. Lolis (2006). This very old 2-
voice to 5-voice polyphonic singing tradition is based on the 
anhemitonic pentatonic pitch collection - described as pc set 
(0,2,4,7,9) - that functions as source for both the melodic 
and harmonic content of the music. The songs chosen for 
the analysis are: Την άμμο-άμμο πήγαινα (4-voice, scale: G-
Bb-C-D-F), Έπιασα μια πέρδικα (3-voice, scale: D-F-G-Bb-
C), Πέρασα 'πο 'να γιοφύρι (4-voice, scale: G#-B-C#-E-F#). 

 Four Greek rebetiko songs, reduced only to chord progres-
sions. Each song's melody is based on a particular mode, 
called "dromos" (Greek "laikoi dromoi" have affinities with 
Turkish makams and frequently bear similar names, but 
they are quite different in their intervallic structure, since 
they are adapted to the equally-tempered scale and do not 
incorporate microtones). The songs chosen for testing were: 
Με παράσυρε το ρέμα by Vassilis Tsitsanis (D Ussak), 
Απόψε φίλα με by Manolis Chiotis (D hicaz), Καϊξής by 
Apostolos Chatzichristos (D natural minor) and Πασατέμπος 
by Manolis Chiotis (D hicaz/hicazkar). This material repre-
sents some cases of the idiomatic modal harmony of Greek 
"rebetiko". This modal harmony roughly results from the 
formation of tertian chords above structural pitches of the 
current mode and the use of certain cadence formulae for 
each mode. 

 Eleven Beatles songs, reduced to chord sequences (ex-
pressed in conventional chord symbols, e.g. Cm, CM7, etc). 
The harmony of these popular songs incorporates a number 
of diverse influences (which range from blues and rock n' 
roll to pop ballad and classical songs), together with Lennon 
& McCartney's original progressions and harmonic style. 
The chosen material, which attempts to represent most of 
these influences and originalities, comprises the following 
songs: All my loving, From me to you, She loves you, A hard 
day's night, Help, Michelle, Misery, Because, Yesterday, 
Penny Lane, Strawberry fields forever. 

The musical style that is more likely to have unique har-
monic progressions is Messiaen's: the highly chromatic 5-
note to 7-note sonorities (see Figure 3) constitute a highly 
individual harmonic idiom, and no common elements can 
be found among the other styles in the present data. An-
other quite unique style is the Polyphonic Epirus singing, 
with its purely pentatonic harmonic content and unre-
solved dissonances. The other styles are mainly based on 
tertian harmony, with Debussy's and Bartók's styles con-
taining extensions or deviations. Only Bach's style is ex-
plicitly tonal, i.e. it is based on standard harmonic func-
tions (mainly of the type S-D-T, especially on cadences), 
while the other tertian harmonic styles are idiomatically 
modal.  
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Reduction of Bach’s chorale nr. 345 O Haupt... 

 
Reduction of Erik Satie's Gymnopedie no 1, b. 32-39 and 71-78 (for further details see Tsougras 2003) 

 
Claude Debussy, Nuages chord progressions (b. 13-16 and b. 42-43): 

 
Reduction of Claude Debussy’s Clair de Lune: (b. 1-14): 

 
Olivier Messiaen's chordal sequence from piano part of Liturgie du Cristal (1st mov, Quartet for the End of Time) 

 
 
Béla Bartók's Romanian Folk Dance nr. 4 reduction (b. 3-16) (for further details see Tsougras 2009) 

 
 
Reduction of Polyphonic Song from Epirus Tin ammo-ammo pigena 

 

Chord sequence of rebetiko song Pasatempos by Manolis Chiotis (D hicaz/hicaskar): 

Cm-Cm6-Gm-D-Gm-Gdim-D-Cm-D-A-D-Gm-Cm-D7-Gm-Cm-Eb-D 
 

Chord sequence of  song A hard day's night by the Beatles: 

C-F-C-Bb-C-F-C-Bb-C-F-G7-C-F7-C-Em-Am-Em-C-Am-F7-G7-C-F-C-F7-C-F-C-F7-Bb-C 
 
 

Figure 3  Examples of chord sequences from diverse harmonic idoms contained in the test dataset. 
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3.2 Harmonic Recognition Model 

In order to test the potential of the DIC representation a 
simple computer application (in Java) was devised. The 
user inputs a harmonic query (sequence of chords) and 
the system finds exact matches in a given database of 
chord reductions.  Both the query sequence and the chord 
progressions in the dataset are converted to DIC vectors 
and, then, exact matching for recognition is employed. 
Approximate matching is currently available by use of 
wild cards (i.e. DIC vector entries can be replaced by 
wild cards); δ & γ approximate matching is also possible 
but not explored in current study. The user interface is 
depicted in Figure 4; the exact positions of each match 
are listed in a side window (not depicted in Figure 4).  

 
Figure 4  User interface of DIC-vector-based harmonic 

matching prototype 

3.3 Results & Discussion 

The harmonic recognition model can reveal individual  
harmonic elements that characterize the styles in our pur-
pose-made database as well as common elements among 
them. We tested a large number of queries on the given 
dataset.  

For this small dataset, relatively longer sequences 
comprising of four or more chords were uniquely identi-
fied in the correct position of the music piece from which 
they originated. For instance, we examined exhaustively 
Bach chorale 20 in terms of the longest repeating subse-
quence; the longest sequence found in at least one other 
piece was a 4-chord sequence (first four chords identified 
in position 26 of Strawberry Fields). Of course if the da-

taset is significantly extended we expect to find more oc-
currences of relatively longer harmonic sequences.  

Below is a selection of specific harmonic progressions 
that were investigated and our comments on the results 
obtained: 
 chorale style tonal cadence in major tonality: ii6

5-V-I: 
found 5 times, only in Bach chorales (this is a charac-
teristic cadence type of the chorale idiom) 

 chorale style tonal cadence in minor tonality: iio
6
5-V-i: 

found 3 times, only in Bach chorales (this is a charac-
teristic cadence type of the chorale idiom) 

 major triad progressing to minor triad one perfect 5th 
down: found 21 times in Bach chorales, one Beatles 
song (Michelle) and three Rembetika songs (Απόψε 
φίλα με, Πασατέμπος, Με παρέσυρε το ρέμα) 

 major triad progressing to major triad one perfect 5th 
down: found 100 times in Bach chorales, certain Beat-
les songs, Satie and certain Rebetika songs. This pat-
tern is very common in styles based on the circle of 
fifths harmonic progression, namely tonal music and 
diatonic modal music. It is not encountered in chro-
matic modal styles, or in other idiomatic styles (De-
bussy, Bartok, Messiaen, Epirus songs). See further 
extended comments below. 

 major triad progressing to major triad one major sec-
ond higher: found 23 times in Beatle songs, rebetiko 
songs, chorales, Satie (and once in Debussy). 

 major triad seventh progressing to major triad a per-
fect fifth lower (perfect cadence): found 45 times only 
in Bach and Beatle songs (and once in Debussy). Not 
encountered in the other non-tonal idioms. 

 major triad with major 7th progressing to major triad 
with major 7th one perfect 5th down: found 8 times, 
only in Satie's Gymnopedies 

 major triad progressing to minor triad one major 2nd 
down: found 1 time, in one Rebetiko song (Πασατέ-
μπος). This progression is expected to be found more 
often if rebetiko dataset is enlarged especially for 
hicaz mode. 

 minor triad progressing to major triad one major 2nd 
up: found 4 times, in one Beatles song (Michelle) and 
two Rebetika songs both in hicaz mode (Απόψε φίλα 
με, Πασατέμπος). 

 minor triad progressing to minor triad one minor 3rd 
down: found 4 times, only in Debussy's Nuages (as 
part of real planing with parallel minor chords). Most 
chord sequences tested on Nuages were unique to this 
idiomatic harmonic language. 

 the third chord transition Debussy’s Clair de Lune is 
identified three times in this piece (positions 3, 11, 16 
in Figure 3). Many transitions are unique in this piece. 

 The vast majority of chord transitions in the poly-
phonic songs from Epirus are identified only in this 
music style. For instance, the second chord transition 
in the reduction of Polyphonic Song from Epirus “Tin 
ammo-ammo pigena” (G-Bb-D → G-Bb-F-C) is iden-
tified twice in this song (position 2 and 9)  
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 Most chord transitions in the pieces by Satie, Debus-
sy, Bartók and Messiaen are uniquely identified in the 
respective pieces and are characteristic of the specific 
harmonic styles (always in the context of this small 
database). 

Overall, the harmonic recognition model behaves as ex-
pected, and has sufficient distinctive power to discern the 
harmonic individualities of these different harmonic lan-
guages. Almost all of the harmonic queries were correctly 
detected (see one problem below) and all queries of at 
least three-chords length were identified without mis-
takes.  

It is worth mentioning that the model is capable of 
finding repeating harmonic patterns even though pieces 
are in different keys (transposition invariance). Addition-
ally, it is reminded that the system has no knowledge of 
the different kinds of harmonic systems (tonal, modal, 
chromatic, atonal, etc.), and is therefore interesting that it 
detects correctly any kind of harmonic query in diverse 
harmonic idioms. 

A very interesting observation is the following: the 
harmonic recognition model is equally success-
ful/accurate when only the first five vector components 
are used. We tested all the above queries using only the 
first five vector entries [0, 1, -1, 2, -2] (out of the 12) 
which correspond to Unison (i.e. common pitches be-
tween two chords) and Steps (i.e. ascending and descend-
ing semitones and tones); the resulting matches were the 
same in every case.  

These small intervals may be thought as being mostly 
related to voice-leading as it is standard practice to try to 
connect chords avoiding larger intervals (using common 
notes and small step movements). The reduction of the 
DIC vector to a 5-component subvector, increases cogni-
tive plausibility of the proposed representation. Although 
no cognitive claims are made in this paper, we just men-
tion that representing the transition between two chords 
as the small intervals that link adjacent pitches (being po-
tentially part of individual harmonic voices) affords this 
representation potential cognitive validity. This has to be 
explored further in future research. In any case, this re-
duced vector results in better computational efficiency. 

As we were testing the DIC vector representation on 
the specific dataset, an important problem arised. There 
were certain special cases in which different chord suc-
cessions were matched to the same vector. The most un-
settling such occasion was the finding of 100 instances of 
major triad progressing to major triad one perfect 5th 
down. A number of the matched instances were minor 
triad progressing to minor triad one perfect 5th down. 
How was this possible?  

After further investigation we realised that a chord 
sequence shares the exactly same DIC vector with its ret-
rograde inversion! For the above instance, the retrograde 
inversion of a major triad progressing to major triad by 
an interval X is a minor triad progressing to minor triad 
by the same interval X. This is an inherent property of the 
DIC vector which reduces its descriptive power, and may 
have serious ramifications for certain tasks. 

In the case of harmonic matching, this is not a serious 
problem if the sequences sought for are longer that 3 
chords. The reason is that the additional context of neigh-
boring chords disambiguates the overall sequence. For 
instance, in the above example (finding 100 instances), if 
our sequence of major chords is preceded by a major 
chord one tone lower than the first chord, then we find 
only 12 instances of the sequence (most likely con-
strained to IV-V-I). Longer sequences will be even more 
unambiguous. In another example (fifth bullet above) the 
transition found in 23 instances will correspond most 
likely to a IV-V chord progression (even though it may 
correspond to a ii-iii transition between minor chords). If 
the first chord is preceded by a diminished chord a semi-
tone lower, then the whole sequence of three chords is 
found only once in Bach chorale 20 (the sequence is viio-
I-V/V). The specific context restrains the search drastical-
ly. 

There exist ways to address this problem by refining 
the DIC representation (introducing new concepts) but 
the DIC representation would lose its simplicity. We con-
jecture that such refinement might be necessary especial-
ly if the DIC representation is to be extended for use in 
the audio domain. Such options are open for further in-
vestigation. 

Finally, an important issue not explored sufficiently in 
this study is chord progression similarity, i.e. how similar 
two chord sequences are. As it stands a V-I transition and 
a V7-I transition are different (not matched) because their 
DIC vectors are not identical. Or a V-I transition is not 
matched to another V-I transition if, a note is missing 
such as the fifth of the first or second chords. Such rela-
tions can be captured if certain tolerances are allowed. 
For instance, if all entries of one vector are smaller than 
the corresponding entries of the other vector, and the sum 
of the differences is three or less, then sequences such as 
V-I and V7-I would be matched. The similarity relations 
between vectors is an open issue for further research. 

In the current implementation wild cards can be in-
serted allowing certain tolerance in the matching. Disa-
bling entries 6-12 in the vector, i.e. using only the first 
five components, did not seem to make a difference as 
mentioned earlier in this section. Trying out a more radi-
cal example, we queried the system with the vector 
0**********2; this means we are looking for a chord 
succession that contains no common notes and there exist 
two distinct tritone relations between different notes of 
the chords. The system returned 7 instances: 4 in the re-
betiko songs and one in Michelle by the Beatles that cor-
respond to the transition of major chord to minor chord a 
tone lower (or the reverse), 1 in Bartok’s Romanian Folk 
Dance nr. 4 that corresponds to the transition of minor 
chord 7th to major chord a tone higher, and 1 in Debus-
sy’s first measures of Nuage that corresponds to the tran-
sition of a perfect fourth harmonic interval to a perfect 
fifth a semitone lower. Such experiments allow the inves-
tigation of certain similarity relations. δ & γ approximate 
matching is also possible but not explored in current 
study. More extended studies are necessary to determine 
‘meaningful’ similarities between different transitions.  
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4. CONCLUSIONS 

In this paper the Directed Interval Class 
representation for chord transitions has been used in a 
harmonic recognition task. A small database was 
constructed comprising of chord sequences derived from 
diverse music idioms/styles (tonal music, different 
traditional harmonic idioms, 20th century non-tonal 
harmonic idioms). A harmonic recognition application 
based on the DIC representation was developed and 
tested on the above dataset. As expected harmonic 
recognition accuracy was high especially for relatively 
longer chord sequence queries (longer than three chords). 
One of the most useful properties of the DIC 
representation is that it is transposition-invariant 
(independent of key). Some inherent limitations of the 
DIC vector were also presented and potential future 
improvements suggested. 

It is suggested that the proposed idiom-independent 
chord transition representation is adequate for represent-
ing harmonic relations in music from diverse musical idi-
oms (i.e., it is not confined to tonal music) and, therefore, 
may provide a most appropriate framework for harmonic 
processing in the domain of computational ethnomusicol-
ogy. 
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ABSTRACT 
 
Among the numerous traits characterizing non-Western musical 
performances, the variability of scales has intrigued researchers. 
Especially in a context of development of computer-assisted 
tools for the study of scales, it is important to take this variabil-
ity into consideration, as it is significant regarding the way 
pitches are organized and conceptualized within a musical sys-
tem. In the secular repertoire of the Amhara of Ethiopia, the in-
tervals sizes present certain variability. This paper will investi-
gate the variability of the pentatonic anhemitonic scale tezeta, 
by analyzing the intervals constituting this scale in different 
contexts: 1. in performances of the song Tezeta by 5 different 
musicians; 2. in performances of exercises preparing the musi-
cian to perform the song; 3. in inversions of other scales (gel-
batch technique) used when a musician does not have the op-
portunity to switch to the ‘normal’ tezeta scale. These three dif-
ferent contexts of performance allow the understanding of the 
variability and the rules governing the different ways tezeta is 
performed. 

1. INTRODUCTION 

One of the major challenges an ethnomusicologist has to 
face in his/her research is to deal with variability. The sci-
entific investigation of musical performances needs, as 
noted by several scholars already, to take into considera-
tion the important variability in realization (compared 
with the Western relatively “fixed”, standardized way of 
building musical instruments, organizing the music and 
selecting the pitches). Arom (1985, vol. I: 210-254), for 
example, developed the concept of pertinence in order to 
properly account for the variability of the pitches he en-
countered. In doing so, he hypothesized that the impor-
tant relationship between variable musical features is not 
a relationship of same, but a relationship of being cultur-
ally equivalent.  
 
Such a concept is a key to understand many musical per-
formances, as well as an important factor to take into 
consideration for automated extraction of information 
from non-Western musical streams. In this paper, the 
case-study under consideration focuses on a ‘classical’ 
research theme in ethnomusicology: the musical scale. 

2. SCALES: MORE THAN A SET OF INTERVALS  

 Musical scales are “the basis for all melodic 
construction and (...) all melodies are concrete 
manifestations of a musical scale.”(Arom, Fernando & 

Marandola 2007, 107). We consider here, with Simha 
Arom (cited in Marandola 1999: 110), that a scale is “an 
ensemble comprising a finite number of discrete units 
extracted from the sonourous continuum – the degrees 
[...]”. Fernando (2007, 946) even precises “opposing 
units” and differentiates, as several other 
ethnomusicologists, the scale and the mode : the scale 
being a finite group of all degrees of a musical culture, 
whereas the mode is a selection of the specific degrees 
needed for a specific performance, including a 
hierarchization between the selected degrees.1 Chailley 
(1985, cited in Fernando 2007) introduced a conceptually 
useful intermediary level between the scale and the 
mode: the system, defined as the “selected sounds”, 
without consideration of hierarchical ordering or 
polarity.  

 

Fernando (2007) considers that three different “types” of 
pitch organization exist: 1. a fixed set of intervals with a 
reference pitch (such as the Western tempered system); 
2. a system of untempered archetypal sets of intervals, 
sometimes performed with variations and often based on 
a conscious theorization (such as the Indian and Arab 
systems) ; 3. a complex, dynamic model in perpetual 
(re)construction and actualization, within the limits 
established by the collective norm. It can therefore be 
stated that an intervallic measurement will take on a 
different significance according to the type of pitch 
organization used in the repertoire/musical culture in 
question.  

Especially in the absence of a fixed reference pitch, the 
intervallic distance between the degrees is of essential 
importance. Since the end of the 19th century, most 
measurements of the intervallic distance between the 
realizations of two different degrees in a musical 
performance has been conducted using A. J. Ellis’ 
subdivision of the octave into 1200 cents. However, in 
several cases, ethnomusicologists faced and continue to 
face various situations regarding the realizations of 
                                                             
1 According to this differentiation, the Western tempered scale com-
prises 12 semitones, whereas the major mode comprises only 7 degrees, 
with a “most important” note, the tonic. In this paper, in order to avoid 
confusion however, the scale will designate an “intervallic pool” – the 
most general level possible.  
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intervallic distances between degrees: in several 
contexts, important variations can be observed such as in 
Ouldémé flute music of North Cameroon, for example, 
the size of a culturally equivalent interval can vary from 
120 to 320 cents (Arom, Fernando & Marandola 2007: 
115).            

In non-western musical contexts, it is also important to 
consider a specific performance as one realization of a 
theoretical model, which could possibly never actually 
materialize in performances [Fernando 2007: 974]. 
Ethnomusicologists are therefore interested in unveiling 
this model and the rules that govern the musical 
realization of the model. To that end, a corpus of several 
performances of a same piece played by different 
musicians (or by the same musician at different 
occasions) is the basis of the analysis.  

3. THE ETHIOPIAN SECULAR MUSIC (ZEFEN) 

3.1 Investigating Amhara secular scales: a political 
history 

In Ethiopian Amhara music, scales used in secular music 
(zefen) remain a controversial issue. As opposed to the 
music related to Christianity (zema), the zefen has a 
ambiguous status in Amhara society. The professional 
secular musicians, the azmari, have long been considered 
suspiciously by the rest of the Amhara society and have 
remained secluded (Bolay 2004, Kebede 1975).  

 

Figure 1. Azmari playing in a tedj bet [traditional beer 
bar] in Lalibela. Photo: S. Weisser, 2004. 

 

According to recent research, this status has started to 
slowly change in the second half of the 20th century. The 
founding of national insitutions such as the Hager Fikr 
Theater and the Orchestra Ethiopia gave visibility to 
these musicians and to the music they performed. The 

Derg Regime (1974-1991) tried to remodel the 
traditional organization of secular music performances 
and placed, for political reasons, secular musicians in the 
spotlight – although under strict watch (Betreyohannes, 
personal communication, 2012).  

The first serious attempt to describe the pitch 
organization of their music dates also from half a century 
ago. Michael Powne published in 1968 the first detailed 
study on Ethiopian music, in which was included a 
“description” of the musical scales used by the azmari. 
However, as he specifies himself, most of his work was 
conducted with the National Folklore Orchestra of the 
Haile Selassie Theater. Information collected in this 
context might differ from the traditional practices and 
reflect a distinctive musical system: “the Haile Selassie 
Theater group was recruited in 1946 by the Municipality 
of Addis Ababa with the main objective to play 
Ethiopian songs by soloists accompanied by a modern 
orchestra (…). Thus began the process of giving a 
modern setting to the folk traditions of the country (…) 
(official website of the institution, 
http://www.mysc.gov.et/National%20Theater.html).  

 

Powne and most of the researchers after him used 
therefore Western staff system (with tempered intervals) 
in order to characterize Amhara secular scales, even 
though several mentions were made regarding the 
inadequacy of such system (namely by Powne himself). 
However, they are still used (see namely Abate 2009). 
Such transcriptions have an over-simplifying and over-
standardizing effect on the way we understand Amhara 
secular scales. There is no doubt that azmari can play 
traditional songs with tempered intervals, especially 
when they perform with Western instruments (such as 
keyboard, electric guitars, etc.) but the analysis of the 
repertoires played with traditional instruments only and 
recorded respectively in 1939, 1976 and the 2005 (see 
Weisser 2012, Weisser and Falceto 2012) shows impor-
tant variability in performance and clear deviation from 
the Western intervals.  

Literature focusing on Amhara music – scientific as well 
as those targeting the “general audience”, such as CD 
liner notes or concert presentations – usually holds that 
Amhara secular scales [keniet] are Tezeta, Bati¸ Anchi-
hoye and Ambassal (e.g. Powne 1968, Kebede 1971, 
Kimberlin 1976). According to Kebede (1977, 385), 
“[t]he term Kignit (…) is commonly used by azmariwoch 
(plural of azmari) in reference to the tuning of secular 
musical instruments. Kignitoch (Kignit, sing.) consist of 
relative pitches that adhere to the pentatonic structure of 
melodic patterns; they also include both equidistant and 
non-equidistant forms (…). In addition, the term Kignit 
has a clear reference to song (poetry and melody) and to 
a system of tuning instruments to relative pitches found 
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in the melodic patterns of the major song genres. 
Thirdly, the same term also applies to tuning instruments 
through a process of improvisation and variation”.  

Even though Teffera (1999, 19) noted that not all azmari 
use nor know this term in several regions, it will be used 
here to designate the intervallic organization of azmari 
performances. It is plausible that the set of four kenietoch 
that is now commonly adopted as a theoretical frame-
work were formalized in the second half of the 20th cen-
tury in a context of rationalization and modernization, 
even though other intervallic settings were and are still 
used. So the attempt to ‘westernize’ the intervals seems 
to have come along with an attempt to simplify and re-
duce the intervallic settings used by the musicians. For-
tunately, Amhara musicians are proficient enough and 
continue until today to perform the rich, complex and 
interesting tradition they inherited, while constantly ex-
panding their musical palette.  

3.2 Studying the keniet 

In order to study the keniet used by the musicians, five 
professional Azmari musicians were recorded in Addis 
Ababa in 2004. All four were asked to play the same set 
of ten songs, identified by their ‘names’ (usually the re-
frain’s first word). This set comprised the four ‘canonic’ 
songs, which supposedly provided the name for the four 
keniet. In order to differentiate the ‘scale’ from the song, 
the term zefen [song] or keniet [‘scale’] will be systemati-
cally added to the name of these four songs. 

 

The five recorded azmari play the single-fiddle masinqo 
and four of them are also singers. Sound extracts were 
taken from parties of the recording with masinqo alone, 
in order to collect all of the instrumental degrees used in a 
performance. However, such collection was, for technical 
reasons, only performed for the main tessitura: azmari 
players are able to produce pitches one octave higher with 
a specific bow technique and pressure, but these sounds 
are usually very noisy (generating troubles in pitch calcu-
lation). However, this technique shows that the pitch set-
ting in secular Amhara music can be considered as oc-
tave-equivalent.  

In order to investigate the variability in more detail and 
determine whether it is due to differences between play-
ers or if it plays a significant part in the performance of 
zefen, it was chosen to focus on the intervals constituting 
the tezeta zefen only. Interval measurements were made 
in the beginning and the end of the performed song for 
each musician, constituting a set (called corpus 1) of 50 
intervals. 

 

 

Figure 2. Traditional chordophones played by azmari: 
the one-stringed fiddle masinqo (left) and the six- or 

five-stringed lyre krar. Photos: S. Weisser, 2006. 

 

In order to complete this investigation and determine 
whether this variability is due to differences between 
players, a second corpus was constituted, comprising per-
formances of tezeta keniet performed several times by the 
same musician. As one of the azmari was recorded in 
several occasions (in the context of instrumental classes), 
the information and sounds collected from these record-
ings were included in the corpus. The sounds collected 
from these sessions comprise exercises called ‘positions’: 
they are meant to familiarize the fingers with the posi-
tions required for the correct performance of a song. In 
this study, nine sets of tezeta intervals performed by the 
main informant at different occasions were included in 
the corpus. This second corpus comprises 80 intervals 
(corpus 2).  

 

 

Figure 3. Andalkachew Yihune, azmari and main infor-
mant, during a masinqo lesson. Photo: S. Weisser, 2005. 

 

Finally, another set of intervals was studied in order to 
complete the study: the ones provided by a specific play-
ing technique called gelbatch: with this technique, it is 
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possible to play a song usually played in one keniet by 
using the intervals of another, only with a reorganized 
order (inversion of the invervals). This technique is used 
by musicians in performance when they do not have the 
time to change from one keniet to another (for example, 
when songs are following each other without breaks). A 
performance of gelbatch was made by the main informant 
using the 6-strings lyre krar, an instrument also used – 
although more rarely these days – by azmari. Tezeta per-
formed based on the three other keniet’s intervallic set-
tings (anchihoye, ambassal and bati) constitute corpus 3 
(15 intervals). Kimberlin (1976, 70-2) details this tech-
nique for the masinqo, explaining that the term is used 
when the starting pitch is shifted from the open pitch to 
another degree1.  

 

Pitch measurements were made with three pieces of soft-
ware: Audiosculpt (Ircam), Praat and the mirpitch func-
tion of the MIRToolbox. The intervals were calculated in 
cents. Interval 5 was calculated by considering as second 
pitch the higher octave of the open string, in order to keep 
this interval’s size within the same order of magnitude as 
the others to ease comparisons. 

3.3 Results 

Analysis of corpus 1 (Tezeta Zefen performed by 5 dif-
ferent musicians) shows that variability of intervals is 
rather limited (average RSD reaching 8%, see Table 1). 
Comparison with other songs (Weisser 2012) has shown 
that such value is among the lowest ones. Intervals 1, 3 
and 5 are most “stable” ‘(RSD 5-6%); analysis of the 
range shows that intervals 3 and 5 and are significantly 
bigger than the other intervals.  

 

 Interval 
1 

Interval 
2 

Interval 
3 

Interval 
4 

Interval 
5 

Musician 1 
(beginning) 220 192 316 188 283 

Musician 1 
(middle) 222 184 301 164 329 

Musician 1 
(end) 233 179 311 179 297 

Muscian 2 
(beginning) 196 147 348 201 308 

Musician 2 
(end) 196 199 316 155 335 

Musician 3 
(beginning) 213 211 290 219 267 

Musician 3 
(end) 214 204 289 198 295 

                                                             
1 Kimberlin however states that this shift of referent pitch from 
open string to the 5th degree only applies between pairs of 
scales: tezeta-bati on one hand and anchihoye-ambassal on the 
other – contrarily to the krar.  

Musician 4 
(beginning) 207 183 320 178 311 

Musician 4 
(end) 215 194 291 182 318 

Musician 5 
(beginning) 220 175 334 157 313 

Musician 5 
(end) 215 194 291 182 318 

Mean 214 187 310 182 307 

RSD 5% 9% 6% 11% 6% 

Range 37 65 58 64 68 

Max 233 211 348 219 335 

Min 196 147 289 155 267 

Table 1. Results of the analysis of corpus 1 (Intervallic 
setting in the performances of Tezeta Zefen by 5 musi-
cians). Intervals are expressed in cents. 

 

Analysis of intervals of corpus 2 (masinqo’s ‘Positions’, 
see Table 2)) show that even though the musician, in-
strument and conditions of recordings were rather similar, 
the variability is twice as significant as in corpus 1: aver-
aged RSD reaches 14%. Intervals 2 and 4 vary the most, 
whereas 5 seem to be the most stable. Measurements of 
intervals 1, 2 and 4 share a rather large common “area”: 
intervals from c. 169 to c. 246 cents. Intervals 3 and 5 
also share an area from c. 269 to c. 318 cents. 

 

 Interval 
1 

Interval 
2 

Interval 
3 

Interval 
4 

Interval 
5 

Class 1 227 161 328 195 290 

Class 2 192 197 316 227 269 

Class 3 192 197 316 227 269 

Class 4 181 201 343 178 297 

Class 5 187 225 303 202 282 

Class 6 189 330 244 160 277 

Class 8 189 330 244 160 277 

Class 9 169 152 361 199 318 

Class 9-2 212 223 312 171 282 

Class 11 246 158 341 160 296 

Class 11-
2 201 195 328 189 287 

Class 12 219 166 340 173 301 

Mean 200 211 315 187 287 
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RSD 11% 29% 12% 13% 5% 

Range 77 178 118 67 49 

Max 246 330 361 227 318 

Min 169 152 244 160 269 

Table 2. Results of the analysis of corpus 2 
(‘Positions’). Intervals are expressed in cents. 

 

Analysis of corpus 3 (Table 3) shows that the range 
reaches maximum values for intervals 3 and 1 (over a 
tempered semitone), whereas interval 5 present the small-
est dispersion (range of 49 cents), followed by interval 4 
(77 cents) and 2 (85 cents).  

 

 Interval 
1 

Interval 
2 

Interval 
3 

Interval 
4 

Interval 
5 

Tezeta on 
Ambassal 
‘Major’  

154 208 260 191 388 

Tezeta on 
Anchihoye 

‘Major’  
130 190 398 143 339 

Tezeta on 
Bati ‘Ma-

jor’ 
239 123 357 114 367 

Range 109 85 138 77 49 

Max 239 208 398 191 388 

Min 130 123 260 114 339 

Table 3. Results of the analysis of corpus 3 (Tezeta ob-
tained with the‘Gelbatch’ [inversion] technique). Inter-
vals are expressed in cents. Because of the small num-

ber of samples, mean and RSD are not calculated. 

4. DISCUSSION 

These results seem at first confusing and even contradic-
tory: why does the intervallic setting of ‘positions’, an 
exercise specifically meant to improve the precision of 
the performance of the intervallic setting, show more 
variability than the ‘real’ performances of songs? And 
how come the intervallic settings found in gelbatch show 
such important range (up to half the size of the averaged 
interval), without challenging the ‘identity’ of the scale?  

 

In order to understand these results, it is important to in-
vestigate the nature of the information extracted from the 
intervallic settings measured in these cases: the results 
obtained from the analysis of gelbatch can be considered 
as the limits of the system. Indeed, tezeta produced with 
gelbatch technique is acceptable, whereas tezeta pro-

duced in ‘normal’ configuration is preferable. In a similar 
way, the intervallic settings from ‘Positions’ is rather ab-
stract (even though it was usually played in preparation of 
the performance of the song), whereas those obtained 
from performances of the song (Tezeta Zefen) correspond 
to a specific realization of the keniet. All these results are 
therefore related different musical objects, corresponding 
to diverse levels of conceptualization.  

 

A look at these results helps us understand more about 
the conceptualization of the system: analysis of the “lim-
its” of the system clearly shows that intervals 1, 2 and 4 
are smaller than c. 240 cents, whereas intervals are 
clearly bigger (between c. 260 cents and c. 390). This dif-
ferentiation between intervals 1, 2 and 4 on one hand and 
3 and 5 on the other can also be observed in the two other 
corpuses. The analysis of the ‘Positions’ corpus shows 
that the “small” intervals have usually a minimal size of 
c. 150 cents. It seems therefore that intervals smaller than 
150 cents are admitted (since they appear in in the gel-
batch corpus), although not preferred, since they are not 
performed in the ‘Positions’ and songs’ corpuses. Finally, 
the analysis of the results of the songs’ corpus shows that 
the combination of the degrees into a melody and the ad-
dition of the singing voice exert a standardizing effect on 
the intervallic setting. Variability diminishes (without 
disappearing), especially for interval 2.  

 

It is now possible to consider that the relatively larger 
size of intervals 3 and 5 seem to be the defining criterion 
of the tezeta setting. On the contrary, intervals 1, 2 and 4 
are usually smaller. It is interesting to note, however, that 
a bigger interval 2 (in the ‘Positions’ corpus, it can reach 
330 cents) does not alter the ‘tezeta-nature’ of the inter-
vallic setting. However, such significant values are not 
reached by interval 2 in the 2005 ‘real’ performances. It 
however explains why some intervallic settings of songs 
performed with a wider second interval (such as Ye En-
fras Abeba, see Weisser 2012) is considered to be a song 
in tezeta keniet. It also explains why the songs performed 
with another chordophone, the bagana, are considered to 
be in tezeta keniet with either a wider second interval 
(most of the time) or a smaller second interval (less fre-
quent, see Weisser 2005). 

 Comparison of analysis of the 2005 performances with 
another set of measurements (ten musicians performing 
the tezeta zefen recorded and analyzed by Kimberlin in 
1976) shows that these ‘rules’ emerging from this analy-
sis do also apply. It also shows that the variability of the 
intervals in Kimberlin 1976’s corpus is more important 
than in the corpus 1. Two hypotheses can be formulated: 
1. The variability is more important in 1976 performances 
because the number of musicians considered is more im-
portant than in corpus 1 (10 versus 5). This would imply 
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that variability would be directly in proportion with the 
number of musicians/performances: the more perform-
ances, the more variability. 2. The second hypothesis is 
related to the time lapse separating the two studies (about 
30 years): the modification of variability would be a 
symptom of standardization of the intervallic settings, 

perhaps due to the generalization of western-tempered 
instruments (including keyboards and software-generated 
sounds).  

An argument stands for the first hypothesis: the general 
degree of variability (averaged RSD for the intervals) is 
globally identical (about 14%) between corpus 2 (12 re-
cordings) and Kimberlin’s corpus. However, such a vast 
question requires however a much larger corpus of study 
to be solved with a reasonable degree of certainty. 

 

5. CONCLUSION 

Such an analysis shows that computer-assisted tools for 
analysis of scales requires several technical possibilities: 
batch processing for corpus of recordings, as well as 
tools for the investigation of variability (statistical, user-
criteria based) are needed.  

Indeed, even if tools do perform accurate calculation of 
intervallic distances of performed degrees, the 
interpretation of the results, the formulation of 
hypotheses and sometimes experimentation are still an 
inavoidable step, and – so far – not yet automatizable, in 
the process of understanding the rules underlying the 

pitch organization of musical performances in non-
Western contexts.  
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ABSTRACT 
 
The aim of this study is to examine the performance of an exist-
ing meter and tempo induction model (Pikrakis et al, 2004) on 
music that features asymmetric rhythms (e.g. 5/8, 7/8) and to 
propose potential improvement by incorporating knowledge 
about asymmetric rhythm patterns. We assume knowledge of 
asymmetric rhythms in the form of metric templates (consisting 
of both isochronous and asymmetric pulse levels).  Such 
knowledge seems to aid the induction process for symmet-
ric/asymmetric rhythms and thus improve the performance of 
the aforementioned model. 

1. INTRODUCTION 

In recent years a number of meter induction and beat 
tracking models have been implemented that attempt to 
identify perceptually pertinent isochronous beats in musi-
cal data. Such models assume an isochronous tactus with-
in a certain tempo range (usually centered around the 
spontaneous tempo). The performance of such systems is 
usually measured against musical datasets drawn from 
Western music (e.g. classical, rock, pop, jazz) that fea-
tures almost exclusively symmetric rhythmic structures  
(e.g. 3/4, 4/4, 6/8) (Mckinney et al. 2007;  Dixon 2007; 
Davies et al. 2009). The tactus of asymmetric/complex 
musical rhythms, however, is non-isochronous; for in-
stance, a 7/8 song is often counted/taped/danced at a level 
3+2+2 (not at a lower or higher level). Such models fail 
to identify asymmetric beat levels (Fouloulis et al, 2012). 

Musical time is commonly organized around a (hierar-
chic) metrical structure of which the most prominent lev-
el is the beat level (tactus) (Lerdahl and Jackendoff, 
1983). Such a metric structure facilitates the measure-
ment of time and the categorical perception of musical 
temporal units (durations, IOIs). In western music, an 
isochronous beat level is almost always assumed; any di-
vergences from isochronous beat are treated as ‘special 
cases’ or even ‘anomalies’. 

A central assumption of this paper is that the beat level 
(tactus) of metrical structure need not be isochronous. It 
is asserted that metrical structure is learned implicitly 
(through exposure in a specific idiom), that it may be 
asymmetric and that the tactus level itself may consists of 
non-isochronous units. It is maintained that an acculturat-
ed listener may use spontaneously an asymmetric tactus 
to measure time, as this is the most plausible and parsi-
monious way to explain and organize rhythmic stimuli 
within specific musical idioms. 

Rhythm and pitch share common cognitive underlying 
mechanisms (Parncutt, 1994; Krumhansl, 2000). Asym-
metric structures are common in the pitch domain. Major 
and minor scales, for instance, are asymmetric. Listeners 
learn pitch scales through exposure to a specific musical 
idiom, and then automatically organize pitch and tonal 
relations around the implied asymmetric scales. Asym-
metric scales are actually better (cognitively) than sym-
metric scales (e.g. 12-tone chromatic scale or whole-tone 
scale) as they facilitate perceptual navigation in 
pitch/tonal spaces. It is, herein, assumed that asymmetric 
beat structures may arise in a similar fashion to asymmet-
ric pitch scales, and may organize certain rhythmic struc-
tures in an accurate and more parsimonious manner. 

In more formal terms, the kinds of asymmetric beat 
structures mentioned in this study may be described as 
series of repeating asymmetric patterns consisting of long 
(three’s) and short (two’s) units. Such asymmetric pat-
terns are ‘sandwiched’ in between a lower isochronous 
sub-beat level (commonly at the 1/8 duration) and a high-
er isochronous metric level (e.g. 5=3+2 or 7=3+2+2) 
(Fouloulis et al, 2012). Such hierarchic metric structures 
are considered in this paper as a whole rather than a num-
ber of independent isochronous and asymmetric pulse 
levels.  

2. METER AND TEMPO INDUCTION MODEL 

2.1 Original model architecture 
In this study we examine a potential improvement in the 
performance of an existing model (Pikrakis et al, 2004) 
that focuses on meter and tempo extraction on polyphonic 
audio recordings. The existing version processes audio in 
non overlapping long-term windows while using an inner 
moving short-term window to generate sequences of fea-
ture vectors considering energy and mel frequency 
cepstral coefficients (MFCCs) (Figure 1). For every long-
term window a Self Similarity Matrix (SSM) is formulat-
ed based on the assumption that its diagonals can reveal 
periodicities corresponding to music meter and beat. Cal-
culating the mean value of each diagonal and plotting it 
against the diagonal index each audio segment reveals a 
“rhythmic signature” that can be further analyzed in order 
to infer the actual beat and meter. Two different ranges of 
SSM diagonal indices in this “rhythmic signature” are 
considered suggesting that beat and meter candidates are 
lying within respectively. 
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The original model relies on two criteria to associate 
certain periodicities to music meter and tempo. In the first 
criterion beat candidates are selected as the two neigh-
bouring local minima that possess larger values. Meter 
candidates are validated in relation to beat candidates ac-
cording to the accepted set of music meters under investi-
gation. Calculating the sum of corresponding mean val-
ues for every pair, the music meter of a segment can be 
determined as the one that exhibits the lowest value. The 
second criterion differentiates in that it takes into account 
the slope (sharpness) of the valleys of each pair and not 
just their absolute values.  

The meter of the whole audio is selected taking into 
account its frequency of occurrence through histograms 
that are formed using the calculated meter values per 
segment. Tempo estimation process, based on previous 
results about beat lag, is jointly extracted per long-term 
segment or as average for the whole audio. 

 
Figure 1. Overview of the architecture of the original 
meter and tempo induction model. 
 

2.2 Refined model architecture 
The main motivation behind the refined model relies on 
the assumption that meter induction can be assisted by 
querying an audio recording against known metric tem-
plates. Knowledge about metric structure is incorporated 
into the model by including a set of both symmetric and 
asymmetric templates in a form of a template library 
(Figure 2). During the induction process and for a given 
tempo hypothesis each “rhythmic signature” of an audio 
recording can be evaluated in turn with the contents of 
the template library so that we can conclude to the most 
prominent one. 
 

2.3 Template Generation 
Templates were generated for the following time signa-
tures 2/4, 3/4, 4/4, 5/8 (3+2), 6/8, 7/8 (3+2+2), 8/8 
(3+3+2) and 9/8(3+2+2+2) using MIDI and audio drum 
sounds for a reference tempo of 260bpm (1/8). The corre-
sponding audio files were then transformed into their re-

spective template “rhythmic signatures” by using the 
same procedure as before. In Figure 3 “rhythmic signa-
tures” of 7/8 and 5/8 templates on a tempo of 260bpm 
(1/8) are presented. The lowest local minima (valleys) on 
these templates match strong periodicities and can be 
considered as meter candidates. The distance in the x-axis 
Dt between two successive meter candidates is generally 
altered accordingly to tempo changes and is utilized dur-
ing the induction process in order to scale the template 
according to the calculated tempo.  
 

 
Figure 2. Overview of the architecture of the refined  
meter and tempo induction model. 
 

3. IMPLEMENTATION DETAILS 

The refined system keeps the initial audio processing 
steps of the original model but we refer to them anyway 
for the sake of comprehension. In the first step audio re-
cordings are processed on a segment by segment basis in 
non overlapping long-term windows of 10s. Sequences of 
feature vectors are extracted using a “chroma based” var-
iation of standard MFCCs, which yields significantly bet-
ter results by emphasizing beat and meter candidates. 
This approach instead of assuming equally spaced critical 
band filters in the mel scale makes use of a critical band 
filter bank consisting of overlapping triangular filters, 
that is aligned with the chromatic scale of semitones 
(starting from 110 Hz and reaching up to approximately 
5KHz) (Pikrakis et al, 2004).  

Feature vectors in each long-term window are extract-
ed by means of a short-term processing technique. The 
values for the length, ws and hop size hs of the short-term 
window were chosen as 100ms and 10ms respectively. 
Then, the sequences of feature vectors are utilized to 
form self-similarity matrices (SSM), using the Euclidean 

Correlation:  
Audio Rhythmic Signatures       Templates 

Audio Input 

Segmentation 

Self Similarity 
Matrix (SSM) 

 

Short-term 
window MFCCs 

Peak Detection 

Meter extraction 

Template 
Library 

(2/4, 5/8, 7/8, 9/8…) 

Clustering 

Tempo  
Hypothesis 

Rhythmic Signature 
Transformation 

 

Audio Input 

Segmentation 

Self Similarity 
Matrix (SSM) 

 

Short-term 
window 

 

MFCCs 

Criterion A, B 

Beat and Meter extraction 
Tempo estimation 

Rhythmic Signature 
Transformation 

 
 

Proceedings of the Third International Workshop on Folk Music Analysis, June 6-7, 2013. Amsterdam, Netherlands. P. van Kranenburg, C. Anagnostopoulou, and A. Volk (Eds.).
Amsterdam: Meertens Institute, Utrecht: Department of Information and Computing Sciences, Utrecht University.

29



  
 

function as a distance metric, in order to reveal the domi-
nant periodicities inside each segment. This can be 
achieved by computing the mean value Bk for each diag-
onal k and plot the value against the diagonal index. Lo-
cal minima in this curve correspond to strong periodici-
ties that are prominent in the specific time frame. We can 
consider the function B(k) as the “rhythmic signature” of 
the long-term segment from which it is extracted.  

 

 
Figure 3. “Rhythmic signatures” for a 5/8 (top) and a 7/8 
(bottom) template. 
 

3.1 Peak detection - smoothing 
Each “rhythmic signature” is then processed using a peak 
detection algorithm to extract the diagonal indices k that 
correspond to the most salient local minima (valleys). 
The peak detection algorithm uses the first derivative of 
the signal and relies on the fact that the first derivative of 
a peak has a downward-going zero-crossing at the peak 
maximum. To avoid picking false zero-crossing due to 
the noise we use a technique that initially smooths the 
first derivative of the signal using a rectangular window, 
and then it takes only those zero crossings whose slope 
exceeds a certain pre-determined minimum (slope thresh-
old). The smoothing algorithm simply replaces each point 
in the signal with the average of m adjacent points de-
fined by smooth width. For example, for a 3-point 
smooth (m = 3) (O’Haver, 2013): 

3
11  

 jjj
j

YYY
S                         (1) 

where Sj the j-th point in the smoothed signal, Yj the j-th 
point in the original signal, and n is the total number of 
points in the signal. 
 

3.2 Clustering valleys 
In order to account for light tempo changes and also 
slight deviations from strict metronomical performance 
we cluster the detected valleys by using the notion of val-
ley bins. Each bin is defined by a diagonal index mean 
value mb and a tolerance window e. Each time a new val-
ley is assigned to a relative bin the bin mean value mb is 
updated. The time equivalent Tk for a local minimum k is 
Tk = k ∗ step (Pikrakis et al, 2004) where step is the 
short-term step of the moving window (10 ms for our 
study). In this work the width of the tolerance window 
was defined to be 8*step =80ms. 

Valleys are weighted by taking into account their fre-
quency of occurrence in the sequence of “rhythmic signa-
tures”, their slope and their amplitude. This relies on the 
assumption that meter periodicities are prominent in the 
majority of the “rhythmic signatures” and exhibit steeper 
slopes and narrower valleys. Therefore, bins which are 
more populated and contain sharper valleys are discrimi-
nated. The next step is to pick the two most important 
valleys bins that have successive mean values mb. If the 
previous assumption is right and those two successive 
valley bins correspond to meter candidates then the dis-
tance Ds in x-axis between them can be compared to the 
corresponding distance Dt of each template. 

This comparison determines the stretching/expanding 
factor ft for each template that is needed to compensate 
for the tempo difference between the tempo of the real 
audio file and the reference tempo (260bpm - 1/8) that 
was specified during template generation. The product of 
this step is to conclude in tempo hypothesis using factor ft 
and then perform a “time scaling” for each template of 
the template bank.  

3.3 Meter extraction 
The final step of the algorithm performs a correlation 
analysis between each “rhythmic signature” of the audio 
and every time-scaled template. In particular, each tem-
plate is slided through every rhythmic signature and a 
correlation coefficient is calculated. Finally, the template 
for which the correlation coefficient has a maximum val-
ue is considered as the winner. The results for a 7/8 and a 
9/8 song are presented in figure 4.  

4. RESULTS AND DISCUSSION 

In a previous study (Fouloulis et el. 2012) we tested the 
original version of the model (Pikrakis et al. 2004) 
against a set of Greek traditional songs that featured 
mostly asymmetric rhythms with time signatures of 2/4, 
3/4, 5/8, 6/8, 7/8, 8/8, 9/8, 10/8 and 11/8. The majority of 
the songs were derived from educational material and 
most of them start with an introductory rhythmic pattern 
in order to indicate the correct way of tapping/counting. 

In this study we used a similar set of 30 Greek tradi-
tional songs and examined the model’s performance after 
incorporating templates with time signatures of 2/4, 3/4, 
4/4, 5/8, 6/8, 7/8, 8/8, and 9/8 (Table 1). The preliminary 
results are encouraging, indicating that this architecture 
may prove to be quite effective and may assist the induc-
tion process. In general the model seems to retain its sig-
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Meter Candidates  
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nificant behavior in processing non-symmetric meters but 
some more tweaking is needed in order to further im-
prove performance.  

 

 
Figure 4. Correlation analysis for a 7/8 (top) and a 9/8 
song (bottom).  
 

In cases (tracks 19, 20, 21, 26, 28 and 29) when the 
original model tended to designate as more dominant pe-
riodicities the ones that referred to a span of two 
measures the refined model’s output corresponds to the 
correct tempo and meter.  

For tracks no. 4-6, the refined model assumes a 6/8 
meter instead of 3/4. This seems to be supported but the 
nature of the performance (Figure 5).  For track 7 and 8, 
it indicates an asymmetric 8/8  while the notation of the 
song indicates an isochronous pulse; again this is due to 
the performance elements that introduce asymmetric fea-
tures. 

It is worth pointing out that the instances in which the 
algorithm falls into a wrong estimation are songs with too 
fast tempi (songs 10, 16, 18, 22 and 23). In all these cases 
the actual meter value resides in the correlation plot but 
with a lower peak.  

5. FURTHER RESEARCH 

The architecture presented above still has many open is-
sues that need to be explored. First of all it is necessary to 
evaluate its performance using a larger data set. Second-
ly, the results could probably be improved if further mu-
sicological/cogntive knowledge is incorporated. For ex-
ample, constraints about tempo hypotheses that exceed 
some limits (e.g. too slow or too fast rates) could be inte-

grated. Additionally, a wider range of more refined tem-
plates can be generated (by assigning a variety of sounds 
to the various metric midi templates), allowing a more 
effective discrimination between different metric struc-
tures for a given tempo.  

 

 
Figure 5. “Rhythmic signatures” from one segment of 
song no. 14 (top) and song no. 6 (bottom). Patterns seem 
to support the fact that even if song no. 6 is notated as 3/4 
it can be considered as 6/8 due to performers’ musical 
idiom.  

6. CONCLUSION 

In this study we investigate a potential improvement in 
the performance of an existing model (Pikrakis et al, 
2004) in inducting  meter  from audio recordings of folk 
music by embedding knowledge about asymmet-
ric/complex rhythmic structures. Templates of common 
asymmetric rhythm patterns were generated and then im-
ported into the system. The preliminary results in this on-
going research are very encouraging, indicating that this 
architecture may prove to be quite effective and can assist 
the induction process. 
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Table 1.  Meter and tempo induction results of the original and refined model.  

         Refined Model with 
 embedded templates 

Original model 

  Song's Name Time 
Signature 

Tempo Meter Calc. 
Tempo 

Calc.  
Meter 

Calc. 
Tempo 

Calc. 
Meter 

1 Sousta Rodou 2/4 144 (1/4)  141 (1/8) 2/4 285 4:1 
2 Mpalos 2/4 82 (1/4)  84 (1/8) 2/4 171 4:1 
3 Ehe geia panagia  

(Hasapiko) 
2/4 130 (1/4)  258 (1/8) 4/8 260 4:1 

4 Tsamikos 3/4 98 (1/4)  196 (1/8) 6/8 98 3:1 
5 Apopse mavromata mou 3/4 104(1/4)  209 (1/8) 6/8 206 6:1 
6 Valtetsi 3/4 108(1/4)  218 (1/8) 6/8 214 6:1 
7 Armenaki 4/4 180(1/4)  357 (1/8) 8/8 181 4:1 
8 Louloudi ti marathikes 4/4 127(1/4)  256 (1/8) 8/8 260 8:1 
9 Zagorisios -Kapesovo 5/8 94 (1/8) 2-3 96 (1/8) 5/8 97 2:1 or 5:1 
10 Mpaintouska Thrakis 5/8 420 (1/8) 2-3 250 (1/8) 3/8 83 4:1 
11 Dio palikaria apo to Aivali 5/8 239(1/8) 3-2 241 (1/8) 5/8 - - 
12 Esvise to keri kira Maria 5/8 249(1/8) 3-2 243 (1/8) 5/8 - - 
13 I Kiriaki 5/8 300(1/8) 3-2 293 (1/8) 5/8 - - 
14 Itia 6/8 201(1/8)  202 (1/8) 6/8 208 6:1 
15 Enas aitos kathotane 6/8 209(1/8)  209 (1/8) 6/8 206 6:1 
16 Perasa ap΄tin porta sou 7/8 264(1/8) 3-2-2 74 (1/8) 2/8 130 7:1 
17 Tik Tromakton Pontos 7/8 488 (1/8) 2-2-3 499 (1/8) 7/8 73 2:1 
18 Mantilatos Thrakis 7/8 483 (1/8) 2-2-3 199 (1/8) 3/8 69 2:1 or 3:1 
19 Mantili Kalamatiano 7/8 273 (1/8) 3-2-2 273 (1/8) 7/8 132 7:1 
20 Milo mou kokkino 7/8 268 (1/8) 3-2-2 265 (1/8) 7/8 133 7:1 
21 Na diokso ta synefa 7/8 266 (1/8) 3-2-2 266 (1/8) 7/8 130 7:1 
22 Oles oi melahroines 8/8 381 (1/8) 3-3-2 83 (1/8) 2/8 193 4:1 
23 Dyo mavra matia agapo 8/8 396(1/8) 3-3-2 97 (1/8) 2/8 200 4:1 
24 Marmaromenios vasilias 8/8 198(1/8) 3-3-2 195 (1/8) 8/8 - - 
25 Feto to kalokairaki 9/8 136(1/8) 2-2-2-3 139 (1/8) 9/8 139 9:1 
26 Karsilamas 9/8 256 (1/8) 2-2-2-3 255 (1/8) 9/8 130 9:1 
27 Amptaliko neo 9/8 104 (1/8) 3-2-2-2 246 (1/8) 9/8 61 9:1 
28 Tsiourapia Makedonias 9/8 276 (1/8) 2-2-2-3 296 (1/8) 9/8 109 9:1 
29 karsilamas - Ti ithela 9/8 288 (1/8) 2-2-2-3 290 (1/8) 9/8 146 9:1 
30 Ela apopse stou Thoma 9/8 185 (1/8) 2-2-2-3 184 (1/8) 9/8 96 9:1 
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ABSTRACT 

 
This paper investigates the specific buzzing quality of the 
sounds of the Hindustani plucked lute sitar. The sitar’s wide 
curved bridge jawari is responsible for the production of these 
sounds and the precise adjustment of the curve is very important 
for the musicians. Two settings are clearly differentiated by the 
players: khula [open] and bhand [closed]. However, the descrip-
tion of the jawari effect is quite complex, namely because the 
sympathetic strings taraf are also equipped with a curved bridge 
(and therefore contribute to the global sound quality) and be-
cause of the open rhythmic strings cikari, tuned to specific 
pitches and acting as complementary sympathetic strings when 
particular notes are played by the main strings. This paper con-
fronts the analysis of the musicians’ discourse regarding the ja-
wari with the results of new timbre descriptors developed for 
this specific case-study, showing that an interdisciplinary ap-
proach to that research question is fruitful.  
 

1. INTRODUCTION 

Varied types of musical timbres are used in musical ex-
pression. If Western art music of the 18th and 19th centu-
ry privileged “clear” sounds, several musical cultures (in-
cluding the European Renaissance art music) use buzzing 
sounds. However, investigation of these sounds is quite 
scarce in scientific literature: musicologists do not have 
the conceptual and practical tools to tackle this issue, and 
information scientists seem to be unaware or uninterested 
by them. Nevertheless, joint investigations are fruitful. In 
this paper, an ongoing collaboration conducted by an eth-
nomusicologist and computer scientist for music analysis 
will be presented and discussed, focusing on the Hindu-
stani plucked lute sitar. 

2. THE HINDUSTANI SITAR 

The Hindustani sitar is a plucked fretted lute (Figure 1). 
It can comprise either 7 main strings and 3 rhythmic 
drone strings (kharaj pancham sitar) or 3 main strings 
and 4 drone rhythmic strings (gandhar pancham sitar). 
Sympathetic strings are 11 to 13. All the strings (main 
and sympathetic) are metallic: the first and fifth are al-
ways of tempered steel, the second of copper or phosphor 
bronze, and the others of brass or steel. The taraf are 
made of thin steel. The player plucks the strings with a 
metallic plectrum called mizrab, inserted on his/her right 
index. 

 
Figure 1. Supratik Sengupta in concert in the Musical 
Instruments Museum (Brussels, 7 March 2012. Photo: S. 
Weisser). 
 
Among the Hindustani classical chordophones, the sitar 
can be characterized by the presence of two specific de-
vices: the curved wide bridge jawari and the sympathetic 
strings taraf (Weisser & Demoucron 2012). These devic-
es play a considerable part in the sound production, 
providing an ‘echo-like’effect (for the sympathetic 
strings) and a very noticeable sound quality (for the 
bridge). These effects are even combined, as the sympa-
thetic strings are also equipped with their own jawari 
(Figure 2). This combination of devices makes the in-
strument rather unique among the classical chordo-
phones: other instruments (such as the sarangi, the rudra 
vina and the sarasvati vina are equipped with either taraf 
jawari or main string jawari, but not both).  
 
 

Proceedings of the Third International Workshop on Folk Music Analysis, June 6-7, 2013. Amsterdam, Netherlands. P. van Kranenburg, C. Anagnostopoulou, and A. Volk (Eds.).
Amsterdam: Meertens Institute, Utrecht: Department of Information and Computing Sciences, Utrecht University.

33



  

 

 
Figure 2. The two open jawari of the sitar pictured in 
figure 1. The difference between open and closed jawari 
is not visible to the naked eye (Kolkata, 16 April 2011. 
Photo: S. Weisser). 
 
The two jawari of the sitar can be set in different config-
urations: khula (“open”), bhand (“closed”) or more rarely 
gol (“round [intermediary]”). The choice of either one of 
these configurations is made according to the musician’s 
gharana (aesthetic school of playing) and/or his or her 
personal taste.  

3. “DOING” THE JAWARI: BRINGING THE LIFE 

The desired configuration is attained by a series of com-
plex operations (Marcotty 1974) consisting in skillfully 
filing with sandpaper specific areas of the upper part of 
the wide bridge (Figure 3), usually made of ivory, bone, 
ebony or nowadays synthetic material.  
 

Figure 3. Sitar Maker Barun Roy shows the location of 
the area to file in order to close the main strings’ jawari 
on an unfinished sitar (Kolkata, 11 April 2011. Photo: S. 
Weisser). 
 
The jawari maintenance is usually performed every few 
months: it depends on how much the instrument is 
played. Indeed the pressure of the strings on the bridge 
impacts the shape of the upper surface of the bridge, re-
sponsible for the production of the sound. Instrument 
specificities make that pressure important, as the strings 
are placed high above the handle and the fingers (index 
and major) press down the strings in the desired fret. The 
extensive use the meend technique, consisting in pulling 
the string to modifiy the pitch and produce a gliding 
sound, contributes to this pressure. 
 

Musicians consider this jawari adjustment as very im-
portant: even if not all of them perform it themselves (it 
is often be done by a maker), it is, in the latter case, con-
ducted in close collaboration with the instrument’s own-
er.  
 
Several studies (or a brief review, see Vyasarayani, Bir-
kett and McPhee 2009, 3673) have analyzed and modeled 
the way it impacts the vibratory behavior of the string. 
Auditory roughness has been shown to accurately account 
for the buzzing quality of the sound of a similar device 
placed on the Indian drone lute tampura (Vassilakis 
2005).  
 
However, the situation appears to be slightly different in 
sitar: the tampura’s jawari is usually set in an extreme 
khula position, providing very buzzing sounds. First, the 
sitar’s khula jawari is never that open. Second, the taraf, 
being also equipped with a jawari bridge, contribute also 
to the buzzing quality of the global sound. It is important 
to note, moreover, that the taraf’s sounds appear after the 
attack of the playing strings, impacting the decay part of 
the sound. Third, contrarily to the tampura, the sitar is 
not played with open strings only (although it is the case 
for some of the sitar’s strings). Finally, the sitar is played 
with nuances of intensity and duration (from very long 
and soft sounds in the introductory unmetered part alap 
to very fast and loud sounds of the climatic ending part 
jhalla), inducing a variety of timbres. All these specifici-
ties make the fine-tuning of the sitar’s jawari even more 
complex to describe and to quantify. 

4. MATERIAL AND METHODS 

This study is based on information and sounds gathered 
during a fieldwork which took place in Kolkata (India) in 
2011. Interviews and recordings were conducted in the 
ITC Sangeet Music Academy, with the active collabora-
tion of the professors and the students. ITC-SRA is an 
institution favoring the traditional way of teaching (guru-
sushiya parampara, the master-disciple pedagogical rela-
tionship) and gathers numerous advanced students as well 
as renowned professors.  
 
In order to analyze the khula and bhand settings, different 
types of data have been confronted. Sounds were collect-
ed during an experiment consisting in recording a musi-
cian playing isolated sounds with different nuances of 
intensity and plucking strength (‘soft’, ‘normal’, ‘hard’) 
with a khula jawari sitar and with a bhand jawari sitar. 
These instruments were tuned to the same rag and played 
by the same musician.  
 
Data extracted from semi-structured interviews of musi-
cians have been classified into categories according to 
content. The information collected in Kolkata was com-
pleted by other interviews conducted in Belgium and in 
the Netherlands with professional sitar players met dur-
ing their European tour or living in these countries. In to-
tal, statements have been collected from 13 musicians 
(masters, advanced students and professional): 9 sitariya 
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[sitar players], 3 sitar makers, 1 vocalist and 1 sarodiya 
[sarod player]. The last two informants were added be-
cause of their expertise: the vocalist adjusted the jawari 
for 4 tampura in the context of an experiment. The sa-
rodiya [sarod player], the famous Pandit Buddhadev Das 
Gupta, also teaches sitariya in the Academy and has an 
exhaustive knowledge regarding Hindustani classical mu-
sic.  

5. MUSICIANS’ WORDS 

The data extracted from the musicians’ interviews show 
that identification of khula jawari is rather consensual: 
most musicians refer to Ravi Shankar’s or the tampura’s 
sound as the archetypes of khula jawari. However, the 
identification of bhand and ghol jawari is ambiguous: 
according musicians, Vilayat Khan and Nikhil Banner-
jee’s adjustment are either considered as bhand or ghol. It 
can also be noted that the latter term is more rarely found 
in musicians’ discourses. As noted by one of the inform-
ant (Pandit Partho Chatterjee), the terms are often mis-
used and with an excess of generalization. 
 
Several musicians insist on the concept of balance when 
it comes to jawari: balance is looked for at different lev-
els. The instrument must generates sounds that are not 
identical but ‘balanced’ whether being produced with 
open strings or not (Barun Roy, maker), and whether 
playing high-pitch or low-pitch notes. Strict identity is 
not looked for, but excessive difference is not accepted 
(Pandit Ashok Pathak).  
 
A second type of balance is related to the contribution of 
the taraf: taraf should not sound too loud and buzzing 
and ‘come in the way’ of the main strings’ sounds (Barun 
Roy, maker). As the taraf are not controlled directly by 
the musicians, the fine-tuning of their jawari is the only 
way to adjust them.  
 
 A third type of balance must be achieved between 
roundness and clarity of the main strings’sounds: even if 
the jawari ‘curves’ the sound, an excess of jawari “jum-
bles up” the notes, generating confusion in the melodic 
line. On the other way, not enough jawari in sound makes 
the latter loose its “sitar quality”: “it becomes a guitar” 
(Pandit Buddhadev Das Gupta).  
 
All these types of balance directly impact the jawari’s 
fine-adjustment. Moreover, the maker Barun Roy added 
the importance of a balance between the tumba [gourd], 
tabli [soundtable] and jawari. According to him, what he 
calls ‘hard sitar’, characterized by thicker tabli and a gen-
erally bigger size cannot be equipped with a khula jawari: 
the resulting sound would be too nasal. On the contrary, 
‘soft sitars’ (smaller, lighter and thinner) must have a 
slightly open jawari to provide the necessary loudness.  
 
Even if musicians’ discourses comprise contradictory in-
formation (the most divergent opinion regards the effect 
of the openness of the jawari on the duration of the re-
sulting sound), several general statements can be found 

regarding the jawari. The point of jawari, whatever its 
fine-tuning, is to bring brightness, loudness and duration 
to the sound. Jawari also improves the pitch perception 
and therefore helps to play in tune. Khula jawari sounds 
are described as “lively, treble, sharper, warmer”, where-
as bhand is usually qualified as “rounded” and “sounding 
from the inside”. Musicians concur also in the following 
opinions: khula jawari sounds are easier to produce than 
bhand jawari sounds and the jawari effect is an integral 
part of the sound: as put by Pandit Ashok Pathak, “with-
out the jawari, the sound is nothing”.  
 
The divergences in musicians’ evaluation and discourse 
regarding the jawari adjustment can be explained when 
considered as a question of degree: musicians do not al-
ways differentiate between open/closed jawari and ‘over-
open/closed’: for example, an informant (Pandit Sanjoy 
Bhandhopadhyay) states that an open jawari increases the 
duration. However, another informant (maker Barun Roy) 
details: “a jawari too open provides a sound that is too 
short”. It seems therefore that a jawari is adjusted within 
specific limits and that balance is, again, central.  

6. NEW DESCRIPTORS 

Based on the set of sounds recorded in Kolkata (2011), 
new descriptors have been conceived in order to better 
describe the timbre characteristics of sitars, and especial-
ly to distinguish between open and closed jawari. As only 
little specific information was contained in the musicians’ 
discourse, criteria defining the sound quality had to be 
found in other sources. Even though most research focus 
on the modeling of the vibrating behavior of the string, 
some have noted specific sonorous characteristics:  
 
1. Descending formants (not always heard on sitar, more 
frequently in tampura (Siddiq 2012; Bertrand 1992, 
Cuesta and Valette 1993) 
 
2. Complex envelopes of the partials (Siddiq 2012) 
 
3. Numerous beats are present on numerous partials (Ber-
trand 1991, Schmitt 2000).  
 
Eventually, the general increase of number of intense 
overtones in the sounds has been observed by C.V. Ra-
man as early as 1922.  

Roughness analysis 

Vassilakis (2005) has shown that the presence of numer-
ous intense overtones can be linked with roughness. 
However, calculation of roughness is usually performed 
either as average or by frame. Since notes played on sitar 
present a complex temporal evolution, instead of compu-
ting a single average roughness for each note, we propose 
to describe temporal aspects of the roughness curve.  
 
Plomp and Levelt (1965) have proposed an estimation of 
the sensory dissonance, or roughness, related to the beat-
ing phenomenon whenever pair of sinusoids are closed in 
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frequency. An estimation of the total roughness consists 
in estimating the dissonance provoked by each pair of si-
nusoids in each frame of sound. In other words, peaks are 
extracted in each frame of the spectrogram, and disso-
nance is estimated for each possible pair of peaks, and the 
average of all the dissonance between all possible pairs of 
peaks is finally computed (Sethares, 1998). 
 
Figure 4a shows the roughness curve obtained using 
Sethares’ approach implemented in the mirroughness op-
erator included in MIRtoolbox (Lartillot and Toiviainen, 
2007). We propose a new improvement of this roughness 
model. In Sethares’ approach, for each pair of peaks de-
tected in the spectrogram, Plomp-Levelt’s predicted 
roughness value (which is estimated simply based on the 
relative frequencies of the two peaks) is multiplied by the 
amplitude of both peaks. We suggest an alternative where 
we multiply instead by the minimum of those two peaks. 
Why? Because the beating phenomenon between these 
two frequencies would not be influenced by the extra 
amount of energy on the peak of stronger intensity. 
 
Figure 4b shows the roughness curve obtained using the 
proposed variant, which is available as a new ‘Min’ op-
tion of mirroughness in the new version 1.5 of MIR-
toolbox. This new roughness curve emphasizes better the 
part of roughness that appears after the initial attack of 
the note, and that seems closely related to the timbral par-
ticularities of sitars. 
 
Figure 5 shows roughness curves for a same pitch (Pa 
played on high Ma string), with different dynamics and 
comparing closed and open jawari. We can observe how 
closed jawari leads to a particularly damped roughness 
evolution, while with open jawari the roughness is per-
ceived for a longer time. 
 
 

 

 
Figure 4. Roughness curve computed using the tradition-
al Sethares method (top), and our proposed modified ver-
sion (bottom). 
 
 

  
 
Figure 5. Temporal evolution of roughness while playing 
a Pa on high Ma string, played with open jawari, with 
soft (left) and medium (middle) strength, and played 
again with medium strength but with closed jawari 
(right). 

 

 
Figure 6. Superposed roughness curves of all the note recordings related to the closed jawari (top) and to the open jawari 
(bottom). All sounds start at time t = 0 s (on the X-axis) and with an initial energy amplitude normalized to 1 (on the Y-
axis). The initial decrease of energy is represented in blue, and the curve turns red – and remains red until the end of the 
curve – when a new increase of roughness amplitude is detected. 
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In Figure 6, we have superposed all the roughness curves 
related to all the notes played1 on open jawari on one 
hand, and to closed jawari on the other hand. We can no-
tice that for open jawari, the roughness curve sometimes 
features an important increase after the note has been 
struck, with a delay ranging from a few milliseconds to 
half a second. At the apex of such reemergence of rough-
ness, the actual roughness magnitude can sometimes be a 
few times higher than the maximal roughness at the at-
tack of the note. For closed jawari, on the contrary, the 
roughness shows basically a decreasing trend, with some 
reemergence sometimes, but whose maximal roughness is 
much lower than the miaximal roughness magnitude dur-
ing the attack of the note. 
 
We introduce one way of describing the roughness curve 
called cumulated roughness, defined as the integral over 
time of roughness, indicates how much roughness sus-
tains over time. The table below gives the basic statistics 
of cumulated roughness for both the set of notes recorded 
with a closed jawari, and with an open jawari. 
 
Jawari Min Max Mean Median 
Open 1.5 50.8 12.3 7.6 
Closed 1.8 48.1 10.2 8.3 
 
By just looking at the overall summation of roughness 
over time, open and closed jawari does not look very dif-
ferent. 
 
In addition, through a basic analysis of the roughness 
curve, we detect any positive deviation from a predicted 
standard attenuation of roughness, indicating resurgence 
due to the non-linear phenomena related to jawari and 
taraf. This leads to an estimation of the increase of cumu-
lated roughness due to that resurgence, compared to the 
standard attenuation, called resurgent cumulated rough-
ness. The table below gives the basic statistics of resur-
gent cumulated roughness for both the set of notes rec-
orded with a closed jawari, and with an open jawari. 
 
Jawari Min Max Mean Median 
Open .04 45.2 10.0 6.0 
Closed .41 45.0 7.6 4.8 
 
We can see now more clearly that a larger part of the 
roughness is expressed during the roughness reemergence 
phase for open jawari than for closed jawari. 

Formant analysis 

Other common timbral descriptions, such as brightness, 
spectral centroid or roll-off, give single descriptions of 
the whole spectral distribution. We propose instead to 

                                                             
1  This experiments was done with a sound database 
somewhat different from the one used in the other analy-
sis carried out in this paper. That set of recordings com-
prises sounds played on a 'soft sitar' with khula jawari 
played by an advanced student of the Academy. 

emphasize the decomposition of the spectral distribution 
into “formants”: the nasal characteristic of sitar sound 
can be related to the energy on the formants higher than 
the first formant related to f0 and f1.  
 
To detect formants, we use a standard method in voice 
analysis based on linear predictive coding, that we adapt 
a little in order to generalize it to a use outside the voice 
context. In particular, we avoid performing the pre-
emphasis filtering as it is motivated by considerations re-
lated to voice and telecommunication. For the linear pre-
diction, instead of fixing the model order to 8, which is 
tuned to the search for the three vocal formants, we tried 
we higher model ordered and found 12 as a good com-
promise for a rich analysis without too many irrelevant 
formants. Suitable formants are selected based on their 
frequency locations and their bandwidth. Common meth-
ods in voice processing choose 90 Hz for lower frequency 
threshold and 400 Hz for maximal bandwidth. In our ex-
periments, trying larger bandwidths such as 500 Hz ena-
bles to extract a larger number of interesting formants. 
 

 
Figure 7. Formants detected on an analysis of a Pa 
played on a Ma string with an open jawari. 
 

 
Figure 8. Formants detected on an analysis of a Ga 
played with moderate strength and with closed jawari. 
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Figures 7 and 8 show examples of interesting formants 
founds in the recordings. We can notice the typical de-
scending formants as well as more complex fluctuations. 

Detecting resurgence of energy on particular frequency re-
gions 

Energy resurgence can also be detected directly from the 
spectrogram, through a detection of local minima along 
the temporal evolution of each partial, leading to the seg-
regation of resurgent parts in the spectrogram. 
 
More precisely, the spectrogram is expressed in decibel, 
and each track in the spectrogram corresponding to a spe-
cific frequency is analyzed separately. Each track starts at 
the exact moment of the attack time where the energy is 
maximal. In order to focus on resurgence regions of suf-
ficiently long time span (such as at least a few hundreds 
of milliseconds), and to filter out more spurious increase 
of roughness, each track is first filtered using an Infinite 
Impulse Response (IIR) low-pass filter. The filter is ini-
tialized so that it immediately tracks the decreasing enve-
lope of the release phase appropriately from the start. 
 
From the filtered track, we simply detect whenever the 
energy starts increasing, initiating a new resurgence 
phase. The resurgence phase terminates when the energy 
decreases back to the value at the beginning of the phase. 
To each resurgence phase is associated a strength, equal 
to the maximum different of magnitude within the phase. 
Resurgence phases that are too short (less than 10 ms) or 
with insufficient increase of magnitude (less than 10 dB 
in total) are discarded. 
 
This analysis is performed in each frequency of the spec-
trogram separately, but a series of resurgence phases on 
similar temporal span can sometimes be detected for suc-
cessive frequencies of the spectrogram, leading to convex 
frequency-time regions of resurgence of energy. Figures 
9 and 10 show examples of resurgence phase detected by 
the algorithm. 
 

 
Figure 9. Resurgence phases detected on an analysis of a 
Sa played with moderate strength and with closed jawari. 

 
Figure 10. Resurgence phases detected on an analysis of 
a Pa on high Ma string played with moderate strength and 
with open jawari. 

7. CONCLUSION 

The timbre descriptors defined above show important 
variance within each type of adjustment of the sitar (with 
open or closed jawari): in particular, for specific pitch 
heights, particular resonances with sympathetic and extra 
strings can be observed. For this reason, instead of com-
paring global averages of the descriptors, the analysis of 
individual notes, systematically played with different nu-
ances, are represented in multi-dimensional parametric 
spaces (corresponding to the different descriptors), so that 
the influence of these factors in the discrimination be-
tween open and closed jawari can be observed. 
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ABSTRACT

Children's  songs  is  a  particular  musical  genre related to  folk 
music, with its own musical characteristics. This paper sets out 
to explore melodic contour in children's songs from seven dif-
ferent countries/nations across Europe. We look for distinctive 
contour patterns which differentiate the songs of each country. 
For pattern representation we use different viewpoints related to 
melodic contour, two of which also relying on beat information. 
Preliminary results are presented, and some initial observations 
regarding the patterns found, the representations used, and the 
genre as a whole, are discussed.  

1. INTRODUCTION

Music  plays  a  fundamental  part  in  children's  everyday 
lives:  Children  socialise  with  each  other,  reveal  their 
emotions and entertain themselves through music. Their 
musical interactions can be surprisingly rich, varied and 
musically interesting. During the second half of the 20th 
century, the increased interest on children’s study as indi-
viduals brought attention to their musicality from a cul-
tural point of view, namely their expressive musical cre-
ativity as well as their responses and reflections to music 
(Small 1977, 1998; Blacking 1973). In this framework, it 
is a well-established fact that the notion of “song” plays a 
fundamental role in both children’s educational and per-
formance practices (Opie & Opie 1985). These simple in 
form and content songs usually share common musical 
(melodic  and  rhythmic)  cross-cultural  characteristics 
based on primal music fundamentals like the child’s voice 
and  gestures  as  well  as  the  motions  during  the  games 
played  (Romet  1980).  Research  on  children's  musical 
songs  however,  apart  from  a  few  examples  (such  as 
Campbell 1991, 2010), has so far largely focused on so-
cial and educational perspectives, often ignoring the anal-
ysis of the music itself.

   Melodic contour is a particularly significant mu-
sical  feature relating to melodic shape, which has been 
studied  from  several  perspectives:  Music  analysis  and 
composition (e.g. Adams, 1976), semiotics (e.g.  Seeger, 
1960), music cognition (e.g. Lindsay, 1996), mathemati-
cal music theory (e.g. Buteau and Mazzola,  2008),  and 
various computational approaches which take contour as 
a feature of computational music analysis (e.g. Kranen-
burg et al., 2011; Conklin 2010). In terms of representa-
tion, contour can be studied either as a continuous func-
tion (e.g. Muellensiefen and Wiggins, 2011), or described 
symbolically with discrete events at various levels of ab-

straction. One of the most elegant representations and im-
plementations of melodic contour has been proposed by 
David Huron (1996), where 9 melodic shape descriptions 
have been applied to the analysis of melodic phrases of 
Western folk songs. Huron computes the shape type by 
comparing the pitch of the first note of the phrase, the av-
erage of all in-between pitches, and the pitch of the last 
note of the phrase. 

Symbolic approaches to contour,  however,  like 
Huron's, do not usually take into account information re-
lated to rhythm and meter, which in some cases may be 
important for the characterisation of basic melodic shapes 
in the further analysis of a musical piece. In this study we 
propose a multi-level representation for melodic contour 
which takes into account beat information in order to de-
scribe melodic phrases. We then set out to explore pat-
terns of melodic contour in children's songs. We believe 
that the choice of melodic contour might be a particularly 
appropriate  level  of  representational  abstraction  for  the 
analysis  of  children's  songs in  order  to  see the general 
melodic shapes that  are predominant and characteristic. 
We look for  distinctive  patterns  (Conklin,  2010) which 
characterise the songs of each country, as opposed to the 
songs of other countries. 
      
    The rest of the paper proceeds as follows: The 
next  section  describes  the  musical  corpus  of  children's 
songs.  Section  3 describes  the  methodology employed, 
including  the  definition  of  the  contour  representations 
chosen and the discovery of distinctive patterns. Section 4 
presents  some preliminary  results  found,  and the paper 
ends with a discussion on the results, as well as pointers 
to future research. 

2. THE CORPUS

A total of 110 traditional children's songs was collected, 
from  seven  different  countries/nations  across  Europe: 
Catalunya  (15  songs),  England  (15  songs),  France  (15 
songs), Greece (20 songs), Spain (15 songs), Sweden (10 
songs), and Turkey (20 songs). We selected those songs 
that seemed the oldest and more traditional for each coun-
try, based on information given to us by native speakers, 
and  in  this  study  we  have  not  distinguished  between 
songs made for children and songs made by children. 

Each  song  was  encoded  into  MIDI,  and  seg-
mented into phrases  based on the  songs'  lyrics,  with  a 
segmentation point at the end of each lyrics' phrase, giv-
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ing a total of 505 segments. When more than one alterna-
tives were possible, the segmentation giving the smallest 
possible units was chosen. 

3. METHODS

3.1 The contour representations 

Each phrase in the corpus is represented using three pat-
tern representations  related to melodic  contour.  Two of 
them take into account the beat information (see also Fig-
ure 1) :

• a  full  contour  pattern, which  includes  the 
melodic  direction  between  each  consecutive 
pitch of the phrase and its previous one (starting 
with the second note). 

• a strong contour pattern, relying on pitches on 
the beats, including upbeats that might exist in 
the score, which are considered to be important 
for the overall shape of a phrase. To compute the 
strong  contour  pattern,  we  simply  discard  all 
notes not occurring on a strong beat (except up-
beats), and compute the full contour on this re-
duced score.

• a weak contour pattern, that includes the strong 
contour,  and,  enclosed in  parentheses,  all  con-
tour changes of value on notes between the beats 
that were not present in the strong shape.

Note that the weak contour pattern can be differ-
ent than the full contour, as the contour change between 
the beats does not influence the strong contour (for some 
examples see Figure 1).

The reason for trying out different contour repre-
sentations is  that  we believe  that  melodic arch  shapes, 
such  as  Huron's  (1996),  are  better  based  on  a  reduced 
score,  that is on the main notes of a melody, which in 
most cases in this corpus are found on the beat. At the 

same time, the information on surface melodic patterns is 
just as important, especially when looking at the similar-
ity between songs within a musical style or across styles, 
so we included a full contour representation in our experi-
ments.

The three types of contour patterns (full, strong, 
weak) were computed on all 505 segments. For each con-
tour  type,  when  duplicate  patterns  found  in  the  same 
song,  only  one  occurrence  was kept.  This  computation 
gave  92  different  strong  contours,  211  different  weak 
contours, and 279 different full contours. As a reference, 
we also classified all the segments with Huron's original 
nine contour classes,  comparing the first  pitch, the last 
pitch, and the average of all other pitches.

3.2 Discovery of distinctive contour patterns 

In our attempt to discover distinctive patterns in the cor-
pus,  we  followed  the  approach  described  in  (Conklin, 
2010). A distinctive pattern is one that is overrepresented 
in a corpus compared to an anti-corpus. This can be as-
serted by computing the likelihood ratio between the ob-
served probabilities in a corpus and an anti-corpus. 

For each pattern and each one of the 7 countries, 
we thus  computed  the  probability  of  appearance  in  the 
corpus (songs from that country) and the one in the anti-
corpus  (songs  from other  countries).  We  kept  patterns 
with at  least  ten occurrences in all  the  corpus and that 
were  at  least  2-fold overrepresented in  a  country  com-
pared to other countries. 

4. RESULTS

Table 1 lists all distinctive patterns found in the way de-
scribed  above.  This  resulted to  four  patterns for  strong 
contour and five patterns for weak contour.

Figure 1. The three contour patterns on the first two seg-
ments of the Greek song “Πάνω στην κούνια”. 

Pattern Contour Country 

[–,–] strong 
weak 

Turkey
Turkey 

[+,+,–] strong 
weak 

Catalunya 
Spain 

[–,–,+] weak Turkey 

[+,–,+] strong 
weak 

Greece
Greece, Sweden

[–,+,–] strong  
weak 

France 
France  

Table 1. Distinctive contour patterns found in the corpus.
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With the same criterion (2-fold overrepresented, 
at least 10 occurrences), no pattern with the full contour 
or  with  Huron's  melodic  shapes  was  found distinctive. 
Lowering the threshold to 5 occurrences, the pattern [–,–] 
was also reported as distinctive, as well as three Huron's 
melodic  shapes  –  however,  in  all  these  cases,  the  low 
number of occurrences prevented us from further analy-
sis.

We observe that we have three types of distinc-
tive patterns found: With one direction, with two direc-
tions,  and with three directions.  With one direction  we 
have the straight downward motion ([–,–]), with a partic-
ularly high statistical significance for Turkey. With two 
directions we have the [+,+,–] and [–,–,+], instances of a 
convex and of a concave shape. With three directions we 
have [+,–,+] and [–,+,–]. Figure 2 shows instances of the 
pattern [–,–], Figure 3 instances of the pattern [+,+,–] and 
Figure 4 instances of the pattern [+,–,+]. Since all phrases 
in children's songs are short,  there were no longer pat-
terns found with more than ten occurrences in the current 
corpus.
 

5. DISCUSSION AND FUTURE WORK

The pattern [–,–] (Figure 2) shows a very high statistical 
significance for Turkish songs in all types of contour rep-
resentations. Looking at the instances found, we observe 
that  often  these  patterns  are  located  at  the  end  of  the 
songs,  denoting a cadence,  or  at  an even number  of  a 
phrase,  again  denoting  a  (smaller)  cadence.  There  are 

however cases where this pattern is a first phrase, some-
thing we believe might be unique for Turkish songs. Fur-
ther work could explore whether this overrepresentation 
could be explained by some linguistic or intonation char-
acteristic of the Turkish language.

Interestingly  there  were  no  distinctive  patterns 
found in English songs.  All  patterns  found,  apart  from 
one, belong to countries of the Middle (France) or South 
Europe  (Turkey,  Spain,  Greece,  Catalunya),  a  fact  that 
points to their special musical  style. The strong pattern 
[+,+,-] appeared in both Catalan and Spanish songs, and 
shows one important similarity between the two.  

It  is  noted  that  the  differences  between strong 
and weak contour patterns were not as big as expected: as 
expected, most patterns which appear in the strong con-
tour representation also appear in the weak, but no weak 
contour  with  contour  modifications  between  the  beats 
was found as distinctive. This could be because the cor-
pus is not large enough to gather songs on these contour 
modifications.

As expected,  full  contour  patterns with a  high 
significance  were  very few,  in  fact  only one  found by 
lowering  the  threshold.  Our  contour  representations  on 
the reduced score show thus firstly that it is possible to 
spot  distinctive  patterns  in  these  representations,  often 
shared across countries, and secondly that the instances of 
phrases  found share  some obvious  melodic  similarities 
which would have not been captured otherwise. We thus 
argue  that  the  strong  contour  representation  may  be  a 
good compromise between a very abstract representation 
(such as the Huron's melodic shapes) and a very detailed 
representation (such as the full contour or the continuous 
functions  described  by Muellensiefen  and  Wiggins 
(2011)).

The strong distinctive patterns found, apart from 
one, end up in a downward melodic motion. Even when 
one looks at the cases of the strong pattern [+,–,+], which 
is the exception, one can see that in the full version of its 
instances sometimes a downward motion can be detected. 
Also, these patterns [+,–,+] tend to have a counter-phrase 
following, which ends on a – . The trend to end on a – 
can be partly explained because all the songs are strongly 
tonal  (whatever tonal means in each case), and a down-
ward motion at the end of the phrase often reaches the 
tonal centre. 

One question that might arise would be on the 
criteria used to create the reduced score upon which the 
strong contour patterns were calculated. Notes on the beat 
can sometimes be suspensions or other melodic embel-
lishments that are not the main note of the melody in a 
Schenkerian sense. This can indeed be the case, but in the 
particular corpus analysed here this phenomenon is rare. 

In general, it can be observed that the songs ana-
lysed are based on short phrases,  simple melodic lines, 
symmetries, circularities and repetitions. This can be po-

Figure  2.  Strong  contour  [–,–]  .  This  contour  is  five 
time  over-represented  in  Turkish  songs  (9.1%  of  the 
Turkish segments) than in the rest of the corpus (1.8%).
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tentially because  musical  learning,  recalling, singing or
playing  needs  to  be  enhanced.  The  ascending  and  de-
scending  directions  of  the  melodies  may  have  been 
shaped  by  various  linguistic  and  kinetic  factors,  often 
simulating gestures, which relate to the context of musi-
cal performance of the songs. Further work is needed in 
order  to  compare  children's  songs  as  one  corpus,  with 
other folk song corpora. 

Future  work  also  includes  the  study  of  which 
contour shapes come at the various positions in the song 
(first, second phrase, etc). It also includes studying of se-
quences of  shapes,  to  see  what types of  shapes follow 
each other. For example, by looking at phrases where the 
[+,–,+]  pattern  occurs,  we  have  noticed  that  the  next 
phrase ends with a downward motion. Inclusion of more 
features to describe the songs is also planned.  

A systematic analysis of children's songs of vari-
ous cultures can contribute towards an awareness of this 
music as a special genre with its own characteristics, and 
in viewing children as conscious musicians – especially if 
the approach takes children's music as its starting point.   
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Figure  3. Strong contour  [+,+,–], represented 2.4 times 
more in the Catalunya and Spain songs than in the rest of 
the corpus.

       

Figure 4. Strong contour [+,–,+], represented 4.8 times 
more in the Greek songs than in the rest of the corpus.
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ABSTRACT

In this work, we introduced an original optical-based retrieval
system dedicated to the music analysis of themarovanyzither,
a traditional instrument of Madagascar. From a humanistic per-
spective, our motivation for studying this particular instrument is
its cultural importance due to its association with a possession rit-
ual calledtromba. The long-term goal of this work is to achieve
a systematic classification of themarovanymusical repertoire in
this context of trance, and to classify the different recurrent mu-
sical patterns according to identifiable information. Froman en-
gineering perspective, we worked on the problem of competing
signals in audio field recordings, e.g., from audience participation
or percussion instruments. To overcome this problem, we recom-
mended the use of a multichannel optical recording, puttingfor-
ward technological qualities such as acquisition of independent
signals corresponding to each string, high signal to noise ratio
(high sensitivity to string displacement / low sensitivityto exter-
nal sources), systematic inter-notes demarcation resulting from
the finger-string contact. Optical signal characteristicsgreatly
simplify the delicate task of automatic music transcription, es-
pecially when facing polyphonic music in noisy environment.

1. INTRODUCTION

The marovanyis a tall zither in the form of a rectangu-
lar box built from recycled wood products. The metal-
lic strings, measuring up to 1 m 20, and mostly coming
from brake cables type motorcycle, are stretched on each
side of the box. They are nailed at each end on an easel,
made of wood or metal, and are raised by battens whose
places along a string determines its pitch. Musically, each
set of strings forms, like the famous tubular zitherval-
iha, an alternating diatonic scale. The repertoire of the
marovanyconsists of a succession of melodic phrases most
often played in arpeggios. There is no vertical writing
properly speaking in this music, excepting a few punc-
tual chords. However, the high tempo at which notes are
played, combined with the facts that strings are barely muted
within a musical phrase and that they often resonate with
each other, confers to this music a complexity of analyse
comparable to that provided by polyphonic music. Wood
type, sizing and number of strings of a zither are not fixed.
One can indeed find zithers made of light or heavy weight
wood, measuring from 1 to 2 meter in length, possessing
from 8 to 12 strings on each side, with battens also ranging
from 2 cm to 0.5 cm in height (it is known that bringing
strings closer to the soundboard produce more powerful
sounds, according to an effect calledmafo be, “louder”).
The zither used for our study, whose photo is given in the

figure 1, possesses 13 strings on each side, with a pitch
range covering more than two octaves.

In addition to its pure musical interests, the study of the
marovanyzither presents a major interest as its take part
in a possession cult calledtromba. This particular type of
trance is “musically induced” in that the possessed person
is stimulated by the music played. In the context of trance
tromba, the mode of playing of themarovanymainly con-
sists of a quick succession of melodic motifs, progressively
transformed through multiple obsessing repetitions. This
instrument is often accompanied with a rattle calledkantsa,
built from recycled cans filled with grains and nailed to a
wooden handle, which constitutes with hand-clapping the
rhythmic base of this music. This social context of trance
associated with themarovanyzither likely determines its
musical repertoire. Indeed, music related to possession
cults often carries identifiable information able to make
some complex connections between music and symbolic
extra-musical entities (Rouget, 1980). A large part of the
marovanyrepertoire may therefore take the form of an as-
sociation table between musical formulas and certain di-
vinities (Chemillier, 2000). Another functional aspect of
the marovanyduring tromba is that it greatly participates
to the collective effervescence conductive to the trance it-
self, through specific uses and progressions of musical pat-
terns. In order to better understand these two aspects of the
link existing betweenmarovanyzither and trancetromba,
an analyse of its repertoire must be performed, with a sys-
tematic inventory of musical patterns and air/divinities as-
sociations. Within a larger picture, studies dealing with
neurophysiological mechanisms within trance events (Di-
anteill & Hell, 2008; Hell, 2008) could benefit from precise
musical data provided by our system.

Malagasy zithers, and more particularly thevaliha(made
of bamboo), that is considered as the national instrument
of Madagascar and from which themarovanyis derived,
have already been subjected by numerous ethnomusico-
logical researchers (Razafindrakoto, 1999; Domenichini,
1984). However, as far as the authors know, there is cur-
rently no large-scale systematic analysis and classification
of its repertoire, based on precise musical (rhythmic, modal,
structural properties) and extra-musical (functional roles,
symbolic content) criteria. To provide a deep insight into
musical functionalities of themarovanyin the context of
trancetromba, investigations on the field must be under-
taken, which systematically monitor and characterize mu-
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Figure 1: Photo of a zithermarovany(on the top) and of
the implemented optical-based system, with the details of
sensors in the close-up (on the bottom)

sical patterns to statistically evaluate their occurrences over
different trance sessions (e.g. for the recurrence or struc-
tural roles of certain musical motives), and to draw correla-
tions between musical, behavioral and symbolic informa-
tion over the time of a trance (e.g. for the way musical for-
mulas are renewed and the impact it has on the possessed).
A systematic study of such concordances should allow to
establish the catalogue raisonné of the common repertoire
of themarovanyzither players in context of trancetromba.
The automation of this process is made imperative as a
manual transcription may be cumbersome, considering that
trance sessions can last several hours and that there is no
manuscript support for this music. Also, the complex-
ity of this transcription (due to speed of playing, poly-
phonic characteristics, noisy environment) implies a great
variability in hand-made results, making them prone to
errors without possible estimation of their quality. Stan-
dard audio-visual devices recording each trance(e.g. see
an excerpt of a trance video and other audio-visual material
about themarovanyon the web page of Chemillier (2012)),
which allows the analysis of the behavioral indices men-
tioned above, do not provide an optimal support for music
transcription ofmarovanymusic, as they exhibit compet-
ing signals within a noisy environment. To remedy this
problem, this paper presents in section 2 an optical-based
retrieval system dedicated to in situ recordings of musical
airs of themarovanyzither. This system was further in-
tegrated to an acquisition and processing chain aiming to
perform music information automatic retrieval, presented
in section 3.

2. CONCEPTION OF AN OPTICAL-BASED
RETRIEVAL SYSTEM

Several constraints must have been considered in the choice
of the recording system. Intrinsic constraints to themarovany
mode of playing firstly, including its speed, the different
modes of attack and string muting, the polyphonic sequences
(due to intermittent chords and mutual resonances induced
by the strings). In addition to that we have exterior con-

straints, such as external sound sources (mainly the rattle,
hand-clapping of the audience, vocal interjections of the
possessed), environmental (high humidity and heat) and
technical (unreliable electrical sources) conditions. Itis
then preferable to avoid using too sensitive and preampli-
fied systems (e.g. 48 V phantom powering), which could
degrade very quickly. The accumulation of these constraints
make the overall audio signal hard to acquire and process.
The optical-based system of music acquisition described
in the following has been conceived to optimize the task of
automatic music transcription, attempting at best to com-
ply with all these constraints.

Optical-based systems have already found various ap-
plications, such as metrological measures of string displace-
ment (Seydoux, 2012; Chabassier, 2012) or a MIDIfica-
tion 1 of a piano through the Moog piano-bar technology
(Mowat, 2005; Assayag & Bloch, 2008). Our system, il-
lustrated in the figure 1, is closer from this second appli-
cation, although distinguishing itself through the desireto
integer as accurately as possible a great number of physi-
cal parameters characterizing the sound quality of the in-
strument. The selected optical sensor are slotted optical
switches consisting of an infrared emitting diode and an
NPN silicon phototransistor. It has a fork design, with the
string placed between the two branches as illustrated in the
close-up of the figure 1. On one side, the light-emitting
diode (LED) emits a light beam whose diameter is 0.5 mm
and wavelength 940 nm. On the other side, the phototran-
sistor has a peak of sensitivity at 850 nm. When the string
passes through the laser it modulates the output current of
the sensor, accordingly to the surface of the laser shadowed
by the string. In order to maximize the dynamic of the opti-
cal signals and obtain sharp transient attacks, the narrowest
possible diameter for the laser is used. Such sensor then
acts as a digital switch with a robust sensitivity to string
displacements. An enhanced low current roll-off is used
to improve contrast ratio and immunity to background ir-
radiance. The power pack of the optical sensors needs a
continue tension of 5 V, and is thermally isolated, which
makes it well aligned with field conditions. Two compact
portable digital recorder ZOOM R16, allowing the record-
ing of 2 x 8 tracks simultaneously, are used for data ac-
quisition of optical signals. Those are directly saved in the
Cubase software. A synchronous audio signal of reference
is also recorded with a microphone Neumann KM 184 mt.
Sampling frequency for all recordings is 44.1 kHz, with 16
bits.

Each string is equipped with an optical sensor to get
individual signals. Two constraints have been taken into
account in the placement of these sensors, attached on a
vertical bar exterior to the instrument (see figure 1). On
one hand, the system must not be too cumbersome and dis-
turbs the playability of the instrument. On the other hand,
the measuring point of string displacement may create a
bias in the amplitude measure. Indeed, as this displace-
ment consists of a superposition of vibratory modes, de-

1 Acronym meaning the in-situ conversion of an acoustic instrument
into its homologous MIDI.
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fined as a succession of nodes and anti-nodes, if a sensor is
placed on a modal node the energy contribution of the cor-
responding mode is null. To answer these two constraints,
the bar of sensors is positioned near the easel, in such a
way that the playing zone is less disturbed and that the sen-
sors are roughly placed on the ascending slope of the anti-
node following directly the easel-related node common to
all modes.

The figure 2 represents the spectrograms of the audio
signal and four optical signals (after post-processing, see
section 3) respective to four distinct strings, recorded ona
traditional tune calledSojerina. As it can be seen, optical
signals offer a high signal to noise ratio and sharp tran-
sients, both in the attack phases (end of plucking) and re-
lease (beginning of plucking with the contact finger-string).
The independence of each string is well respected, each
sensor detecting solely the vibration associated to its string.
In addition to that, we have a good separability of succes-
sive notes of a same string, with inter-notes blanks result-
ing from the instants of finger-string contacts. Eventually,
such a system of acquisition decomposes a multi-source
audio signal into simple identifiable components, simpli-
fying more particularly the complex analysis of a poly-
phonic sequence by processing individually several mono-
phonic sequences. Another advantage of the optical tech-
nology is that it allows a straightforward conversion of
string displacement to MIDI format files. Such signals also
make easier their post-processing for analysis, and are well
suited for applications to real-time.

Figure 2: Spectrograms of the signal audio (on the top)
and its decomposition in four optical signals (on the bot-
tom) extracted from aMideganaair

We now present a short comparative study on the acous-
tic characteristics of audio and optical signals. After post-
processing optical signals (see section 3), five acoustic de-
scriptors have been computed on a set of thirty pairs of
notes{audio;opical}, played separately and let in free os-
cillation until extinction. The used descriptors are defined
as follows:

AT , the attack time (in s) is defined by the necessary time
for the signal to reach 95 % of its maximal energy
Emax

s(n = AT ) = 0.95Emax (1)

D , the physical duration of the signal (in s) will be defined
as the time during which the signal energy remains
between 5 % and 95 % of its maximal energyEmax

D = {n/s(n) > 0.05Emax & s(n) < 0.95Emax}
(2)

E , the energetic level rms (in Pa) of a signal is defined by

E(k) =

√√√√ 1

K

K∑

k=1

|(x+ kN)|2 (3)

computed for K successive frames of N samples ;

HD, the Harmonicity Detector (unitary value without di-
mension) is an indicator of harmonicity. The prin-
ciple (Youngmoo & Whitman, 2002) is to automat-
ically scan the spectral density of a signal with a
comb filter whose fundamental frequencyF0 and varies
within a given range of interest. When the valleys of
this filter coincides with the peaks of an harmonic se-
quence for a particularF0, their product will result in
a very weak value which traduces the presence of an
important harmonicity. Mathematically, we define it
as

HD = min(
Epond

Einit
) (4)

withEinit =
∑ |Y (k)|2 andEpond = Filt(k, ko)Einit,

where Filt is a comb filter defined as Filt =2(1 −
|cos(πFF0

)|).

The descriptors E and HD are evaluated relatively to ar-
bitrary references respective to the types audio and optical.
Absolute acoustic differences between these two types of
signals are simply quantified through the operator∆D =
|DAudio −DOptical|, where D represents a given acoustic
descriptor. The table 1 presents the results of this opera-
tor, showing that the distortional impact of optical-based
acquisition mode (not really physically correlated to hu-
man auditory perception) is minor when considering tem-
poral profiles. However, spectral content shows more sig-
nificant differences. An observed tendency is that the har-
monic structure of optical signals is stronger, which can
be explained by the fact that a direct measure of string
displacement privileges its fundamental frequency ans its
harmonics in the observed vibratory behavior, minimizing
the effect of coupling with the more complex modes of
the soundboard. The difference on the amplitude may take
important values when a string vibration excites strongly
some of the soundboard modes, which allows a very effi-
cient energy transfer from the string to the table.
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Descriptors At AD dB HD
E(∆D) 0.0129 0.4366 0.23 0.26
σ(∆D) 0.0028 0.11 0.15 0.09

Table 1: Average E and standard-deviationσ of the acous-
tic absolute differences between optical and audio signals
for the descriptors At, AD, dB, HD

3. APPLICATION TO MUSIC INFORMATION
RETRIEVAL IN THE CONTEXT OF TRANCE

TROMBA

Information retrieval for music transcription can be classed
into several levels: the low-level (pitch, note attack and du-
ration), sufficient for the constitution of a partition, andthe
high-level (tonality, instrument recognition), which asks
for more global and complex notions. Our chain of tran-
scription consists of an acquisition data system (described
above) and a processing part including analyse algorithms
which will determine the durations, the pitches and the am-
plitudes of the played notes. These information will then
be compiled into a MIDI file, which can be read and edited
on any audio sequencer and score edition program.

Acquisition
String displacement

Optical sensor

Conditionning

Processing

Vizualisation

Denoising (Ephr., 1985)

Segmentation with a 

32 ms Hamming 

window 

Onset detection (Bello, 2004)

Duration estimation (eq. 1)

Pitch estimation (de Cheveigné, 2002)

Piano roll

Figure 3: Block-diagram of the different functions con-
stituting the detection and acoustic characterization algo-
rithm

Once optical signals are properly acquired, their tran-
scription does not pose any specific difficulties. Figure 3
represents a block-diagram of the different functions con-
stituting the analyse chain, from the acquisition to the com-
putational processings of themarovanynote detection and
acoustic characterization. The post-processing of optical
signals is as follows. Because of memory concerns, se-
quences of 5 s are first imported in the software Matlab.
An adaptive filtering (Ephraim & Malah, 1985) is then ap-
plied to optimize the signal to noise ratio, mainly deterio-
rated by parasite noise coming from electronics and mutual
resonances of strings2 This algorithm of denoising takes
as inputs segments of noises, and allows their subtraction

2 Although this acoustic phenomenon is considered as a disturbing
noise in our situation of low-level transcription, it takesan important place
in the definition of the instrument timbre.

to the signal by minimizing a prediction error with a least-
mean square optimization. A 0.049-s hamming window
with a 0.005-s overlapping (that is 11.6 ms, providing a
temporal resolution whose order of magnitude is similar to
the time attack) scans the entire sequence. Each onset of
notes is detected using a spectral difference which takes
into account the phase increment, as introduced by Bello
et al. (2004):

X̂k,n = |Xk,n−1|ej(2φk,n−1−φk,n−2) (5)

with n the index of each window. Asmarovanysounds
consist roughly of a superposition of short stationary sinu-
soids, the occurrence of an onset generates a peak in the
prediction error defined by

r(n) =

N∑

n=1

|X̂k,n −Xk,n| (6)

Windows for which this residual exceeds a fixed thresh-
old are validated as onsets. From this detected onset, the
descriptor E (eq. 3) is computed for the neighbouring win-
dows to search the local maximumEmax(i) associated
with the note i, assuming this maximum is located near
the onset, as expected for notes played by plucked string
instruments. Then, E is computed on all the windows fol-
lowing the onset until the energetic value decreases below
5 % of Emax(i), which may then be read as an adaptive
note-specific energy threshold, or until another peak in the
residual r is found. This estimation allows us to deduce the
note duration (eq. 2), and its amplitude by averaging the
energy over all windows within the note. We are not in-
terested in the absolute amplitude of the notes, but only in
their relative values within an air, in reference to a value de-
termined by the MIDI gain. Once all notes are detected, the
pitch is estimated within each window, using a robust al-
gorithm derived from the autocorrelation method for pitch
estimation (de Cheveigné & Kawahara, 2002). Figure 4
represents the evolution of a waveform signal processed
through this algorithm.

Figure 4: Evolution of a waveform signal processed
through this algorithm. From left top to right bottom: orig-
inal optical signal, denoised signal, residual r with location
of onsets, and segmented signals.
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This algorithm was evaluated on hand-labelled sequences
taken from variants ofMideganaandSojerinaairs (see be-
low for details), containing information on the temporal
location, duration, average amplitude and pitch. The tol-
erances for a correct estimation are fixed to 32 ms on the
onset time and to 0.5 s for the duration. An application
of the previous algorithm to the audio signal achieves per-
formances between 50 and 60 % of correct note detection,
whereas optical sequences provide satisfying results (< 95
%).
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Figure 5: Piano roll of an automatic transcription of a
Mideganaair

We now propose two illustrations of this method through
automatic transcriptions of two traditional Malagasy tunes,
aMideganaand aSojerina(audio files are available on the
web page of Chemillier (Chemillier)). These tunes have
been recorded in Madagascar and played by the musician
Velonjoro. Technical problems on the spot rendered sev-
eral sensors inoperative3 , and each variant of the airs has
been partially reconstructed from different repetitions of a
same sequence. In spite of these constraints of a manual in-
tervention to resynchronize the tracks and a superposition
of distinct loops, the signals sound satisfactory, with a good
preservation of the rhythmic vitality of Velonjero’s play-
ing. Figures 5 and 6 show the piano rolls of these air vari-
ants. The piano roll is a means of representing graphically
a MIDI file. On the vertical axis are the different notes, rep-
resented by rectangles either through their respective pitch
(top graph) or their amplitude (bottom graph), and on the
horizontal axis is the time. It is then easy to visualize the
played notes over time.

The precision of the proposed automatic transcription
system is well adapted to the speed of play of the musician
and captures properly certain rhythmic structures charac-
teristic of themarovanymusical repertoire, as shortly ex-
plained now. From top to bottom, the left graph of figure 7
superposes as a function of time the automatic transcrip-
tion performed on theSojerina tune, with the rhythmic

3 The main goal of the mission during which these recordings were
done was to test a prototypical version of our acquisition system (Chemil-
lier, 2012). The next one is planned for the summer 2013, and will benefit
from a finalized and fully operational version of our transcription device.
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Figure 6: Piano roll of an automatic transcription of aSo-
jerina air

base given by hand clapping (in MIDI clap) and the rattle
kantsa(in audio track). The right graph of figure 7 super-
poses against time their audio signals, from top to bottom:
hand clapping, rattle, original record and MIDI transcrip-
tion. Comparing audio tracks, we can see that the orig-
inal audio and the MIDI file resulting from the automatic
transcription are well synchronized, although it lacks a few
notes in the MIDI file due to missing sensors as explained
above. We find the contrametric character of this music
(Chemillier et al., 2013), as we see that the rattle accent is
slightly out of sync with the pulsation given by hand clap-
ping, intervening more on the off-beats. More precisely, it
falls on the second 8th note of a ternary subdivision of the
pulsation (each pulsation is divided into three 8th notes).In
the MIDI file, there are two obvious thirds: D-F# et C-E,
and then a descending arpeggio G-R-B. As these two thirds
and the G are most frequently placed on the rattle accent,
and not on the hand clapping, the zither plays indeed out
of the beat. This characteristic is confirmed through audio
tracks where we can see both in the original and the tran-
scribed MIDI file, that a stronger intensity is present in the
two thirds, in coincidence with the rattle accents.

4. CONCLUSION AND PERSPECTIVES

An optical-based recording system applied to automatic
music transcription of themarovanyzither in context of
trancetrombahas been introduced in this work. The sig-
nals acquired from the optical-based retrieval system and
post-processed present optimal characteristics for this task,
with easily identifiable musical features extracted in a ro-
bust way. Among its conspicuous technological advan-
tages, we can mention the high signal to noise ration, the
multichannel output with independent signals correspond-
ing to the played strings and the automatic demarcation
between successive notes of a same string. Also, the low
time-consuming computational method (as performing el-
ementary operations directly on the acquisition buffers) is
well suited for real-time analysis, allowing monitoring mu-
sical information simultaneously to events, and exploiting
directly new findings on the field. In definitive, the mul-
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Figure 7: On the left, superposition against time of the
MIDI transcribed file of aSojerinaair with the rhythmic
base given by hand clacking (in MIDI clap) and the audio
track of the rattlekantsa. The two vertical bars indicate
two beats given by the MIDI clap, and the encircled part
illustrates the contrametricity of this playing. On the right,
superposition against time their audio signals, from top to
bottom: hand clapping, rattle, original record and MIDI
transcription.

tichannel output of such a device, insensitive to external
sounds, offers an efficient alternative to the task of audio
source separation, crucial to extract in-situ music infor-
mation from themarovany. This system was conceived
to meet the long-term demand of developing tools to per-
form a systematic classification of the repertoire of the
marovanyduring trances, in a robust and automatic way.

Although the current interest in themarovanymusic
deals with elementary musical information such as dura-
tion and pitch range of the notes, the need of reworking on
audio data could be felt to integrate high-level information
acoustic proprieties, including vibro-acoustic proprieties
of the whole instrument, as the instrument timber, string
shock modes, and the acoustic intensity. However, the
optical system gives a complementary reliable support for
following audio-based investigations, allowing a direct ac-
cess to information simplifying complex problems linked
to direct work on audio, such as the number of vibrating
strings for studying the polyphony segments in a track.

Study of themarovanyrepertoire in trancetromba, founded
on musical criteria, and complementing other behavioral
indices observed with an audio-visual device and audio
data, should bring original elements of investigation to the
fascinating relationships between music and trance. An-
other application theme of such a system would be the
Human-Machine musical interaction, through the OMAX
improvisation IT environment (Nika & Chemillier, 2012)
(developed from the OMax environment (Assayag et al.,
2012) in collaboration with IRCAM). Future musical projects
could involve malagasy musicians in this environment, us-
ing MIDI data from our retrieval system. Questions of a
more aesthetic character (acceptability of musical formu-
las derived from a known repertoire, oral transmission of
this skill, musical interest in the amplification, virtual re-
orchestration of a musical environment and real-time mod-
ifications of musical parameters) will be considered in fu-
ture investigations following this direction.
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ABSTRACT 

The study discusses features of musical scales in Lithuanian 
traditional vocal performances. Manifestation of the equidistant 
model of musical scale and its interplay with diatonic thinking 
are considered. Three samples representing three different eth-
nomusical dialects (54 songs, in total) are examined: the meth-
ods of diatonic contrast and clustering are applied in the pro-
cessing of results of the acoustical pitch measurements. The 
evaluation of diatonic contrast shows that the song examples 
resembling the theoretical equidistant scale prevail over those 
resembling diatonics. The cluster analysis reveals certain groups 
of the scales characteristic of the examined dialects. 

1. INTRODUCTION 

1.1 Issue of the Ancient Greek modes 

Question of equidistant scale seems to be closely con-
nected to the phenomenon of so-called Ancient Greek (or 
Gregorian) modes, especially when modulations between 
the different modes are registered. The notion of Ancient 
Greek modes is quite frequent in the studies of Lithuanian 
folk music. It occupies a significant place in different 
classifications of modes. This idea was introduced to 
Lithuanian ethnomusicology (most clearly) in the first 
half of 20th century by Brazys (1920) and extended by 
Čiurlionytė (1938), Četkauskaitė (1998; the idea was 
supplemented with the concept of anchor tones as frame-
works of tonal structures), and still is popular today. Ear-
lier a great impact on setting this notion was made by 
Ukrainian researcher Sokalski (1888) which attempted to 
wedge all folk music into the firm frame of Greek tetra-
chords. 

It might be suspected that the notion of Ancient Greek 
modes rests on the diatonic thinking of the researchers, 
who have no doubt that the original scales in folk music 
are diatonic. While certain examples of the original scales 
may really resemble the theoretical diatonic scales, the 
others can be essentially different. Then the collision of 
two emic scale systems – that of the cultural insider’s 
(performer’s) and outsider’s (ethnomusicologist’s) – re-
sults in the “aural ghosts”, i.e., in the misperception of the 
peculiar original scales as Ancient Greek modes. 

1.2 Issue of Equitonics 

Recent acoustical measurements of musical scales in 
Lithuanian traditional singing have shown noticeable sys-

tematic deviations from 12TET. Ambrazevičius (2011) 
analyzed four sample repertoires representing quite a 
wide spectrum of Lithuanian vocal traditions. He con-
cluded that, in general, none of the samples were con-
sistent with 12TET (or other theoretical diatonic scales, 
e.g., Pythagorean or Just intonation) and such inconsist-
encies could not be explained by tolerable categorical 
zones of intonation, possible mistakes and imperfections, 
etc. However, these samples showed certain commonali-
ties with the scales anchored on a framework of a fourth 
or fifth and filled in with “loosely-knit” (Grainger) inter-
mediate tones (examples of such scales can be found in 
European folk music; see Grainger, 1908–1909; Sevåg, 
1974; etc). Ambrazevičius suggested the model of rough-
ly equidistant scale (equitonics) which, as purely theoret-
ical frame, could explain the features or tendencies of the 
scales in traditional singing. 

1.3 Aim of the Study 

The aim of this paper is to identify some possible groups 
of different musical scales (featuring traces of the equi-
distant scale) and to verify the correspondence of those 
groups to the ethnomusical dialects (regions) or styles of 
Lithuania. 

2. PROCEDURE 

2.1 Samples 

Three samples of songs recorded in the 1930s were se-
lected. The samples represent different regions of Lithua-
nia, respectively, Suvalkija (S), Žemaitija (Samogitia; Z), 
and Aukštaitija (A). The first two samples consist of 
monophonic songs (23 and 10 songs) while the third 
sample consists of polyphonic songs Sutartinės (21 song). 

Sutartinės are Lithuanian polyphonic songs, typical to 
Aukštaitija region. Unfortunately, they vanished as an 
unbroken tradition in rural areas in the middle of the 20th 
century. Significant part of the Sutartinės can be consid-
ered as examples of Schwebungsdiaphonie (“beat diaph-
ony”) as majority of their intervals formed by the voices 
are seconds. Many of the Sutartinės are characteristic of 
quite pronounced modal structures centering on the nuclei 
and dissipating towards marginal pitches. The nuclei can 
be considered mostly as “double tonal centers” compris-
ing two central pitches, with an interval of second in be-
tween, and belonging to two intertwining voices (parts). 
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In this paper, the upper pitch in the “tonal center” is 
denoted as the upper case letter I and the lower pitch is 
denoted as the lower case letter i. The scale degrees 
above I are denoted as II, III, IV, etc., and the degrees be-
low i are denoted as ii, iii, iv, etc. In the case of mono-
phonic songs, the conventional notation for scale degrees 
is used (i.e., 1st, 2nd, 3rd, etc.). 

2.2 Acoustical Measurements 

To evaluate the scales of songs, acoustical measurements 
of their recordings were made using PRAAT software. In 
the case of solo performances, pitches of all structurally 
important sounds of the songs were measured; grace 
notes were not considered because of the crude uncertain-
ty of pitch. Perceived (integral) pitches of the tones were 
estimated from continuous tracks of “objective pitch” 
(log frequency) automatically transcribed by the software. 

In the case of Sutartinės, spectra of the vocal dyads 
were considered. Two outstanding partials (belonging to 
different voices) in the spectrum of each dyad were se-
lected. Most frequently they were the second harmonics. 
Then the fundamentals, corresponding pitches and inter-
vals between the voices of the dyads were calculated. 

The occurrences of scale degrees were averaged 
across every performance to obtain the averaged musical 
scale. 

The recordings of solo performances were relatively 
long; most of the songs contained from 10 to 20 me-
lostrophes. Only one (the first or the second) melostrophe 
of every song was chosen for the investigation. The re-
cordings of the Sutartinės were not that long, thus almost 
all vocal dyads were considered. An exception was made 
for some dyads, e.g., because of their extremely poor re-
cording quality which did not allow accurate measure-
ment. 

2.3 Diatonic Contrast 

The index of diatonic contrast (DC) has been earlier in-
troduced as the method of evaluation as to whether the 
scale is “more diatonic” or “more equitonic”. More exact-
ly, it defines “how much the scale is diatonic”. The suc-
ceeding constituent intervals (i.e., the intervals between 
the adjacent scale degrees) are pooled into two groups of 
“narrow” (dn) and “wide” (dw) intervals. The following 
expression for DC is applied: 
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where N = Nn + Nw is the total number of intervals. The 
)/( wnd  means either nd  or wd , depending on the attribu-

tion of di. 
The formula gives different values of DC depending 

on the certain grouping. The largest possible value is de-
fined as the actual DC. The DC given by the formula 
above is normalized: if the value of the diatonic contrast 
equals 1, it means that the corresponding set consists of 
scale degrees separated by tempered whole tones and 

semitones. Zero for DC means ideal equitonics (equal in-
tervals between the degrees; see Ambrazevičius, 2006). 

The method of DC is intended to evaluate the overall 
asymmetry of an intervallic structure. It does not detect 
the individual differences between the scales, e.g., be-
tween the minor and major modes. 

2.4 Cluster Analysis 

Hierarchical cluster analysis can be applied for identifica-
tion of groups of musical scales. Cluster analysis identi-
fies “groups of individuals or objects that are similar to 
each other but different from individuals in other groups” 
(Norušis, 2011: 375). Agglomerative hierarchical cluster-
ing with squared Euclidian distance and averaged linkage 
is applied in our research.1 

Intervallic structures of scales are considered as data 
for the evaluation of similarity. The intervallic structure 
can be represented in several ways. The basic representa-
tion is a set of relative pitches with regard to the first 
scale degree (which is thus normalized to 0; see Figure 
1). This representation contains all intervallic infor-
mation. Yet it has a certain disadvantage: similar scales 
represented in this way can be identified as different. For 
instance, if only pitch of the first degree is shifted, all 
other scale degrees become “sharp” or “flat”. Other two 
representations are as follows: a set of intervals between 
adjacent scale degrees (Figure 2); a set of intervals of all 
possible pairs of scale degrees (Figure 3). Some tests on 
various scales showed that, in most cases, the third repre-
sentation gives the results which approximate the subjec-
tive visual evaluations of similarity the best. Therefore 
cluster analysis was performed only with this kind of 
scale representation. 

 
Figure 1. Scale representation, relative pitches with re-
gard to the first scale degree. 

 
Figure 2. Scale representation, intervals between adja-
cent scale degrees. 

 
Figure 3. Scale representation, intervals of all possible 
pairs of scale degrees. 

It should be also taken into account that scales with 
similar relative intervallic structures (and with only rea-
sonable differences in absolute numbers) tend to be con-
                                                        
1 For details on hierarchical clustering, see, e.g., Tan, Steinbach, & Ku-
mar, 2006: 515–526, Norušis, 2011: 377–388. 

1st 2nd 3rd 4th 

1st 2nd 3rd 4th 

1st 2nd 3rd 4th 
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sidered as similar.2 For instance, two versions of equidis-
tant scales with different constituent intervals, neverthe-
less, are manifestations of the same principle of equiton-
ics (DC for both scales equals 0). The same should be 
stated about two versions of diatonic scale (e.g., major): 
based on 12TET and slightly modified (evenly com-
pressed or stretched). DC for both scales equals 1. 

Therefore before the cluster analysis, the ranges of 
scales were normalized, i.e., the intervals between the 
lowest and the highest scale degrees were set to 1. This 
allowed the effect of “compressing” or “stretching” of 
otherwise similar scales from cluster analysis to be elimi-
nated. 

The disadvantage of cluster analysis is the require-
ment to classify objects with an equal amount of features. 
Musical scales vary in the number of scale degrees; there-
fore they have to be modified to meet the requirement. 
For instance, one should select only the scales comprising 
the same scale degrees; if some examples possess addi-
tional degrees above or below, the degrees should be ex-
cluded from the analysis. This means that the certain in-
formation is lost.3 

Thus, for sample S, a set of scales truncated to 6 de-
grees (from 1st to 6th; 11 examples) was composed. All 
scales in sample Z had no less than 5 degrees (from 1st to 
5th); therefore they all were included into cluster analysis 
(10 examples). For sample A, a set of scales truncated to 
4 degrees (from ii to II; 14 examples) was composed. Al-
so, a composite set from all samples containing 29 scales 
truncated to 5 degrees was prepared. 

3. RESULTS 

3.1 Diatonic Contrast 

Evaluation of diatonic contrast showed that the scales of 
songs in all three samples are statistically more similar to 
the equidistant scale, with a special emphasis on 
Aukštaitija region (Sutartinės style; see Figure 4). The 
quartiles of DC (successively, Q1, Me, and Q3) are the 
following: (S) .32, .46, .56, (Z) .30, .45, .53, and (A) .16, 
.24, .34. 

3.2 Cluster Analysis 

Results of hierarchical cluster analysis are often presented 
in the form of a dendrogram (e.g., Tan, Steinbach, & 
Kumar, 2006: 515–516). There is no strict criterion for 
finding the best cluster solution and the optimal number 
of clusters depends on the goal of the investigation (e.g., 
Norušis, 2011: 377). In Figure 5, the 4 cluster-solution 
seems to be quite reasonable as the number of groups of 
scales is neither too large nor too small and the differ-
ences among clusters are sufficient. Figure 6 shows 6 de-
gree-scales from sample S (represented as relative pitches 

                                                        
2 Incidentally, even evolving scales, for instance, stretching out in the 
course of performance, are perceived by the performers as certain stable 
entities (Alexeyev, 1976: 49, etc.). 
3 This procedure of truncation is actually not as big a fault as it would 
seem at first glance. The marginal scale degrees are statistically quite 
rare (their occurrences are usually less frequent or even sporadic), thus 
their pitch averages are the least reliable. 

in regard to the 1st scale degree) grouped according to the 
results of cluster analysis. Note that some groups consist 
of scales which seem to be quite different from each oth-
er. Actually some of them become similar if appropriate 
“stretching” is applied. Other relatively dissimilar scales 
fall into homogeneous groups due to the particular cluster 
solution (e.g., the scales of songs 4a and 12; compare 
Figures 5 and 6). 

Q1

Q1 Q3

Q1

S

Z

A

A .Me   Q3

 AMe  
.

   AMe  . Q3     .

0 0.25 0.5 0.75 1 1.25 1.5
diatonic contrast

 
Figure 4. Diatonic contrast of scales in each sample (S, Z 
and A). A, Me, Q1, and Q3 denote, respectively, average, 
median, first and third quartiles of DC. 

 
Figure 5. The dendrogram for 6 degree-scales from sam-
ple S. The Dotted line denotes a cutting point for 4 clus-
ter-solution. 

In sample S (Figure 6), the first and the largest group (4 
examples) contains versions of roughly equidistant scales.4 
The second group (3 examples) includes the scales with 
intervals falling into two categories; approximately whole 
tones and semitones. These scales resemble the natural or 
harmonic major scales. If considering the excluded de-
grees, the scale of song 23a resembles the Mixolydian 
scale. The third group of scales (2 examples) is characteris-
tic of the framework of a perfect fourth with equidistantly 
distributed intermediate degrees and additional fifth, and 
“lowered” sixth degrees (the mixture of equitonics and dia-
tonics). The fourth group contains two “unclassifiable” 
scales with very unusual intervallic structures. 
                                                        
4 The grey points indicate the scale degrees excluded from the analysis; 
they are therefore not considered in this section. 
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Figure 6. Groups of 6 degree-scales; sample S. 
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Figure 7. Groups of 5 degree-scales; sample Z. 
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Figure 8. Groups of 4 degree-scales; sample A (Sutart-
inės). The scales are normalized so that the averages of 
the scale nuclei (degrees i and I) are set to zero. 

Sample Z (Figure 7) is distinguished by scales with 
unusually wide intervals. Quite many of them are wider 
than 12TET whole tone; e.g., see the scales of songs 1, 4, 
8, and 9. The scales in the first group (3 examples) have a 
narrow interval between the 3rd and 4th degrees and thus 
resemble stretched versions of major scale. It is some-
what difficult to describe and classify the other scales. At 
first glance, they seem quite different from each other in-
side the groups. Nevertheless, it can be concluded that the 
scales of songs 2 and 5 are two versions of rough equi-

tonics, and the scale of song 7 resembles Lydian scale 
characterized by the narrow interval between the 4th and 
5th degrees. 

In the set of polyphonic songs Sutartinės, different 
scale degrees belong to only one of two voices and the 
aggregate scale is a result of two complementary sub-
scales. Most of the Sutartinės scales are quite symmetric 
and equidistant (see Figure 8, the first and the second 
group of scales). The first group (8 examples) consists of 
scales with slightly narrower upper intervals (between the 
I and II degrees), while the second group (4 examples) 
has slightly narrower lower intervals (between the ii and i 
degrees). Single scales in the third and fourth groups have 
asymmetric diatonic structure, with quasi whole tones 
and semitones. 

In general, the results show, that each sample splits 
into homogeneous groups and most of the groups have 
their unique intervallic structure. 

The cluster analysis was also performed on the com-
posite sample of the three regions to ascertain if there is 
any relation between the scale structure and particular re-
gion or style (monophonic vs. polyphonic). If the scales 
of particular region/style roughly fell into separate clus-
ters, the relation would be confirmed. 4 cluster-solution 
was applied, as cluster 4 contains a single and very dis-
similar scale (i.e. outlier) and other three clusters were 
expected to represent three different regions/styles. The 
results are shown in Table 1. At first glance, they do not 
provide solid evidence on the scales specific to particular 
regions/styles. However, certain shortcomings can be en-
visaged in such application of the method. For instance, 
the marginal scale degrees in the sample A used in the 
case of composite sample are mostly sporadic, thus the 
results are insufficiently reliable. In addition, the sample 
is too small to make statistically significant conclusions 
of the kind discussed. Thus probably, enlargement of the 
samples and revision of their combinations would help to 
reveal the factor of dialect (region/style) in the composite 
sample. 

Cluster 
Region 

A S Z 
1 4 8 3 
2 1 3 5 
3 1 1 2 
4 0 1 0 

Total 6 13 10 

Table 1. A composite sample of 5 degree-scales formed 
of three region/style samples. Cross tabulation between 
the results of cluster analysis and the regions (cluster 4 
contains single example-outlier). 
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4. DISCUSSION 

Based on the results of evaluation of diatonic contrast, it 
can be stated that 65 percent of the analyzed song exam-
ples are more similar to the equidistant scale (DC < .5) 
whereas 35 percent resemble more diatonics than equi-
tonics (DC > .5). The traces of the equidistant scale are 
not equally strong for the different dialects under investi-
gation; the polyphonic Sutartinės from Aukštaitija show 
the strongest impact while the element of diatonics is rel-
atively more pronounced in the monophonic songs from 
Suvalkija. 

In general, the cluster analysis reveals the same regu-
larities. Additionally, it can be stated that the examples 
from Žemaitija present, first, the most “chaotic” or di-
verse scales, and second, their intervals are significantly 
stretched compared to the conventional cases. On the 
contrary, the scales of many Sutartinės are even strikingly 
similar. Most probably, it results from the fact that the 
Sutartinės are polyphonic songs and precision of the in-
tervals between simultaneous voices should be severely 
observed to reach the maximum “clash” (or roughness, in 
psychoacoustic terms). Perhaps, this attention to the rela-
tive precision of intonation explains the approximate eq-
uability of the interval sizes as well. 

The different distinctness of the traces of equitonics 
correlates well with the historical position of the dialects: 
Sutartinės are considered as belonging to the most archa-
ic musical relics and the songs in Suvalkija present rela-
tively modern musical thinking. 
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ABSTRACT 
 
The aim of this study is to evaluate a machine-learning method 
in which symbolic representations of folk songs are segmented 
and classified into tune families with Haar-wavelet filtering. 
The method is compared with previously proposed Gestalt-
based method. Melodies are represented as discrete symbolic 
pitch-time signals. We apply the continuous wavelet transform 
(CWT) with the Haar wavelet at specific scales, obtaining fil-
tered versions of melodies emphasizing their information at par-
ticular time-scales. We use the filtered signal for representation 
and segmentation, using the wavelet coefficients’ local maxima 
to indicate local boundaries and classify segments by means of 
k-nearest neighbours based on standard vector-metrics (Euclid-
ean, cityblock), and compare the results to a Gestalt-based seg-
mentation method and metrics applied directly to the pitch sig-
nal. We found that the wavelet based segmentation and wavelet-
filtering of the pitch signal lead to better classification accuracy 
in cross-validated evaluation when the time-scale and other pa-
rameters are optimized. 

1. INTRODUCTION 

One of the aims of folk song research is the study of me-
lodic variations caused by the process of oral transmis-
sion between generations (van Kranenburg et al., 2009). 
Wiering et al. (2009) propose an interdisciplinary and on-
going process between human expertise, methods and 
models to understand melodic variation and its mecha-
nisms. Classification models and methods dealing with 
such challenges define their representation and pro-
cessing to be evaluated based on some ground truth. In 
this paper, we present our method based on wavelet-
filtering and evaluate it on a collection of Dutch folk 
songs (“Onder de groene linde”, Grijp, 2008), in which 
songs were classified into tune families according to ex-
pert similarity assessments, mainly based on rhythm, con-
tour and motifs (Wiering et al., 2009; Volk & van 
Kranenburg, 2012). 
 

The collection of folks songs that we study in this 
paper, is a monophonic collection of Dutch folk melodies 
encoded in MIDI files, so that we have pitches encoded 
as integer numbers, ranging from 0 to 127, and onsets and 
durations in quarter notes and subdivisions. In order to 
analyse these files via wavelets, we sample each melody 
as a one dimensional (1D) signal. Graphically, the melod-
ic contour of 1D pitch signal can be drawn in a pitch over 
time plot, with the horizontal axis representing time in 
quarter notes, and the vertical axis representing pitch 
numbers. This contour representation of melodies has 

been linked to human melodic processing, using contour 
classes (Huron, 1996), interpolation lines (Steinbeck, 
1982) and polynomial functions (Müllensiefen & Wig-
gins, 2011; Müllensiefen, Bonometti, Stewart & Wiggins, 
2009). However, the contour representation does not give 
direct access to some aspects that are important for music 
similarity. Large-scale changes, like transposition of a 
melody lead to a completely different set of values alt-
hough the melody is not substantially different. Similarly, 
small-scale changes like ornaments can lead to different 
pitch values even if the main essential shape of the melo-
dy is preserved.     
 

Wavelet coefficients are obtained as the inner prod-
uct of a 1D signal and a wavelet (i.e., a short signal with 
zero average and defined energy). The wavelet is shifted 
along the time axis and for each time position a coeffi-
cient is calculated. This is equivalent to a convolution 
with the wavelet flipped along the time axis, and thus to a 
finite impulse response filtering of the signal. The wave-
let can be stretched on the time axis, leading to coeffi-
cients at different time-scales, corresponding to different 
filters. This process can also be understood as comparing 
the melodic shape with the wavelet shape, so that the co-
efficients represent similarity values at different time-
positions and time-scales. The process of producing a full 
set of wavelet coefficients for a signal is known as the 
wavelet transform (WT), of which there are different var-
iants. The transformed signal is represented as a set of 
coefficient signals at different scales. We use the Haar 
wavelet, which is a function of time t that takes values of 
1 if 0 ≤ t < 0.5, or 0.5 ≤ t < 1, and 0 otherwise. 
 

We use the information of the wavelet coefficients to 
define and compare melodic segments. Local maxima of 
the wavelet coefficients occur when the inner product of 
the melody and the wavelet is maximal in that position. 
In the case of the Haar wavelet this occurs when there is a 
locally maximal change of pitch - averaged over half the 
length of the wavelet - in the melody. Therefore, we use 
the local maxima of wavelet coefficients to indicate seg-
mentation points. If the found segments correlate with 
human structural perception and music theory, we assume 
that they can be used to classify melodies containing sim-
ilar segments. A melodic fragment and its transposed ver-
sion will be represented by the same wavelet coefficients 
(except for very beginning of the melody). 
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Musical similarity in folk music is a hard problem to de-
fine (Wiering et al., 2009). We can understand it as a par-
tial identity, where entities share some properties that can 
be measured (Cambouropoulos, 2009). With wavelet-
filtering we apply a process that selectively focuses on a 
specific time-scale. It is a preprocessing step before de-
termining segment similarities, which we calculate based 
on distance metrics. In the following section we will dis-
cuss some computational models and methods that have 
been used to model melodic similarity in symbolic music 
representation and have been applied to classify folk 
melodies. 

2. RELATED WORK 

2.1 Modelling melodic variations 

Computational models applied to modelling melodic var-
iations in symbolic music representations of folk songs 
include string matching methods and multidimensional 
feature vectors to represent global properties of melodies 
(Hillewaere, Manderick & Conklin, 2009; Hillewaere, 
Manderick & Conklin, 2012; van Kranenburg, 2010). In 
origin and genre classification, global representations per-
form only slightly worse than string-based methods 
(Hillewaere et al., 2009 and 2012). However, methods 
based on global representation depend heavily on the 
choice of features, which can lead to reduce generaliza-
bility. 

Van Kranenburg, Volk & Wiering (2013) showed that 
sequence alignment algorithms using local features prove 
successful in classifying folk song melodies to tune fami-
lies defined by experts. Sequence alignment algorithms 
are used to quantify similarity of sequences by computing 
the operations needed to transform one sequence into an-
other, by means of substitutions, insertions and deletions 
(Manderick & Conklin, 2012; van Kranenburg, 2010). 
Although van Kranenburg’s (2010) method was very suc-
cessful when used to classify melodies from the Dutch 
folk-song corpus into tune families, its representation re-
quires 14 attributes for each note in a melodic sequence 
(see van Kranenburg, 2010, pp. 94-95), apart from the 
standard information that is encoded in MIDI format 
(pitch number, onset and duration), meaning that this ap-
proach might not be applicable for classification using 
MIDI files only. In the following section we present our 
method, which can be applied to any data set encoded in 
MIDI format, or any other format containing pitch, onset 
and duration information for each note in a melody. 

2.2 Gestalt-based segmentation 

Segmentation is a core activity for musical processing 
and cognition (Lerdahl & Jackendoff, 1983). In order to 
study this mechanism, some authors adapt concepts of 
visual processing to study musical processing. Cam-
bouropoulos (1997, 2001) presents a segmentation model 
based on Gestalt principles of similarity and proximity, 

known as the local boundary detection model (LBDM). 
The LBDM computes a profile of segmentation strength 
in the range [0, 1], based pitch intervals, inter-onset-
intervals and rests. When the strength exceeds a thresh-
old, a segmentation point is introduced. (Cambouropou-
los, 2001). We use the LBDM here as a baseline for our 
model. 

2.3 The use of wavelets in the symbolic domain 

Wavelet analysis has been applied to diverse time series 
datasets. A time series is a set of observations recorded at 
a specified time (Brockwell & Davis, 2009). The use of 
wavelets for time series processing and analysis can be 
found in different areas, i.e. meteorological (Torrence & 
Compo, 1998), political (Aguiar-Conraria, Magalhaes, 
Soares, 2012), medical (Hsu, 2010), financial (Hsieh, 
Hsiao, & Yeh, 2011). Wavelets are also well known in 
audio music information retrieval (Andén & Mallat, 
2011; Jeon & Ma, 2011; Smith & Honing, 2008; Tzane-
takis, Essl, & Cook, 2001), but they have been scarcely 
applied on symbolic music representations. The only ex-
ample of wavelets applied to symbolic music representa-
tion, apart from our previous study (Velarde & Weyde, 
2012), is presented by Pinto (2009), demonstrating that it 
is possible to index melodic sequences with few wavelet 
coefficients, obtaining improved retrieval results com-
pared to the direct use of melodic sequences. The method 
used by Pinto can be exploited for compression purposes, 
whereas our method is used for structural analysis and 
classification.    

3. THE METHOD 

We extend the method introduced in Velarde and Weyde 
(2012) by exploring segmentation based on the infor-
mation of the wavelet coefficients’ local maxima, and 
evaluate it on the classification of folk tunes into tune 
families. Our previous study (Velarde & Weyde, 2012) 
showed good results in a different classification task us-
ing the 15 Two-Part Inventions by J. S. Bach. 

3.1 Representation 

We represent melodies as normalized pitch signals or by 
the wavelet coefficients of the pitch signals. Discrete 
pitch signals v[l] with length L are sampled from MIDI 
files at a rate r (given in number of samples per quarter 
note), so that we have a pitch value for every time point, 
expressed as v[t]. Rests are replaced by the following 
procedure: if a rest occurs at the beginning of a sequence, 
it is replaced by the first pitch number that appears in the 
sequence, otherwise it is replaced by the pitch number of 
the last note that precedes it. 

Normalized pitch signal representation (vr). We nor-
malize pitch signals segments, by subtracting the average 
pitch in order to make the representation transposition-
invariant. The normalization is applied after the segmen-
tation. 
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Wavelet representation (wr). We apply the continuous 
wavelet transform (CWT) (Mallat, 2009), expressed in a 
discretized version as the inner product of the pitch signal 
v[l] and the Haar wavelet ψs,u[l] , at position u and scale 
s: 

ws[u]= ψs,u[l]v l[ ]
l=1

L

∑                       (1) 

To avoid edge effects due to finite-length sequences 
(Torrence & Compo, 1998), we pad on both ends with a 
mirror image of the pitch signal (Woody & Brown, 2007). 
Once the coefficients are obtained, the segment that cor-
responds to the padding is removed, so that the signal 
maintains its original length. 

3.2 Segmentation 

Wavelet segmentation (ws). Local maxima of the wave-
let coefficients occur when the inner product of the melo-
dy and the wavelet is maximal. This occurs with the Haar 
wavelet, when there is a locally maximal change of pitch 
(averaged over half the length of the wavelet) in the mel-
ody. We use local maxima of wavelet coefficients to de-
termine local boundaries. 

3.3 Classification 

The melodic segments are used as the data points for 
classification. A melody is represented as a set of seg-
ments, and we use the k-Nearest-Neighbour (kNN) meth-
od for classification (Mitchell, 1997). We use two differ-
ent distance measures: cityblock distance and Euclidean 
distance. We define the maximal length n of all segments 
to be compared and pad shorter segments as necessary 
with zeros at the end. 

4. EXPERIMENT 

In our experiment we address the question of how filter-
ing the representation of melodic segments affects the 
folk tune family classification. We assumed that if seg-
ments represent meaningful melodic structures, they can 
be used to identify tunes belonging to a tune family and 
that some time-scales of the melodic contour might be 
more discriminative than others. 

We ran the experiment1 using the collection "Onder 
de groene linde" (Grijp, 2008). This collection is a high 
quality data set of 360 monophonic songs classified into 
26 families according to field-experts’ similarity assess-
ments in terms of melodic, rhythmic and motivic content 
(Volk & van Kranenburg, 2012). The MIDI files of this 

                                                             
1 The algorithms are implemented in MATLAB (The Mathworks, Inc) 
using the Wavelet Toolbox and the MIDI Toolbox for the implementa-
tion of the LBDM (Eerola & Toiviainen, 2004), and we use an update of 
Christine Smit’s read_midi function  
(http://www.ee.columbia.edu/~csmit/matlab_midi.html, accessed 4 Oc-
tober 2012). 

collection are sampled into pitch signals with a sampling 
rate of 8 samples per quarter note (qn). We apply the 
CWT with the Haar wavelet using a dyadic set of 8 scales. 
Melodies are represented as normalized pitch signals (vr) 
or as the resulting wavelet coefficients (wr). Signals are 
segmented by the wavelet coefficients’ local maxima 
(ws), or by the local boundary detection model (LBDM;  
Cambouropoulos, 1997, 2001) using thresholds from 0.1 
to 0.8 in steps of 0.1. We explored the parameter space 
with a grid search testing all combinations of representa-
tions and segmentations: wavelet representation (wr), 
normalized pitch signal representation (vr), wavelet seg-
mentation (ws), LBDM (LBDM) segmentation and 1 to 5 
nearest neighbours. Segments are used to build classifiers 
from training sets and that are tested on unseen folk mel-
odies. We evaluate the classification accuracy with city-
block and Euclidean distances in leave-one-out cross val-
idation. 

5. RESULTS 

The results of the experiment can be seen in Figures 1 to 
4. Alternatively, Tables 1 and 2 shows the best and worst 
classification values over all parameters for each combi-
nation of representation-segmentation, for each value of k 
in the kNN method, and for Euclidean and cityblock dis-
tance metrics. The results show that wavelet filtering of 
the melodies can improve classification performance 
compared to using the pitch signal directly. Independent-
ly of the segmentation method, wavelet representation 
proves to be more discriminative than pitch signals. For 
this corpus and experimental setup, we have used single 
time-scales and evaluated this melodic discrimination 
performance. The classification performance varies, ob-
taining best results at small scales and poor results at 
large scales, with exception of the largest scale which re-
covers its performance to some extent. 

In terms of segmentation, it is possible to observe 
that shorter segments produce better results when used 
with wavelet representation. This is contrary to the results 
of the LBDM applied to pitch signals, where shorter 
segments produce worse results than larger ones. We ob-
serve an improvement towards threshold 0.4 and a gradu-
al improvement towards the threshold of 0.8, which cor-
responds to larger segments, meaning that using the com-
plete melodic sequences or a combination of complete 
melodies and melodic segments, can lead to better classi-
fication results when using pitch signals. 
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Figure 1. Accuracies for the combination of wavelet rep-

resentation (wr) and wavelet segmentation (ws). 
 
 

 
Figure 3. Accuracies for the combination of pitch signal 

representation (vr) and wavelet segmentation (ws). 

 
Figure 2. Accuracies for the combination of wavelet rep-

resentation (wr) and local boundary detection model 
(LBDM). 

 

 
Figure 4. Accuracies for the combination of pitch signal 
representation (vr) and local boundary detection model 

(LBDM). 
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In general, similarity measured by cityblock distance 

proves more accurate than by Euclidean distance in pitch 
signals over time or wavelet representations, and the ef-
fect of using cityblock distance makes the difference be-
tween segmentation methods less important. The number 
of k-nearest neighbours shows that one or two neighbours 
produce the best results and when k increases further the 
accuracy decreases. 

 

Euclidean distance 

represent.-
segment.  

 
Value Nearest Neighbours 

1 2 3 4 5 

wr-ws best 0.8417 0.8417 0.8306 0.8194 0.7917 

worst 0.4667 0.4667 0.4583 0.4333 0.4167 

wr-
LBDM 

best 0.8111 0.8111 0.8083 0.7889 0.7694 

worst 0.4472 0.4472 0.4528 0.4333 0.4139 

vr-ws best 0.8083 0.8083 0.7806 0.7667 0.7444 

worst 0.5194 0.5194 0.5333 0.525 0.5639 

vr-
LBDM 

best 0.7778 0.7778 0.7444 0.7333 0.7083 

worst 0.4111 0.4111 0.3722 0.3806 0.3806 
 

Table 1. Classification accuracies best and worst values 
for each combinations using Euclidean distance. 

 
Cityblock distance 

represent.-
segment.  Value 

Nearest Neighbours 

1 2 3 4 5 

wr-ws best 0.8556 0.8556 0.8333 0.8306 0.7972 

worst 0.4833 0.4833 0.4639 0.45 0.4167 

wr-
LBDM 

best 0.8417 0.8417 0.8083 0.8028 0.7778 

worst 0.4417 0.4417 0.4556 0.4417 0.4139 

vr-ws best 0.8139 0.8139 0.7972 0.7778 0.7472 

worst 0.5194 0.5194 0.5194 0.5139 0.5583 

vr-
LBDM 

best 0.7889 0.7889 0.7778 0.75 0.725 

worst 0.4139 0.4139 0.3861 0.3778 0.3806 
 
Table 2. Classification accuracies best and worst values 

for each combinations using cityblock distance. 

 

6. DISCUSSION AND FUTURE DIRECTIONS 

The best classification accuracies based on wavelet seg-
mentation are only slightly better than the best accuracies 
obtained by the LBDM. The parameter exploration shows 
however, that wavelet segmentation performs better 
across different scales than the LBDM across different 
thresholds. Interestingly, these comparable methods meet 
the criteria of measuring local changes in melodic con-

tour. While the LBDM measures the degree of change 
between successive values, the wavelet segmentation 
finds locally maximal falls of average pitch in melodies 
using different scales. The fact that small scales perform 
better than larger scales corroborates the findings of van 
Kranenburg et al. (2013) that local processing is most 
important in melodic similarity. 

In terms of representation, wavelet-representation 
proves more discriminative than raw pitch signals. We 
assume that this is due to the transposition invariance of 
the wavelet representation and the emphasis on a specific 
time-scale. 

Our best results are far less accurate than the results 
reported by van Kranenburg et al. (2013) using alignment 
methods on the same corpus. Our method uses only the 
information that is encoded in MIDI format (pitch num-
ber, onset and duration). It requires less encoded expert 
knowledge than the method used by van Kranenburg 
(2010), making it applicable to other corpuses of folk 
songs encoded in MIDI format or similar. In order to 
make a more reliable comparison, our method would 
need to include the expert based features used by van 
Kranenburg (2010). For instance, annotated phrase in-
formation seems to improve importantly the results ob-
tained by sequence alignment algorithms. This infor-
mation could be used to improve the scale selection. Also, 
our method uses only the information about contained 
segments, and not the order of the segments, leaving 
room for further work. 

We used one default setup for the whole corpus, i.e. 
one best performing scale for all songs. In a future study, 
we are interested to address wavelet scale selection de-
rived from individual songs’ periodicities. 

7.     CONCLUSION 

The main contribution of this research is the evaluation of 
wavelet-filtered signals for melodic segmentation and 
classification on a corpus of folk songs in MIDI format. 
Wavelet-filtering proves more discriminative than direct 
representation of pitch signals or pitch-time series. Seg-
mentation by local maxima of wavelet coefficients per-
forms slightly better than LBDM segmentation when 
processing at individual scales. Small scales perform bet-
ter than large scales, indicating that local processing may 
be more relevant for melodic similarity in classification 
tasks. 

The method presented here can be applied to other 
corpora and other symbolic formats that encode melodies. 
Possible ways to improve the classification performance 
of the method presented in this paper could be using 
alignment of wavelet representations of complete melo-
dies, using selective combination of scales and exploring 
metrical information derived from songs’ periodicities. 
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ABSTRACT

We present a new model for segmenting melodies represented
in symbolic domain based on local discontinuity. Based on a
discussion of the limitations of two major models, Tenney and
Polansky’s model and LBDM, we propose to alleviate the gen-
eral heuristics ruling boundary detection in order to allow a large
set of relevant boundary candidates. We discuss also about the
limitations of combining different musical dimensions (pitch, on-
set, rest) altogether. The new proposed model develops heuristics
specific to each musical dimension, and can also predict the tem-
poral location of the onset- and rest-based boundaries. The three
segmentation models are compared to listeners’ segmentation de-
cisions collected through an empirical experiment. Our experi-
mental data show a high degree of accordance in segmentation
locations between musicians and non-musicians. We compared
the responses of the participants with the predictions of our pro-
posed model as well as with the LBDM and Tenney and Polan-
skys model. The results, in general, show that the proposed model
offered the best congruence with listeners indications.

1. INTRODUCTION

Much research has been carried out on the computational
modeling of music segmentation, aiming at predicting how
the musical discourse can be decomposed into a succes-
sion of small parts. In this paper, we discuss two major
models, Tenney and Polansky’s model (Tenney & Polan-
sky, 1980) and LBDM, (Cambouropoulos, 2006) showing
some important limitations, and proposing ways to over-
come them, leading to a complete and original segmenta-
tion model. The models implemented in this paper – the
two previous models presented in section 2 as well as the
new model introduced in the section 3 – have been inte-
grated in The MiningSuite (Lartillot, 2011). The visualiza-
tion of the results, as shown in Fig. 1, can also be obtained
using this toolbox.

2. CURRENT SEGMENTATION MODELS AND
THEIR LIMITATIONS

In this section, we introduce two famous segmentation mod-
els and demonstrate some of their main limitations.

2.1 Tenney and Polansky

2.1.1 Description

The model consists simply in segmenting at all local max-
ima in the series of successive intervals I1, I2, . . . , IN . This

means that boundaries are assigned at each interval Ik that
is bigger than both its immediately previous and next in-
tervals, i.e. if

Ik > Ik−1 and Ik > Ik+1 (1)

The series of intervals can be defined in various ways:

• the series of pitch intervals IP1 , I
P
2 , . . . , I

P
N

• the series of inter-onset intervals IIO1 , IIO2 . . . , IION

• a series of intervals I1, I2, . . . , IN where each inter-
val is a weighted summation of the pitch interval and
the inter-onset interval:

Ii = wP .IPi + wIO.IIOi (2)

The segments defined by the boundaries are called clangs.
In a successive step in the Tenney and Polansky hierarchi-
cally recursive model, each clang intervals are defined be-
tween clangs, so that the series of clangs form a new series
of ”intervals”, that can also be segmented in the same way,
leading to segments of second order (called segments), and
so on.

2.1.2 Example

An example of analysis is given in figure 1. The clang
boundaries given by Tenney and Polansky model are shown
at the bottom of the piano-roll representation by the follow-
ing conventions:

• Clang boundaries based on pitch intervals are repre-
sented with red circles.

• Clang boundaries based on inter-onset intervals are
represented with blue stars.

The same example is shown in a score in figure 2. The
segment boundaries given by Tenney and Polansky model
are represented in the third line (TP) under each stave, us-
ing the following conventions:

• Segment boundaries based on pitch intervals are rep-
resented with red triangles.

• Segment boundaries based on inter-onset intervals
are represented with blue triangles.
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2.1.3 Limitations

The condition used for boundary detection, shown in for-
mula 1, does not allow to detect boundary if the longer in-
terval (which should have been considered as a boundary)
is followed by another interval of same (or longer) dura-
tion.

Combining pitch and inter-onset intervals altogether, as
formalized in formula 2 is an operation that might require
musicological and cognitive validation.

The model does not indicate where exactly the bound-
ary might be located. Surely enough, a boundary decision
based on pitch interval cannot be made before hearing the
second pitch defining that interval. But what about inter-
onset interval? Can’t we already detect that the duration of
the current note perceived is sufficiently long to indicate a
boundary, before hearing the actual start of the next note?

Besides, if the pitch and inter-onset interval information
is mixed, as is done in formula 2, then the precise location
of boundary becomes even more difficult to make.

Boundaries are expressed in a purely binary fashion: ei-
ther there is or there is not a boundary at each given inter-
val. But what about the relative strength of each boundary?

Finally the hierarchically recursive model, with the def-
inition of intervals between clangs and the detection of lo-
cal boundaries along that series of meta-intervals, is some-
thing that has not been seriously discussed and cognitively
validated so far.

2.2 Local Boundary Detection Model

2.2.1 Description

The Local Boundary Detection Model assigns a score (a
strength) to each successive interval, based on heuristics
that are somewhat related to Tenney and Polansky’s ap-
proach, replacing however the binary logical of Tenney and
Polansky’s model with a continuous measure.

Instead of simply comparing whether a given interval
is longer than previous and next interval, the relative dif-
ference between successive intervals is computed, called
degree of change:

DCk−1,k =
abs(Ik − Ik−1)

Ik−1 + Ik
(3)

DCk,k+1 =
abs(Ik+1 − Ik)

Ik + Ik+1
(4)

The strength assigned to each interval is equal to the
sum of the degrees of changes with respect to the previ-
ous and next intervals, multiplied by the amplitude of the
current interval:

Sk = (DCk−1,k +DCk,k+1)× Ik (5)

A strong interval would therefore correspond to an interval
that is particularly large, and particularly larger than both
its previous and next intervals.

The resulting strength curve shows clear peaks at the
location of boundaries. Besides, the strength value at that
peak gives an indication of the structural importance of the
boundary.

The strength curve can be computed for pitch intervals,
inter-onset intervals as well as rests. Rests are defined as
the duration of the interval between the end of the previ-
ous note and the beginning of the next note. If there is no
silence between the two notes, the rest value is set to 0.

Finally a combined strength curve can be computed through
a weighted summation of the individual strength curves:

Sk = wP .SP
k + wIO.SIO + wR.SR (6)

2.2.2 Example

An example of analysis is given in figure 1. The LBDM
model is represented on the piano-roll representation by
the following conventions:

• The boundaries based on pitch intervals are repre-
sented with red dashed vertical lines and are located
at the location of the note ending the interval. In fact,
since the LBDM does not give an explicit selection
of boundaries but gives a score to each successive
intervals, a boundaries is represented for all notes
in the pianoroll (except the first one). The strength
associated with each boundary is indicated by the
darkness of the line. In this way, boundary of low-
est strength, of no interest, are hardly visible in the
figure.

• In the same way, the boundaries based on inter onset
intervals are represented with blue dashed vertical
lines and are also located at the location of the note
ending the interval. The boundary strength is shown
using the same convention as above.

• The boundaries based on rests are represented with
green horizontal lines at the center of the piano roll,
spanning the temporal extent of the given rest. The
boundary strength is shown using the same conven-
tion as above.

A selection of boundaries output by the LBDM model
on that same example is shown on the score in Figure 2.
The segment boundaries are represented in the second line
(LBDM) under each stave, using the following conven-
tions:

• Boundaries based on pitch intervals are represented
with red triangles.

• Boundaries based on inter-onset intervals are repre-
sented with blue triangles. Strong boundaries are
shown in dark blue while weaker boundaries are shown
in light blue.

• Boundaries based on rest are represented with green
triangles. Strong boundaries are shown in dark green
while weaker boundaries are shown in light green.

2.2.3 Limitations

Similar to the Tenney and Polansky’s approach, boundaries
are supposed to locate to place where the interval is bigger
than the previous interval and the next interval as well. As
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a consequence, boundary is not detected if the longer in-
terval (which should have been considered as a boundary)
is followed by another interval of same duration.

The LBDM outputs a strength curve indicating the bound-
ary strength related to each successive interval, but does
not explicitly give a decisive conclusion whether or not
a given interval is a boundary or not. Decision could be
based on a comparison of each strength to a given thresh-
old, but this make the decision arbitrary and highly depend
on the choice of that threshold.

In LBDM, as we also noted in Tenney and Polansky’s
approach, by combining altogether the different dimension
(pitch, onset and rest), we cannot locate more precisely
the actual location of the boundaries. The combination of
strength related to distinct dimensions raises issues related
to musicological and cognitive relevance. In particular, by
combining those individual strength curve, we obtained a
curve that can sometimes indicates local maxima that did
not exist in the individual curves.

3. PROPOSED SEGMENTATION MODEL

We saw that both Tenney and Polansky’s model and the
LBDM presuppose that boundaries are due to intervals that
are bigger than both their previous and next intervals. We
showed the limitation of such heuristics. We propose to
generalize the approach by alleviating the boundary condi-
tion: A condition for local boundary less constrained that
the one defined in TP (formula 1) could detect whenever a
new interval is simply longer than its previous one:

Ik > Ik−1 (7)

We saw also that the question of precise location of
boundaries were not addressed in the previous models. In
fact, the study of this question seems to be highly depen-
dent on the considered musical dimension: the location of
inter-onset boundaries are based on particular aspects that
are highly different from those relating to pitch boundaries,
and same for rest boundaries. This supports the idea that
boundaries related to different musical dimensions have to
be treated independently. It turns out the model we pro-
pose in this section has particular aspects related to each
different musical dimension.

Finally, we would like to take the advantages of both
previous approaches, while overcoming their respective draw-
backs: we propose to exhaustively show all possible bound-
ary points, but in the same time assign a score to each
boundary.

3.1 Pitch interval model

3.1.1 The particular case of unison intervals

In previous segmentation models, the pitch representation
consists in the series of intervals between successive notes.
We propose instead to filter out unison intervals because
of their particularity: Unisons form series of notes of same
pitch that necessarily form a coherent segment, and any
non-unison interval following such segment would neces-
sarily imply a boundary. Such segmentation is not very

informative and might obstruct more interesting structural
information. For that reason, we consider series of suc-
cessive notes of same pitch as one single meta-note for the
pitch-interval analysis, so that pitch-interval between suc-
cessive meta-note are taken into account instead of unisons.

3.1.2 Distance threshold

In the pitch domain, the previous heuristics defined in for-
mula 7 would means a boundary is assigned when the cur-
rent pitch interval is longer than the previous pitch interval:

IPk > IPk−1 (8)

This would however lead to a large set of boundaries,
and intervals that are quite similar – in particular of just one
semitone difference, such as between a minor and major
second – do not seem to give interesting boundary candi-
dates. We propose therefore to impose a minimal threshold
in the increase of pitch interval that would define bound-
ary to be selected. The condition is therefore rewritten as
follows:

IPk − IPk−1 ≥ δ (9)

One typical value of δ that we think of interest – and that
is used in the version of the model presented in this paper
– is one whole tone.

3.1.3 Boundary strength and location

The strength of the pitch-based boundary is defined as the
different of pitch interval amplitude:

SP
k = IPk − IPk−1 (10)

The boundary can be simply located at the location T on
k

of the onset of the new pitch (i.e., the one at the end of the
current interval under study), since the interval is recog-
nized as soon as the pitch is perceived:

TP
k = T on

k (11)

3.2 Onset expectation model

3.2.1 Simple model

A boundary is assigned whenever the current inter-onset
interval is longer than the previous inter-onset interval:

IIOk > IIOk−1 (12)

In order to estimate the exact location of such boundary,
we need to understand the underlying reason of the heuris-
tic given in the previous formula. The previous inter-onset
interval IIOk−1 is the temporal interval between the onsets
T on
k−2 and T on

k−1. Why would in fact a smaller interval IIOk−1

followed by a longer interval IIOk induce the perception of
a boundary? We propose the idea that it might be related
to the expectation of a regular succession of same duration,
hence that the new interval IIOk would be equal to the pre-
vious interval IIOk−1. We predict therefore that a note would
appear at time

T IO
k = T on

k−1 + IIOk−1 (13)

Proceedings of the Third International Workshop on Folk Music Analysis, June 6-7, 2013. Amsterdam, Netherlands. P. van Kranenburg, C. Anagnostopoulou, and A. Volk (Eds.).
Amsterdam: Meertens Institute, Utrecht: Department of Information and Computing Sciences, Utrecht University.

65



If the new interval IIOk is longer than IIOk−1, it means that
the actual onset T on

k appears after the expected onset T IO
k .

For that reason, we propose to locate the boundary at that
expected onset time.

The strength of the boundary is proportional to the du-
ration of the previous interval IIOk−1 and to the increase of
duration between the previous and the new intervals:

SIO
k = log2(I

IO
k−1)× log2(I

IO
k − IIOk−1) (14)

3.2.2 Multi-level model

All models considered so far only look at the relative dif-
ference between successive interval. What about longer
scale structure?

If we suppose that the older intervals IIOk−2, IIOk−3, etc.,
are of same duration, then by definition there is no bound-
ary between them, and the only boundary would appear at
the new longer interval IIOk , which makes sense.

If on the contrary the older intervals were shorter, then
they would be shorter than the currently previous IIOk−1,
and so that there would have been already a boundary at
location T IO

k−1 related to that increase of interval duration
between IIOk−2 and IIOk−1. 1

If the older interval IIOk−2 is instead longer than IIOk−1,
two cases should be considered:

• If that older interval IIOk−2 is also longer than the cur-
rent interval IIOk , that simply means that the new
boundary at T IO

k closes a segment that was starting
at onset T on

k−2, i.e. the segment [T on
k−2, T

on
k−1] that has

a granularity (the maximal distance between succes-
sive onsets within the segment) equal to IIOk−1.

• If that older interval IIOk−2 is shorter than the cur-
rent interval IIOk , this means that the new bound-
ary given by the new interval IIOk closes not only
that segment [T on

k−2, T
on
k−1] but also a larger segment

[(. . . , )T on
k−3, T

on
k−2, T

on
k−1] of larger granularity equal

to IIOk−2.

This observation leads to an extension of the onset ex-
pectation model, where a given inter-onset interval IIOk can
lead to several boundaries closing several segments that are
imbricated one into another. In the above example, if the
first boundary already defined by the simple model has lo-
cation and strengths reexpressed as T IO

k,1 and SIO
k,1, then the

new example just discussed lead to a new closing boundary
of location:

T IO
k,2 = T on

k−1 + IIOk−2 (15)

and of strength:

SIO
k,2 = log2(I

IO
k−2)× log2(I

IO
k − IIOk−2) (16)

In other words, in the multi-level model, a given inter-
onset interval can lead to a series of closing boundaries
located at successive time T IO

k,i given by formula 15.

1 We recall that this capability of applying successive ”closing” bound-
ary on successive intervals due to a progressive slowing down of duration
is something that was not possible in the previous models based on the
less constrained boundary condition given by formula 1, but that we made
possible thanks to the new condition given by formula 7.

3.3 Rest model

In the rest domain, the general heuristics defined in for-
mula 7 would means a boundary is assigned when the cur-
rent rest is longer than the previous rest:

IRk > IRk−1 (17)

The strength of the rest-based boundary is defined as the
different of rest amplitude:

SR
k = IRk − IRk−1 (18)

The boundary can be located at the location where the
rest reaches the duration of the previous rest:

TR
k = T off

k−1 + IRk−1 (19)

3.4 Example

Figure 1 shows an example of analysis based on the pro-
posed model. The model is represented on the piano-roll
representation using the following conventions:

• The boundaries based on pitch intervals are repre-
sented with red diagonal lines that virtually cut the
corresponding pitch interval. The strength associ-
ated with each boundary is indicated by the darkness
of the line.

• The boundaries based on inter-onset intervals are rep-
resented with black vertical lines and are located at
the temporal location predicted by the model. The
boundary strength is shown using the same conven-
tion as above. The successive boundaries that are
associated to a single inter-onset interval are linked
together with a horizontal line at their top.

• The boundaries based on rests are represented with
green vertical lines and are located at the tempo-
ral location predicted by the model. The bound-
ary strength is shown using the same convention as
above.

Figure 2 shows the same example of analysis repre-
sented on an actual score, on the first line (”New Model”)
below each stave, using the following conventions:

• Boundaries based on pitch intervals use red diagonal
lines in the same way as in the piano roll representa-
tion explained above. Strong boundaries are shown
with thick lines while weaker boundaries are shown
with narrow lines.

• Boundaries based on inter-onset intervals are repre-
sented with blue triangles. Strong boundaries are
shown in dark blue while weaker boundaries (of score
between and) are shown in light blue.

• Boundaries based on rest are represented with green
triangles. Strong boundaries are shown in dark green
while weaker boundaries are shown in light green.
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Figure 1: Analysis of Nihavend maqam in Kar form. Top: boundaries given by Tenney and Polansky’s model and LBDM.
Middle: boundaries given my our proposed model. Bottom: number of listeners’ segmentation collected on successive
100-ms long period, with musicians in blue and non-musicians in red.
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Figure 2: Analysis of same Nihavend maqam. Comparison of the boundaries given by the three computational models
(Tenney and Polansky’s model, LBDM and our new proposed model) with the listeners’ segmentations.
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4. EMPIRICAL COMPARISONS ON
TRADITIONAL TURKISH MUSIC

The goal of the empirical part of this research was to see
how makam-music trained (”musicians”) and untrained but
culturally exposed (”non-musicians”) participants segment
unfamiliar makam tunes of traditional Turkish art music.
Furthermore, in the analyses, we looked at which of the
three different computer models overlapped with our em-
pirical data.

4.1 Music segmentation experiment

16 musicians and 14 non-musicians served as participants
for this study. Musicians were undergraduate conservatory
students with an average of 8 yrs of makam music con-
servatory training. non-musicians were university students
with an average of 0.6 yrs of general (not makam) mu-
sic training (ranging from 0 to 3 yrs). All non-musicians
had to pass a melody discrimination test first to participate
in the experiment. Except for one person, all other non-
musicians reported to be listening to music that was not
traditional Turkish music.

Ten musical excerpts were used, each of which had a
duration ranging from 60 s to 75 s, with an average dura-
tion of 66 s. Excerpts were taken from the first measures
of 10 different pieces that were written in five of the most
common makams of Turkish traditional music (Hicaz, Ni-
havend, Saba, Ussak, Segah). The pieces were composed
in various rhythmic patters of traditional Turkish music.
All tunes were written via Mus2, a specific application for
the notation of microtonal pieces which allows the user to
play back the score with accurate intonation by using the
sound samples of acoustic instruments in Turkish Music.
Tunes were then recorded in the Qanun (a different type of
zither) sound sample.

In traditional experimental set ups, participants only hear
the melodies over headphones and then press a given key
to mark a boundary. Typically, they are given two or three
more trials to reattempt their segmentations. A major prob-
lem with this kind of a set up is that at each repetition par-
ticipants simply do the task from anew, i.e., without ben-
efitting from their earlier responses, except if they retain
some kind of a memory for it. This is likely to incur a
constant working memory load per trial, hence preventing
any chances of improving their performance per repetition
trial. Another potential handicap of the traditional segmen-
tation set up is that one never knows which of the seg-
mentation attempts is to represent the most accurate one.
Participants best segmentations per melody could be their
segmentation in the first trial, the second trial, or the third
trial, or even worse, a mixed combination across trials. To
deal with both the working memory load issue and the re-
sponse accuracy issue described above, we decided to add
a visual component to the task without, however, providing
any visual information about the pitch and temporal/metric
aspects of the tunes.

Participants listened to each tune four times, once for
free listening and an additional three times to attempt their
segmentations. For the segmentation trials, their task was

to indicate all instances, at which they perceived a melodic
boundary.

The experimental session consisted of 10 different makam
tunes, each of which was repeated four times. Unlike the
earlier phases, in which occasional interruptions were al-
lowed, the experimental session was conducted in a strictly
standardized fashion without any interruptions.

4.2 Analysis of the experiment data

Since Tune 9 and Tune 10 were accidentally skipped in
five sessions with musicians and four sessions with non-
musician, all following analyses were done on Tunes 1 to
8.

Except for one nonmusician, all other non-musicians
mentioned that that their final (third) segmentations were
their best segmentations. Musicians, too, predominantly
reported their last segmentations to be their best ones.

Musicians and non-musicians segmentation locations in
milliseconds for all ten tunes showed overall good con-
vergences within, and more importantly, between-groups.
There were fewer convergences for Tunes 9 and 10, most
likely so because those two tunes were accidentally skipped
for five musicians and four non-musicians, but maybe also
because participants might have worn out towards the end
of the study (though only one or two participant reported
fatigue). A third possibility is that those two tunes were
tunes that lacked salient boundaries.

Even a purely visual evaluation of musicians and non-
musicians histograms per tune suggests a considerable over-
lap in the locations of the most frequently chosen segmen-
tations. This was true for all remaining tunes as well.

A possible way of statistically testing the degree of over-
lap in segmentations between musicians and non-musicians
is to calculate the unbiased variances (in seconds) of all the
segmentation locations separately for each group and then
calculate the unbiased variances for the combined segmen-
tation locations of musicians and non-musicians (Table 1).
If musicians and non-musicians have good convergences
within themselves but not across each other, we shall ex-
pect the variances per group to be always smaller than the
variance of both participant groups combined. If, on the
other hand, musicians and non-musicians have strongly
overlapping segmentations, we shall expect very similar
variances across those three different data sets. Table 3
shows that the variances of the combined set are very sim-
ilar to the separate variances of each group. Moreover, the
variances of the combined data sets always fell in between
the variances of the two separate sets. For some tunes,
the smallest variances in segmentation locations were ob-
served in musicians and for some tunes, in non-musicians.

4.3 Comparison between listeners reactions and
computational predictions

We compared the responses of the participants with the
predictions of our proposed model as well as with the LBDM
and Tenney and Polanskys model. The aim of this com-
parison was to see how well these models predicted the
perceptual boundaries. The results, being obtained very

Proceedings of the Third International Workshop on Folk Music Analysis, June 6-7, 2013. Amsterdam, Netherlands. P. van Kranenburg, C. Anagnostopoulou, and A. Volk (Eds.).
Amsterdam: Meertens Institute, Utrecht: Department of Information and Computing Sciences, Utrecht University.

69



Piece Musicians non-musicians Combined
5 396.3 (141) 392.9 (128) 393.6 (270)
6 396.3 (141) 392.9 (128) 393.6 (270)
7 286.4 (125) 306.5 (108) 294.5 (234)
8 320.0 (122) 343.5 (118) 330.2 (241)

Table 1: Unbiased variances of segmentation locations in
milliseconds (and degrees of freedom in parantheses) for
musicians and non-musicians per tune. The last column
shows the variance for both musicians and non musicians
altogether.

recently, are given as a preliminary consideration due to
lack of sufficient time. The comparisons for one specific
piece (a Nihavend maqam in Kar form) are shown in both
Figures 1 and 2. In Figure 2, the listeners’ segmentation
decisions are shown by triangles above the score, blue for
musicians and red for non-musicians. Because the first
segmentation level (in ”clangs”) in Tenney and Polansky’s
model gives too many segmentations (as shown in Figure
1), we only keep the second segmentation (in ”segments”),
as shown in the (TP) line in Figure 2.

The three models are tested individually for all mono-
phonic makam tunes. The results, in general, show that the
proposed model offered the best congruence with listeners
indications. Tenney and Polanskys model gave the worst
congruence with listeners’ segmentation, except in tune (4)
in which outperformed LBDM in predicting certain per-
ceptual locations. The boundary locations suggested by
LBDM with strength superior to 0.50 are coincided with
some of the perceptual segmentations across five tunes (3,
4 and 6-8) whereas the perceptual locations indicated in
the rest of the tunes can be related to LBDM segments of
lower strengths on the whole.

Table 2 shows the total number of boundaries indicated
by the participants and the number of boundaries predicted
by the three computational models that overlaps with those
of participants.

Piece M NonM New LBDM TP
1 14 15 15 6 6
2 14 12 14 10 4
3 12 10 10 9 4
4 15 11 13 4 7
5 11 12 11 10 6
6 11 12 12 11 6
7 9 9 9 7 5
8 9 10 8 6 5

Table 2: Number of boundaries indicated by musicians
(M) and non-musicians (NonM) compared to those pre-
dicted by our proposed model (New), LBDM and Tenney
and Polansky’s model (TP) that overlaps with the listeners’
boundaries.

The initial analysis made on the perceptual groupings
for all eight tunes shows that the inter-onset interval was

the prominent dimension for all the participants in deter-
mining a potential boundary, which is highly correlated
with the makam structure of the tunes. The inter-onset
intervals perceived by the participants overall, with a few
exceptional locations in certain tunes which were only per-
ceived by musicians, correspond to the central or the dom-
inant scale degrees of the related makam of each tune to
a large extent, which supports the idea in our proposed
model that the location of inter-onset boundaries are based
on particular aspects that are highly different from those
relating to pitch and rest boundaries. The central (G) and
the domimant (D) degrees of Nihavend makam scale is dis-
played by the small horizantal lines belove the staves in
Figure 2 as an illustration. Due to the real-time setting
of the experiment, the boundaries of the participants have
been relocated on the score in the post-experimental phase.

The future analysis of the segment locations of the par-
ticipants may provide a deeper level of understanding in
evaluating the performance of the three computational mod-
els in terms of their predictions. The previous studies showed
that both the low-level perceptual processes mainly ex-
plained by Gestalt principles and the culture based knowl-
edge that belongs to higher levels may play an important
role in the perceptual grouping mechanisms of listeners,
which would be depended on a complex interaction among
themselves (Lartillot & Ayari, 2011). Although the aim of
this research is not to investigate these interactions, the pre-
liminary evaluations suggests a probable interaction.
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1. EXTENDED ABSTRACT

This research presents a system that eases the difficult, and
time consuming task of transcribing ethnic music, espe-
cially if the pitch organization used in that music, is not
well documented, or even unknown beforehand. The sys-
tem analyses the music, suggests pitch organization auto-
matically, and has features to assist transcription.

A system assisting pitch transcription should tackle the
following challenges: it should be easy to repeat a small
audio excerpt and to go from one loop to the next. Prefer-
ably, it should be possible to play loops slower than real-
time, without affecting pitch, so that the transcriber can
pick up on small details, and is able to follow quick pas-
sages. Another practical feature should be a way to visu-
alize the main melody. The system should also provide
a suggestion of the used pitch organization automatically.
The transcriber also might want to check if the transcrip-
tion is correct by performing the transcription. Therefore,
an interface is wanted that allows musical performances in
any tone scale.

Our system to transcribe pitch is based on Tarsos. Tar-
sos 1 is a modular software platform to extract and ana-
lyze pitch and scale organization in music. It is especially
geared towards the analysis of non-Western music. Tarsos
aims to be a user-friendly, interactive tool to explore tone
scales and pitch organization in music of the world. An
overview of Tarsos and its applications can be found in Six
& Cornelis (2011); Six et al. (2013). Tarsos was mainly
developed for analysis, but is now extended with features
to assist transcription:

• A way to loop small audio excerpts, and to go from
one loop to another easily has been built-in.

• A time stretching feature has been added, it allows to
slow down audio playback without affecting pitch.
The WSOLA (Verhelst & Roelands, 1993) time stretch
algorithm has been implemented in TarsosDSP 2 . The

1 Tarsos is available on http://tarsos.0110.be and is open
source software. It runs on all major operating system with a recent Java
Runtime.

2 TarsosDSP is a Java DSP library which contains various practical
audio processing algorithms, of which some are used within Tarsos. For

feature allows transcribers to pick up on details in
quick passages.

• The melograph shows the contour of the main melody.
The contour depends on the pitch detection scheme
chosen. Tarsos contains several pitch detection al-
gorithms. In Figure1, the melograph can be found in
the top pane.

• Pitch histograms and pitch class histograms are com-
puted automatically. They suggest the pitch organi-
zation and can be used to extract pitch classes. In
Figure 1, the pitch class histogram can be found at
the bottom right.

• Tarsos contains a MIDI synthesizer that supports tun-
ing dump messages, the synthesizer can be tuned to
using any tone scale 3 . This means that a transcrip-
tion can be played in the original tuning, e.g. to see
if the transcription aligns well with the original ma-
terial.

easy re-use it is separated from the main Tarsos project and available on
GitHub https://github.com/JorenSix/TarsosDSP

3 mid (1996) defines how tuning can be done. In essence, it defines
how to assign arbitrary pitch values, in cent, to 128 available keys.
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Figure 1: Transcription features in Tarsos, from upper-left to bottom right: The melograph with a pitch contour, the pitch
class histogram of the current selection, the playback tempo, and the check box that determines if the current selection is
looped.

1.1 Conclusion

Extensions to Tarsos have been presented, which allow
Tarsos to assists in transcription of ethnic music, even when
the pitch organization of the music is unknown beforehand.
The system in its current form does not deal directly with
timbral or rhytmical features, but is well suited for tran-
scribing melodic material. It enables the transcriber to eas-
ily go from one, optionally time stretched, audio loop to
the next. It has a visual representation of the main melody,
and suggests pitch organization automatically. It also of-
fers a way to play transcribed material on an automatically
tuned MIDI synthesizer.
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1. INTRODUCTION

Traditional Chinese music differs from Western music in
many ways. Instruments, rhythms and melodic constructs
all possess elements that are unique to Chinese music and
its Asian ancestry. Differing music genres are clearly iden-
tifiable as well as their roots, regional and musicological
origins, history and representation styles. In recent times,
with the incorporation of many western music features,
some music styles in China have made gradual evolve-
ments while still maintaining most of their traditional ele-
ments and express very specific emotions within the social
context. In this paper, the musicology of Cultural Revo-
lution period songs 1 in Post-Liberation China is studied.
The paper aims at casting a Chinese perspective and bias
into the development of metrics and semantic tags for this
certain music style and extracting and analysing the emo-
tional features of it.

In recent decades after the foundation of the Peoples
Republic of China, Chinese music (Shen, 2001) is devel-
oping in an ever-increasing pace. The music continues a
rich traditional heritage in one aspect, while in another, it
has been incorporating many new elements and emerging
into a more contemporary and prosperous form. One of
the most popular and representative genre in this era is the
Cultural Revolution period songs, also referred to as Red
Songs, which, based on a typical Chinese musical con-
struct, references the marching rhythms and instrumenta-
tion of European music. In the particular background of
political unrest, the spirit lifting rhythms of Cultural Rev-
olution period songs impose strong and very specific emo-
tional effects on contemporary audiences as well as later
generations.

Due to the subjective nature of human perception, clas-
sification of the emotion in music is a challenging problem.
Simply assigning an emotion class to a piece of rhythm
could be problematic because people may hold different
feelings for a song. Multiple research approaches for analysing
and quantifying emotions related to music have been raised(Juslin
et al., 2001; Kim et al., 2010). Emotions evoked in music
is usually described either as a decomposition into a few
basic emotions (happy, anger, etc.) or as a multidimen-
sional space of valence, arousal, etc. Multiple categorial
and dimensional emotion models have been raised in the
MER studies. (Bischoff et al., 2009; Eerola et al., 2009;

1 http://academics.wellesley.edu/Polisci/wj/China/CRSongs/wagner-
redguards songs.html

Han et al., 2009; Russell, 1980; Wang et al., 2011). Music
Emotions can be influenced by multiple acoustic attributes
such as timbre, harmony and tempo. Emotional repre-
sentation of music is mainly derived from two channels:
contextual text annotation (online documentation, social
tags(Levy & Sandler, 2007; Laurier & Sordo, 2009) and
lyrics) and content-based feature analysis. As suggested
in , mean and standard deviation vale with a total feature-
Some common utilised features for music mood recogni-
tion is given in Tale 1. This work utilises the audio-based
feature analysis to conduct the emotion detection and hu-
man annotation to evaluate the results.

Krumhansl (2002)indicats that mode, intensity, timbre
and rhythm are of great significance in arousing differ-
ent music moods. The features extracted for this work
are RMS, tempo, MFCCs, spectral centroid and beat his-
togram.

2. PROPOSED METHOD

2.1 Feature Extraction

The Marsyas tool (Tzanetakis & Cook, 2002) was used in
the process of extraction of features of MFCCs, spectral
centroid and beat histogram. A dataset of 30-second music
clips are gathered with manually annotation as the training
and testing set. The attributes in the generated .arff file are
later used in the Weka machine learning environment(Hall
et al., 2009) for training the classifiers.

Type Features
Dynamics RMS energy, etc.
Timbre MFCCs, attack slope, attack time,

brightness, etc.
Harmonic Harmonic deviation, key strength,

pitch, etc.
Rhythm Beat histograms, tempo, event den-

sity, etc.
Spectral Chromagram, centroid and devia-

tion, spread, skewness, etc.

Table 1: Common audio feature types in music mood anal-
ysis
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Figure 1: Results of the ’miremotion’ function of an example music.

2.2 Listening Test

Listening test has been set in which participants are divided
into two groups: those who have certain knowledge of the
music background or understand the Chinese lyrics, and
those who don’t. listen to 30 clips of Chinese Cultural Rev-
olution Songs that last 30 seconds. For each track, they
are ask to rate each piece using the two dimensions: Va-
lence (happy-sad continuum) and Arousal (excited-relaxed
continuum). Each class or dimension is supposed to have
values spanned in the interval [-5, 5].

3. EVALUATION

The results of this study is evaluated by human annotation.
The list of music tags are cited from the MIREX Mood
Tag Dataset 2 . Hu et al. (2009) detailed how the mood
tag groups were described. A group of listeners with Chi-
nese backgrounds participated in listening to those pieces
of music and chose the from tags they think that can best
describe the music itself. The most chosen five tags are:
’happy’, ’zest’, ’high spirits’, ’desire’, ’excitement’, and
generally reflects the spirit-lifting and arousing feature of
this kind of music. We also used MIRtoolbox (Olivier Lar-
tillot, 2007), a Matlab toolbox dedicated to the extraction
of musical features from audio files, in which the emotion
is decomposed into 5 basic emotion classes: happy, ten-
der, anger and fear. The results generally indicates high
value in the v-a space or ’happy’ in the emotion class. One
example is shown in Figure 1.

4. CONCLUSION AND FUTURE WORK

Due to time limit, the experiments proposed in the paper
is still in progress. Future work includes further explore
the applicability of the MIR feature extraction tools such
as MIRtoolbox and MARSYAS and explore more suitable
emotion description model of this kind of music discussed
in the paper.

2 MIREX 2012 Audio Tag Classification http://www.music-
ir.org/mirex/wiki/2012:Audio Tag Classification#Mood Tag Dataset
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1. INTRODUCTION

In October 2012 a research project on the statistical analy-
sis of jazz solos started operation at the HfM “Franz Liszt”
in Weimar 1 . The aim of this contribution is to introduce
this project, its goals and methods, and to place it in the
context of jazz research, cognitive music psychology and
computational (ethno-)musicology with special considera-
tion of oral traditions in jazz and its implications for cre-
ativity research (cf. Pfleiderer & Frieler (2010)).

2. RESEARCH GOALS

The Jazzomat project consists of two main building blocks:
The first is a considerably large database of (approx. 200)
high-quality jazz solo transcriptions taken from a represen-
tative sample of jazz styles, the second are analytical tools,
which will be used to investigate the creative design of
jazz solos. The lack of a solid data base to confirm certain
persistent but largely untested theories is one of the most
important (but often neglected) problems in jazz research
(cf. Pfleiderer (2004)). One well-known example for these
theories, is the so-called “formulaic approach to impro-
visation”. Thomas Owens (1974) demonstrated the exis-
tence of certain formulas in Charlie Parker’s solos, but no
thorough systematic examination for other improvisers—
let alone across improvisers—has been carried out so far.
Especially, the “orality” of formulas, i. e., the question if,
how and to what extend they spread from one improviser
to another (and perhaps nowadays by textbooks) is in the
main focus of the project. This tasks amounts essentially
to pattern mining in a large data set of solo transcriptions,
based on the definition of cognitively adequate and instru-
ment specific musical patterns (Conklin & Anagnostopoulou
(2006); Lartillot & Toiviainen (2007); Meredith et al. (2002)).
The transmission of patterns will be examined by tracing
them across solos, which will provide insights in the prac-
tice of oral tradition in jazz.

3. DATABASE ASSEMBLY AND MUSIC
REPRESENTATION

The database is being assembled using modern MIR tools
(Songs2See, SmartScore) and notated transcriptions taken
from the literature and other public sources. This material
is meticulously cross-checked, rectified and enhanced by
experienced jazz musicians and musicology students with

1 “Melodisch-rhythmische Gestaltung von Jazzimprovisationen.
Rechnerbasierte Musikanalyse einstimmiger Jazzsoli”, DFG-PF 669/7-1

the help of Sonic Visualiser. Beat tracks, chords and phrase
structure are annotated manually. Since the focus lies on
the syntactic and not on the expressive nor the semantic
level, the improvisations are coded as metrical and har-
monically annotated lists of pitches with precise onset and
durations times but currently without loudness and timbre
information, which, however, is planned to be included in
the future.

4. THE MELOPY LIBRARY

The statistical approach to music cogition has gained some
impetus during the last years (e. g. Huron (2006); Pearce
et al. (2008); Müllensiefen et al. (2008)). The main idea
of this approach is that human brains build up, extract and
update probability distributions from incoming perceptual
streams which leads to the generation of various expec-
tations while shaping (re-)cognition. This is actually the
base of the cultural background of a listener. Hence, while
studying probability distributions of musical objects, con-
clusions on listeners’ perceptions and cognitions can be
drawn and adequate models can be built. Furthermore,
probability distribution of musical elements give descrip-
tions of music-cultural traditions and means to compare
these. In our context, for example, the distribution of cer-
tain formulas and patterns might serve as a discriminat-
ing feature for individual and genre styles. Furthermore,
creativity in general relies on the cultural-cognitive back-
ground and on preconfigured sets of cultural transmitted
building blocks.

To this end, MELOPY, an open-source Python library,
is currently under development (with a base system al-
ready in operation). The basic frame work is designed
to be very general, which makes the library widely us-
able, e. g., in the field of computational music ethnology.
The general philosophy of its music representation is not
based on a musical score – such as, e. g., Music 21 (Cuth-
bert & Ariza (2010)), Humdrum (Huron (1995)) and many
other systems–, but on physically measured sonic entities
(tones), e. g., suited for ethnological field recordings and
other non-scored music such as jazz, pop and rock. Once a
comprehensive representation of musical entities is achieved,
application of statistic methods is straight-forward, but the
biggest challenge is the selection of suitable abstractions
from the musical surface, a problem which will be ad-
dressed thoroughly in the project including auxillary lab
experiment. To allow greatest flexibility, we will include a
so-called “feature machine”, which provides the user with
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the possibility of defining features and arbitrary combina-
tions of them in a highly modular fashion by connecting
simple building blocks. This approach allows fruthermore-
automated feature generation and selection for machine
learning purposes, such as stilistic classifications. Further-
more, we plan to implement interoperability with existing
computational system such as Music21 or Humdrum, en-
hancing the research options even further.

5. WEB-PLATFORM

Finally, we plan to set up a publicly available web plat-
form prodiving access to our database which will not only
contain our jazz data but preferably other melody corpora
as well, e. g. the EsAC data (Schaffrath (1995)). The web
site will allow users to download, listen, read, analyse, vi-
sualize and compare melodies in an easy-to-use way, and
might serve as an educational tool as well 2 .
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1. INTRODUCTION 

The regularities in a given musical piece cannot be inter-
preted without the knowledge of the whole cultural con-
text in that the piece arose, and this requires the analysis 
of many pieces belonging to the given culture. Thus, 
many of the rules determining the musical expectations 
and predictions of listeners and musicians in a given cul-
ture can be identified by statistical analyses of the pieces 
themselves (Huron, 2006). It follows from the above ar-
gumentation that the cross-cultural study of certain musi-
cal characteristics - including the melody, the scales, 
pitch and rhythm distributions - can clarify some peculi-
arities of different cultures on the one hand, and highlight 
the universal features on the other hand (Stevens, 2004; 
Kolinski, 1961). In this work, we study some statistical 
characteristics of the pitch in different folk music cul-
tures. According to this task, we represent the musical 
context of the pitch cognition by folksongs, and the musi-
cal cultures determining the context in the concrete melo-
dies by folksong corpora. 
 

2. METHODS 

In order to reveal some special rules of melody evolution 
in different folk music cultures, we characterised the cor-
relations of the notes by the conditional probabilities of 
their joint appearances in common melodies. Our main 
question is illustrated in Figure 1. Here, the reader can 
see at the first glance that the pitch distributions of the 
Chuvash and Bulgarian folksongs refer to a pentatonic 
and a diatonic Aeolian melody, respectively. The time 
rate values show that the Chuvash melody spends the 
most time at the octave (8), the fifth (5), the fourth (4) 
and the tonic (1), while the Bulgarian one at the super-
tonic (2), the tonic (1) and the subtonic (bVII). We ask if 
these common dominances of the octave, the fifth, the 
fourth and the tonic, as well as the supertonic, tonic and 
subtonic are regular events in Chuvash as well as Bulgar-
ian folk music, or not? More generally: which mutual 
preferences of notes are characteristic in the melodies of 
different cultures? More exactly: we want to study the 
conditional probabilities indicating joint and dominant 
tone appearances within melodies. For instance, we cal-
culate the probability of the event that a presence taking 
at least 5% of the total time of a melody of the fifth re-
sults in a similar presence of the third, fourth, sixth, etc. 

Thus, the meaning of the conditional probabilityjip , can 

be expressed as follows: jip ,  is the conditional probabil-

ity of the event that – providing that the ith degree plays a 
dominant role in a melody of the culture - the jth one also 
plays a similar role. Accomplishing all these calculations, 
we get a quadratic, non symmetric matrix of size of the 
number of the degrees studied, containing the above men-
tioned conditional probability values. Although the tem-
poral order of the degrees could also be characterised sta-
tistically, the definition of the conditional probabilities 
given in this work focuses only on the joint appearance of 
them, independent of their order.  

 

 
 

Figure 1. Pitch distributions of a Chuvash and a Bulgar-
ian folksong. 

 
In order to visualise the mutual “affinities” of the de-
grees, we elaborated a special version of the multidimen-
sional scaling (MDS) algorithm (Borg, 2005). In MDS 
technique, the input data to be visualised are presented in 
a quadratic matrix containing some distance-like or simi-
larity-like values between some objects. (For instance, the 
matrix can contain geographical distances between towns, 
or dissimilarity ratings of melodies, etc.) The aim of the 
algorithm is to represent the objects (towns or melodies) 
in a low dimensional space (often in a plane) with the re-
quirement that the distances of the low dimensional 
points must optimally correspond to the input values.  
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3. RESULTS 

Using the MDS technique, we investigated the degrees in 
the range of IV – 2’ (being defined 1 as the tonic), thus 
we had D=22 notes, including all semitones in the given 
range.  The “discrepancy” of the jth and ith degrees can 

be characterised by jiji pq ,, 1−= , so  the aim of our 

MDS algorithm was to arrange D=22 points in a low di-
mensional space with the requirement that their distances 
should optimally correspond to the above discrepancy 
values. 
 
Two resulting arrangements are shown in Figure 2.  In the 
Volga-Kama-Region (the database contains Mari, Chu-
vash, Tatar and Votiak folksongs, see Figure 2d), the cen-
tral part of the graph is occupied by the tonic (1), fourth 
(4), fifth (5) and octave (8), being mutually very close to 
each other. It was discussed in a previous paper that there 
is a very close relation between the harmonic systems of 
these notes (1-4-5-8), therefore we call this group the 
“spectral basis” (Juhász, 2012). Supplementing these 
notes with the second and the sixth, being very close 
neighbours on the left side of the graph, we obtain a pen-
tatonic scale which is called sol-pentatonic in Hungarian 
and Zhi in Chinese music theory (1-2-4-5-6-8). For in-
stance, the G-A-c-d-e-g notes construct a sol-pentatonic  
(Zhi) scale (Yaxiong, 2008). VI and 2’, also being very 
close to 2 and 6, are the extensions of this pentatonic oc-
tave. On the right side, the 1-4-5-8 “spectral basis” is 
completed by the missing notes of the “la-pentatonic” 
(Chinese “Yu”) scale b7 and b3, while the close 
neighbour bVII is also an extension of this la-pentatonic 
octave (1-b3-4-5-b7-8). Since the folk music of the 
Volga-region is pentatonic, other notes become much less 
important, so their distances from the central part are 
much larger. The main lesson of the graph can be summa-
rised in the statement that the tonal structure of this cul-
ture is based on the “spectral basis” (1-4-5-8), which is 
completed by further notes in order to obtain the sol-
pentatonic Zhi as well as la-pentatonic Yu scales. Other 
pentatonic modes are also found in the Volga Region, but 
the two scales mentioned above fill the dominant role in 
this culture.  
 
The Bulgarian graph shows a radically different picture in 
Figure 2a. Here, the notes are arranged mainly according 
to their degree, thus, the neighbourhood of the points cor-
responds to a second or semitone interval in the most 
cases. (As an illustration, the notes of the Aeolian scale 
are marked by bold letters.) The tonic-fourth-fifth-octave 
group also fits to this arrangement, thus, the points 1, 4, 5 
and 8 are very far from each other. There is no reason to 
speak about a spectral basis or a dominant-subdominant 
system, because the figure clearly shows that the integra-
tion of the notes is based mainly on the pitch height in 
this culture. Anatolian and Hungarian systems in Figures 
2b and 2c represent a continuous transition between the 
interval-based and the pentatonic note association para-
digms. 
 

For instance, comparing the Anatolian structure to the 
Bulgarian one, some connections and differences can be 
observed simultaneously (See Figures 2a and 2b). The 
notes of the spectral basis (1-4-5-8) are arranged along a 
more or less straight long line, and the sequence of the 
notes corresponds to their degree; these features remind 
us of the Bulgarian structure. However, an important dif-
ference is that the notes fitting to the major-like (Ionic) as 
well as minor-like (Aeolic) scales are separated on the 
left, as well as right sides of the spectral basis (2,3,6,7, as 
well as b2,b3,b6,b7). 
 

 
. 
Figure 2. MDS plots of Bulgarian Anatolian, Hungarian 
and Mari – Chuvash-Tatar-Votiac (Volga-Kama) note 

affiliations. 
 
Finally, we show two asymmetric note association para-
digms preferring major-like as well as minor-like scales 
in Figure 3. Figure 3a shows that the asymmetry of the 
Dutch plot follows from the dominance of the major 
melodies in this database. For instance, the conditional 
probability of the presence of the minor third in a Dutch 
melody with the assumption that the same melody con-
tains the fifth is 0.042, while the opposite case, i.e. the 
minor third “allures” the fifth, has the probability of 
0.479. Due to this asymmetry, our MDS algorithm places 
the corresponding points rather far from each other, since 
one of the conditional probabilities is very small (the dis-
crepancy is very large). The same values are 0.48 and 
0.833 for the major third, so the point representing the 
major third gets much closer to the fifth. Similar numeri-
cal examples can illustrate that the asymmetry of the Ro-
manian system mirrors the preference of minor-like 
scales in this culture.  
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Figure 3. MDS plots of Dutch and Romanian note affilia-
tions and the corresponding model. 

4. SUMMARY 

 
In the present work, our basic assumption was that the 
conditional probabilities characterising the common ap-
pearances of notes refer to a hidden, not formulated 
evaluation of the affinity between the different degrees in 
oral musical cultures. We described these systems of note 
affiliations by the conditional probability matrices, and 
visualised them using a multidimensional scaling algo-
rithm. We found that the resulting graphs can indeed 
originate in culture-dependent paradigms being connected 
in some measure.  
 
For instance, the Chuvash melody in Figure 1 suggests 
that the fifth and the octave are strongly related to the 
tonic and each other, while the Bulgarian song does not 
use them at all. In this latter case, the neighbouring notes 
seem to allure each other. In a previous work, we con-
structed a numerical model describing the culture-
dependent relation of degrees as a weighted sum of two 
parameters depending on their interval distance as well as 
“spectral similarity” (calculated from the number of the 
common harmonic components of the notes) (Juhász, 
2012). This model showed that the difference between the 
cultures represented here by the Bulgarian and Volga-
Kama systems can be traced back to the dominance of the 
interval-based, as well as the spectral similarity-based 
note association paradigms.  
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1. INTRODUCTION

In this study, we explore the relationship between the tun-
ing of fundamental pitches obtained from different record-
ings of religious chants from oral tradition in the Pyre-
nees, and the acoustic properties of the space in which the
recordings were made. These chants are never accompa-
nied by other instruments that can help the tuning process.
Our hypothesis is that the acoustics of the space is crucial
for selecting the frequency of the base note of the chant. To
explore the relationship between the tuning and the room,
we analyze the frequencies involved in the recorded chants
and compare the results with the room properties obtained
by a set of acoustic measurements. Results suggest that
the tuning frequencies are close to the measured room res-
onances.

2. MUSICAL ANALYSIS

The musical analysis focuses on Magnificat chants, assum-
ing their similar structure will produce comparable results.
Magnificat is the most appreciated chant in the mass by
most of the singers (Ayats et al., 2011). Specifically, we
focus on the pitch assigned to the first G note that, accord-
ing to the structure of the Magnificat, fixes the tonality of
the whole chant. Our goal is to determine whether Mag-
nificat sung in specific spaces present similarities in their
base pitches (i.e. G note). Pitch detection is performed
using YIN (De Cheveigne & Kawahara, 2002) for Audac-
ity. As most of the singers have no musical training, the
detected base pitches are unstable and it is difficult to es-
tablish a unique frequency value. Because of that, in this
work we use the mean of all the exact pithes for a given
note.

Place Year Freq.(Hz) Type
Enviny 2006 173 Magnificat
Enviny 2006 194 Magnificat
Enviny 2006 174 Magnificat
Llessui 2007 130 Magnificat
Particular house 1982 188 Magnificat
Enviny 2006 167 Magnificat
Gerri de la Sal 2007 145 Magnificat
València d’Àneu 2007 145 Magnificat

Table 1: Summary of Magnificat detected pitches recorded
at different churches by different chanters.

3. ACOUSTIC MEASUREMENTS

We analyzed seven churches in the western catalan Pyre-
nees and four from the Hautes-Pyrénées in France. All of
them are small churches with a small choir for the singers,
usually made of wood, over the main entrance, in the op-
posite side of the altar. This is the typical internal distribu-
tion for early baroque decorated churches, even the origin
of the church is older. Some of them are in good conditions
while others are not. In general, churches which have been
recently reconstructed do not preserve the original rever-
beration properties, changing wall surfaces, choir proper-
ties, etc. but they keep the overall structure, preserving the
acoustic room mode distribution.

To establish the relationship between the singed chants
and the acoustic properties of the churches, we focus on
the measures of the Reverberation Time (RT60) and the
Frequency Response function (FRF). We obtained a set of
three measurements for each church, selected according to
the communication paths during the ceremony: (a) priest
to parishioners: both loudspeaker and microphone in the
main space of the church, with the loudspeaker near the
altar in a non symmetrical position with respect to the geo-
metrical axes, and the microphone in the parishioner’s area
in a non symmetrical position with respect to the geometri-
cal axes, (b) chanters to parishioners: the loudspeaker up-
stairs in the choir in a non symmetrical position with re-
spect to the geometrical axes, and the microphone in the
parishioner’s area in a non symmetrical position with re-
spect to the geometrical axes, and (c) chanters to chanters:
both loudspeaker and microphone upstairs, in a non sym-
metrical position with respect to the geometrical axes.

4. DISCUSSION

RT60 values are in the expected range and shape, that is,
reverberation times are moderate and decreasing as the fre-
quency increases. A detailed analysis of the correlation
between RT60 and base pitches doesn’t show clear evi-
dences, so, we conclude that RT60 does not influence the
tuning process in churches (this conclusion is consistent
with the fact that reconstructions have changed your origi-
nal reverb parameters). On the other hand, we observe that
there are some clusters of room resonances shared by dif-
ferent churches. Clusters emerged from at least 7 out of
11 churches show frequencies at f̄1 = 31.5Hz, σ = 3.69;
f̄2 = 136.3Hz, σ = 6.21; and f̄3 = 184.2Hz, σ = 7.40.
This means that they share some basic elements of con-
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Figure 1: Summary of the (a) measured RT60 (in seconds) in octave bands, and (b) magnitude of the FRFs.

struction. According to the analyzed base pitches, we ob-
serve how the frequency resonance of the chants recorded
at Llessui, Gerri de la Sal and València d’Àneu are close to
the second cluster, and recordings made at Enviny are close
to the third cluster. Far of being a mathematical demonstra-
tion, these results show there exists some evidence between
these two factors.

5. CONCLUSIONS

In the previous section we presented the coincidence be-
tween the base pitch of the recordings and the center fre-
quencies for the second and third clusters of room reso-
nances. These frequency centers also coincide, in terms of
musical notes, with the D2(f = 138.5Hz) and G2(f =
184.9Hz) with reference at A3(ref = 415Hz). This sug-
gests that the two main tonalities performed in these chants
are reinforced by the room. From that, we gess that, in fact,
the churches at the Pyrenees are tuned near these frequen-
cies. Moreover, the two mentioned musical notes also co-
incide with the ”natural” modes of the iberian old bassoon
instruments (”Per Natura” and ”Per bemoll”) which some-
times used to be included in the ceremony (Borràs, 2009).
From the qualitative viewpoint, chanters from different ge-
ographic areas coincide explaining how ”the church must
thunder” as part of the musical performance. This im-
plies that, above all, the chanter must feel comfortable with
room resonances, and the resulting tuning slightly varies
according to the specific space, as verified in this study.
These results should influence some decisions taken in re-
construction processes of churches, preserving the acoustic
properties as part of the heritage instead of using only vi-
sual criteria. Moreover, these results have also an impact in
musicological studies providing new perspectives to some
phenomena that can not be explained without the under-
standing of the environment (Ayats, 2011). Our future
work is focused on the collection of old and new record-
ings to mathematically verify our hypothesis. Neverthe-
less, chanters with the required knowledge in the old tradi-
tions are difficult to find, and only few of them are in good
enough physical conditions to sing for a recording session.
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1. INTRODUCTION

As early as in the 1950s, Bronson (1959) proposed a com-
putational approach to address typological or geographical
questions about folk music, such as: “What are the charac-
teristic differentiae of specific regions? Are there rhythmi-
cal preferences? Modal preferences? And to what degree
of intensity?” One way to represent such regional or typo-
logical preferences computationally is using rules. Within
predictive data mining of folk music, in particular classi-
fication, most studies (e.g. Bohak & Marolt, 2009; Hille-
waere et al., 2009; Conklin, 2013) focus on global clas-
sification performance and do not report individual rules,
which in isolation may not have high accuracy but nev-
ertheless could provide answers to Bronson’s questions.
For classification of tune families, a recent study (van Kra-
nenburg et al., 2013) indicates the discriminative power of
features, but does not systematically specify feature values
and the partitioning of the feature space. Applications of
descriptive mining to folk music include subgroup discov-
ery (Taminau et al., 2009) and distinctive pattern discov-
ery (Conklin & Anagnostopoulou, 2011). These studies
highlight musical characteristics – global features or inter-
val patterns – that are over-represented in a geographical
region or in a genre relative to their distribution in the to-
tal corpus. Metadata of a folk music collection has been
mined to extract qualified associations between folk music
genres and geographical regions (Neubarth et al., 2012).

Here the method of the previous study (Neubarth et al.,
2012) is extended to mine for associations between mu-
sical content (global features computed from midi files)
and folk music genres or regions. Association rule min-
ing (e.g. Srikant & Agrawal, 1995) is adapted to iden-
tify different categories of rules, covering both over- and
under-representation of content characteristics in genres
or regions. The aim of our research is to extract rules
which reflect musicological observations such as “West-
ern melodies are largely in triple metre”, “ballads rarely
have unmeasured rhythms” or “the pentatonic system is
not found in children’s songs” (Sadie, 2001). While such
statements are prominent in folk music surveys, they have
not been captured by existing approaches to computational
folk music analysis. The method proposed here explic-
itly distinguishes different relations between music content
and genres or regions.

2. DATA

As a corpus we use the Cancionero Vasco, an iconic collec-
tion of Basque folk songs and dances. Its musicologically
curated metadata includes information on the genre of a
folk tune (e.g. wedding song or work song) and the geo-
graphical location where it was collected. The corpus thus
offers an opportunity to analyse both song types or genres
and regions, for the same corpus.

The digitised collection contains 1902 midi files. Of the
1902 tunes in the corpus, 1561 are annotated with a folk
music genre and 1630 are annotated with a location. The
metadata vocabulary consists of 50 genre labels and 2968
geographical labels. Both genres and geographical regions
are hierarchically organised (Goienetxea et al., 2012).

Music content features were selected from an existing
feature set (McKay & Fujinaga, 2006), such that the se-
lected subset reflects content characteristics in folk music
surveys (Sadie, 2001). These features were computed with
jSymbolic (McKay & Fujinaga, 2006). Another three fea-
tures were additionally implemented: pitch class entropy,
interval perplexity and duration perplexity. Numeric fea-
tures were discretised, using Weka (Hall et al., 2009), and
transformed into string content items; discretisation bins
are based on musicological statements (Sadie, 2001) and
the distribution of feature values in the corpus.

3. METHOD

To analyse content–genre and content–region associations
of different categories, we proceeded in four steps: iden-
tification of association categories; translation of the cat-
egories into association constraints; mining for associa-
tion rules which meet the defined constraints; and post-
processing of hierarchical rules.

Association categories were identified through a qual-
itative analysis of 25 reference articles on European folk
music (Sadie, 2001). Statements linking music content
and genres or regions were extracted and grouped accord-
ing to similar meaning. This resulted in nine association
categories. The categories were given an interpretation in
terms of over- and under-representation. For example, a
content feature can be over-represented in a genre or region
with respect to its occurrence in other genres or regions
(category Primarily), or a content feature can be under-
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represented in a genre or region with respect to other con-
tent features in the same genre or region (category Uncom-
mon). The category interpretations were translated into as-
sociation constraints: specific combinations of rule tem-
plates (Klemettinen et al., 1994) and rule evaluation mea-
sures (Geng & Hamilton, 2006; Lenca et al., 2008).

During the mining, item sets are formed as pairs be-
tween a content item and a genre or region item. Pairs
are evaluated against the constraints of each category. If a
candidate pair meets the constraints, a rule is added to the
results. For each rule a p-value is calculated according to
Fisher’s one-tailed exact test. The lower the p-value, the
less expected is the number of encountered co-occurrences
between a content item and genre or region, given their
distributions in the entire corpus.

As the items are hierarchically organised, the discov-
ered rules are partly redundant. In a post-processing step
we thus prune or group more specific rules relative to their
parent rules, depending on whether they confirm, specify
or deviate from the parent rule (Liu et al., 2000).

The method outputs a structured list of qualified associ-
ations, which provide an overview of the corpus and high-
light content–genre or content–region patterns for further
musicological exploration.

4. RESULTS

Traditional association rule mining using the support/con-
fidence framework (e.g. Srikant & Agrawal, 1995) usually
yields a large set of rules in the following form:

Araba→ high pitch class entropy;
s = 26; c = 0.96

In the corpus, 96% of the Araba tunes have high pitch class
entropy (confidence c), and there are 26 such tunes (sup-
port s).

Association categories provide an additional qualifica-
tion based on natural language and support different views,
e.g. focusing on musical characteristics of a region or fo-
cusing on the regional distribution of content features, for
example:

Araba, high pitch class entropy: Usually
(template R→ C; c = 0.96; p = 0.00003)
Navarra, low pitch class entropy: Primarily
(template C → R; c = 0.52; p = 0.006)

The first rule describes a region and an aspect of its mu-
sical character (template R → C): within the Cancionero
Vasco, tunes from Araba usually have high pitch class en-
tropy. The second rule highlights a content characteristic
and its regional occurrence (template C → R): more than
half of the tunes with low pitch class entropy in the cor-
pus (52%) is concentrated in one of the seven provinces,
i.e. tunes with low pitch class entropy are primarily found
among the songs collected in Navarra.

By exploiting the hierarchical organisation of the item
vocabulary, the post-processing allows to distinguish gen-
eral rules, contributing, specialised and deviating sub-rules,
so that resulting rule sets are structured, for example:

life-cycle songs, narrow intervals: Present
(template G− C; s = 251; p = 0.0998)

Contributing:
love songs, narrow intervals: Present
(template G− C; s = 116; p = 0.8038)

Specialised:
lullabies, narrow intervals: Usually
(template G→ C; c = 0.65; p = 0.00099)

Deviating:
wedding songs, narrow intervals: Absent
(template G→ ¬C; c = 1.0; p = 0.0529)

Average narrow intervals are present in life-cycle songs,
and within life-cycle songs are found in love songs. While
life-cycle songs may move in narrow intervals, lullabies
usually move in narrow intervals: about two thirds of the
lullabies in the corpus (c = 0.65) have average narrow
intervals. In the Cancionero Vasco tunes with average nar-
row intervals are absent among wedding songs, which form
a sub-genre of life-cycle songs: all the wedding songs in
the corpus (c = 1.0) have average melodic intervals other
than narrow (G→ ¬C).

5. CONCLUSIONS

Recent supervised approaches to computational folk mu-
sic analysis have focused on comparing predictive methods
(e.g. for region, genre or tune family classification, Con-
klin, 2013; Hillewaere et al., 2009; van Kranenburg et al.,
2013). By contrast, we deliberately chose a descriptive ap-
proach, within a knowledge discovery paradigm, in order
to extract understandable rules in response to musicologi-
cal questions such as those formulated by Bronson (1959).
Knowledge discovery advocates a high level of interaction
between the computational design and appreciation of the
application domain (e.g. Fayyad et al., 1996). In our study
a qualitative analysis of folk music surveys informs the
task specification, selection and discretisation of content
features, definition of association categories and presenta-
tion of results.

This research extends earlier work on descriptive min-
ing of folk music. In a previous study, categorised genre–
region associations were extracted from the metadata of the
Cancionero Vasco (Neubarth et al., 2012); here we demon-
strate that the method can also identify musical character-
istics of folk music genres and regions and thus link mu-
sic content and metadata. The subgroup discovery study
by Taminau et al. (2009) was restricted to one form of
content–region rules, which corresponds to mining rules
with one template (C → R) and one evaluation measure
(weighted relative accuracy). The association mining ap-
proach presented here provides additional flexibility to dis-
cover rules of different categories by combining several
rule templates and evaluation measures. Finally, our anal-
ysis goes beyond previous research (Conklin & Anagnos-
topoulou, 2011; Neubarth et al., 2012) by taking into ac-
count the hierarchical structure of the metadata.
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A., & Manderick, B. (2009). Descriptive subgroup mining
of folk music. In 2nd International Workshop on Machine
Learning and Music (MML 2009), Bled, Slovenia.

van Kranenburg, P., Volk, A., & Wiering, F. (2013). A compar-
ison between global and local features for computational
classification of folk song melodies. Journal of New Mu-
sic Research, 42(1), 1–18.

Proceedings of the Third International Workshop on Folk Music Analysis, June 6-7, 2013. Amsterdam, Netherlands. P. van Kranenburg, C. Anagnostopoulou, and A. Volk (Eds.).
Amsterdam: Meertens Institute, Utrecht: Department of Information and Computing Sciences, Utrecht University.

85



ON FINDING REPEATED STANZAS IN FOLK SONG RECORDINGS

Ciril Bohak, Matija Marolt
University of Ljubljana, Faculty of Computer and Information Science

{ciril.bohak, matija.marolt}@fri.uni-lj.si

ABSTRACT

In this paper we present our current work on an approach for find-
ing repeated stanzas in folk song recordings. We improve our pre-
vious work, which relied on detection of vocal pauses to find rep-
etitions, by relying less on prior knowledge of folk song collec-
tions. Instead, we calculate similarities between several chunks
of the audio signal with the whole signal to obtain repetition pat-
terns. We align the obtained similarity curves and calculate the
average similarity curve that represents repetitions in the whole
track. Distances between peaks in the obtained curve represent
lengths of individual repetitions. Repetitions are aligned with the
audio to yield the final segmentation.

1. RELATED WORK

Many approaches for segmenting and finding repeating parts
in music recordings were developed in recent years. Most
of them are using various audio features such as MFCCs or
chroma vectors to calculate self-similarity matrices (Foote
(1999)) and were developed for commercial music (Bartsch
& Wakefield (2001); Goto (2006); Cooper & Foote (2002);
Foote & Cooper (2003); Peeters (2002)). With increased
interest in computational folk music analysis, several ap-
proaches for segmentation of these recordings were also
introduced, based on algorithms such as DTW (Müller et al.
(2009); Bohak & Marolt (2012)) and a special fitness mea-
sure (Müller et al. (2011)).

2. METHOD

Most of current segmentation methods are developed for
commercial music and do not take into the account features
of folk music such as inaccurate singing, presence of noise
and tempo deviations. To find repeating stanzas in folk
song recordings, we modified our previous algorithm (Bo-
hak & Marolt (2012)). In the original approach we used
dynamic time warping in combination with shifted chroma
vectors to find similarities of short excerpts of audio start-
ing at vocal pauses with the entire song. We assumed that
vocal pauses will occur at beginnings of segments where
the signal will either have low magnitude or no detectable
pitch. Detection of vocal pauses turned out to be unreli-
able, and was also problematic for choir and instrumental
recordings, so with our new approach, we decided to omit
this step. Our new approach is presented in Figure 1. Be-
fore applying the method we average the audio channels
into a single channel and normalize it.

INPUT

.  .  .

STEP 1

CHROMAGRAM SIMILARITY CURVES

STEP 3

AVERAGE SIMILARITY CURVE
AND LENGTH OF STANZAS

STEP 2

CORRELATION CURVES ALIGNED SIMILARITY CURVES

Figure 1: Outline of dual domain method for finding re-
peating stanzas.

2.1 Step 1 - Extracting chomagram and calculating
the similarity curves for randomly selected parts

In the first step we calculate the CENS chromagram (Müller
(2007)) for the whole audio track. Next we randomly se-
lect n locations in the audio track that are approximately
equally distributed throughout the whole track. We use m
seconds long chunks of the chromagram at selected loca-
tions and calculate similarity between the selected chunks
and the entire song with Dynamic time warping and shift-
ing chroma vectors. This results in n similarity curves that
represent the similarity between selected chunks and the
whole track. An example is given in Figure 2. Peaks in
these curves represent repetitions of chunks in the track.

2.2 Step 2 - Aligning the similarity curves

In the second step we calculate cross-covariances between
each pair of similarity curves to find those that are most
similar. We select the similarity curves with above mean
maximum cross-covariance value and smooth them with a
low pass filter. Amongst these, we select the curve with
the highest similarity to all other curves as the most repre-
sentative one. As the curves are shifted in time, due to the
randomly selected audio chunks, we then calculate time
shifts between the selected most representative curve and

Proceedings of the Third International Workshop on Folk Music Analysis, June 6-7, 2013. Amsterdam, Netherlands. P. van Kranenburg, C. Anagnostopoulou, and A. Volk (Eds.).
Amsterdam: Meertens Institute, Utrecht: Department of Information and Computing Sciences, Utrecht University.

86



Figure 2: Similarity curves for random locations in a track.

Figure 3: Curves aligned according to the calculated time
shifts. Not all the curves were selected for alignment due
to thresholding by mean covariance.

all the others. We use the calculated time shifts to align the
curves as shown in Figure 3.

2.3 Step 3 - Calculating the average similarity curve
and length of repeating stanzas

In the last step we calculate the average similarity curve
that represents repetitions in the audio track. The average
curve is calculated as the average of all aligned similarity
curves as shown in Figure 4. By calculating the distances
between peaks in the obtained average similarity curve we
can calculate lengths of individual stanzas. We determine
the beginning of the first stanza by cutting the silence from
beginning of the track and use the calculated distances to
find beginnings of all other stanzas.

3. CONCLUSIONS AND FUTURE WORK

In this paper we presented our current work in progress on
a method for finding repeated stanzas in folk song record-
ings. In the future we are planning on extending our method
to a double domain approach, in which we will augment
results from the presented approach with an algorithm that
works on the symbolic domain. Symbolic data will be ob-
tained with polyphonic transcription. We plan to use ap-
proximate string matching approaches on the obtained data
to find the repeating parts and merge both approaches into
a robust segmentation algorithm.

Figure 4: The average curve (left) and calculated lengths
of stanzas (right)
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1. INTRODUCTION

Recorded popular music in the Netherlands first appeared
in the beginning of the 20th Century. This research studies
a particular element of musical form that emerged as pop-
ular music came about: the chorus. A case-study dataset
of Dutch music from before the Second World War has
been assembled, annotated and analyzed using melody ex-
traction and comparison of pitch characteristics between
different segment [Bartsch & Wakefield, 2001].

2. CHORUS ANALYSIS

Choruses in Western popular music have been referred to
as the ‘most prominent, ‘most catchy, ‘most memorable
and even ‘most musical parts of songs, [Bartsch & Wake-
field, 2001, Eronen & Tampere, 2007, Middleton, 2003].
While agreement on which section in a song constitutes the
chorus generally exists, the above attributes are far from
understood in music cognition and (cognitive) musicology
[Honing, 2010]. On the other hand, as a frequent subject
of study in the domain of Music Information Retrieval, the
notion of chorus has been shown to correlate with a number
of computable descriptors. Yet when studied more closely,
the chorus detection systems that locate choruses most suc-
cessfully turn out to rely on the amount of repetition and
energy levels in the signal [Eronen & Tampere, 2007], with
more sophisticated systems also taking section length and
position within the song into account [Goto, 2003].

The term chorus originates in a denomination for the
parts of a musical piece that feature a choir or some other
form of group performance, as seen in many folk music tra-
ditions. With the early popular song and the development
of Tin Pan Alley, Broadway, solo performance became the
norm and the chorus became a structural unit of musical
form while establishing itself as the site of the more mu-
sically distinctive and emotionally affecting material. The
same evolution was observed for the analogs in European
entertainment [Middleton, 2003]. The motivations to study
the particularities of early Western choruses are two-fold:
on the one hand, the concept is rather specific to popu-
lar music, and may tell us something about where to look
for the historical shifts and evolutions that have resulted in
the emergence of a new musical style. On the other hand,
as choruses can be related to a catchy and/or memorable
quality, to the notion of hooks, and perhaps to a general
cognitive salience underlying these aspects, the nature of
choruses may indicate some of the musical properties that

constitute this salience. The choice to focus on early Dutch
choruses stems from the conviction that the choice of a re-
gional case-study allows to sample from a more consistent
tradition, and because the data were at hand.

The following central question is formulated: are cho-
ruses observably different from other song sections, and
specifically regarding melody, do choruses feature differ-
ences in their pitch structures when compared to other song
sections? This question is now studied more closely for the
case of early Dutch popular music.

3. DATASET

A dataset has been created as a diverse sample of the Nether-
lands popular music as it sounded before the 1950s. This
Dutch50 dataset contains 50 songs by 50 different artists,
all dated between 1905 and 1950. Recurring styles include
cabaret, colonial history-related songs, advertisement tunes
released on record and early examples of the levenslied
musical style [Klöters, 1991]. An expert was consulted
to judge the representativeness of the selected artists, and
approved. Structural annotations were made by the author,
indicating beginning and end of sections and labeling each
with a section type chosen from a list of seven (intro, verse,
chorus, bridge, outro, speech and applause). For all songs,
the melody was then extracted using the Melodia Vamp
plug-in [Salamon & Gomez, 2010]. This algorithm works
best when applied to uncompressed audio with a prominent
melody, as in our dataset. The resulting pitch contours and
pitch salience were segmented along the annotated bound-
aries. For each section, statistics on the contour could then
be computed and compared.

4. RESULTS

The first property of the pitch contours to be considered
was the pitch strength, also referred to as the salience func-
tion. This salience is a measure of the strength of the fun-
damental frequency of the melody and its harmonics. For
each section, the Average Pitch Strength (hereafter APS)
was computed and normalized by subtracting the average
pitch strength for the complete song. Figure 1 (left) shows
the estimate of the mean APS across all sections in the
dataset, with confidence intervals for the mean indicated.
Note that 8 songs were not considered as they contained
only one type of section, in which case the labeling (verse
or chorus or other) was found to be rather arbitrary. The
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Figure 1: Mean APS and APH per section type. Section types from left to right: chorus (red), verse (green), bridge (pink),
other (blue) and ‘all non-chorus’ (black).

figure illustrates how chorus APS significantly exceed the
mean song APS (zero; dashed line) and are demonstrably
higher than verse and other APS.

The next property considered is the pitch height. For
each section, the Average Pitch Height (APH) was com-
puted and again normalized. Figure 1 (right) shows the
estimates of the mean APH. Interestingly, chorus APH are
higher than the mean song APH as well as the verse APH
(with around 20 semitone cents difference), though not
compared to the bridge and other APH., which behave in
rather extreme ways.

Another feature that was computed is the average pitch
range (APR) With the pitch range as the standard deviation
of the pitch height, chorus APR were, on average, higher
than verse APR, suggesting a broader pitch range is used
in choruses than is in the verse. The tendency does not
generalize when chorus sections are compared to all non-
chorus sections.

Finally, the average pitch direction (APD) is introduced.
This measure aims to capture if the pitch contours in a sec-
tion follow an up- or downward movement. It is currently
computed simply as the difference between the pitch height
of the sections end and its beginning. No movement can be
shown for choruses, but the APD for verses is greater than
zero with p = 0.0134 < 0.05, suggesting an upward ten-
dency in pitch during the verse.

5. CONCLUSION

In the present research, a study of melodic pitch yields
results that indicate a number of intrinsic musical differ-
ences between chorus and verse sections in early Dutch
popular music. Given the widely spread discourse of cho-
ruses as the most catchy and memorable sections, these
results present some reference points for a more elaborate
study of cognitive salience in melodies. At the same time,
they show the potential of a comparison of pitch structures
between the considered genre and its precursors rooted in
folk tradition. Future work will also include a similar anal-

ysis of post-1950 popular music (cfr. the Billboard dataset)
and the design and testing of more detailed contour-based
descriptors (cfr. [Salamon et al., 2012]).
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1. INTRODUCTION 

Folk music of Cyprus has a special character built upon a 
long-term history of cultural exchanges. Particularly em-
phasized are elements of the Greek and Turkish traditions 
that have been interacting mostly with the Cypriot culture 
due to geographical and historical reasons. In the music 
world, Greek and Turkish characteristics are reflected, 
amongst other, in Byzantine music  (Levy & Troelsgård, 
2013) and Turkish music  (Feldman, 2013). Musicologi-
cal studies of Cypriot music in mid 20th century, suggest 
strong influence from Byzantine music (Tombolis, 1966, 
Averof, 1978, Zarmas, 1993), whereas influence from 
Turkish music, is rarely mentioned or in case of (Zarmas, 
1993) would only be admitted if scientific methods 
proved it existed. 

The present research studies the characteristics of tra-
ditional music of Cyprus and tracks possible similarities 
with both Turkish and Byzantine music. Since Cypriot 
music belongs to the orally transmitted and mainly mon-
ophonic music traditions (Averof, 1989, Giorgoudes, 
2013), the study is restricted to melodic and tonal fea-
tures. The first objective addressed in this research is the 
description of pitch distributions in Cypriot folk tunes in 
order to understand the melodic particularities of this mu-
sic tradition. This combines analysis of theoretical mod-
els of Cypriot music and empirical data extracted from 
audio recordings with computational methods. The se-
cond objective is a comparative study between pitch dis-
tributions of Cypriot music with Byzantine and Turkish 
music. Similarity is investigated in the tuning of the 

scales, the size of the underlying intervals, and the prom-
inence of scale notes.  

The modal system in Byzantine and Turkish music 
theory, namely echos and makam respectively, is revised 
in (Panteli, 2011). The theoretical models considered in 
this research is the Chrisanthine and Arel system, the 
widely recognised models of Byzantine and Turkish mu-
sic respectively (Mavroeidis, 1999, Gedik & Bozkurt, 
2009). Tonal features of Cypriot melodies are compared 
to echos and makam characteristics of Byzantine and 
Turkish recordings respectively. 

Tools for computation of pitch histograms are revised 
and algorithms that respect the particularities of the ana-
lysed music traditions are proposed. Melodic characteris-
tics of Cypriot music are summarized and similarity be-
tween Cypriot and Byzantine/Turkish pitch distributions 
is investigated in the use of scales, size of intervals and 
prominence of scale notes. Results contribute to tracking 
influence of Byzantine and Turkish music traditions to 
the music culture of Cyprus. 

2. MUSIC MATERIAL 

The music material gathered for the purpose of this re-
search consists of a total of 210 vocal recordings (poly-
phonic and monophonic), of which, 74 recordings are 
religious and folk tunes of Cypriot music, 67 recordings 
are religious Byzantine music and, 69 recordings are re-
ligious Turkish music. Byzantine and Turkish music col-
lections are further categorised by the Byzantine echos 
and Turkish makam respectively. In this study we con-
sider in total 9 echos and 15 makams that share similarity 

Byzantine echos Turkish makam 
First/  
First Plagal 
 

10 8 12 12 10 8 12 Huseyni 8 5 9 9 8 5 9 
Ussak 8 5 9 9 4 9 9 
Buselik/ Nihavend 9 4 9 9 4 9 9 

Second 
 

8 14 8 12 8 14 8 Hicazkar/ Sedaraban 5 12 5 9 5 12 5 
Hicaz 5 12 5 9 4/8 9/ 5 9 

Second Plagal 6 20 4 12 6 20 4 Suzidil 5 13 4 9 5 12 5 
Third/ Grave 12 12 6 12 12 12 6 Mahur 9 9 4 9 9 9 5 

Suzinak 9 8 5 9 5 12 5 
Grave Papadika 8 12 10 12 8 16 6 Segah 5 9 8 9 5 9/13 8/4 
Fourth Heirmoi 8 12 12 10 8 12 10 Kurdilihicazkar 4 9 9 9 4 9 9 
Fourth Plagal 12 10 8 12 12 10 8 Rast 9 8 5 9 9 8 5 
 

 Saba 8 5 5 13 4 9 5 
Huzzam 5 9 5 9 5 13 4 

Table 1. Echos and makam definition grouped by similarity of the scale step sequence. 
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in the relative size and sequence of the scale intervals (cf. 
Table 1). The Cypriot music collection includes, 
amongst other, folk tunes derived from the genre Fones. 
Fones describes a vocal folk music genre of Cyprus that 
uses specific melodic models on which many and differ-
ent verses can be adapted (Giorgoudes, 2013). The use of 
Fones is often referred to as the most typical tradition in 
Cypriot music (Averof, 1989, Giorgoudes, 2013) and is 
essential for addressing the melodic characteristics of 
Cypriot music. 

3. METHODOLOGY 

We rely our investigation on pitch class profiles (also 
called chroma features or pitch histograms) derived from 
the leading melody of polyphonic music recordings. In 
order to compute them, we use a state-of-the-art source 
separation technique (FASST, Flexible Audio Source 
Separation) (Ozerov et al., 2010), as a pre-processing step 
to extract the leading melody from the input audio. We 
then employ the well-known Yin algorithm (de Chevei-
gné et al., 2002) to estimate the fundamental frequency 
envelop. The error rate of Yin estimates is reduced via 
incorporation of post processing filters to eliminate noisy 
or silent parts of the audio signal and correct octave and 
fifth errors. For each recording, a pitch histogram is com-
puted from the frequency estimates reduced to the range 
of an octave. A Gaussian kernel function is employed in 
histogram computation that better overcomes the artificial 
discontinuities at the boundaries of the bins (Bishop, 
2006). Histogram smoothness is further adjusted in order 
to eliminate spurious peaks and raise those peaks more 
relevant to the scale notes of the melody. The bin resolu-
tion is set according to the theory of the analysed music 
tradition; 72-bin resolution is used for Byzantine histo-
grams according to Chrisanthine theory (Mavroeidis, 
1999), and 53-bin resolution is used for Turkish histo-
grams according to Arel theory (Bozkurt, 2008). For 
Cypriot music recordings two types of histograms are 
computed; 1) 72-bin resolution histograms are computed 
for comparison with Byzantine histograms, and 2) 53-bin 
resolution histograms are computed for comparison with 
Turkish histograms.  

Byzantine and Turkish pitch histograms are further 
aligned to the tonic of the scale. The tonic is computed 
from the melody contour since as music theory suggests, 
the tonic of the Byzantine echos and Turkish makam con-
sidered in this study, is stated at the end of the musical 
phrase. The algorithm for detecting the tonic from the last 
phrase note integrates appropriate assumptions and limi-
tations in order to overcome drawbacks of the method 
reported in (Bozkurt, 2008). The Cypriot pitch histo-
grams are aligned to the bin of highest correlation with 
Byzantine and Turkish histograms, estimated by the cor-
relation coefficients method. Note that, for each Cypriot 
recording, two comparisons are considered; 1) the Cypri-
ot-Byzantine comparison with the correlation coefficients 

method applied to 72-bin resolution histograms, and 2) 
the Cypriot-Turkish comparison with 53-bin resolution 
histograms. The comparison with the highest correlation 
value also reveals the Byzantine echos or Turkish makam 
that best describes the scale of the corresponding Cypriot 
recording. Once histograms are aligned, histogram peaks 
are assigned a scale degree. Peak locations are used to 
evaluate the empirical value of scale notes and peak am-
plitudes are used to evaluate the prominence of scale 
notes. The distances of consecutive peaks are used to 
evaluate the size of empirical intervals employed in each 
music tradition. 

4. RESULTS 

Regarding the characteristics of Cypriot music, analysis 
of Cypriot pitch histograms, and specifically of Fones 
genre, revealed, amongst other, that: a) the pitch range of 
the melody is usually limited to a perfect fifth or some-
times a major sixth interval, b) Successive melodic steps 
usually do not exceed a major 3rd, with semitones being 
used often, and c) at the beginning and the end of the 
phrase the melody ascends or descends in usually four or 
five consecutive steps, (a tetra/penta-chordal movement 
that shares similarity with the construction of Byzantine 
and Turkish modes). Comparing the use of scales of Cyp-
riot pitch distributions with respect to Byzantine echos 
and Turkish makam revealed that approximately 70% of 
Cypriot recordings are more similar to Byzantine echos 
and 30% to Turkish makam. The size of intervals used in 
Cypriot music revealed equal influence by both traditions 
whereas the prominence of scale notes showed more sim-
ilarity with Byzantine pitch distributions rather than 
Turkish. 
Our observations focus on similarity between folk music 
of Cyprus and religious Byzantine and Turkish music. 
Limitations of the proposed method are considered re-
garding the size of the music corpus, the choice of the 
Byzantine and Turkish scales, and the different bin reso-
lutions employed for pitch histogram similarity. Im-
provement of the approach is considered in future work.  

5. CONCLUSION 

The research addresses a computational comparative 
analysis of recorded Cypriot music. It proposes algo-
rithms to capture and compare tonal characteristics of 
Cypriot, Byzantine, and Turkish music. It is left to future 
work to extend the study to other fundamental music fea-
tures such as rhythm and timbre, to investigate more 
similarity measures and to consider the mutual influence 
between Byzantine and Turkish music tradition in their 
relation to Cypriot music. 
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The talk will discuss the work in progress on our cur-
rent study on expressive means of vocal tension in world’s
singing cultures. It will focus on the methodology that
would enable us to explicitly define vocal timbres across
research fields: from ethnomusicology via physiology and
acoustics to MIR. Delineating vocal timbres by means of
objective and measurable categories will allow to express
complex relationships between them and to interpret the
meaning of positive and negative MIR classification re-
sults.

Our current study is concerned with the vocal quality
of tension, used by an ethnomusicologist Alan Lomax in
his Cantometrics experiment. While vocal tension seems
to have been somewhat subjective and not consistently de-
fined, Lomax found that it possessed interesting qualities:
in societies where “tense”, “narrow” singing was the norm,
the subordination of women tended to be higher than in
societies where wide, open singing was preferred (Lomax,
1968, 1977).

Our aim in this study is to redefine the Cantometrics’
descriptor called vocal tension in more objective, better
measurable categories of vocal production that at the same
time retain the correlation behaviour discovered in the Can-
tometrics experiment. In future studies the mapping of
the categories onto the low-level signal features will be
attempted (for a possible methodology see our prelimi-
nary experiment on phonation modes in singing (Prout-
skova et al., 2013)).

The prevalent tasks concerning vocal timbre that have
been addressed by MIR include recognition and separa-
tion of timbres, classification or clustering (Berenzweig
et al., 2002; Smit, 2011; Fujihara et al., 2010). The most
common methodology employs similarity scoring based
on MFCCs (Pachet & Aucouturier, 2004; Mesaros & As-
tola, 2005). This method functions largely like a black box,
not providing any means to investigate for whom the re-
sults are meaningful and why (Allan et al., 2007).

A very large majority of previous research in vocal tim-
bre has been concerned with Western music, leaving out
the numerous other singing traditions, all of which pose
specific timbral challenges (Födermayr, 1971; Lomax, 1977).

We would like to approach vocal timbre from a differ-
ent perspective, which is ethnomusicologically motivated
and employs interdisciplinary methods. The direction we
take is to explicitly define vocal production in objective,
measurable categories and to map these categories onto au-
dio features by means of signal processing and statistical

classification. Achieving this would allow us to acquire
a much more detailed understanding of vocal timbre, to
define more complex relationships than just ’similar - dif-
ferent’. Employing distinct vocal production categories as
opposed to MFCCs would allow for precise cognitive in-
vestigations of timbre based on responses to each of the
categories.

Our approach belongs to the larger class of ideas that
address the ’semantic gap’ in MIR, in which a middle layer
of more objective and better measurable categories is de-
signed (such as scales or musical instrument classes) in or-
der to provide a link between cognitive or social descrip-
tors (such as mood or similarity) and low-level signal fea-
tures (Wiggins, 2009; Lew et al., 2006).

Timbre in MIR is related to the spectrum of a sound.
For a musical instrument its timbre is determined mainly
by its physical qualities such as size, form, material, and
in performance only one or a small number of parameters
are usually varied. Not so with singers: a vocal apparatus
is a highly complex system, the form of the vocal tract,
the adduction of the vocal folds and the air pressure of
the breath are varied constantly (Sundberg, 1987). At the
same time we humans are very good at recognising voices
by their timbres. Previous research in speaker and singer
recognition clearly demonstrates that timbres can be dis-
tinguished and detected by MIR methods (Fujihara et al.,
2010; Mesaros et al., 2007; Nwe & Li, 2007; Mesaros &
Astola, 2005).

There are several expert groups who deal with vocal
timbre (Kreiman & Van Lancker Sidtis, 2011). Singing
teachers have the deepest, most nuanced knowledge of vo-
cal timbre and the mechanisms to produce its various colours
and shades (Miller, 2011; Soto-Morettini, 2006). Health
professionals like phoniatricians, speech therapists and vo-
cologists understand the practice of voice production based
on physiology (Titze, 1996; Benninger, 2011). Voice sci-
entists make new advances in investigating vocal physiol-
ogy and acoustics, which still remains a sparsely researched
field (Sundberg, 1987; Titze, 2000).

Unfortunately, none of these fields has developed an on-
tology of timbre that allows for its explicit categorisation.
At the same time the experts in the named groups have
an extensive tacit knowledge of voice quality (Sofranko &
Prosek, 2012). To elicit this knowledge scientifically sound
tools are required.

We suggest to employ a qualitative approach which is
widely used in anthropology, psychology, sociology, mar-
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ket research and other areas (Creswell, 2006; Bryman, 2006).
In contrast to quantitative methods it is based on a detailed
study of a relatively small group of people followed by
a rigorous analysis and reduction of collected data. Our
study follows in its methodology knowledge elicitation tech-
niques from artificial intelligence (Cooke, 1999; Ford &
Sterman, 1998; Patton, 2005). It will involve semi-structured
interviews with vocal timbre experts from various fields
and various cultures. The goal of the study is the verifica-
tion and the adjustment of a preliminary ontology of vocal
tension we have developed through previous research.

The talk will include

• The relationship between music and culture - the
methodology to revise the Cantometrics experiment
based on modern MIR methods

• Our preliminary ontology of vocal tension in world’s
cultures

• The data collection and analysis guidelines for the
qualitative study of vocal tension

• Musical examples that will be used in the study

• Expected outcomes

• Preliminary results
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1. INTRODUCTION 

The aim of this work is mainly to explore timbre and to-
nal similarities between Cypriot folk songs in comparison 
with Turkish and Western monophonic songs using a 
computational approach. Several studies exist that iden-
tify similarities between the Cypriot folk music and Byz-
antine music [Kallinikos, T.  (1951), Tobolis S. (1980)]. 
On the other hand, very little information exists on the 
possible influence of eastern music such as Arabic and 
Turkish on Cypriot folk music. The main musical instru-
ments that are used in the Cypriot folk music are the lute, 
violin, a kind of wooden Cypriot flute called “pithkiavli” 
and a Cypriot percussion instrument called “tamboucha”. 
The existence of the lute and violin in the Cypriot folk 
music creates a complex combination between Greek and 
Turkish traditional rhythms. In a previous study [Neo-
cleous et.al (2012)], non equal temperament between 
notes was identified in some of the Cypriot folk songs, 
using pitch histograms. The present work is focused on 
the Cypriot flute “pithkiavli” [Michael, E. (2008).]. This 
is compared to the Turkish “ney” 
[http://compmusic.upf.edu/node/55] as well as to western 
wood instruments such as flute, saxophone, bassoon and 
oboe.  

2. DATA 

A database of 127 monophonic songs was used. The 37 
songs were Cypriot folk songs performed by Cypriot folk 
musician Andreas Gristakkos and Giannis Zavros. The 34 
Cypriot songs were recorded specifically for the purposes 
of this research using professional audio equipment. The 
remaining of the 90 songs were consisted of 47 western 
songs and solo improvisations, as well as 43 Turkish 
Makams. The 47 western songs were consisted by songs 
and solo improvisations with flute, bassoon, clarinet, 
oboe and saxophone. The songs that were played with 
flute were 4 movements from partita for solo flute by 
Bach, 12 fantasias for solo flute by Telemann, the song 
“Syrinx” of Debussy, the song “Soliloquy for Solo Flute 
Op. 44” by Lowell Liebermann, the song “Image for solo 
flute” by Bozza, the song “Danse de la chevre” by Arthur 
Honegger, the song “Tango Etude” by Piazzolla, the song 
Daphnis et Chloe by Ravel and nine solo improvisations 
played with flute. In our library we used also 3 mono-
phonic bassoon solos, 3 pieces for solo clarinet from 
Stravinsky, two monophonic oboe solos, and eight 
monophonic saxophone solos. The 43 makam songs were 

consisted by six makams with 7 Hicaz, 7 Huseiny, 7 
Huzzam, 7 Nihavend, 8 Saba, and 7 Ussak.  
All the Turkish music and all the western songs were ex-
tracted from original audio cd’s, while the western mono-
phonic solos were downloaded from youtube. 

3. METHODS 

3.1 Timbre features 

 
Each song was segmented into approximately 13000 
frames of 1024 bins length. For each frame, 16 low-level 
features were extracted and the mean and the standard 
deviation of each feature were stored in another database, 
thus creating a vector of 34 features for each song. The 
features used were the 1)Zero crossing rate - mean, 
2)Zero crossing rate - standard deviation, 3)Spectral cen-
troid - mean, 4)Spectral centroid - standard deviation 
5)Roll off - mean, 6)Roll off - standard deviation 
7)Entropy - mean, 8)Entropy - standard deviation, 9-
21)Mel frequency cepstrum coefficients (13 coefficients) 
- mean, 22-34)Mel frequency cepstrum coefficients (13 
coefficients) - standard deviation.  
 

3.2 Tonal features 

 
For each song, the pitch track was extracted using the 
YIN algorithm [De Cheveigné, A., and Kawahara, H. 
(2002)] and pitch histograms with resolution 1200 bins 
per octave were created using the information from the 
pitch tracks. The histograms were shifted to the first bin 
according to the highest peak of the histogram. We as-
sume that the highest peak of the histogram is the note 
that was most common played in a song and we consider 
this as the tonic. From the histograms we extracted the 
location and the amplitude of the 7 higher peaks and we 
created 14 mid-level tonal features. 
 

3.3 Classification 

 
In a following step, we separated the dataset in-to a 
“training set” and “validation set”. The training set was 
consisted of 34 western songs and 32 Turkish songs. The 
validation set was consisted of 13 western, 11 Turkish 
and 37 Cypriot songs. We built models with supervised 
learning using artificial neural networks with one hidden 
layer, K-nearest neighbour with 1-nearest neighbour, and 
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support vector machines with kernels 1, 2 and 3. We 
made three experiments in order to understand the tonal 
and timbre similarities and differences between the West-
ern/Cypriot and Turkish/Cypriot music. In the first ex-
periment we created models using only the timbre fea-
tures, in the second experiment we created models using 
only the tonal features and in the third experiment we 
created models by combining the tonal and timbre fea-
tures together. 

4. RESULTS 

The first experiment was built with timbre features and 
K-nearest neighbours classified correctly 100% of the 
Western songs and 90% of the Turkish songs (one song 
misclassified). The classification performance of the rest 
of the models was around 90% for Western and 92% for 
Turkish music. Table 1 shows the tabular confusion ma-
trix for the model built with K-nearest neighbours. In the 
confusion matrix, the validation of the Cypriot songs is 
included. 
 
Table1: Confusion matrix of the models built with K-
nearest neighbours. 
 

Predicted class 
confusion matrix 

Western songs Turkish songs 

Western songs 13 0 

Turkish songs 1 10 

A
ct

ua
l c

la
ss

 

Cypriot songs 8 29 

 
The second experiment was built with tonal features. The 
support vector machines with linear kernel correctly clas-
sified 100% of the Turkish songs and 77% of the Western 
songs. Neural networks classified correctly 54% of the 
Western songs and 82% of the Turkish songs and K-
nearest neighbours 85% and 90% of the Western and 
Turkish songs accordingly. Table 2 shows the tabular 
confusion matrix for the model built with support vector 
machines with linear kernel. 
 
Table 2: Confusion matrix of the models built with sup-
port vector machines. 
 

Predicted class 
confusion matrix 

Western songs Turkish songs 

Western songs 10 3 

Turkish songs 0 11 

A
ct

ua
l c

la
ss

 

Cypriot songs 15 22 

 
The third experiment consisted with both tonal and tim-
bre features. Neural networks and Support vector ma-
chines with kernel 3 classified correctly 100% both the 
Western and Turkish songs while the K-nearest 
neighbours misclassified one Turkish song. Table 3 

shows the tabular confusion matrix for the model built 
with artificial neural networks. 
 
Table 3: Confusion matrix of the models built with artifi-
cial neural networks. 
 

Predicted class 
confusion matrix 

Western songs Turkish songs 

Western songs 13 0 

Turkish songs 0 11 

A
ct

ua
l c

la
ss

 

Cypriot songs 30 7 

5. CONCLUSIONS 

From the results, a straight forward observation regarding 
the discrimination of the Western music from the Turkish 
music is that only the models used both timbre and tonal 
features were able to absolutely discriminate them. The 
models built only with timbre features, showed that 78% 
of the Cypriot songs were classified as Turkish songs 
while the rest 22% of the Cypriot songs were classified as 
Western songs. The models built only with tonal features 
were not able to completely discriminate the Western 
music from the Turkish music and these models were 
classifying the 60% of the Cypriot music as Turkish 
songs and the other 40% as Western songs. The models 
built with tonal and timbre features were able to com-
pletely discriminate the Western songs from the Turkish 
songs and these models classified 81% of the Cypriot 
music as Western music and 19% of the Cypriot music as 
Turkish music. 
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ABSTRACT

Computational tools for musicology (and for folk music analysis
in particular) usually restrict on particular aspects of music anal-
ysis. For instance, automated transcription does not generally
deal with microtonality, or computational modal analysis rarely
addresses the detection of modal transitions.

We introduce a computational framework for music transcrip-
tion and analysis composed of a set of specialized modules that
form complex interdependencies. Music recordings are progres-
sively analyzed throughout the whole set of modules in a bottom-
up fashion. One objective of the framework is that modules ded-
icated to low-level operations will take benefit from higher-level
information already inferred from other modules while analyzing
the previous instants, as well as predefined cultural knowledge.

A purely bottom-up analysis through the framework can
be briefly described as follows:

1. PITCH CURVE

Pitch is extracted from audio through the computation of
autocorrelation functions on a moving window. This tran-
scription is performed using the default configuration of
the mirpitch operator in MIRtoolbox (Lartillot & Toivi-
ainen, 2007), which includes refinements such as filterbank
decomposition and enhanced autocorrelation computation
(Lartillot, 2012). The method theoretically allows the tran-
scription of polyphonies, but in a first step, the study re-
stricts on simple monodies.

2. PITCH-BASED NOTE SEGMENTATION

The pitch curve is segmented into a succession of stable
parts (often corresponding to notes), separated by either
silence, absence of pitch content, continuous transition be-
tween stable pitch levels, or longer unstable parts. In a
purely bottom-up configuration of this module, segmenta-
tion is purely based on such local discontinuities, such that
each stable pitch can be characterized by an average pitch
level (for instance in Hz.) that is independent on any scale
and in particular is not constrained by chromatic scale dis-
cretization.

3. PITCH SCALE DISCRETISATION

Pitch levels, initially expressed on a continuous axis, are
discretized through the progressive bottom-up constitution
of a pitch scale. Each new pitch level is successively in-
tegrated into the scale under constitution: either the new

pitch level is clustered into an existing scale level, or a new
pitch level is added to the scale. Mechanisms are also pro-
posed to track the possible progressive drift in pitch of the
whole pitch scale.

4. CURRENT PROJECT

4.1 Modal analysis

Various sets of pitch levels are formed and are associated
with activation score that varies across time. These sets
of pitches model different musicological concepts such as
chords, modal scales (such as diatonic scale, as opposed
to chromatic scale) and modal subscales (such as chord-
degrees in western classical music or genres in Maqam
music) (Lartillot & Ayari, 2011).

4.2 Pattern analysis

All configurations (chord classes, subscales, pitch level within
modal scales, etc.) are stored in associative memory, im-
plemented as reverse tables. In this way, any repetition of
a same configuration is detected; consequently, the con-
figuration enters a dictionary of repeated patterns, and all
subsequent repetitions of the configuration will be simply
identified as occurrences of that pattern.

Succession of configurations (notes, chords, scales, etc.)
are also stored in associative memory. In particular, a suc-
cession of two notes is stored as an interval with underly-
ing pitch interval and temporal (inter-onset) interval. This
allows the detection of repetition of successions, leading
to the inference of sequential patterns made of two notes,
two chords, etc. This can be extended recursively to the
detection of sequential patterns of any length. Successive
occurrences of a same pattern form a cyclic pattern (Lar-
tillot, 2005).

This formalization of cyclic pattern enables to model
the emergence of rhythm and meter. The start of a reg-
ular pulsation is immediately detected as a cyclic pattern
composed of a single temporal interval. Each subsequent
pulse is simply identified as a new extension of the cyclic
pattern. The multi-level metrical structure can also be pro-
gressively constructed as a set of cyclic patterns that are
interconnected (Lartillot, 2010).

Other musicological concepts can be formalized based
on patterns, such as motives, themes, forms, etc.
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4.3 Top-down influence

The modularity of the model enables the formalization of
top-down influences. Some examples are listed below:

• The detection of particular notes, and in particular
of their temporal location, duration and pitch level,
can be guided by expectation driven by knowledge
related to the underlying pitch scale, modal analysis,
metrical structure, motivic development, etc.

• Transformation of pitch scales and pitch sets can be
anticipated and tracked based on an analogy driven
by particular motivic pattern developments: If a trans-
position of a known motivic pattern is detected, any
modification of the current modal scale implied by
the transposition will be anticipated and thus more
easily detected, and transposed modal subscales will
be inferred as well.

• Modal analysis is influenced by metrical analysis and
vice-versa: for instance, metrical pulse can guide the
detection of modal transitions, and modal transitions
outside the expected metrical pulse might indicate a
modification of the metrical structure, etc.

• Configurations collected from analyses of other pieces
can guide the analysis of a new piece. Cultural knowl-
edge can also be predefined as well, in order to test
its impact on the analysis.

5. DISCUSSION

In folk music analysis, the resulting computational tool,
under development, allows the automation of transcription
with or without guidance on cultural knowledge such as
predefined pitch scale or rhythmic structure. Subtle modal
and rhythmical structures can be therefore discovered that
can question the musicologists initial hypotheses. For in-
stance, a transcription can detect whether the musician uses
subtle microtonalities, and whether there is any interdepen-
dency with the motivic logic of the improvisation.

The model will be made available in a new Matlab frame-
work for audio and music analysis called The MiningSuite
(Lartillot, 2011). The second step in the bottom-up de-
scription above (pitch curve segmentation) have also been
integrated in MIRtoolbox 1.5.
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Extended abstract

Folk tune classification is the inference of tune prop-
erties such as geographic location, tune family, tonality,
meter, and genre directly from the musical content of folk
songs. The standard way to approach this problem is by
machine learning: by training and evaluating a classifier
on a set of labelled pieces. Trained classifiers can subse-
quently be used for labelling of unlabelled pieces, for sug-
gesting missing labels, or for identifying possible labelling
errors in a large digital collection.

Machine learning approaches to symbolic folk song clas-
sification range widely based on the type of representation
chosen for the pieces, and the specific machine learning
method applied (Hillewaere et al., 2009). Recently Con-
klin (2013) presented a method for music classification
which is based on the theory of multiple viewpoint sys-
tems (Conklin & Witten, 1995), which are ensembles of
multiclass n-gram models, each one promoting a differ-
ent abstraction of the music surface. Multiple viewpoint
systems were shown to be highly effective for several folk
tune classification tasks (Conklin, 2013).

In addition to the four datasets considered previously
(Conklin, 2013: European national and Basque regional
folk tunes, partitioned into genres, and regions) this pre-
sentation will illustrate the performance of multiple view-
points on several further corpora including Swiss and Aus-
trian folk tunes derived from the Essen folksong collec-
tion (Schaffrath, 1995) (this dataset was also used in an
earlier classification study by Conklin, 2009); songs from
the Finnish folk song database (Eerola & Toiviainen, 2004)
partitioned in various ways; and Dutch folk songs grouped
into tune families (Volk & van Kranenburg, 2012). The
corpora and their partitioning were selected and designed
to ensure a wide range of intra-group melodic divergence.

On each dataset a multiple viewpoint system will be
compared with two other classifiers and representations:
a 1-NN classifier using the Levenshtein distance of pairs
of melodic interval strings; and a classifier based on a large
set of global features (McKay & Fujinaga, 2006). Support-
ing the conclusions of Conklin (2013), multiple viewpoint
systems perform well relative to other methods on a wide
range of folk song classification tasks.
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1. INTRODUCTION 

1.1 On the Alexeyev’s Theory 

Rationale of the current research rests on the theories of 
historical development of musical scales. Here I will refer 
to the theory proposed by Russian ethnomusicologist Ed-
uard Alexeyev (1986), although similar and well-known 
concepts are reflected by different authors (Sachs, 1962; 
Levman, 1992; Brown, 2000; etc.). Alexeyev considers, 
inter alia, several stages in the phylogenesis of musical 
scales. After some initial stages, he arrives at the so-
called ‘gamma-intonation’ characterized by already crys-
talized pitch categories (≈ scale degrees), yet they are not 
subordinated but rather coordinated. It means that tonal 
hierarchies are not yet clearly fixed, and the pitches are 
‘wandering’, i.e., intonation is far from constant across 
performance. Additionally, the constituent intervals (be-
tween the neighboring pitch categories) are very roughly 
equal. This stage is succeeded by the so-called ‘t-
intonation’ which corresponds roughly to the present type 
of modal thinking. It means, the tonal hierarchies are fi-
nally fixed, the functions and weights of scale degrees are 
clearly divergent, and the intonation is relatively stable 
across performance. The scale is no longer equidistant. 

To summarize, according to the theory, the musical 
thinking experienced several interrelated phylogenetic 
changes: 1) the divergence of the weights of scale de-
grees, 2) the asymmetrization of the intervals (divergence 
of the sizes of constituent intervals), and 3) the acoustical 
stabilizing of intonation. 

1.2 Aim of the Study 

The aim of the current study is to test the interrelations 
just mentioned based on the measurements of a set of tra-
ditional vocal performances. To reach this aim, the corre-
sponding three quantitative indexes are proposed and ap-
plied. 

2. THE QUANTITATIVE INDEXES 

2.1 Diatonic Contrast 

Actually, the very fact of deviation of the scales from 
12TET and the obvious traces of the ‘equidistant’ scales 
in the Lithuanian traditional music were already noted in 
a number of earlier studies (Ambrazevičius, 2005–2006 
and later). For the generalization of interval asymmetries, 
the index of diatonic contrast (DC) was introduced (Am-
brazevičius, 2006). The more clearly the constituent in-

tervals of a musical scale cluster into two groups (‘small’ 
and ‘large’ intervals), the larger DC is. The expression for 
the index of DC is normalized so that exactly equidistant 
scale gives DC = 0 and diatonic versions of 12TET give 
DC = 1. For Pythagorean tuning, DC = 1.26, DC = 0.5 
means exactly medial case between ideal equitonics and 
12TET-diatonics, and so on.1 

2.2 Modal Contrast 

The index of modal contrast (MC) stands for the diver-
gence in the weights of scale degrees (the modal 
weights). Different strategies could be chosen for the 
evaluation of modal weights. For instance, the tonal pro-
files resulting from the well-known probe-tone experi-
ments (Krumhansl, 1990) could be applied. For the mean-
time, I used simple summation of several factors such as 
rhythm value of the pitch and its weight in the hierar-
chical tree structures of metrorhythm and cadences. The 
MC was then defined as the measure of contrast of the 
modal weights of individual scale degrees.2 

2.3 Acoustical Stability of Intonation 

The stability of intonation of a certain scale degree is de-
fined as the reciprocal of the standard deviation of pitch 
across the occurrences in the performance. Then the indi-
vidual stabilities can be averaged to get the general stabil-
ity of intonation (SI). Or, instead, the averaged standard 
deviation ( s ) can be employed. 

3. SAMPLES AND PROCEDURE 

Three samples of sound recordings of the Lithuanian tra-
ditional monophonic vocal performances were compiled. 
The first one (denoted as S) contains 25 songs recorded in 
1930s, in Suvalkija (Southwestern Lithuania); from dif-
ferent male and female singers. It represents ethnomusi-
cal dialect of the region. The second and third samples 
(PZ and JJ) contain, respectively, 29 and 26 songs rec-
orded in the end of 20th century (1970s–1990s), in 
Dzūkija (Southern Lithuania), from the prominent male 
singers Petras Zalanskas and Jonas Jakubauskas. Thus 
these samples represent two typical ethnomusical idio-
lects of the region. 

                                                        
1  Concerning the mathematical procedure of DC calculation, see our 
other paper at FMA2013 (Ambrazevičius & Budrys, „Traces of Equidis-
tant Scale in Lithuanian Traditional Songs“). 
2 The mathematical procedure of MC calculation is detailed in Ambra-
zevičius, 2008: 165-166, and will be presented in more detail at 
FMA2013. 
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The structural pitches of the songs were measured. 
Praat software was applied. Then the scales of all songs 
were calculated based on the averages of occurrences of 
the scale degrees. 

4. RESULTS 

A positive correlation between DC and MC was found. 
The values of Pearson's r equal .42 (S), .43 (PZ), and .47 
(JJ). The correlations between SI and DC, and between SI 
and MC (or between s  and DC, s  and MC), are not that 
distinct. More exactly, they differ significantly for the 
three samples. The two idiolects from Dzūkija show neg-
ative values of the correlation coefficients: r( s ; DC) = –
.57; r( s ; MC) = –.53 (PZ); and r( s ; DC) = –.39; r( s ; 
MC) = –.21 (JJ). However, for the sample S, r( s ; 
DC) = –.07; r( s ; MC) = +.09 (JJ). 

5. DISCUSSION 

The positive correlation between the diatonic and modal 
contrasts supports the theoretical presumption that the 
strengthening of modal functions of scale degrees is in 
step with asymmetrization of equidistant scale, i.e., with 
the formation of diatonics. Importantly, the phenomenon 
is observed for geographically and historically not distant 
musical materials. For instance, here it was registered for 
individual vocal idiolects. Possibly, this manifests “mul-
timusicality”, in terms of modal thinking, and/or some 
relation of physiology/psychology of intonation to the 
modal features (in terms of MC) of the piece performed.  

The general trends of the interrelations between the 
stability of intonation and the diatonic and modal con-
trasts (the prevailing negative correlations between s and 
DC, MC) also seemingly supports the theoretical pre-
sumption that the development of mode (in terms of DC 
and MC) is accompanied by the acoustical stabilizing of 
intonation. However, the significant scatter of r values 
including even some small and “illogical” positive num-
bers, shows that there are robust additional phenomena at 
work. For instance, naturally, the perceived stability 
could be considered as being not of purely acoustical 
origin, but also modified by certain perceptual phenome-
na. One can refer to the observations of intonation of the 
tonal center in the traditional vocal performance: quite 
surprisingly, the intonation of the perceptually “most sta-
ble” tonal center (or, more exactly, the lower tonic) is 
frequently quite loose compared to the intonation of other 
scale degrees (Alexeyev, 1986: 67, etc.). 
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1. INTRODUCTION

During the last decade, a rapidly increasing amount of
work has been done in the area of Digital Humanities.
Conferences were established. Research programs were
launched. Departments and institutes were founded. Al-
though there is still much confusion and debate about the
essence of the field, some recurring themes can be ob-
served. It seems that much of the current effort goes into
creating research environments and infrastructures com-
bining large interoperable, harmonized data sets and user
friendly search and visualization tools that enable human-
ities researchers to search and explore the data and make
new, previously unimaginable, discoveries.

Among these humanities data sets, there are musical
data as well. Ethnomusicological archives have been dig-
itized. Many scores of important composers are currently
available in various digital formats. Massive amounts of
user tags from services such as Last.fm are available. This
enables data-rich research on music on a large scale.

The question is how to extract new knowledge from this
data. One approach is to use generic search and visualiza-
tion tools. Such tools enable discoveries in the data that
also could have been done ‘by hand’, but would take a
lot of time. For example, finding all occurrences of the
name ‘Joachim’ in Brahms’ letters, or finding all occur-
rences of the Landini cadence in the compositions of Gilles
Binchois. This kind of automatic retrieval is of course
very important, since it can save a tremendous amount of
time. However, the resulting knowledge is typically not of
computational nature. After being used, the computational
tool is put away. One could call this computer-aided, or
computer-assisted research.

Notwithstanding the importance of such tools, there is a
next level of integration of computational methods and mu-
sicological research. It is on this level that the current con-
tribution focuses. The core of this approach is to construct
computational models, or rather to perform computational
modeling. In contrary to the tool-scenario, the resulting
knowledge is expressed in computational terms.

On a theoretical level, methodology for this approach
has been proposed by Willard McCarty in his 2005 book
Humanities Computing. There are, however, not much
practitioners already following these research methods. In
this contribution, I will take McCarty’s rather abstract ap-
proach as point of departure and present some concretiza-
tions for doing computational ethnomusicology.

Tree$Graph$ Weighted$
pointset$

Feature$vectors$

Sequence$of$symbols$ $
…$

Figure 1: Examples of abstract data structures.

2. ABSTRACT DATA STRUCTURES AND
ALGORITHMS

Computer Science provides numerous abstract data struc-
tures and algorithms that operate on these data struc-
tures. Examples of data structures are sets, trees, graphs,
weighted point sets, sequences of symbols, vectors of fea-
ture values, etc. Some are depicted in Figure 1. Exam-
ples of algorithms are classification algorithms, Bayesian
inference algorithms, alignment algorithms, sorting algo-
rithms, etc., etc. A very important property of many of
these data structures and algorithms is that they are ab-
stract. E.g., symbols in a sequence could represent any-
thing: characters in words, words in sentences, notes in
melodies, chords in hymns, etc. Exactly this property en-
ables the inclusion of domain knowledge.

3. COMPUTATIONAL MODELING

Computational modeling of musical knowledge involves
expressing a musical problem in terms of abstract data
structures and algorithms. It is the creativity of the re-
searcher to find or design appropriate data structures and
algorithms for the musical problem at hand. The better
the musicological problem can be expressed in terms of
data structures and algorithms, the more relevant the re-
sults are from a musical point of view. As foreseen by
Leonard Meyer (1996): “I have no doubt about the value of
employing computers in such studies, not merely because
they can save enormous amounts of time but, equally im-
portant, because their use will force us to define terms and
traits, classes and relationships with precision – something
most of us seldom do.”

The general research cycle is as follows (Van Kranen-
burg et al., 2011):
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Algorithm INPUT	   OUTPUT	  

Formalized	  data	  
(songs,	  tales,	  ethnographic	  data,	  …)	  	  

Classifica<on	  
Similarity	  
Distance	  
Clustering	  
Etc.	  

Domain	  Knowledge	  /	  Hypotheses	   Interpreta<on	  

Figure 2: Research cycle for computational modeling.

1. Understanding the musical problem, which involves
studying relevant musicological literature, espe-
cially the specific discourse concerning the research
question at hand;

2. Designing musically meaningful data-structures and
algorithms: the computational model as hypothesis;

3. Interpreting the algorithmic output;

4. Revising the model in case of failure;

5. Integrating the results in the musicological dis-
course.

Especially steps 1 and 5 are often absent in studies that
can be found in the research area of Music Information Re-
trieval. Such studies are less relevant from the perspective
of musicology.

The data structures and algorithms that are developed
in the second step can be considered hypotheses. They re-
flect the current understanding of the musical phenomenon
in a formalized way. The formalization of data is a re-
search topic in itself. A computational data structure is a
model of – in our case – musical data. In the third step, the
hypotheses are ‘tested’ by interpreting the algorithmic out-
put. The fourth step is a key idea of McCarty’s approach:
knowledge gain is possible in cases where the model fails.
Therefore, these cases offer opportunities to improve the
model in the next iteration of the modeling.

The third step poses us for serious problems. The ques-
tion is: what to compare the output of an algorithm with?
For relatively simple questions it might be possible to col-
lect a set of examples that can be used as reference set or
ground-truth. This is common practice in fields such as
Music Information Retrieval, in which ground-truth data is
collected by inquiring musicological experts or by crowd-
sourcing. These data are considered the intended output
of the computational model and the model is evaluated in
terms of its ability to reproduce the ground-truth. From
a musicological point of view, a pitfall of this research
method is to mainly focus on accuracy rates, resulting in
algorithms that might be able to reproduce ground-truth,
but do not reveal any knowledge about the involved musi-
cal phenomena.

In most cases, however, mere collecting of proper
ground-truth data is already problematic. Reasons for this
include the multi-dimensional character of music and mu-
sical phenomena, lack of knowledge about the subject of
study, or differences in opinion in musicological discourse.

One approach to avoid these problems is to involve the
construction of ground-truth data in the research cycle, and
by making the assumptions behind the ground-truth ex-
plicit and questionable. Then, not only the algorithm will
be subject to revision in each iteration of the modeling, but
also the reference or ground-truth data. One step further
would be to employ the algorithmic output to explore and
explain the properties of empirical data.

4. TOOLS AND MODELS

A tool is supposed to function properly. Therefore, tool-
building complements modeling, in which, on the contrary,
failure is the main focus of interest. In each iteration of the
process of modeling, the model reflects the current under-
standing of a musical phenomenon in computational terms.
Construction of a tool based on that model necessarily in-
herits the limitations of the model. In many cases, it is im-
portant to understand the underlying model to make proper
use of the tool.

5. MUSIC

Some examples of ethnomusicological research that can be
addressed by taking a computational approach are: study-
ing the geographical differentiation of recitation on a large
scale, classification of folk song melodies, modeling oral
variation, finding common rhythmic or pitch patterns in
large bodies of music, and ultimately, testing hypotheses
on human musicality as such.

6. FUTURE WORK

The full potential of computational modeling has by far
not yet been realized. On the longer term, computa-
tional modeling could build a body of explicitly defined
(ethno)musicological knowledge, which would enrich and
complement traditional approaches.
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1. PROBLEM 

The paper presents a method of studying morphology of 
so-called “Polish rhythms”. This term stands for triple-
time rhythmic structures of decreasing rhythm condensa-
tion within a measure. They can be as simple as iambus 

   and ionicus a minore   (so-called “mazurka 
formula”), and as complex as in polonaise (   ).  

Such rhythms may and do appear in many repertoires, 
but nowhere is their significance as striking as in Polish 
(not only music) culture in which they function as a cru-
cial identity factor, a true symbol of Polishness. For ex-
ample, Polish national anthem is built almost exclusively 
of  such rhythms. However, they were also widely present 
in the European art music, from the “Polish dance” (cho-
rea polonica, Polnischer Tanz, baletto polacco, danza 
polacca)  of the 16th-17th century till the 19th century ma-
zurka and polonaise.  
The most spectacular export of “Polish rhythms” took 
place to Sweden where so-called “Polish dance” (polska) 
significantly contributed to the creation of the local musi-
cal idiom. “Polish dances” and “Polish rhythms” became 
an object of interest for Polish and Scandinavian (Swe-
dish, Finnish, Danish) music historians focused on histor-
ical aspect – e.g., Norlind (1911), Hławiczka (1967) -  as 
well as ethnomusicologists interested mostly in origins 
and morphology of these rhythmic structures – e.g. Ala-
Könni (1956), Aksdal (2003). However, approaches ap-
plied in both subdisciplines of musicology were rather 
descriptive than strictly analytical. To reconstruct the his-
torical development of the analyzed music phenomenon, 
a quantitative method seemed the best solution. 

2. MATERIAL 

The proposed method of  analysis was developed to help 
reveal changes in morphology of “Polish Rhythms” 
throughout the centuries, in all kinds of music repertoire 
(Dahlig-Turek, 2006). It was applied to 791 musical piec-
es: from the 16th lute and organ tablatures till 19th century 
(Chopin’s mazurkas and polonaises), with a few exam-
ples from the early 20th century, as well as selected folk 
dance-tunes notations from the 19th - 20th century.  

All the material was taken from printed collections 
edited by specialists, thus freeing the author-
ethnomusicologist from possible consequences of her in-
competence in transcribing original sources. 

3. METHOD 

The applied method is a “do-it-yourself” solution which 
does not require any particular experience in computer-
aided research, as it does not go beyond the functionalities 
offered by MSOffice (Word and Excel). 

Rhythm of analyzed music pieces has been recorded in 
the form of a digital code in which rhythmic organisation 
of metric unit was the basic portion of information. The 
main body of the “alphabet” contains nine items: 

 
with possible extension of variants, e.g. 

Rhythmic groups extending over more than one beat 
were substituted by a combination of the above units or 
their variants.  

Sequences of numbers replaced the original rhythm 
notation, thus changing notes into a quasi-text, e.g.: 
 

Rhythmic formula Traditional notation Encoding 

iambus          010100 

ionicus a minore 
(mazurka formula)           020101 

polonaise formula   060202 

 
Encoding was the most time-consuming part of the 

procedure, as it seems hardly possible to automatize the 
process of conversion. 
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In the first stage of the analysis, pertinent calculations 
were made to define two main rhythm parameters neces-
sary to characterize “Polish rhythms”: 
1. average density, i.e. the average number of impulses 

corresponding to a metric unit; 
2. descendentality, i. e. the difference between rhythm 

density in the first and last beat of a measure.  
For this purpose, the encoded text was converted into a se-
quence of numbers indicating the number of impulses on 
each beat, e.g.: 
 

Encoded measure Number of impulses per beat 
1st beat 2nd beat 3rd beat 

010100 1 1 0 
020101 2 1 1 
060202 3 2 2 

 
Presented in diagrams for music from different periods, 

these two parameters differentiate very well the examined 
repertoire and perfectly co-harmonise with its chronolo-
gy. In brief: 
- parameter of descendentality is crucial to distinguish 
“Polish” rhythms from others (e.g. in old German tabla-
tures in which so-called “Polnische Tänze” have a positive 
descendality while other  music pieces – negative); 
- the average density of rhythm differentiates historical 
strata of analyzed music: it clearly and consequently grows 
through centuries, as rhythms more complicated than iam-
bus (first mazurka formula, then polonaise formula with 
their variants) emerged. 

For the second stage of analysis, a classification of 
triple-time rhythms has been developed as a modified 
version of Bielawski’s proposal (1970). It departs from 
the obvious premise that a rhythmic formula within one 
bar contain in each beat: no impulse (0), one impulse (1), 
two impulses (2), three or more impulses (R). Additional 
auxiliary symbols were introduced for syncope (S) and 
punctuated rhythm extending over two metric units (Pp). 
Combinations of these symbols allowed the reduction of 
all the possible bar-structures to fewer types - as in the 
following example in which six different rhythms repre-
sent only three types: 
 

Encoding Rhythm type 
010100 110 
020101 211 
040101 211 
060202 R22 
070402 R22 
080202 R22 

 
The classification was then used in matrices present-

ing frequency of all the newly defined types of rhythmic 
figures in the whole analyzed repertoire.  

Placing all the music pieces in a common matrix in 
chronological order, one can follow in details the changes 

in rhythmic figures piece by piece, period by period. 
Thus, rhythmic matrices give the precise view of the 
rhythmic properties of compositions over centuries.  

For more spectacular results, the numbers indicating 
frequency of particular rhythms were substituted by 
graphic symbols of different intensity. 

4. RESULTS 

The applied method made it possible to base the discus-
sion on “Polish rhythms” on quantitative  (“objective”) 
data instead of descriptive, often emotional (“subjective”) 
statements typical of many previous studies. It helped 
verify some of the former hypotheses relating to the peri-
odisation of old repertoire. 

The method allows detailed examination of the 
changes in rhythm – either historically, between reper-
toires of different epochs, or geographically, between re-
gions and countries. Applied to the music from different 
centuries, it revealed the beginnings, peaks and declines 
of specific rhythmic structures. Its application to the eth-
nomusicological sources helps understand relations be-
tween folk music and art/popular music of different peri-
ods. 

Recently the method will be used to study the Scandi-
navian phenomenon of polska dances and their rhythmic 
relation to Polish folk music. 
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