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Abstract. We investigate the Priestley dual (E ∗)? of the lattice E ∗ of r.e. sets modulo
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true arithmetic as well as with dynamic properties of r.e. sets are pointed out. Illustrations
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0. Introduction

The latticeE ∗ = E /finof r.e. setsmodulo finite differences has seenmuch effort invested in its study
over the last half-century or so. A variety of methods is employed in its investigation. Duality for
distributive lattices has to my best knowledge not been among these methods even though adjacent
branches of recursion theory have brushed shoulders with duality — see Nerode [30] and the more
recent Selivanov [35]. It’s one thing when an approach path is abandoned, not having been found
particularly promising, but to have never tried what has for quite some time been a fairly standard
instrument in analysis of individual distributive lattices, that is something I find surprising.

There is a certain kinship between E ∗ and the lattice Σ1/T of Σ1 sentences modulo provability
in a consistent formal theory T such as Peano Arithmetic PA. This kinship manifests itself
in the isomorphism between E and Σ1(x)/TA, the lattice of Σ1 formulas with a single free
variable modulo equivalence in �, or, equivalently, modulo full True Arithmetic TA. In other
words, r.e. sets are like Σ1(x) formulas. When you quotient E by finite differences, you are
in fact strengthening TA by the requirement that x be non-standard, for non-standard numbers are
precisely those whose membership in an r.e. set is not affected by finite variations of the latter.
Thus E ∗ � Σ1(x)/(TA + x > �).

Our interest in the (Priestley) dual space (E ∗)? of E ∗ was motivated by progress in Σ1/T
where the dual (or at least the underlying ordering of prime filters of Σ1/T) is known as the E-tree
and has been around for a long time — see Jensen & Ehrenfeucht [14, § 3] or Simmons [38].
Throughout the paper we point out similarities and differences between (E ∗)? and E-trees of
formal theories.

The typical prime filter of Σ1/T is the collection of Σ1 sentences holding in a given model
of T . Similarly, a prime filter of E ∗ is the collection of Σ1(x) formulas that hold in a model of TA
with a distinguished non-standard element x. Thus models of TA + x > � play a role in the study
of (E ∗)? similar to the role of models of T for the E-tree.
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While the subject matter of the present paper was inspired by developments in provability
theory, none of the results herein have any immediate connection to provability. The choice of TA
as the umbrella theory is to some extent arbitrary and reflects personal preferences. Another
obvious candidate would be TA2 = Th∀∃� where certain model-theoretic issues are simpler than
with full TA (see e.g. Hirschfeld [11] or Hirschfeld &Wheeler [13]), while Σ1(x) formulas behave
exactly the same — at least as long as x does not vary. Schmerl & Shavrukov [34] show, among
other things, some positive influence on investigations into models of TA2 from connections we
pursue in the present paper.

With the dual space on the one hand and non-standard elements on the other, many of our
arguments exhibit a geometric/visual flavour — we include many illustrations to emphasize this
point. Oftentimes this turns out to relate to what Harrington & Soare [8] call dynamic properties of
r.e. sets (or arrangements thereof). These properties are hallmarked by being formulated in terms
of speed at which elements enter an r.e. set, in other words, a key role is given to enumeration
stages. Through relations such as ‘at most total recursively later than’, a model of TA allows for
coarser measurement of when a generic element enters a given r.e. set than do the natural numbers.
This allows some dynamic properties to find their model-theoretic equivalents, as well as gain
alternative proofs of known equivalences to lattice-theoretic properties.

Our ambition in this enterprise is to suggest that bringing together r.e. sets, duality, andmodels
of arithmetic can lead to some useful synergy. Keeping accessibility in mind, we spend somewhat
more ink on the basics of these three ingredients than would be appropriate for readers well versed
in respective fields.

We start section 1 with a brief introduction to Priestley duality for bounded (that is, possessing
0 and 1) distributive lattices. Next come some first basic properties of (E ∗)?. Most of the section is
taken up by examples of dual-space characterizations of prominent classes of r.e. sets (or relations
between those) such as r-maximal sets and major subsets.

Section 2 introduces models of TA into the fray. After recalling preliminary facts and
definitions and articulating the connection between points of (E ∗)? and models of TA + x > �,
we present a characterization of simple sets via end-extensions of models. This exploits earlier
ideas of Hirschfeld, Wilkie, and Schmerl — unlike (E ∗)?, non-standard elements of r.e. sets do
have a history.

Section 3 turns to dynamic properties of r.e. sets using models of arithmetic as an instrument.
With the help of an old lemma of Wilkie, we treat major and small subsets, re-obtaining the
Harrington–Soare dynamic charaterization of the latter. We also produce a model-theoretic equiv-
alent to prompt simplicity. It turns out that the behaviour of promptly simple r.e. sets in models
of TA is not unlike that of inconsistency statements in models of formal theories. Along the way
we isolate the class of hinged prime filters which is also going to play a part in the succeeding
section.

In section 4 we look at index sets of prime filters of E ∗ (= points of (E ∗)?). This section
is directly inspired by the earlier ascent of the E-tree in Shavrukov & Solovay [36]. We establish
the key Jump-the-Gap Lemma which relates the Turing complexity of hinged prime filters in an
inclusion chain to the ordering of that chain, and draw some consequences for order types of
branches through (E ∗)?.

Our line of approach to E ∗ should, I believe, at least be a plentiful source of new questions.
Some evidence to that effect is presented in section 5.

I would like to thank Peter Cholak, Othman Echi, Ali Enayat, James Schmerl, Andrea Sorbi,
Michael Stob, Marcus Tressl, and Alex Wilkie for helpful and stimulating input, and Vladimir
Nikolaevich Krupskiı̆ for a very timely comment.

June 28, 2015, 17:54 CEST
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1. Priestley duality for E ∗

1.1. Convention. Throughout this paper, L will always denote some non-trivial (0 , 1) bounded
distributive lattice.

1.A. General Priestley duality

The Priestley dual L? of L is a (partailly) ordered topological space (P L, ≤, π), where
— P L is the set of proper (i.e. not containing 0) prime filters of L;

— ≤ is inclusion: p ≤ q ⇔ p ⊆ q;

— { x? − y? | x, y ∈ L } is a base for π, where
— x? = { p ∈ P L | x ∈ p } is the picture of x (in L?)

(see e.g. Davey & Priestley [3, Chapter 11]). One has x ∈ p ⇔ p ∈ x?.
Caution: The ordering ≤ on L? above coincides with those in Priestley [32] or Cornish [2],

but is opposite to the one in Davey & Priestley [3].
The topology π is the Priestley (a.k.a. patch or constructible) topology. It should not be

confused with the spectral (a.k.a. hull-kernel or Zariski) topology σ which has { x? | x ∈ L }
for a base. The topological space Spec L = (P L, σ), the spectrum of L, provides another format
for duality that predates Priestley duals. Cornish [2] explains the relation between Priestley and
spectral (a.k.a. Stone) duality for bounded distributive lattices. The difference between the two
versions is almost linguistic, but the choice between them does influence the selection, or at least
the relative priority of questions that come to the fore. Our preference for the Priestley format
may be a matter of familiarity perceived as convenience.

An ↑-set is any subset of P that is upwards closed w.r.t. ≤. ↓-sets are defined symmetrically.
The key property of Priestley duals is that L is isomorphic to the lattice of π-clopen ↑-subsets of L?

via x 7→ x?. In particular, pictures of elements of L exhaust π-clopen ↑-subsets of L?.
A Priestley (a.k.a. ordered Boolean or CTOD) space is an ordered topological space (P, ≤, τ)

which is compact and totally order-disconnected:

— for each p, q ∈ P such that p � q there is a τ-clopen ↑-set U such that p ∈ U = q.

All Priestley duals are Priestley spaces, and each Priestley space is order-homeomorphic to some
Priestley dual. Order-homeomorphisms between ordered topological spaces are mappings that are
at the same time homeomorphisms and poset isomorphisms. (The reader may find it amusing to
construct two Priestley spaces which are both homeomorphic as spaces and isomorphic as posets,
but not order-homeomorphic.) Priestley spaces are Hausdorff and satisfy a beefed-up version of
total order-disconnectedness that we are going to find useful:

— for each pair Y , Z of τ-closed subsets such that p ≤ q holds for no p ∈ Y and q ∈ Z
there is a τ-clopen ↑-set U ⊇ Y which is disjoint from Z . (See Lemma 11.21(ii)(b) in
Davey & Priestley [3].)

Y
Z

U
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For Y ⊆ P, the least ↑-set containing Y is denoted ↑Y . ↓Y has the symmetric definition. Typical
examples of closed sets in Priestley spaces are singletons, ↑{p}, ↓{p}, and, more generally, ↑C
and ↓C where C is any closed set.

1.2. Exercise. Any maximal chain in a Priestley space is closed.

Hint. Given a point p outside the maximal chain µ, there is a point q ∈ µ incomparable with p.
There is a clopen set C 3 p disjoint from the closed set ↑{q} ∪ ↓{q} ⊇ µ.

Another useful property of Priestley spaces/duals is that any non-empty closed set C contains
points that are ≤-minimal in C — as well as points that are maximal in C (Exercise 11.15 in [3]).
The sets of those are denoted by minC and maxC. Since x? is an ↑-set for each x ∈ L, we have
max x? = x? ∩max L?.

This subsection has (almost) been limited to bare necessities so that we can address our
central example without having to go through lengthy preliminaries. Further instalments of duality
generalities will be released as needed.

1.B. R.e. sets

E ∗ = E /fin is the lattice of r.e. sets modulo the ideal of finite sets (see Soare [41, Chapter X]).
To our best knowledge, the (Priestley) dual (E ∗)? of E ∗ has not previously been considered in the
literature. Points of (E ∗)? will henceforth be called primes.

We freely confuse elements of E ∗ with individual r.e. sets representing the mod-finite equiv-
alence classes. For r.e. X and Y one has X? = Y? ⇔ X =∗ Y where =∗ stands for finite difference.
X ⊂∞ Y is short for X ⊆ Y & X ,∗ Y . For X ⊆ ω, X denotes the complement ω − X .

1.C. Reduction Principle

L satisfies the Reduction Principle if

∀x, y ∈ L ∃x ′, y′ ∈ L (x ′ ≤ x & y′ ≤ y & x ′ ∨ y′ = x ∨ y & x ′ ∧ y′ = 0).
(Equivalently, L is separated — see Lachlan [18]. Monteiro [29, p.26] considers Ore’s Axiom, the
antipode of the Reduction Principle.) The Reduction Principle is clearly preserved by quotients.

1.3. Fact (see Soare [41, Corollary II.1.10]). E and hence E ∗ satisfy the Reduction Principle.

In bounded distributive lattices, the Reduction Principle implies that the dual of the lattice is an
↑-growing forest: the set of predecessors of any point is a chain. This is well known, but we still
spell out the proof for didactical reasons:

1.4. Corollary. (E ∗)? is an ↑-growing forest.

Proof. Suppose q and r were incomparable primes. Using total order-diconnectedness of (E ∗)?,
fix r.e. sets X and Y such that q 3 X < r and q = Y ∈ r . The Reduction Principle supplies r.e.
X ′ ⊆ X and Y ′ ⊆ Y such that X ′ ∩ Y ′ = ∅ and X ′ ∪ Y ′ = X ∪ Y . Now

X ′ ∪ Y ⊇ X ′ ∪ Y ′ = X ∪ Y ∈ q = Y,
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so X ′ ∈ q by primeness of q. Similarly, Y ′ ∈ r . But as X ′ ∩ Y ′ = ∅, there can be no proper prime
filter including both q and r . Thus the set of predecessors of any prime is a chain.

The Reduction Principle also holds in Σ1/T , so essentially the same proof works for the E-tree
(Jensen & Ehrenfeucht [14, Theorem 6]), partially justifying that name.

The distributive lattice equivalent of the forest-likeness of the dual space is relative normality:

∀x, y ∈ L ∃x ′, y′ ∈ L (x ′ ≤ x & y′ ≤ y & x ′ ∨ y = x ∨ y′ = x ∨ y & x ′ ∧ y′ = 0).
Monteiro [29, Définition I.5.1 and Remarques on pp.25–27] introduced the antipode of this prop-
erty characterizing lattices of closed subsets of hereditarily normal topological spaces among all
topological spaces.

1.5. Fact (Monteiro [29, Théorèmes V.3.1–2]). L is relatively normal if and only if L? is ↑-forest-
like.

The Reduction Principle implies relative normality. The converse does not generally hold (Mon-
teiro [29, p.27]), although the two properties are equivalent for finite distributive lattices (see
Lindström & Shavrukov [24, Lemma 1.2]).

Unlike relative normality, the Reduction Principle cannot be expressed as a property of the
ordering of the dual without involving the topology.

1.D. Recursive sets

Wewould like to be able to talk about pictures in (E ∗)? of complements and differences of r.e. sets.
This is possible because the Priestley dual of L subsumes the Stone representation of BL, the
Boolean envelope of L (a.k.a. free or minimal Boolean extension). The extension L ↪→ BL is
universal for homomorphisms of L to Boolean lattices. Each element of BL is equal to the value
of some Boolean term applied to a tuple of elements of L.

1.6. Fact. (a) If L? = (P L, ≤, π) then (BL)? = (P L,=, π).
(b) L is Boolean iff L = BL iff L? is an antichain.

Comment. (a) See Davey & Priestley [3, 11.17]. Throwing away the ordering on L?, one obtains
the Stone dual space of BL.

(b) follows from (a).

It follows from clause (a) that for a Boolean term t(·) and ~x ∈ L we have (t(~x ))? = t(~x?) where
Boolean operations on the r.h.s. are understood as set operations.

1.7. Lemma. An r.e. set R is recursive if and only if R? is a ↓-set.

R?
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6 V. Yu. Shavrukov

Proof. (if) If R? is a ↓-set then R? = R
?must be a clopen ↑-set. Hence R is r.e., so R is recursive.

(only if) For recursive R, R? is an ↑-set because R is r.e. Thus R? is a ↓-set.

Every infinite r.e. set X has an infinite recursive subset R (see Soare [41, Exercise II.1.21]). This
means that X? ⊇ R?. With R? being, by Lemma 1.7, a non-empty l-set, we conclude

X?

R?

1.8. Corollary. X? intersects min(E ∗)? for every infinite r.e. X .

The analogue of this corollary fails in the E-tree.
The complemented elements of the lattice Σ1/T are sentences that are ∆1 in T . Non-trivial

instances of these are present if and only if T is Σ1-ill (see Lindström [22, Exercise 2.25]).

1.E. Minimal and minimax primes

The Boolean lattice R ∗ of recursive sets mod finite is a sublattice ofE ∗. Accordingly, the recursive
elements of each prime form an ultrafilter of R ∗. Each minimal prime is generated by its recursive
elements:

1.9. Lemma. p ∈ min(E ∗)? if and only if

p = { r.e. X | X ⊇ R for some recursive R ∈ p }.

Proof. (if) Any prime q ≤ p will have to contain all recursive elements R ∈ p because R? are
↓-sets. Hence p ≤ q.

(only if) Given any ultrafilter u of R ∗, we verify that p = { r.e. X | X ⊇ R ∈ u } is a prime:
If p 3 U ∪ V ⊇ R ∈ u, then let U ′ ⊆ U and V ′ ⊆ V be disjoint r.e. sets corresponding to U and V
by the Reduction Principle. Then U ′∪ V ′ = U ∪ V ⊇ R, and R ∩U ′ and R ∩ V ′ are recursive sets
partitioning R. Hence one of them must be an element of u. Therefore one of U and V belongs
to p.

A prime is minimax if it is both minimal and maximal in (E ∗)?. Such primes exist — the
construction below is due to Hirschfeld [11, 4.5] (or see Hirschfeld & Wheeler [13, 9.6(ii)]).

1.10. Proposition. For any infinite r.e. X there is a minimax prime p ∈ X?.

p
X?

Proof. We construct a sequence (Ri)i∈ω of infinite recursive sets with R0 ⊆ X and Ri+1 ⊆ Ri and
such that (Ri)i∈ω decides every r.e. set: Ri+1 ⊆ Wi or Ri ∩Wi is finite:
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At each step, see if Ri ∩ Wi is infinite and if so, let Ri+1 be an infinite recursive subset of
Ri ∩Wi. Otherwise, put Ri+1 = Ri.

Clearly, {Ri}i∈ω generates an ultrafilter of R ∗. Let p be the minimal prime including {Ri}i∈ω.
Then p ∈ R?0 ⊆ X? and p ∈ min(E ∗)?, for p is generated by recursive sets (Lemma 1.9). Finally,
p ∈ max(E ∗)? because for each Wi, p either contains Wi or a recursive set disjoint from Wi.

The construction above readily adapts to show that (E ∗)? sports 2ℵ0 many minimax primes. See
also Hirschfeld [12, 5.5], where 2ℵ0 many primes are detected within an even narrower class.

1.F. Friedberg splittings

A partitioning {A0, A1} of an r.e. set B into two r.e. halves is called an r.e. splitting of B. Such
a splitting is a Friedberg splitting if for each r.e. X one has that X − B is r.e. if at least one of
X − Ai is. Any non-recursive r.e. set admits a Friedberg splitting (see Soare [41, Theorem X.2.1]).

The following example is prompted by Hirschfeld & Wheeler [13, 8.21].

1.11. Proposition. An r.e. splitting {A0, A1} of B is a Friedberg splitting if and only if for all
primes p < B? 3 q with q ≥ p there are ri ∈ A?i such that ri ≥ p for both i.

B?

p

q

A?1p

r1
A?0

r0

Proof. (if) Suppose X − B failed to be r.e., so X?− B? is not an ↑-set. Then there are p ≤ q with
p ∈ X? − B? = q. This means that p ∈ X? while p < B? 3 q. Our assumption supplies ri ∈ A?i
with ri ≥ p. So ri < X?− A?i whereas p ∈ X?− A?i . This shows that both X − Ai are not r.e. Thus
{A0, A1} is a Friedberg splitting.

(only if) Suppose p < B? and there is no r0 ≥ p with r0 ∈ A?0 . By total order-
disconnectedness, there must then exist an r.e. set X disjoint from A0 such that p ∈ X?. Then
X − A0 is r.e. Hence by the assumption so is X − B. Therefore, as p ∈ X?− B? and X?− B? is an
↑-set, there can be no q ≥ p with q ∈ B?. This establishes the property on the r.h.s.

The example above, together with the existence of Friedberg splittings, implies that the ↑-growing
forest that is (E ∗)? is properly branching. In other words, (E ∗)? is not ↓-forest-like.

The same holds for the E-tree, for Friedberg splittability holds for Σ1 sentences as well —
this follows from Theorems 0 and 3 in Hájek [7].

1.G. Simple sets

Recall that an r.e. set is simple if it intersects every infinite r.e. set.

1.12. Proposition. An r.e. set S is simple if and only if S? ⊇ max(E ∗)?.

S?
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Proof. (if) The picture D? of any infinite r.e. set D intersects max(E ∗)?. Hence S? ∩ D? , ∅.
Thus S ∩ D is infinite and in particular non-empty.

(only if) If S? fails to cover max(E ∗)? then there is a prime p ∈ max(E ∗)?− S? so that p � r
for any r ∈ S?. Both S? and {p} being closed, by total order-disconnectedness there is a clopen
↑-set D? — where D is r.e. — such that p ∈ D? and D? ∩ S? = ∅. Hence D ∩ S is finite. Thus
D − S is an infinite r.e. set disjoint from S, so S is not simple.

An r.e. subset A ⊆ B is simple in B if A intersects every infinite r.e. subset of B.

1.13. Proposition. For r.e. A ⊆ B, A is simple in B if and only if max A? = max B?.

B?
A?

Comment. The argument is a straightforward adaptation of the one for Proposition 1.12.

In lattices Σ1/T , analogues of simple sets are the Σ1 sentences which are Π1-conservative over T :
for each Π1 sentence π, if T |− σ → π then T |− π (see Lindström [22, Chapter 5]). Similarly,
a Σ1 sentenceσ is the counterpart of a ‘simple subset’ of another Σ1 sentence τ such thatT |− σ → τ

if σ is Π1-conservative over T + τ.
In Σ1/T there always are doubly conservative Σ1 sentences, that is, σ is Π1-conservative and

¬σ is Σ1-conservative over T (see Lindström [22, Theorem 5.3(a)]). The picture of σ in the E-tree
covers all maximal but none of the minimal points. Therefore the E-tree knows no minimax points.

1.H. Maximal sets

An r.e. M ismaximal if for each r.e. superset S ⊇ M one either has S =∗ ω or S =∗ M . (Maximality
of r.e. sets is not to be confused with maximality of primes.)

1.14. Proposition. An r.e. set M is maximal if and only if M? consists of a single prime.
That prime, called the heel of M , has to be minimal and cannot be maximal.

M?

Proof. (if) For any r.e. S ⊇ M we must have S? ⊇ M?. So when M? is a singleton we either
have S? = (E ∗)? in which case S =∗ ω, or S? = M? meaning S =∗ M .

(only if) If there are two distinct primes p and q in M? then w.l.o.g. p � q. Hence there is
an r.e. S with p ∈ S? = q. Then M? $ S? ∪ M? $ (E ∗)?. Thus S ∪ M is a superset of M with
S ∪ M ,∗ M and S ∪ M ,∗ ω. So M cannot be maximal.

Let M? = {p}. p is minimal because M? is a ↓-set. Since each maximal set is simple,
p cannot be maximal by Proposition 1.12.
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Principal ideals (M] ofE ∗withmaximal M aremaximal and, in particular, prime. Proposition 1.14
also tells us that heels of maximal sets are isolated in (E ∗)?. We shall see in Corollary 1.34 that
all principal prime ideals and isolated points of E ∗ stem from maximal sets.

1.I. Quotients, ideals, filters

At this point, we would like to review the duality theory of congruences, ideals, filters and quotients
in general bounded distributive lattices.

1.15. Fact (see Davey & Priestley [3, 11.32]). There is a one-one correspondence between non-
empty closed subsets of L? and proper congruences on L given by

C 7→ θC =
� (x, y) ∈ L2 �

x? ∩ C = y? ∩ C
	
.

Under this correspondence, (L/θC)? is order-homeomorphic to C with inherited order and topol-
ogy.

Suppose I is an ideal of L. Put I? =
⋃

x∈I x?. Symetrically, put F? =
⋂

y∈F y? for any filter F
of L. Note that I? is open, F? is closed, and both of them are ↑-sets.

Let a ∈ L. Then (a] and [a) denote the principal ideal and the principal filter corresponding
to a respectively. Observe that (a]? = [a)? = a?.

If p is a prime filter then p⊥ denotes the complementary prime ideal.

1.16. Fact (Davey & Priestley [3, Exercise 11.17]). Let I be an ideal in L.

(a) I is principal if and only if I? is clopen.

(b) I is prime if and only if I? is ↑-directed if and only if I? = ↓{p} for some p ∈ L?.

(c) I is maximal if and only if I? = {p} for some p ∈ min L?.

In clauses (b) and (c) we have I = p⊥.

Hint. In clause (b), to obtain ↑-directedness from primeness, assume there are p, q < I? with no
s ≥ p, q outside I?. Then there is an a ∈ L such that a? 3 p and a? ∩ (↑{q} − I?) = ∅. There is
a b ∈ L such that b? 3 q and b? ∩ (a? − I?) = ∅. Thus a and b witness the failure of primeness
of I.

1.17. Fact. (a) Let I be an ideal of L. Then (L/I)? is order-homeomorphic to I?.

(b) Let F be a filter of L. Then (L/F)? is order-homeomorphic to F?.

(c) Let a < b be elements of L. Then the dual of the interval [a, b] is order-homeomorphic
to b? − a?.

Comment. (a) is implicit in Proposition 13 of Priestley [32]. The prime filters of L/I are those
prime filters p of L that do not intersect I. Equivalently, p < I?.

(b) is symmetric to (a).
(c) follows from (a) and (b) because the interval [a, b] of L is isomorphic to the double quotient

(L/(a])/[b).
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1.J. r-maximal sets

L is local if x ∨ y = 1 always implies x = 1 or y = 1.

1.18. Lemma. L is local if and only if L? has a least point.

Proof. (if) If x?∪ y? = L? then the least point of L? is w.l.o.g. an element of x?. Hence x? = L?

because x? is an ↑-set. So x = 1.

(only if) Suppose p , q were two distinct minimal points of L?. By total order-
disconnectedness there is a clopen ↑-set x? such that p ∈ x? = q. Since x? is closed, there
is also a clopen ↑-set y? such that x? ⊆ y? = p. Thus x , 1 , y whereas x ∨ y = 1. So L cannot
be local.

(E ∗)? is not local because there are many minimal primes. The lattice Σ1/T is local if and only if
T is Σ1-sound. Thus (E ∗)? sooner resembles the E-tree of a Σ1-ill theory than that of a Σ1-sound
one.

Maximality of r.e. sets can be generalized in two orthogonal directions. The first one of these
is embodied by r-maximal sets: An r.e. set Q is r-maximal if no recursive set splits Q into two
infinite subsets. All r-maximal sets are simple.

L∗(A) denotes the interval [A, ω] of E ∗.

1.19. Proposition. Let Q be an r.e. set. The following are equivalent:

(i) Q is r-maximal;

(ii) L∗(Q) is local: X ∪ Y ∪Q = ω ⇒ X ∪Q =∗ ω or Y ∪Q =∗ ω;

(iii) Q? ∩min(E ∗)? is a singleton.

Q?

Proof. (ii)⇔ (iii) is Lemma1.18, for the subspaceQ?of (E ∗)? is the dual ofL∗(Q) byFact 1.17(a).
(iii)⇒ (i) Let Q? ∩ min(E ∗)? = {p}. Given a recursive R, we may assume p ∈ R? —

otherwise replace R by R. But then Q? ⊆ ↑{p} ⊆ R?, thus Q ⊆∗ R, so R fails to split Q.

(i)⇒ (ii) Consider r.e. X and Y with X ∪ Y ∪Q =∗ ω. By the Reduction Principle there is a
recursive R such that R ⊆ X ∪ Q and R ⊆ Y ∪ Q. By the r-maximality of Q we have Q ⊆∗ R or
Q ⊆∗ R. In the former case Q ⊆∗ R ⊆ X ∪ Q entails Q ⊆∗ X , or X ∪ Q =∗ ω. The other case is
symmetric.

Since r-maximal sets Q are simple, Q? does not intersect max(E ∗)?. Thus the existence of
non-maximal r-maximal sets tells us that in (E ∗)?, there are primes that are neither minimal nor
maximal. Also note that by relative normality of (E ∗)? it follows that Q? is a rooted tree. In this
respect it resembles the E-tree of a Σ1-sound formal theory.
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1.20. Definition. Let Q be r-maximal. The unique minimal prime p < Q? is called the heel of Q.

1.K. Hyperhypersimple sets

The second generalization of maximal sets are the hhsimple sets. An r.e. set H is hhsimple if
L∗(H) is a non-trivial Boolean lattice. For our purposes, this is going to serve as the definition.
See Lachlan [19, Theorem 3] or Soare [41, Corollary X.2.7] for its equivalence to the original one.
All hhsimple sets are simple.

1.21. Proposition. An r.e. set H is hhsimple if and only if ∅ , H? ⊆ min(E ∗)?.
In this case, max(E ∗)? ⊆ H?.

H?

Proof. Seeing as H? is the dual of L∗(H), it follows from Fact 1.6(b) that hhsimplicity of H is
equivalent to H? being a non-empty antichain. Since H? is a ↓-set, this antichain can only consist
of minimal primes.

None of the primes in H? are maximal because H is simple.

1.22. Definition. A branch through (E ∗)? is a maximal chain in (E ∗)?.

1.23. Corollary. Let H be hhsimple and let b be any branch through (E ∗)? whose least prime p
lies outside H?. Then p has an immediate successor on b.

Proof. The immediate successor is b ∩min H?.

1.L. D-hyperhypersimple sets

Given an r.e. set A, Herrmann & Kummer [10, Definition 2.3] define

D∗(A) = �
B ∈ L∗(A) �

B − A is r.e.
	
.

Then D∗(A) is an ideal ofL∗(A). They further put C (A) = L∗(A)/D∗(A).
A isD-hhsimple if C (A) is non-trivial and Boolean. All hhsimple sets are D-hhsimple. Other

examples of D-hhsimple sets are provided, but not exhausted by non-recursive halves of splittings
of hhsimple sets (Lerman & Soare [21, Theorem 2.15] and Herrmann & Kummer [10, p. 71]).

1.24. Definition. Let A be r.e. The shadow of A is the closed ↓-subset ↓ A? − A? of (E ∗)?.
In other words, the shadow is the collection of all those primes that lie outside A? but see a prime
in A? above.

1.25. Lemma. (C (A))? is order-homeomorphic to the shadow of A for any r.e. A.

Proof. We first note that the ideal D∗(A) ofL∗(A) consists of those r.e. B ⊇∗ A whose picture B?

is disjoint from the shadow of A. Indeed, suppose B − A is r.e. Then any prime p in the shadow
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12 V. Yu. Shavrukov

of A cannot be an element of B?, for otherwise B? − A? would not be an ↑-set. Conversely, if
B? ⊇ A? is disjoint from the shadow of A then B? − A? must be an ↑-set.

Given a prime r < A? outside the shadow of A, there is a clopen ↑-set B? 3 r such that B? is
disjoint from A? because r � q for all q ∈ A?. B? is then also disjoint from the shadow of A.
Since B − A =∗ B is r.e., A ∪ B ∈ D∗(A).

Therefore (D∗(A))?, as a subspace of A?, the dual ofL∗(A), is order-homeomorphic to ↓ A?.
By Fact 1.17(a), the dual of C (A) = L∗(A)/D∗(A) is then order-homeomorphic to ↓ A?− A?, the
shadow of A.

↓ A? − A?

(D∗(A))?A?

1.26. Proposition. An r.e. D is D-hhsimple if and only if the shadow of D is non-empty and
consists of minimal primes only.

D?

Proof. C (D) is non-trivial and Boolean if and only if (C (D))? is a non-empty antichain
(Fact 1.6(b)). The shadow of D is a ↓-set order-homeomorphic to (C (D))?. It is an antichain if
and only if it consists of minimal primes only.

1.27. Corollary. Let D be D-hhsimple and let b be a branch through (E ∗)? that intersects D?

but whose least prime p lies outside D?. Then p has an immediate successor on b.

There are no analogues of maximal, hhsimple nor D-hhsimple sets in Σ1/T , for no non-trivial
interval of Σ1/T , being itself isomorphic to Σ1/S for some consistent theory S, can admit primes
that are minimax in that interval.

1.M. Major subsets

When A ⊂∞ B are r.e., A is called a major subset of B if B ∪ X = ω ⇒ A ∪ X =∗ ω for each
r.e. X . The equivalence (i)⇔ (ii) of the following proposition is well known (seeMaass & Stob [28,
Lemma 2.1]), as is the fact that major subsets are simple subsets.

1.28. Proposition. For r.e. A ⊂∞ B, the following are equivalent:

(i) A is a major subset of B;

(ii) R ⊆ B ⇒ R ⊆∗ A for each recursive R;

(iii) A? ∩min(E ∗)? = B? ∩min(E ∗)?;
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(iv) A?∩min(E ∗)? = B?∩min(E ∗)? and A?∩max(E ∗)? = B?∩max(E ∗)?. In particular,
A is simple in B (Proposition 1.13).

B?
A?

Proof. (i)⇒ (ii) R ⊆ B ⇒ R ∪ B = ω ⇒ R ∪ A =∗ ω ⇒ R ⊆∗ A.
(ii)⇒ (iii) Let p ∈ B? ∩ min(E ∗)?. By total order-disconnectedness there is an r.e. X such

that B? ⊆ X? = p. Note that B ∪ X =∗ ω. By the Reduction Principle there must be a recursive
R ⊆ B with R ⊆ X . By (ii), R ⊆∗ A. Observe that p ∈ R? because p < X?. Hence p ∈ A?.

(iii)⇒ (i) Suppose B ∪ X = ω with X r.e. Then (B ∪ X) ∩ min(E ∗)? = min(E ∗)?.
By clause (iii), (A ∩ min(E ∗)?) ∪ (X ∩ min(E ∗)?) = min(E ∗)?. Both A? and X? being ↑-sets,
A? ∪ X? = (E ∗)?, so A ∪ X =∗ ω. Thus A is major in B.

(iv)⇒ (iii) is trivial.
(ii) & (iii)⇒ (iv) Suppose there was a maximal prime in B?− A?. Then A is not simple in B

by Proposition 1.13. There is then an infinite subset R ⊆ B disjoint from A. We may assume that
R is recursive. But this contradicts (ii).

1.29. Fact (Maass & Stob [28]). If A is a major subset of B and A′ is a major subset of B′, then
the intervals [A, B] and [A′, B′] of (E ∗)? are isomorphic.

We letM∗ denote the common isomorphism type of major intervals. According to Fact 1.17(c),
the dual (M∗)? is order-homeomorphic to any subspace of (E ∗)? of the form B? − A? where A
is major in B.

In the E-tree, clause (iii) fails to imply (iv) of Proposition 1.28 because Corollary 1.8 does
not hold in Σ1/T . Stob [44] calculates the ∀∃ fragment of the 1st order theory ofM∗. It turns out
to coincide with that of any lattice of the form Σ1/T where T is a Σ1-ill formal theory (Lindström &
Shavrukov [24, Proposition 6.3]). No analogue of Fact 1.29 is known for any Σ1/T .

1.N. Small subsets

1.30. Definition (see Soare [41, Definition X.4.10(i)]). An r.e. subset A of an r.e. set B is a small
subset of B if A ⊂∞ B and

∀r.e. X,Y
�
X ∩ (B − A) ⊆ Y ⇒ Y ∪ (X − B) is r.e.�.

This definition makes sense in any bounded distributive lattice: call a ∈ L small in b ∈ L if a < b
and

∀x, y ∈ L
�
x ∧ (b − a) ≤ y ⇒ y ∨ (x − b) ∈ L

�
.

Relations involving − are interpreted in the Boolean envelope of L. Alternatively, using the
equivalence a ∧ b ≤ c ⇔ a ≤ b∨ c, where b is short for 1 − b, each relation involving − rewrites
equivalently as a conjunction of several lattice relations— for example, z = y∨(x−b) is equivalent
in any bounded distributive lattice to y ≤ z & z ≤ y ∨ x & z ∧ b ≤ y & x ≤ b ∨ z.

June 28, 2015, 17:54 CEST



14 V. Yu. Shavrukov

The equivalence (i)⇔ (ii) of the following proposition was established by Harrington & Soare for
the particular case L = E ∗ by a different method.

1.31. Proposition (after Harrington & Soare [8, Theorem 3.2]). In any relatively normal L, the
following conditions on elements a < b of L are equivalent:

(i) a is small in b;

(ii) ∀y ∈ L (b − a ≤ y ⇒ y ∨ b ∈ L);
(iii) For all p ≤ q in L? with p < b? 3 q there is r ∈ (p, q] such that r ∈ b? − a?. In other

words,

a?
b?q

r

p

(iv) min a? ∩min b? ⊆ min L?.

Proof. (i)⇒ (ii) In the definition of a small in b, put x = 1.
(ii)⇒ (iii) By contraposition: Suppose we had p ≤ q in L? with p < b? 3 q and no points

from b? − a? in (p, q]. Let s ∈ min(b? ∩ [p, q]) — the minimum is non-empty because [p, q] is
closed. Then p < s ∈ min b? because L? is an ↑-growing forest. Also, s ∈ a? by our assumption.
Therefore for all r ∈ b? − a? one has s � r . Both {s} and b? − a? being closed, there is by total
order-disconnectedness a clopen ↑-set y? such that y? ⊇ b? − a? so that b − a ≤ y, and s < y?.

a?
b? y?

q

s

p

We have p ∈ b̄? ⊆ y? ∪ b
?
= (y ∨ b)? but s < y? ∪ b

?
while s ≥ p. Thus y ∨ b < L because

(y ∨ b)? is not an ↑-set. This refutes (ii).
(iii)⇒ (i) Assuming (iii) and x ∧ (b − a) ≤ y, we are going to show that y ∨ (x − b) ∈ L, or

rather that y? ∪ (x? − b?) is an ↑-set.
Let q ≥ p ∈ y? ∪ (x? − b?). If p ∈ y? then q ∈ y? because y? is an ↑-set, so assume

p < y?, hence p ∈ x? − b?. We have q ∈ x?, so the only interesting case is q ∈ b?. Let’s assume
as much. Then by (iii) there is r ∈ (p, q] such that r ∈ b? − a?. Also r ∈ x? because r ≥ p. So
r ∈ (x ∧ (b − a))? ⊆ y?. Hence q ∈ y?, for r ≤ q.

Thus q ∈ (y ∨ (x − b))? in all cases which completes the proof of (i).
(iii)⇔ (iv) is an easy exercise.

We return with a non-standard and a dynamic characterization — the latter one also due to
Harrington & Soare — of small subsets in Theorem 3.25.

For relatives of small (as well as small major) subsets in Σ1/T , see our comments to Ques-
tion 5.6.

1.32. Fact (Lachlan [18, Theorem 3] or Soare [41, Exercise X.4.12]). Each non-recursive r.e. set
has a small major subset.
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1.33. Exercise. L is a chain if and only if L? is a chain.

Let H be hhsimple and non-maximal. Let Q be a small major subset of H . There are distinct
p, q < H?. The maximal primes above p as well as those above q have to lie in H? because H is
simple. By smallness of Q and (i)⇒ (iii) of Proposition 1.31 there are r, s ∈ H? −Q? with r ≥ p
and s ≥ q. Note that r and s are incomparable because (E ∗)? is forest-like.

Q?

H?

p q

r s

H? − Q? being an instance of (M∗)?, we conclude that (M∗)? is not a chain, hence neither
isM∗, which is of course well known.

There are no principal prime filters in E ∗, for every infinite r.e. set can be split into two
infinite r.e. halves. Clause (b) of the following corollary addresses the situation with principal
prime ideals:

1.34. Corollary. (a) The only isolated points of (E ∗)? are the heels of maximal r.e. sets.

(b) The only principal prime ideals of E ∗ are given by maximal r.e. sets.

Proof. (a) Suppose p is isolated. If p is minimal then by Proposition 1.14 it is the heel of some
maximal set.

So assume that p is not minimal. Since p is isolated, there are r.e. sets A and B such that
{p} = B? − A? because sets of this form constitute a base for the topology of (E ∗)?. Since A?

and B? differ by a single non-minimal point, we conclude by (iii)⇒ (i) of Proposition 1.28 that
B? − A? is an instance of (M∗)?. But we know that (M∗)? is not a singleton. Contradiction.

(b) According to Fact 1.16(b–c), for a principal prime ideal (P], the set P? is of the form
↓{p} for some p ∈ (E ∗)?.

So suppose p is not minimal. Note that since (E ∗)? is forest-like, ↓{p} is a chain. In particular,
↓{p} ∩ min(E ∗)? is a singleton, so P is r-maximal by Proposition 1.19 and hence simple. Take
some q < p. There is an r.e. set A such that q < A? 3 p. Then A ∩ P is a major subset of A and
A? − P? is a chain. Which (M∗)? is not.

The contradiction shows that p is minimal, hence P is maximal.

There are no principal prime ideals nor filters in Σ1/T , just as there are no isolated points in the
E-tree.

2. Models of arithmetic

We deal with 1st order arithmetic in the orthodox language L = (0, 1,+,×, ≤). When we wish to
extend L by a finite tuple of constants, we write L (~c ).

An L formula δ(~x ) is ∆0 if no unbounded quantifiers occur in δ(~x ). A formula σ(~x ) is Σ1 if it
has the form ∃~y δ(~x, ~y ) where δ(~x, ~y ) is ∆0. Formulas of the form ∀~y δ(~x, ~y ) are Π1. The classes
Σn and Πn also carry their usual meaning. A formula γ(~x ) is ∆1 if it is TA-equivalent to both
a Σ1 and a Π1 formula. The relations represented in � by ∆1 formulas are exactly the recursive
relations. The following is a direct consequence of Matiyasevich’s Theorem:

June 28, 2015, 17:54 CEST



16 V. Yu. Shavrukov

2.1. Fact (Gaifman [4, Theorem 1]). Suppose M ⊆ K are models of TA and ~c ∈ M .

(Σ1 persistence) If σ(~x ) is Σ1 then M |= σ(~c ) ⇒ K |= σ(~c ).
(∆1 absoluteness) If γ(~x ) is ∆1 then M |= γ(~c ) ⇔ K |= γ(~c ).

By ∆1 absoluteness, total recursive functions are absolute for extensions.

2.2. Convention. As we are particularly interested in non-standard models M |= TA with a
distinguished non-standard element x, notation Mx, Kx etc. will always presuppose Mx |= TA +
x > �.

2.A. Primes and models

Since Σ1 formulas represent r.e. sets, we will henceforth identify ThΣ1 Mx with { r.e. X | Mx |= x ∈
X }.
2.3. Proposition. A subset p of E ∗ is a prime filter if and only if there is a model Mx such that
ThΣ1 Mx = p.

Proof. (if) If Mx |= x ∈ A then A is infinite because Mx |= x > n for each n ∈ ω. To see
primeness, note that Mx |= x ∈ A ∪ B entails Mx |= x ∈ A or Mx |= x ∈ B. Closure under
supersets and the intersection property are equally straightforward.

(only if) Let p be a prime. Consider the theory

T = TA + { x ∈ P }P∈p + { x < X }X ∈p⊥.
In any model of T we have x > n because ω − n ∈ p for each n ∈ ω. So all we have to show is
that T is consistent. If it were not, then TA |− x ∈ P → x ∈ X for some P ∈ p and X < p⊥, for
p is closed under intersection and p⊥, under union. Hence ∀x (x ∈ P → x ∈ X), or, equivalently,
P ⊆ X which contradicts P ∈ p = X .

2.B. Scott sets and standard systems

Scott sets and standard systems are instrumental for construction of (sub)models of arithmetic.
In this subsection we visit the hardware store to assemble a minimalist toolkit.

2.4. Definition. A non-empty collection X of subsets of ω is a Scott set (a.k.a. completion-closed
algebra) if X is closed under Turing reducibility (from several members of X), and whenever T ∈ X
is an axiom set for a consistent theory in a finite language, some completion of T must be an
element of X. (See section 13.1 and Exercise 13.2 in Kaye [15]).

2.5. Exercise. Let X be a Scott set and S ⊆ X be countable. Then there is a countable Scott set Y
such that S ⊆ Y ⊆ X.

Hint. Iterate closure of S under Turing reducibility and X-completion.

2.6.Definition. Let M |= PA be non-standard. SSy M , the standard system of M , is the collection
of subsets of ω of the form

X =
�

i ∈ ω
�

M |= (c)i = 0
	
,
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where c ∈ M and (x)y = z is any of the conventional coding devices for “the yth element of
(the sequence coded by) c is z”. The element c is then a code for X , and X is coded in M . (See
Kaye [15, section 11.1].)

2.7. Fact. Let M be a non-standard model of PA.

(a) SSy M is a Scott set.

(b) ThΣn(M, ~c ) is coded in M for each ~c ∈ M and n ∈ ω.

References. (a) Kaye [15, Theorem 13.2].
(b) Kaye [15, Lemma 12.1] — this uses truth definitions for Σn formulas.

Where T is a theory and Γ is a class of formulas, we write T |Γ for the set of Γ consequences of T .

2.8. Fact. Let T |− PA be a complete theory in L (~c ), and let X be a Scott set.

(a) The following are equivalent:

(i) T |Σn(~c ) ∈ X for all n ∈ ω.

(ii) There exists a (countable) model M |= T with SSy M ⊆ X;

(b) If X is countable then the clauses above are also equivalent to

(iii) There exists a (countable) model M |= T with SSy M = X.

Comment. (i)⇔ (iii) for countable X is Theorem 3.4 in Smoryński [39] who generously ascribes
this to Jensen & Ehrenfeucht [14] and Guaspari [5]. Where Smoryński speaks of subsets of ω
representable in T , it is clear that sets of the form T |Σn(~c ) are cofinal among the representable ones
modulo Turing (or even m-) reducibility.

(ii)⇒ (i) is just as straightforward as (iii)⇒ (i).
(i)⇒ (ii) Exercise 2.5 allows one to select a countable Y ⊆ X with T |Σn(~c ) ∈ Y for all n,

whereafter we invoke (i)⇒ (iii).

The following lemma has much similarity with Theorem 1 in Hájek [6].

2.9. Lemma. Let X be a Scott set and T |− PA a consistent theory in L (~c ) of the form T = S + X
where X 3 X ⊆ Σk(~c ) and S|Σn(~c ) ∈ X for each n ∈ ω.

Then there exists a completion C of T such that C |Σn(~c ) ∈ X for all n ∈ ω.

Proof. We construct C as the union of an increasing sequence (Ci)i∈ω of sets of L (~c ) sentences.
Let T0 = S|Πk(~c ) + X . By our assumptions, T0 ∈ X, and T0 is consistent because T0 ⊆ T . Since
X is Scott, there is a completion T̃0 ∈ X of T0. Put C0 = T̃0|Σk(~c ). Note that X ⊆ C0 ⊆ Σk(~c ).
C0 is consistent with S for otherwise there’d be a Σk(~c ) sentence σ(~c ) such that T̃0 |− σ(~c ) and
S |− ¬σ(~c ) contradicting the consistency of T̃0.

Generally, given Ci consistent with S and X 3 Ci ⊆ Σk+i(~c ), define
Ci+1 =

(
an X-completion of

�
S|Πk+i+1(~c ) + Ci

�) ���Σk+i+1(~c ).

Then Ci ⊆ Ci+1 ⊆ Σk+i+1(~c ), Ci+1 ∈ X, and Ci+1 is consistent. Hence Ci+1 is also consistent
with S.

June 28, 2015, 17:54 CEST



18 V. Yu. Shavrukov

The theory C =
⋃

i∈ω Ci is a completion of T , for X ⊆ C0 ⊆ C and S|Πk+i(~c ) ⊆ Ci+1 ⊆ C.
Furthermore, C |Σk+i(~c ) = Ci+1|Σk+i(~c ) ∈ X.

2.C. Primes and extensions

The following fact is a one-way version of Friedman’s Embedding Theorem:

2.10. Fact (see Kaye [15, Exercise 12.7]). Let M, K |= PA with M countable, a ∈ M and b ∈ K .
Then there is an embedding h : M → K such that h(a) = b if and only if SSy M ⊆ SSy K and
ThΣ1(M, a) ⊆ ThΣ1(K, b).
2.11. Gaifman’s Cofinal Theorem (Gaifman [4, Theorem 4] or Kaye [15, Corollary 7.10]). Let
M ⊆ K be models of PA. Then M is an elementary submodel of

M̄ = { a ∈ K | ∃c ∈ M K |= a ≤ c },
the initial closure of M in K .

2.12. Definition. The index set –p of a prime p is defined by

–p = { i ∈ ω | Wi ∈ p },
where (Wi)i∈ω is the traditional numbering of r.e. sets.

2.13. Proposition. Let p and q be primes. The following are equivalent:

(i) p ≤ q;

(ii) Every model Mx with ThΣ1 Mx = p extends to a model Kx such that ThΣ1 Kx = q;

(iii) Every model Nx with ThΣ1 Nx = q has an elementary extension Kx which has an initial
segment Mx such that ThΣ1 Mx = p.

Proof. That either of (ii) and (iii) implies (i) is clear by Σ1 persistence.
(i)⇒ (ii) Consider the theory

T = TA + Diag0 Mx + { x ∈ Q }Q∈q + { x < X }X ∈q⊥
where Diag0 Mx is the open diagram of Mx. If T failed to be consistent then by compactness the
following would be a consequence of TA and hence true:

∀x
�∃~y δ(x, ~y ) & x ∈ Q −→ x ∈ X

�

for some quantifier-free formula δ(x, ~y ) such that Mx |= ∃~y δ(x, ~y ), some Q ∈ q and some r.e. X
outside q, for q is closed under intersection and q⊥ is closed under union. As ThΣ1 Mx = p, the r.e.
set P = { x ∈ ω | ∃~y δ(x, ~y ) } is an element of p ⊆ q. Therefore P ∩ Q ⊆ X which contradicts
X < q 3 P ∩Q.

Let Kx |= T . Then Kx |= x > � for ω − n ∈ q for each n ∈ ω, Kx extends Mx, and
ThΣ1 Kx = q as required.

(i)⇒ (iii) The elementary extension Kx of Nx obtains as a model of the theory

Diag Nx + { (c)i = 0 }Wi∈p + { (c) j = 1 }Wj∈p⊥
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where Diag Nx is the full 1st order diagram of Nx and c is a fresh constant. The consistency of all
finite subtheories of that theory is witnessed in Nx. We have –p ∈ SSy K .

Let X be a countable Scott subset of SSy K which contains –p and all arithmetical sets
(Exercise 2.5). By Lemma 2.9 and Fact 2.8(b) there is a countable model Ix |= TA such that
ThΣ1 Ix = p and SSy I = X ⊆ SSy K — one considers the theory TA + { x ∈ P }P∈p + { x <

X }X ∈p⊥. By Fact 2.10, Ix is isomorphic to a submodel Mx of Kx because ThΣ1 Ix = p ⊆ q =
ThΣ1 Kx.

By Gaifman’s Cofinal Theorem 2.11, the initial closure M̄x of Mx in K is such that ThΣ1 M̄x =

ThΣ1 Mx = p.

The awkward form of clause (iii) could be an argument for using models of TA2 rather than models
of full TA: every TA2-model Nx such that ThΣ1 Nx = p actually has an initial TA2-segment Mx

with ThΣ1 Mx = p.

2.14. Exercise. Let p be a prime and M |= TA. There exists a non-standard x ∈ M such that
p = ThΣ1 Mx if and only if –p ∈ SSy M .

Hint. Kaye [15, Lemmas 12.1 and 12.2].

2.D. Simple sets

The following theorem of Schmerl extends to the uncountable case the earlier result of Wilkie [46].

2.15. Fact (Schmerl [33, Theorem 1] or Kossak & Schmerl [17, Theorem 2.4.2]). Let M |= PA be
non-standard an let T be a complete theory in L (~c ). Then M end-extends to a model of T if and
only if ThΣ1(M, ~c ) ⊆ T and T |Σn(~c ) ∈ SSy M for each n.

Precursors of the next proposition are Hirschfeld & Wheeler [13, Lemma 8.23] (see also
Hirschfeld [11, 4.6]), Wilkie [45, Theorem 4.5], and Schmerl [33, Theorem 2] (see also Kos-
sak & Schmerl [17, Theorem 2.4.3]).

2.16. Proposition. Let S be r.e. The following are equivalent:

(i) S is simple;

(ii) Each Mx admits an extension Kx |= x ∈ S;

(iii) Each Mx end-extends to some Kx |= x ∈ S.

Proof. (iii)⇒ (ii) is trivial.
(ii)⇒ (i) Suppose S failed to be simple, so there is an infinite r.e. D disjoint from S. Then in

any non-standard model M |= TA there is a non-standard element x such that Mx |= x ∈ D. By (ii)
there is an extension Kx of Mx such that Kx |= x ∈ S. We also have Kx |= x ∈ D by Σ1 persistence.
Thus Kx |= S ∩ D , ∅ contradicting the disjointness of S and D. Which shows that S is simple.

(i)⇒ (iii) Consider the theory T = TA + ThΣ1 Mx + x ∈ S. Is T consistent? If not, there is
by compactness an r.e. set D such that Mx |= x ∈ D (hence D is infinite) and TA |− ∀x (x ∈ D →
x < S), so D is disjoint from S, contradicting the simplicity of the latter.

Since T satisfies the conditions of Lemma 2.9 w.r.t. X = SSy Mx, there is a completion C of T
such that C |Σn(x) ∈ SSy Mx for all n. Further, ThΣ1 Mx ⊆ T ⊆ C. Therefore by Fact 2.15 there is
an end extension Kx of Mx such that Kx |= C, so Kx |= x ∈ S.
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Proposition 2.16 parallels Theorem 6.5(i) of Guaspari [5] which characterizes, among other things,
sentences Π1-conservative over T as those which can be modelled in an appropriate end extension
of every model of a formal theory T .

2.17. Exercise. For r.e. A ⊆ B, A is simple in B if and only if every Mx |= x ∈ B end-extends to
a TA-model of x ∈ A.

3. Dynamic properties

We use M ⊆e K to indicate that M is an initial segment of K , and ≡ for 1st order equivalence.

3.A. Wilkie’s Lemma

3.1. Notation. Suppose a and b are elements of a model M |= TA. We write M |= a << b if
M |= f (a) < b for each total recursive function f (with standard index).

The negation of a << b is b ≤≤ a. Note that both << and ≤≤ are transitive.

The following lemma was established by Alex Wilkie a long long time ago but appears to have
thus far miraculously escaped documentation.

3.2. Wilkie’s Lemma. Suppose a, b ∈ M |= PA.

(a) The following are then equivalent:

(i) There is I ⊆e M with a < I < b and I ≡ M;

(ii) M |= ∀x ∃y δ(x, y) implies M |= ∃y < b δ(a, y) for each ∆0 formula δ(x, y).
(b) If M is countable then the above clauses are also equivalent to

(iii) There is I ⊆e M with a < I < b and I � M .

Note that when M |= TA, clause (ii) is equivalent to M |= a << b.

We derive the Lemma as a consequence of

3.3. Friedman’s Embedding Theorem (see Kaye [15, Theorem 12.3]). Let a, b, c be elements of a
countable model M |= PA. Then there is an isomorphism i of M onto some initial segment I ⊆e M
with i(c) = a ∈ I < b if and only if for all ∆0 formulas δ(x, y) one has

M |= ∃y δ(c, y) =⇒ M |= ∃y < b δ(a, y).

3.4. Proof of Wilkie’s Lemma. (i)⇒ (ii) Suppose M |= ∀x ∃y δ(x, y). Since I ≡ M , it follows
that I |= ∃y δ(a, y). Hence there is d ∈ I such that I |= δ(a, d). As I < b and ∆0 formulas are
absolute for initial segments modelling PA, we have M |= ∃y < b δ(a, y) as required.

(ii)⇒ (iii) for countable M: From the assumption of clause (ii) it follows by 1st order logic
that for each ∆0 formula δ(x, y) there is a d ∈ M such that

M |= ∃y δ(d, y) =⇒ M |= ∃y < b δ(a, y).
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Therefore the Π1 type

T(x) = �∀y ¬δ(x, y) �
δ(x, y) is ∆0 & M |= ∀y < b ¬δ(a, y)	

is realized point-wise in M , and since T(x) is closed under conjunction (modulo 1st order logic),
M also realizes T(x) locally. Observe that T(x) is coded in M (see Fact 2.7(b)). Therefore by
Lemma 12.2 in Kaye [15] (bounded-complexity coded types are realized), T(x) is also globally
realized in M . Let c ∈ M be a realization of T(x). Then for each ∆0 formula δ(x, y) there holds

M |= ∃y δ(c, y) =⇒ M |= ∃y < b δ(a, y).
By Friedman’s Embedding Theorem 3.3, there is an embedding i of M onto an initial segment I
of M with i(c) = a ∈ I < b.

(iii)⇒ (i) is clear.
To show (ii)⇒ (i) for uncountable M , let K 3 a, b be a countable elementary submodel of M .

Then K also satisfies the condition of clause (ii). Hence by (ii)⇒ (iii) there is an initial segment
I � K of K such that a ∈ I < b. Let Ī be the initial closure of I in M . By Gaifman’s Cofinal
Theorem, Ī ≡ I � K ≡ M . Clearly, a < Ī < b, which completes the proof.

3.B. Hinges and hinged primes

3.5. Definition. An enumeration (As)s∈ω of an r.e. set A is an effective sequence of finite sets
such that A =

⋃
s∈ω As and As ⊆ As+1. Unless we need to explicitly compare two enumerations,

we will always silently assume that some enumeration of each r.e. set we consider is chosen and
stays the same throughout an argument.

Define Aat s =
{

As − As−1 if s > 0,
A0 if s = 0.

Suppose (Ui)i∈ω is a uniformly r.e. sequence of r.e. sets, that is, the binary relation x ∈ Us

is r.e. An enumeration of (Ui)i∈ω is an effective double sequence (Ui,s)i,s∈ω of finite sets such
that Ui =

⋃
s∈ωUi,s, Ui,s ⊆ Ui,s+1, the set { (x, i) | x ∈ Ui,s } is finite for each s, and its code is

recursive in s. (cf. Soare [41, Definition II.2.8].)
An enumeration is ∆0 if the ternary relation x ∈ Ui,s is. It follows from e.g. Matiyasevich’s

Theorem that any uniformly r.e. sequence can be supplied with a ∆0 enumeration. Smullyan [40,
Theorem IV.8] offers a Matiyasevich-free construction of a ∆0 enumeration of all r.e. sets similar
to Kleene’s T-predicate.

Throughout the paper we assume that the traditional numbering (Wi)i∈ω of all r.e. sets is
accompanied by one of the usual enumerations.

3.6. Definition. Let A, B be r.e., and f be a recursive function. Define the r.e. set

A \ f B =
{

x ��� ∃s
�
x ∈ Bat s & f (s)↓ & x ∈ Af (s)

� }
.

We shall mostly be interested in total recursive f . The requirement f (s)↓ is only there for
definiteness, so that an r.e. index for A \ f B be effective in those of A, B, and f . Note that the set
A\ f B depends on the distinguished enumerations of A and B, but we always have A\ f B ⊆ A∩B.

Where f is a recursive function, f̄ (t) = maxs≤t f (s).
3.7. Lemma. Let (At)t ∈ω and (Ãt)t ∈ω be enumerations of the r.e. set A, let (Bt)t ∈ω and (B̃t)t ∈ω be
enumerations of the r.e. B, and f a total recursive function.
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There is a total recursive g such that Ã \g B̃ ⊇ A \ f B.

Proof. Let h and j be total recursive functions such that At ⊆ Ãh(t) and B̃t ⊆ Bj(t). Put g = h◦ f̄ ◦ j.

The proof of the next lemma is straightforward.

3.8. Lemma. {A \ f B, B − (A \ f B)} is an r.e. splitting of B whenever A and B are r.e. and f is
total recursive.

The following important definition is borrowed from the E-tree where one uses provably recursive
functions in place of total recursive ones (Shavrukov & Solovay [36]).

3.9. Definition. Say that a prime p is hinged on an r.e. set P, or that P ∈ p is a hinge for p, if
for each A ∈ p there is a total recursive f with A \ f P ∈ p. (Observe that by Lemma 3.7 the choice
of enumerations of A and P is not an issue.) Informally, p hinges on P if P is, up to total recursive
functions, ‘the latest’ set in p.

p is hinged if it has a hinge.

3.10. Lemma. Let P be a hinge for a prime p. Then Q ∈ p is also a hinge for p if and only if there
is a total recursive f such that P \ f Q ∈ p.

Proof. (only if) follows directly from the definition.
(if) For any X ∈ p, X \g P ∈ p and P \ f Q ∈ p imply X \ ḡ◦ f Q ∈ p, for X \g P ∩ P \ f Q ⊆

X \ ḡ◦ f Q.

3.11. Proposition. Let p be a prime and P be r.e. The following are equivalent:

(i) p hinges on P;

(ii) P ∈ p, and whenever ThΣ1 Mx ⊇ p and Mx |= x ∈ Pat s, we have

p =
�
r.e. A

�
Mx |= ∃t ≤≤ s x ∈ At

	
;

(iii) p ∈ min P?.

Proof. (i)⇒ (ii) Suppose Mx and s ∈ M are as specified in (ii).
If A ∈ p then A \ f P ∈ p for some total recursive f because p hinges on P. Hence, in M one

has x ∈ A \ f P and therefore x ∈ Af (s). Thus Mx |= ∃t ≤≤ s x ∈ At.
Suppose A < p. Let f be an arbitrary total recursive function. Since p 3 P is prime and

A \ f P ⊆ A < p, we have P − (A \ f P) ∈ p by Lemma 3.8. Hence Mx |= x < Af (s). As f is
arbitrary, Mx |/= ∃t ≤≤ s x ∈ At.

(ii)⇒ (iii) Consider any prime q with P ∈ q ≤ p. By Proposition 2.13 there are models
Kx ⊆ Mx such that ThΣ1 Mx = p and ThΣ1 Kx = q. Since P ∈ q, we have Kx |= x ∈ Pat s for some
s ∈ K . By ∆1 absoluteness, Mx |= x ∈ Pat s.

Given any A ∈ p, we must have Mx |= x ∈ Af (s) for some total recursive f by the assumption.
Hence Kx |= x ∈ Af (s) by ∆1 absoluteness. Therefore A ∈ q = ThΣ1 Kx, so we may conclude p ⊆ q
and hence q = p. Thus p is minimal among the primes that contain P.

(iii)⇒ (i) Suppose p failed to hinge on P: there is an A ∈ p with A \ f P < p for all total
recursive f . Consider Mx with ThΣ1 Mx = p and s ∈ M such that Mx |= x ∈ Pat s. Since A ∈ p,
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there is an element t of M with x ∈ Aat t. By our assumption, Mx |= x < Af (s) for all total
recursive f . Thus s << t. By Wilkie’s Lemma there is a TA-initial segment I of M such that
x ≤≤ s < I < t. We have Ix |= x ∈ Pat s by ∆1 absoluteness but Ix |= x < A. Therefore p < min P?,
for P ∈ ThΣ1 Ix = A ∈ p. The contradiction concludes our proof.

3.12. Exercise. Suppose Mx |= s ≥≥ x. Then { r.e. A | Mx |= ∃t ≤≤ s x ∈ At } is a prime.

3.13. Lemma. Suppose P is a hinge for a prime p such that ThΣ1 Mx = p, t ∈ M , Mx |= x ∈ Pt,
and Mx |= ∃y σ(x, y) where σ(x, y) is a Σ1 formula.

Then Mx |= ∃y ≤≤ t σ(x, y).
Proof. Consider the r.e. set S = { x | ∃y σ(x, y) }. Supposeσ(x, y) is∃~z δ(x, y, ~z )where δ(x, y, ~z )
is ∆0. Define the enumeration (St)t ∈ω by

x ∈ St ⇐⇒ t ≥ x & ∃y ≤ t ∃~z ≤ t δ(x, y, ~z ).
Wehave Mx |= x ∈ S. Let s ∈ M satisfy Mx |= x ∈ Pat s so that s ≤ t. By (i)⇒ (ii) Proposition 3.11
there is b ≤≤ s ≤ t such that Mx |= x ∈ Sb, hence Mx |= ∃y ≤≤ t σ(x, y).

3.C. Hinged points for bounded distributive lattices

A prime filter p ∈ L? is a Goldman point if there is an x ∈ L such that p ∈ min x?. According to
Proposition 3.11, in (E ∗)?, Goldman is a synonym for hinged. Bouacida & al. [1] study Goldman
points in spectral spaces where they are exactly the locally closed points.

3.14. Lemma. Let x ∈ p ∈ L?. Then there is a q ≤ p such that q ∈ min x?.

Proof. Let q be any point minimal in the closed set x? ∩ ↓{p}.

3.15. Lemma. (a) If p ∈ L? is a Goldman point, then p ∈ min L? or p has an immediate
predecessor in each maximal chain π 3 p within L?.

(b) Suppose L is relatively normal. A prime filter p is a Goldman point if and only if
p ∈ min L? or p has an immediate predecessor in L?.

Proof. (a) Suppose p ∈ min x? and p < min L?. Let π 3 p be a maximal chain within L?. Then
q =

⋃{ r ∈ π | r < p } is a prime filter because q is the union of a chain of primes. Also q ⊆ p and
q ∈ π because π is maximal. Since q = x, we must have q < p, so q is an immediate predecessor
of p.

(b) The (only if) direction is clause (a). We handle (if). Any minimal prime p is clearly
Goldman, for p ∈ min L? = min 1?L. Since L? is an ↑-forest for relatively normal L, the set
↓{p} − {p} of predecessors of p is a chain. Let q be the (unique) immediate predecessor of p.
There is x ∈ L such that p 3 x < q. Then p ∈ min x? because for each r < p one has q ≥ r = x,
so p is a Goldman point.

We now point out that the implication in clause (a) of Lemma 3.15 cannot be reversed without
further assumptions.

3.16. Example. There is a bounded distributive lattice L and a non-Goldman prime filter p of L
such that p has an immediate predecessor in each maximal chain π 3 p within L?.
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Details. Let C be the lattice of empty or cofinite subsets of ω with set-theoretical operations.
Then C? is the Priestley space

q

p0 p1 p2

consisting of a countable collection {pi}i∈ω together with the prime q such that pi < q for all i.
A subset π ⊆ C? is open if and only if q ∈ π implies that almost all pi are also elements of π.
Thus q is the (unique) limit point of {pi}i∈ω. This Priestley space appears in Exercise 11.10(ii)
of Davey & Priestley [3], although there it corresponds to the antipode of the lattice C because of
opposite conventions concerning vertical orientation.

The only non-Goldman point of C? is q, the prime filter formed by all cofinite subsets of ω.
Observe that q has an immediate predecessor in each maximal chain.

How much information about L is carried by the collection of Goldman primes? The answer turns
out to depend on the structure one endows that collection with.

The spectral dual Spec L of L obtains as the sobrification of Gold L, its subspace consisting
of Goldman points (see Proposition 3.6(2)(i), and Theorem 2.2 applied to the inclusion Gold L ↪→

Spec L in Bouacida & al. [1]). Thus Gold L completely determines L.
We shall see below that the situation with LG, the subspace of L? of Goldman points with

Priestley subspace topology and restricted order, is less satisfactory. The lattice L is not generally
uniquely determined by LG. This shows that while L? and Spec L are “essentially” the same thing
(Cornish [2]), their respective subspaces LG and Gold L are not, even though they are made of
exactly the same points.

We first point out a particular case that admits successful reconstruction of L from (just the
order structure of) LG.

3.17. Proposition. If the lattice L is a chain, then L − {0} is order-anti-isomorphic to LG.

Hint. The Goldman prime filters of L are exactly the proper principal filters.

In relatively normal lattices, the order structure of LG suffices to determine that of L?:

3.18. Proposition. If L is relatively normal, then (P L, ≤), the order structure of L?, is order-
isomorphic to the inclusion-ordered collection of non-empty linearly ordered subsets of LG that
are ↓-closed within LG.

Hint. Since L? is an ↑-forest, a non-empty collection π ⊆ LG is that of all Goldman points
contained in some prime if and only if π is linearly ordered and downward closed under inclusion.
Any prime filter p is uniquely determined by the collection of Goldman primes contained in p
because p is the union of that collection.

The topology of L? however cannot be decrypted from LG:

3.19. Example. There exist two non-isomorphic bounded distributive lattices satisfying the Re-
duction Principle and such that the Goldman subspaces of their Priestley duals are order-
homeomorphic.
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Details. It suffices to produce two non-order-homeomorphic Priestley spaces S1 and S2 whose
Goldman subspaces are order-homeomorphic.

The points of Sj are two sequences {pα}α∈ω ·2+1 and {qi}i∈ω with the only non-reflexive order
pairs being determined by pα < pβ ⇔ α < β. The topologies do differ:

q0q1q2

p0

p1
p2

pω

pω+1
pω+2

pω ·2

S1

q0q1q2

p0

p1
p2

pω

pω+1
pω+2

pω ·2

S2

A subset π of S1 is open in S1 if π 3 pω implies that almost all of {pi}i∈ω ∪ {qi}i∈ω are elements
of π, and π 3 pω ·2 implies that almost all of {pα}ω<α∈ω ·2 are also in π. π is open in S2 if π 3 pω
implies that almost all elements of {pi}i∈ω are those of π, and π 3 pω ·2 implies that almost all of
{pα}ω<α∈ω ·2∪ {qi}i∈ω are in π. In particular, the unique limit point of the sequence {qi}i∈ω in Sj

is pω · j. It is clear that S1 and S2 are not order-homeomorphic.
In both cases, pω and pω ·2 are the only non-Goldman points of Si. Removing these, we obtain

Goldman subspaces of Sj with discrete topology, for each remaining point is clopen. The ordering
in both cases is the unordered union of a countably infinite antichain and a chain of ordertypeω · 2.
Therefore the two Goldman subspaces are order-homeomorphic.

Given two clopen ↑-sets X and Y in Sj, we assume w.l.o.g. that X ∩ {pα}α∈ω ·2+1 ⊇ Y ∩
{pα}α∈ω ·2+1, and put X ′ = X and Y ′ = Y − X , so that Y ′ is a finite and hence clopen (↑-)subset
of {qi}i∈ω. This shows that both Sj correspond to lattices satisfying the Reduction Principle.

Without relative normality, the subspace LG cannot even generally tell the number of non-Goldman
points in L?:

3.20.Example. There are two bounded distributive lattices, one with a single non-Goldman prime,
the other with two non-Goldman primes, such that the Goldman subspaces of their Priestley duals
are order-homeomorphic.

Details. Recall the latticeC from Example 3.16. The Priestley dual of the latticeC2 is the disjoint
unordered union of two copies of the dual of C, for the product of bounded distributive lattices
corresponds to the disjoint unordered union of their duals (Davey & Priestley [3, Exercise 11.8]).

The two maximal points are the non-Goldman primes of C2. In C, there was a single non-
Goldman prime. Both CG and (C2)G are countably infinite discrete antichains, so they are order-
homeomorphic.

Contrary to what the examples above suggest, the topology of LG need not always be discrete —
consider the lattice of finite or cofinite subsets of ω, where all prime filters are Goldman.
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It should be noted that, unlike ? and Spec, neither G nor Gold is functorial.

3.D. Minimal and maximal primes

3.21. Proposition. For a prime p the following are equivalent:

(i) p ∈ min(E ∗)?;
(ii) p hinges on each of its elements;

(iii) For each X ∈ p there is a total recursive f such that for some/every Mx withThΣ1 Mx = p
there holds Mx |= x ∈ X f (x) (equivalently, { x | x ∈ X f (x) } ∈ p).

Proof. (i)⇒ (ii) If X ∈ p then p ∈ X? whence p ∈ min X? because p ∈ min(E ∗)?. By Proposi-
tion 3.11, X is a hinge for p.

(ii)⇒ (iii) Keeping in mind some fixed r.e. index for ω, there is a total recursive g such that
n ∈ ωat g(n) for each n. Given any X ∈ p, there is a total recursive h such that X \h ω ∈ p because
ω is a hinge for p. Hence in Mx we have x ∈ ωat g(x) and x ∈ X \h ω which entails x ∈ Xh◦g(x).

(iii)⇒ (i) Suppose q ≤ p. By Proposition 2.13 there are Mx ⊆ Kx with ThΣ1 Mx = q and
ThΣ1 Kx = p. For each X ∈ p there is a total recursive f such that Mx |= x ∈ X f (x). Therefore
Kx |= x ∈ X f (x) by ∆1 absoluteness. Thus X ∈ q, so q = p.

(iii)⇒ (i) of the above proposition and Lemma 3.10 yield

3.22. Corollary. Suppose q is non-minimal, ThΣ1 Mx = q, Q is a hinge for q, and Mx |= x ∈ Qt.
Then Mx |= x << t.

Proposition 3.21 says that minimal primes are hinged (on ω). In particular, so are the minimax
primes. The next proposition tells us that these are the only hinged maximal primes.

3.23. Proposition. Suppose p ∈ max(E ∗)? is hinged. Then p ∈ min(E ∗)?.
Proof. Consider a maximal prime p hinged on some r.e. B, so p ∈ min B?. Let A be a small
simple subset of B (Fact 1.32). Then p ∈ A?, for A? ∩ max(E ∗)? = B? ∩ max(E ∗)? in view of
simplicity of A in B (Proposition 1.13). Therefore p ∈ min A? because A ⊆ B. By smallness of A
in B and (i)⇒ (iv) of Proposition 1.31 we conclude p ∈ min(E ∗)?.

3.E. Major subsets

The equivalence (i)⇔ (ii) of the following proposition is based on the Marker Lemma (Maass &
Stob [28, Lemma 1.3]).

3.24. Proposition. Suppose A ⊂∞ B are r.e. The following are equivalent:

(i) A is major in B;

(ii) For each total recursive f , x ∈ Bf (x) holds for at most finitely many x ∈ B − A;

(iii) In any model Mx, if x ∈ B − A and x ∈ Bt, then t � x.

Proof. (i)⇒ (ii) The recursive set R = { x | x ∈ Bf (x) } is a subset of B, hence by (i)⇒ (ii) of
Proposition 1.28, R ⊆∗ A. Therefore R ∩ (B − A) = { x ∈ B − A | x ∈ Bf (x) } is finite.
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(ii)⇒ (iii) Consider any Mx |= x ∈ B − A and let f be any total recursive function. Since
there are only finitely many x ∈ B − A with x ∈ Bf (x), we have Mx |= x < Bf (x). Thus x enters B
at a stage that is more than total recursively larger than x.

(iii)⇒ (i) Let p ∈ B?− A? and ThΣ1 Mx = p. For the unique t ∈ Mx such that Mx |= x ∈ Bat t
we have Mx |= x << t by our assumption. Hence byWilkie’s Lemma there is an initial TA-segment
Ix of Mx with Ix < t. So ThΣ1 Ix $ p, for Ix |= x < B. Thus any p ∈ B? − A? is non-minimal.
By (iii)⇒ (i) of Proposition 1.28, A is major in B.

3.F. Small subsets

The equivalence (i)⇔ (iv) of the following theorem is due to Harrington & Soare.

3.25. Theorem (after Harrington & Soare [8, Theorem 3.2]). Suppose A ⊂∞ B are r.e. The fol-
lowing are then equivalent:

(i) A is small in B;

(ii) For all Mx ⊆e Kx with Mx |= x < B and Kx |= x ∈ B there is Ix |= x ∈ B − A such that
Mx ⊆e Ix ⊆e Kx;

(iii) For each total recursive f , the r.e. set A \ f B is recursive.

B?
A?

(A \ f B)?

(iv) For each total recursive f , there is a recursive R ⊆ B such that A \ f B ⊆ R.

Proof. (i)⇒ (ii) Let Mx and Kx be as specified in (ii). If Kx |= x < A, put Ix = Kx. Otherwise,
since Kx |= x ∈ A ⊆ B, there are s, t ∈ Kx such that Kx |= x ∈ Bat s & x ∈ Aat t. One has
Kx |= s, t > Mx, for Mx |= x < B ⊇ A.

Suppose Kx |= t ≤≤ s, that is, there is a total recursive g with g(s) ≥ t. Consider the r.e.
set Y = B − (A \g B) (Lemma 3.8). Clearly B − A ⊆ Y and Kx |= x < Y . Now observe that
Mx |= x ∈ B ⊆ Y ∪ B but Kx |= x < Y ∪ B. By Σ1 persistence, Y ∪ B cannot be r.e. Thus A is not a
small subset of B by (i)⇒ (ii) of Proposition 1.31. Thus the assumption (i) outrules Kx |= t ≤≤ s.

Hence Kx |= s << t. By Wilkie’s Lemma 3.2(a) there is an Ix ⊆e Kx such that Kx |= Mx <

s < Ix < t, so by ∆1 absoluteness, Ix |= x ∈ B − A.
(ii)⇒ (iii) We will be done once we show that (A \ f B)? is a ↓-set, that is, for primes r ≥ p

with r ∈ (A \ f B)?, we show p ∈ (A \ f B)?.
By Lemma 3.14, fix q ≤ r that hinges on B. Use Proposition 2.13 and Gaifman’s Cofinal

Theorem to find Kx, Mx and Nx such that Mx ⊆e Kx, Nx ⊆e Kx, ThΣ1 Kx = r , ThΣ1 Mx = q, and
ThΣ1 Nx = p. Let s ∈ Kx and t ∈ Mx satisfy Kx |= x ∈ Bat s & x ∈ Af (s) and Mx |= x ∈ Bat t.
By ∆1 absoluteness we have Kx |= s = t and Mx |= x ∈ Bat t & x ∈ Af (t). In particular,
Mx |= x ∈ A \ f B. For the sake of interest, suppose p = A \ f B, thus p < q and Nx $e Mx. As
ThΣ1 Mx = q ∈ min B?, we have Nx |= x < B. By (ii) there must exist Ix with Nx ⊆e Ix ⊆e Mx

and Ix |= x ∈ B − A. Thus by ∆1 absoluteness t ∈ Ix = f (t) which contradicts Ix |= TA.
The contradiction establishes p ∈ (A \ f B)?.

(iii)⇒ (iv) is trivial since A \ f B ⊆ B.
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(iv)⇒ (i) By contraposition: Suppose A failed to be small in B. By (iv)⇒ (i) of Proposi-
tion 1.31 there is a prime q ∈ (min A? ∩ min B?) − min(E ∗)?. Since q < min(E ∗)?, there is a
prime p < q. It follows that p < B?.

Since q hinges on B and A ∈ q, there is a total recursive f such that A \ f B ∈ q. Consider
any recursive R ⊆ B. We have p < B?, hence p < R?. From q ≥ p we get q < R? by Lemma 1.7.
Seeing as A \ f B ∈ q = R, we cannot have A \ f B ⊆ R. Thus (iv) fails to hold.

In connection with the Harrington–Soare dynamic characterization of small subsets, even though
their proof used neither dual spaces nor models of arithmetic, the authors developed the following
intuition (Harrington & Soare [9, p.106]):

. . . the intuition is that A ⊂s C guarantees among other things that the A boundary is
far below the C boundary.

(Here the term ‘boundary’ is understood in an intuitive rather than a precisely defined sense.) This
should be compared to clause (ii) of Theorem 3.25 and clauses (iii) and (iv) of Proposition 1.31,
although we disagree with Harrington & Soare on vertical orientation.

3.G. The model theory of prompt simplicity

3.26. Definition. Let C be a class of r.e. sets. An (effective) numbering (Ui)i∈ω of C is an onto
mapping i 7→ Ui : ω → C such that the binary predicate x ∈ Ui is r.e.— thus (Ui)i∈ω is a uniformly
r.e. sequence of r.e. sets as in Definition 3.5. A numbering is acceptable if any other numbering
(Vi)i∈ω of C reduces to (Ui)i∈ω, that is, there is a total recursive f such that Vi = Uf (i). (See
Soare [41, Exercise I.5.9].)

The traditional numbering (Wi)i∈ω is acceptable. When A is r.e., (Wi∩ A)i∈ω is an acceptable
numbering of all r.e. subsets of A.

3.27. Definition (Maass [26, Definition 3.1]). Suppose all of B ⊆ P ⊂∞ A are r.e. P is promptly
simple in the interval [B, A] if there are an enumeration (Ps)s∈ω of P, an acceptable numbering
(Ui)i∈ω of r.e. subsets of A with a matching enumeration, and a total recursive f such that

∀e
�
Ue − B is infinite ⇒ (P \ f Ue) − B , ∅

�
.

P is a promptly simple set if P is promptly simple in [∅, ω] (Maass [25, Definition 10]).

Just as with promptly simple sets, the definition of sets promptly simple in a given interval is
invariant w.r.t. the choice of acceptable numbering and accompanying enumerations, and there
always is an infinite supply of prompt witnesses:

3.28. Lemma. Let B ⊆ P ⊂∞ A be r.e. Let (Vi)i∈ω be an arbitrary acceptable numbering of r.e.
subsets of A equipped with any matching enumeration. Fix any enumeration (P̃s)s∈ω of P.

Then P is promptly simple in [B, A] if and only if there is a total recursive h such that

∀e
�
Ve − B is infinite ⇒ (P̃ \h Ve) − B is infinite

�
.

Comment. The proofs of Lemma 11 in Maass [25] and Proposition XIII.1.3 and Theorem XIII.1.4
in Soare [41] only need a few cosmetic touches after replacing acceptable numberings of all r.e.
sets by those of r.e. subsets of A. The extra requirement that all witnesses lie outside B is harmless.
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The argument proceeds by showing the equivalence of both properties to the existence of
a total recursive g such that for each e ∈ ω one has

Vg(e) ⊆ Ve, Vg(e) − P = Ve − P, and (Ve − B is infinite ⇒ Ve − Vg(e) − B is infinite).

Hájek [7, Corollary 6] shows that to any non-standard element c of a countable model M of PA
there is a model K |= PA which coincides with M up to c and such that in K there is a PA-proof
of 0 = 1 with gödelnumber ≤ 222

c

. Solovay [42, Theorem 1.1] refines this by arranging for an
even shorter IΣa-proof of inconsistency while keeping IΣa−1 consistent in K , where a < c is an
appropriate non-standard element of M .

Corollary 3.31 below is inspired byHájek’s result (while borrowing heavily from his methods)
and answers the question, how is a promptly simple set like an inconsistency statement: Any non-
standard element can enter a promptly simple set at total recursively short notice. Theorem 3.30
also shows that one can at the same time keep that element from entering a suitable prescribed
r.e. set, as Solovay does for inconsistency statements. Corollary 3.31 constitutes a non-standard
characterization of promptly simple sets. Note that there can be no lattice characterization of
prompt simplicity, as promptly simple sets are not invariant under automorphisms of E ∗ (Maass &
al. [27, Corollary 1.13]).

We first quote an auxiliary fact. The language L ′ is a variant of L where + and × are ternary
predicates. This allows to view initial intervals [0, c]M of a model M as L ′ structures.

3.29. Fact. Let M, K |= PA be countable L (~c ) models. Suppose ~c ≤ a ∈ M and ~c ≤ b ∈ K
where both a and b are non-standard. Then the intervals [0, a]M and [0, b]K are isomorphic as
L ′(~c ) structures if and only if Th∆0(M, ~c, a) = Th∆0(K, ~c, b) and SSy M = SSy K .

Reference. Theorem 15.23(a) plus Exercise 15.3 in Kaye [15]. In the exercise, the extra con-
stants ~c enjoy a free ride.

3.30. Theorem. Let B ⊆ P ⊂∞ A be r.e. Then P is promptly simple in [B, A] if and only if there
is a total recursive f with the property that whenever s ≥ x is an element of a countable model
Mx |= TA + x ∈ As & x < B, there exists a (countable) model

(Kx, s) |= TA + x ∈ Pf (s) & x ∈ As & x < B

such that [0, s]M � [0, s]K as L ′(x) structures.
Proof. (if) For the distinguished enumeration (As)s∈ω of A we have

x ∈ As ⇐⇒ ∃t γ(x, s, t)
for some ∆0 relation γ(x, s, t). Take a ∆0 enumeration (Wi,s)i,s∈ω of (Wi)i∈ω (see 3.5). Put

x ∈ Ui,s ⇐⇒ s ≥ x & x ∈ Wi,s & ∃u ≤ s ∃t ≤ s γ(x, u, t).
Then (Ui,s)i,s∈ω is a ∆0 enumeration for the acceptable numbering (Ui)i∈ω of r.e. subsets of A,
where Ui = Wi ∩ A. This enumeration satisfies x ∈ Ui,s ⇒ s ≥ x, and Ui,s ⊆ As.

Take an arbitrary countable M |= TA and consider any e with Ue − B infinite, so that there
are nonstandard x, s ∈ M such that M |= x ∈ Ue,at s & x < B.
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The assumption provides a model Kx with an element s such that Kx |= x ∈ Pf (s) & x < B
and [0, s]M � [0, s]K with the isomorphism preserving x. But then Kx |= x ∈ Ue,at s because the
enumeration (Ui,s)i,s∈ω is ∆0 and Th∆0(Kx, s) = Th∆0(Mx, s) by Fact 3.29. Hence

K |= ∃x < B ∃s
�
x ∈ Ue,at s & x ∈ Pf (s)

�
.

K being a model of TA, we conclude that (P \ f Ue) − B , ∅ and hence P is promptly simple
in [B, A].

Note that the (if) direction did not rely on Kx |= x ∈ As.
(only if) We employ an individual numbering (Vd)d∈ω of r.e. subsets of A:

x ∈ Vd ⇐⇒ ∃t
�
t ≥ x & x ∈ At & δ(x, t)�,

where d is the gödelnumber of the ∆0 formula δ(·, ·). Ve = ∅ if e is not a gödelnumber of an
eligible formula. The numbering (Vd)d∈ω is clearly acceptable, and

x ∈ Vd,s ⇐⇒ s ≥ d & ∃t ≤ s
�
t ≥ x & x ∈ At & δ(x, t)�

is a matching enumeration, for x ∈ Vd,s entails x, d ≤ s. Hence there is, by the prompt simplicity
of P in [B, A] and Lemma 3.28, a total recursive f such that (P \ f Ve) − B is infinite whenever
Ve − B is.

Consider any countable model (Mx, s) |= TA + s ≥ x & x ∈ As & x < B. Suppose the
theory

T = TA + s ≥ x > � + Th∆0(Mx, s) + x ∈ Pf (s) & x ∈ As & x < B,

s being viewed as a new constant, were inconsistent. By compactness there are then an n ∈ ω and
a ∆0 formula δ(·, ·) such that Mx |= δ(x, s) while in TA and hence in the real world we have

∀x > n ∀s ≥ x
�
δ(x, s) & x ∈ Pf (s) & x ∈ As → x ∈ B

�
, (*)

where n is w.l.o.g. larger than the gödelnumber d of δ(·, ·). On the other hand, the set Vd − B is
infinite because in the model (Mx, s) |= TA it has a non-standard element x. Therefore

∃x > n ∃s
�
x ∈ Vd,at s & x ∈ Pf (s) & x < B

�

by the property we required of f . Observe that, in �, n < x ∈ Vd,at s implies s ≥ x, x ∈ As, and
also δ(x, s), for otherwise we would have x ∈ Vd,s−1 in view of s ≥ x > n > d. Thus we have
reached a contradiction with (*) which shows that T is consistent.

The L (x, s) theory T has the form TA + X where X ⊆ Σ2(x, s) and X ∈ SSy M because
Th∆0(Mx, s) is coded in M (Fact 2.7(b)). Also TA|Σn(x,s) ∈ SSy M for M |= TA. Therefore
by Fact 2.8(b) and Lemma 2.9 there is a countable model (Kx, s) |= T with SSy K = SSy M .
In particular, Kx |= TA + x ∈ Pf (s) & x ∈ As & x < B and Th∆0(Mx, s) = Th∆0(Kx, s).
By Fact 3.29 the intervals [0, s]M and [0, s]K are L ′(x)-isomorphic.

3.31. Corollary. An r.e. set P is promptly simple if and only if there is a total recursive f such
that whenever s ≥ x is an element of a countable model Mx, there exists a (countable) model
(Kx, s) |= TA + x ∈ Pf (s) with [0, s]M � [0, s]K as L ′(x) structures.
Next we draw some conclusions from Theorem 3.30 for the structure of (E ∗)?. First, a lemma.
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3.32. Lemma. Suppose ThΣ1 Mx ⊇ p where p is a prime. If s ∈ M satisfies Mx |= x ∈ Wi,s for all
Wi ∈ p, then Mx |= s � t whenever Mx |= x ∈ Qat t and Q ∈ p.

Proof. Given Q ∈ p (together with a fixed enumeration) and any total recursive non-decreasing f ,
construct the set

We =
�

x
� ∃t (x ∈ Qt −We, f (t))

	

by the 2nd Recursion Theorem, slowing down the enumeration of Q by at least f — this is a variant
of the Slowdown Lemma (see Soare [41, Lemma XIII.1.5]). ThenWe = Q ∈ p, so Mx |= x ∈ We,s.
If Mx |= x ∈ Qat t then Mx |= x < We, f (t), so f (t) < s. Thus t << s.

3.33. Corollary. Suppose P is promptly simple in [B, A] and p ∈ A? − P?. Then

(a) p has an immediate successor q ∈ P? − B?.

(b) If p is hinged, then there is r ∈ P? − B? which is a sibling of p, that is, ↓{r} − {r} =
↓{p} − {p}.
Proof. Take a countable Mx with ThΣ1 Mx = p.

(a) Spilling the formula ∃y ∀i < n (x ∈ Wi → x ∈ Wi,y) over �, we obtain an s ≥ x such
that Mx |= x ∈ Wi → x ∈ Wi,s for all i ∈ ω. Note that by Lemma 3.32, Mx |= s � t for any t
with Mx |= x ∈ Xat t for some X ∈ p. Next Theorem 3.30 applies to obtain a total recursive f and
a model Kx |= x ∈ Pf (s) & x < B which coincides with Mx up to s. Therefore p $ ThΣ1 Kx, for
p = P. Let q be such that ThΣ1 Kx ⊇ q ∈ min P? (Lemma 3.14). Note that p < q = B.

Suppose p < r ≤ q. Let X ∈ r − p and let t be such that Kx |= x ∈ Xat t. Then t ≥≥ s
because Kx coincides with Mx up to s and Mx |= x < X . Therefore Kx |= x ∈ P \g X for
some total recursive g. Since P \g X is half of an r.e. splitting of X (Lemma 3.8), X ∈ q, and
ThΣ1 Kx ⊇ q, we must have P \g X ∈ q. Hence by Lemma 3.10, X is a hinge for q, so q ∈ min X?

by Proposition 3.11. It follows that q ≤ r which shows that q is an immediate successor of p.
(b) With the help of Lemma 3.32 we can select a hinge X for p and a ∆0 enumeration of X

such that Mx |= x ∈ Xat s for some s ≥ x with Mx |= x ∈ As. By Theorem 3.30 there is
Kx |= x ∈ Pf (s) & x < B coinciding with Mx up to s, so that Kx |= x ∈ Xat s. Just as in the proof
of (a), let ThΣ1 Kx ⊇ r ∈ min P?. We have r 3 P < p while p 3 X − (P \ f X) < r with X − (P \ f X)
being r.e., thus p and r are incomparable.

Suppose Y ∈ q < p. Then Mx |= x ∈ Yat t for some t << s, for t ≥≥ s would imply p ∈ minY?.
Hence Kx |= x ∈ Yat t & t << s yielding Y ∈ r . Therefore q ≤ r .

When q < r , one similarly shows q ≤ p. We conclude that p and r are siblings.

Maass [26, Theorem 3.3] shows that, given any r.e. B ⊆ A with B major in A, there is an
r.e. P between A and B which is promptly simple in [B, A]. (P has a further useful property.)
TogetherwithCorollary 3.33(a), this suggests a degree of ubiquity for (E ∗)?-primeswith immediate
successors.

In connection with clause (b) of Corollary 3.33, note that in any Priestly dual only hinged
primes can have proper siblings, for any prime filter p is the union of hinged primes contained in p.

4. Index sets of prime filters

Recall that –p denotes the index set { i ∈ ω | Wi ∈ p } of a prime p.
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4.1. Lemma. –p is Π 0
2 -hard w.r.t. m-reductions for any prime p. In particular, 0′′ ≤T –p. In fact,

a single m-reduction works for all primes p.

Proof. We m-reduce the Π 0
2 -complete set { i | Wi = ω } to –p. Let g be a total recursive function

such that Wg(i) = { x | ∀y ≤ x y ∈ Wi }. Note that Wg(i) is finite unless Wg(i) = Wi = ω. Thus

Wi = ω ⇐⇒ g(i) ∈ –p.

Primes p with –p ≤T 0′′ exist: take, for example, any maximal set M and let p be the heel of M .
Then

Wi ∈ p ⇐⇒ Wi ∪ M =∗ ω and

Wi < p ⇐⇒ Wi ⊆
∗ M,

both r.h.s. conditions being Σ 0
3 . Proposition 1.10 also constructs a minimax prime recursively

in 0′′. Schmerl & Shavrukov [34] show that only minimal primes can have ∆03 index sets.

4.A. An ersatz indicator for TA

We employ a conventional numbering ({e})e∈ω of partial recursive functions. We write {e}(x)↓
or {e}(x)↑ for convergence and divergence respectively. The ∆1 formula t : {e}(x)↓ expresses that
{e}(x) produces output in t or fewer steps.

4.2. Construction. Define the ∆1 formula

Ta,b(e) ≡ ∀y ≤ a
�
b : {e}(y)↓�

together with total recursive functions

Ya,b(c, d) = µy < d
�
Ta,b(y) & ¬(d : {y}(c)↓)�,

Ba,b(c, d) = µy < d
�
Ya,b(c, y) > Ya,b(y, d)�, and

B∗(a, b) = Ba,b(a, b)
with the understanding that µy < d [0 = 1] = d.

The function Ya,b(c, d) above is inspired by and constructed in the image and likeness of indicators
(see Kaye [15, Chapter 14]). The next lemma shows that it has some of the nice properties that could
be expected from an indicator for TA-submodels of TA-models. Corollary 5.5(a) in Kirby [16]
tells us that there can be no Σ1 indicator for TA-submodels of TA-models, so the use of parameters
a and b appears unavoidable.

In contradistinction to glorious exploits of the original indicators, we just use our version as
a kind of distance-like function.

4.3. Lemma. Suppose a and b are elements of a model M |= TA such that M |= � < a << b.

(a) If e ∈ ω, then M |= Ta,b(e) iff {e} is total.
(b) If n ∈ ω then M |= ∀c ∃d Ya,b(c, d) ≥ n.

(c) If c, d ∈ M then M |= Ya,b(c, d) > �↔ c << d.
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(d) If M |= c << d then M |= c << Ba,b(c, d) << d.

(e) M |= a << B∗(a, b) << b.

Proof. (a) If {e} fails to be total then {e}(m) diverges for some m ∈ ω. Hence M |= {e}(m)↑.
As m ≤ a, M |= ¬Ta,b(e) follows.

If {e} is total then there is a total recursive g such that for all m ∈ ω one has g(m) : {e}(m)↓.
Hence M |= ∀y (g(y) : {e}(y)↓). Since a << b, this impies M |= ∀y ≤ a g(y) < b, so M |=
∀y ≤ a (b : {e}(y)↓). Thus M |= Ta,b(e).

(b) Put d = max{ µy [y : {e}(c)↓] | e ≤ n & {e} total }.
(c) Suppose Ya,b(c, d) > �, e ∈ ω, and {e} is total. Then in M we have Ta,b(e) by clause (a).

Therefore d : {e}(c)↓ because Ya,b(c, d) > e. Thus c << d.
Conversely, let c << d hold in M . If e ∈ ω is such that Ta,b(e) then {e} is total. Hence

d : {e}(c)↓. Conclude Ya,b(c, d) > �.

(d) Let y = Ba,b(c, d) and c << d.
If Ya,b(c, y) were standard then so would be Ya,b(y, d), hence d ≤≤ y ≤≤ c by clause (c), which

contradicts c << d. Thus Ya,b(c, y) > � so that c << y.
If d ≤≤ y held then this would imply d ≤≤ y − 1 while from c << y we have c << y − 1.

By clause (c) it follows that Ya,b(c, y − 1) > � > Ya,b(y − 1, d) contradicting the minimality of y
w.r.t. Ya,b(c, y) > Ya,b(y, d). Therefore y << d.

(e) follows at once from (d).

4.B. Hinged primes and e/m-cylinders

4.4. Definition. Recall that Y is e-reducible to X (Y ≤e X) if there is an r.e. relation S(n, α)
between integers and finite sets of integers such that for each n ∈ ω

n ∈ Y ⇐⇒ ∃α �
S(n, α) & α ⊆ X

�
.

An index of the e-reduction is an r.e. index of the relation S(n, α).
Taking cue from Polyakov & Rozinas [31, § 3], we call a set X an (e/m-)cylinder if for each

Y ⊆ ω we have Y ≤e X ⇒ Y ≤m X , where ≤m is m-reducibility. Equivalently, the m-degree of X
is the largest m-degree within the e-degree of X .

When X is a cylinder, an index for the m-reduction can be obtained from the one for the
e-reduction effectively, for let U(y, α) be an r.e. relation which is universal in the sense that there
is a total recursive g satisfying

Si(x, α) ⇐⇒ U
�
g(i, x), α�

,

where (Si)i∈ω is an acceptable numbering of r.e. relations. Let

E(X) = {
n ��� ∃α

�
U(n, α) & α ⊆ X

� }
.

Since E(X) ≤e X , some total recursive f is an m-reduction of E(X) to X . Hence n 7→ f (g(i, n)) is
an m-reduction of { n | ∃α (Si(n, α) & α ⊆ X) } to X .

A prime p is cylindric if –p is a cylinder.
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4.5. Definition. A minimal prime p is multi-sky if there is a total recursive f such that Mx |=
� < f (x) << x for any model Mx with ThΣ1 Mx = p. Equivalently, for each n ∈ ω and each total
recursive g, the recursive sets { x ∈ ω | f (x) > n } and { x | g( f (x)) < x } belong to p.

A minimal prime p is single-sky if it is not multi-sky.

We shall encounter examples of single-sky minimal primes in Corollary 4.22. Multi-sky minimal
primes exist as well, and Schmerl & Shavrukov [34] take a closer look at those ultrafilters on R ∗
that give rise to multi-sky minimal primes. These ultrafilters are characterized by the presence of
infinitelymany total recursive skies in corresponding recursive ultrapowers of� (seeHirschfeld [11,
section 2] for the definition of recursive ultrapowers). Equivalently, these ultrapowers code 0′′.
Recursive ultrapowers corresponding to single-skyminimal primes only have a single non-standard
total recursive sky.

4.6. Lemma. (a) If p is a hinged non-minimal prime then p is cylindric.
Moreover, an index for the m-reduction is obtained effectively from the one for e-reduction

and an index for any hinge of p. In other words, there is a total recursive h such that whenever p is
some non-minimal prime hinged on We and Si(·, ·) e-reduces some set X to –p, one has that h(i, e)
is an index for an m-reduction of X to –p.

(b) Any multi-sky minimal prime is cylindric.

Proof. Suppose X ≤e –p, that is, for some r.e. S(n, α)
n ∈ X ⇐⇒ ∃α �

S(n, α) & α ⊆ –p
�
.

The expression k : S(n, α) says that (n, α) is enumerated by S in k or fewer steps. It is important
that n and α be bounded by a total recursive function of k. We fix a model Mx with ThΣ1 Mx = p.

(a) Let P be a hinge for p. Since p is non-minimal, we have x << t for any t such that x ∈ Pt

by Corollary 3.22. We claim

n ∈ X ⇐⇒
�

x
�
σP,S(x, n) 	

∈ p, where

σP,S(x, n) ≡ ∃t, y
(
x ∈ Pt & ∃α, k ≤ Yx, t(t, y) �

k : S(n, α) & ∀ j ∈ α x ∈ W j

�)
.

(α is ≤-compared to a number in terms of α’s code.) Note that σP,S(x, n) is Σ1.
Suppose n ∈ X . Fix some k ∈ ω such that k : S(n, α) with α ⊆ –p. In Mx, pick any t such that

x ∈ Pt. With the help of Lemma 4.3(b), select y ∈ M so that α, k ≤ Yx, t(t, y). Since α ⊆ –p, we
have x ∈ W j for each j ∈ α. Thus Mx |= σP,S(x, n), therefore { x | σP,S(x, n) } ∈ p.

Suppose n ∈ ω is such that { x | σP,S(x, n) } ∈ p and hence Mx |= σP,S(x, n). ByLemma3.13
we may assume y ≤≤ t. Hence Yx, t(t, y) is standard by Lemma 4.3(c) as are α and k. Therefore
S(n, α) is in fact true. Since Mx |= x ∈ W j for all j ∈ α, we have α ⊆ –p, for p = ThΣ1 Mx. Thus
n ∈ X .

(b) Since p is multi-sky, there is a total recursive f such that Mx |= � < f (x) << x. We show

n ∈ X ⇐⇒
�

x
�
τf ,S(x, n) 	

∈ p, where

τf ,S(x, n) ≡ ∃y ∃α, k ≤ Yf (x),x(x, y)
�
k : S(n, α) & ∀ j ∈ α x ∈ W j

�
.

Let n ∈ X . Choose α ⊆ –p, k ∈ ω and y ∈ M such that k : S(n, α) and Mx |= α, k ≤ Yf (x),x(x, y).
Since α ⊆ –p, one has Mx |= ∀ j ∈ α x ∈ W j. Thus Mx |= τf ,S(x, n) and { x | τf ,S(x, n) } ∈ p.
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Conversely, if there are y, α, k ∈ M as specified by τf ,S(x, n), then we may assume y ≤≤ x
by Lemma 3.13 and Proposition 3.21, so in view of Lemma 4.3(c) there are standard α and k for
which S(n, α) and α ⊆ –p. Hence n ∈ X .

In both (a) and (b), the displayed equivalences are m-reductions of X to –p. The m-reduction
in (a) is clearly effective in the r.e. indices of S(·, ·) and P. (The m-reductions in (b) are effective
in indices of f and S(·, ·), but we won’t need that.)

4.7. Corollary. The index sets of minimal multi-sky primes and of non-minimal hinged primes
are Σ 0

3 -hard.

Proof. Let ThΣ1 Mx = p with the prime p as in the statement. Let Cof = { e ∈ ω | We is cofinite }.
According to Corollary IV.3.5 in Soare [41], Cof is Σ 0

3 -complete. Let g(e, n) be the total recursive
function defined by

�
g(e, n)	(k) =




0 if k ≤ n
µt [k ∈ We, t] if k > n.

If p is minimal and multi-sky, let the total recursive f witness that fact. If p is non-minimal and
hinged, let P be a hinge for p. In view of Lemma 4.6 it suffices to e-reduce Cof to –p:

e ∈ Cof ⇐⇒ ∃n ∀k > n k ∈ We ⇐⇒ ∃n ∈ ω
�{g(e, n)} is total�

⇐⇒



∃n ∈ ω Mx |= Tf (x),x(g(e, n)) if p is minimal and multi-sky
∃n ∈ ω Mx |= ∃s (x ∈ Ps & Tx,s(g(e, n))) if p is non-minimal and hinged

⇐⇒



∃n ∈ ω { x | Tf (x),x(g(e, n)) } ∈ p if p is minimal and multi-sky
∃n ∈ ω { x | ∃s (x ∈ Ps & Tx,s(g(e, n))) } ∈ p if p is non-minimal and hinged.

Since the r.e. indices of the two last-mentioned sets are effective in e and n, we have an e-reduction
of Cof to –p in either case.

Heels of r-maximal sets lie outside the scope of Corollary 4.7. Lempp & al. [20] discover an
r-maximal set whose heel has a Σ 0

3 -complete index set.

4.C. Jump-the-Gap Lemma

The following key lemmawas motivated by sheer analogy with the case of the E-tree (Shavrukov &
Solovay [36]). Its proof inherits the ‘r.e. sets as Σ1 formulas’ approach already present in the proof
of Lemma 4.6.

≤T is Turing reducibility and ′ is the Turing jump. <· stands for the relation of immediate
succession.

4.8. Jump-the-Gap Lemma. Let p and q be hinged primes.

(a) If p ≤ q, then –p ≤m –q, hence –p ≤T –q. When q is non-minimal, the index of the reduction
is effective in the indices of any given hinges for p and q.

(b) If p <· q, then –p
′ ≤T –q. The index of the reduction is effective in those of any hinges for

p and q.
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Proof. Let p and q hinge on P and Q respectively, and let ThΣ1 Mx = q.
(a) If q is minimal then p = q, so the identity reduction works. Assume that q is non-minimal.

Suppose that a, b ∈ M are such that x ∈ Pat a and x ∈ Qb. Then x << b by Proposition 3.21
because q is non-minimal. To show:

Wi ∈ p ⇐⇒ ∃n ∈ ω
�

x
�
ρP,Q(x, i, n) 	

∈ q, where

ρP,Q(x, i, n) ≡ ∃a, b, c
�
x ∈ Pat a & x ∈ Qb & x ∈ Wi,c & Yx,b(a, c) ≤ n

�
,

which is an e-reduction of –p to –q effective in the indices of P and Q.
When Wi ∈ p and x ∈ Pat a, by Proposition 3.11 there is c ≤≤ a in Mx with x ∈ Wi,c. Let

b ∈ M be any number satisfying x ∈ Qb. By Lemma 4.3(c), Yx,b(a, c) is standard. Thus for some
standard n the model Mx satisfies the Σ1 formula ρP,Q(x, i, n)which puts { x | ρP,Q(x, i, n) } into q.

Suppose there is n ∈ ω such that { x | ρP,Q(x, i, n) } ∈ q and therefore Mx |= ρP,Q(x, i, n).
Then Yx,b(a, c) is standard. Therefore c ≤≤ a by Lemma 4.3(c). Since x ∈ Wi,c, we have Wi ∈ p
by Proposition 3.11.

Finally, Lemma 4.6(a) turns the e-reduction into an m-reduction (effectively in the index
of Q).

(b) In Mx, let a << b be such that x ∈ Pat a and x ∈ Qat b. Further, let c = B∗(a, b).
Lemma 4.3(e) ensures a << c << b.

We claim that, back in the real world, p = {Wi | Mx |= x ∈ Wi,c }: Since c << b, there is by
Wilkie’s Lemma an initial TA-segment I of M such that x ≤ c ∈ I < b. In particular, Ix |= x < Q.
We have

p ⊆ {Wi | Mx |= x ∈ Wi,c } (by Proposition 3.11 since a << c)

⊆ {Wi | Ix |= x ∈ Wi } (as c ∈ I ⊆e M)

$ q (as Ix |= x < Q).

From p <· q it follows that ThΣ1 Ix = p. Therefore p = {Wi | Mx |= x ∈ Wi,c }.
The representation of the Turing jump that we use is X ′ = { e | {e}X↓ } where {e}X is the eth

input-free computational device with the oracle X plugged in — this helps reduce notation a little.
We are now sufficiently prepared to establish

e ∈ –p
′ ⇐⇒ {e}–p↓ ⇐⇒ ∃n ∈ ω

�
x

�
ξP,Q(x, e, n) 	

∈ q, where

ξP,Q(x, e, n) ≡ ∃a, b, c
�
x ∈ Pat a & x ∈ Qat b & c = B∗(a, b) & n : {e}{i |x∈Wi,c}↓

�
.

If for some standard n one has { x | ξP,Q(x, e, n) 	
∈ q then Mx |= ξP,Q(x, e, n). The numbers a, b

and c are uniquely determined. The computation {e}{i |x∈Wi,c} converges in standardly many steps,
so the oracle is only queried on membership of standard numbers. For these queries, the answers
of the oracle { i | x ∈ Wi,c } in Mx are the same as those given by –p in the real world. Thus {e}–p↓.

Conversely, if n : {e}–p↓ for some n ∈ ω, then Mx |= n : {e}{i |x∈Wi,c}↓ by the same argument.
Thus Mx |= ξP,Q(x, e, n) and therefore { x | ξP,Q(x, e, n) } ∈ q.

Since the formula ξP,Q(x, e, n) is Σ1, the displayed equivalence, now verified, is an e-reduction
of –p

′ to –q effective in the indices of P and Q. To complete the proof, invoke Lemma 4.6(a).

4.9. Exercise. Suppose the prime p is hinged, r is arbitrary, and p ≤ r . Then –p ≤e –r .

The next proposition should demonstrate the strength of Jump-the-Gap Lemma when the latter is
combined with the fact of non-existence of certain uniformly defined sequences of Turing degrees.
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4.10. Definition (Steel [43]). A sequence (Sn)n∈ω of subsets of ω is a Steel sequence if for some
arithmetical A(X,Y ) we have

∀n ∈ ω ∀Y ⊆ ω
�
A(Sn,Y )↔ Y = Sn+1

�
and ∀n ∈ ω S′n+1 ≤T Sn.

4.11. Fact (Steel [43]). No Steel sequences exist.

4.12. Proposition. No interval in (E ∗)? is order-isomorphic to ω∗ (inverted ω).

Proof. Suppose (pi)i∈ω were a sequence of primes with pi+1 <· pi, all i. Each pi must be hinged
because it has an immediate predecessor — see Lemma 3.15(b). We show that (–pi)i∈ω is a Steel
sequence thus outruling the existence of (pi)i∈ω in view of Fact 4.11.

Indeed, we have –p
′
i+1 ≤T –pi by Jump-the-Gap Lemma (b), and

Y = –pi+1 ⇐⇒ Y is a prime filter of E ∗ & Y $ –pi
& ∀ j ∈ –pi ( j ∈ Y or W j is a hinge for pi), where

W j is a hinge for pi ⇐⇒ j ∈ –pi & ∀k ∈ –pi ∃e
�{e} is total & Wk \ {e} W j ∈ pi

�
.

4.D. Jump-the-gap ladders and branches in (E ∗)?

A more systematic exploitation of Jump-the-Gap Lemma calls for the following

4.13. Definition (Shavrukov & Solovay [36]). A jump-the-gap ladder is a tuple (J, �, (Ci)i∈J),
where ∅ , J ⊆ ω, � is a linear order on J, and Ci ⊆ ω are such that

(J1) for all i ∈ J, { j ∈ J | j � i } ≤T C′i uniformly in i (i.e., there is a total recursive e such
that {e(i)}C′i decides { j ∈ J | j � i } for each i ∈ J);

(J2) for all i, j ∈ J, if i � j then Ci ≤T Cj uniformly in (i, j);
(J3) for all i, j ∈ J, if i ≺· j then C′i ≤T Cj.

It follows from (J1) and (J2) that � restricted to { j ∈ J | j � i } is uniformly recursive in C′i .
A linear ordering (X, ≤) supports a jump-the-gap ladder if there exists a jump-the-gap ladder

(J, �, (Ci)i∈J) with (J, �) � (X, ≤).
Shavrukov & Solovay [36] investigate the order types of jump-the-gap ladders through the connec-
tion of the latter with jump pseudo-hierarchies.

4.14. Exercise. Suppose (J, �, (Ci)i∈J) is a jump-the-gap ladder.
(a) If Di = C′i for all i ∈ J then (J, �, (Di)i∈J) is also a jump-the-gap ladder satisfying

(J1+) for all i ∈ J, { j ∈ J | j � i } ≤T Di uniformly in i.
(b) If Ei = C′′i for all i ∈ J then (J, �, (Ei)i∈J) is a jump-the-gap ladder satisfying (J1+) and

(J3+) for all i, j ∈ J, if i ≺· j then E ′i ≤T E j uniformly in (i, j).
4.15. Definition. The hinged skeleton πG of a closed subset π ⊆ (E ∗)?, in particular of a branch
through (E ∗)?, is the collection of (E ∗)?-hinged primes in π. The hinged skeleta of linearly
ordered subsets of (E ∗)?, in particular of branches, are countable because distinct hinged primes
in a chain require distinct hinges.
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A branch b through (E ∗)?, being its closed subset and a maximal chain, is, by Fact 1.15 and
Exercise 1.33, the Priestley dual of a finest chain quotient Q of E ∗. According to Proposition 3.17,
bG is order-anti-isomorphic to the lattice order onQ−{0}. Thus b together with its (E ∗)?-subspace
topology can be restored from the ordering of its hinged skeleton bG: Intervals of the form [p, q)
with p, q ∈ bG comprise a base for the Priestley subspace topology on b.

Therefore to understand the structure of branches through (E ∗)? (or of finest chain quotients
of E ∗) it is in principle sufficient to understand the ordertypes of hinged skeleta of these branches.

4.16. Proposition. The hinged skeleton of any branch b through (E ∗)? supports a jump-the-gap
ladder.

Proof. Let b be given. For a hinged prime p on b, let i(p) be the minimal i such that Wi is a hinge
for p. Note that i is injective, for no two distinct primes on a same branch can share the same hinge.
Define

J = { i(p) | p ∈ bG },
i(p) � i(q) ⇐⇒ p ≤ q,

Ci(p) = –p.

We are going to show that (J, �, (Ci)i∈J) is a jump-the-gap ladder by verifying (J1–3) of Defini-
tion 4.13.

(J1) j = i(q) for some q ≤ p

⇐⇒ j ∈ –p & ∀k ∀e
�{e} is total & Wk \ {e} W j ∈ p & Wk \ {e} W j ∈ p −→ k ≥ j

�
,

which, thanks to Lemma 4.1, gives a uniform reduction of { j ∈ J | j � i(p) } to –p′ = C′
i(p).

(J2) To reduce Ci(p) = –p to Ci(q) = –q, use the identity reduction if i(p) = i(q). In the opposite
case, use the reduction from Jump-the-Gap Lemma (a) with Wi(p) and Wi(q) in the roles of hinges.

(J3) See Jump-the-Gap Lemma (b).

The hinged skeleta of all branches through the E-tree also support jump-the-gap ladders. This
eventually leads Shavrukov & Solovay [36] to a characterization of the order types of E-branches:
a countable linear order type H is that of the hinged skeleton of some branch through the E-tree
if and only ifH supports a jump-the-gap ladder, has a least element, and non-trivial densely ordered
convex segments occur cofinally often in H .

4.E. Germs at hinged primes

4.17. Definition. Let p be a non-maximal prime. Consider an equivalence relation on branches
through (E ∗)? containing p:

b0 'p b1 ⇐⇒ there is a prime q ∈ b0 ∩ b1 with q > p.

Equivalence classes of 'p are called germs at p.
A germ g at p is a successor germ if p has an immediate successor on any or all branches

from g . g is dense if each branch from g contains a prime q > p such that [p, q]G is non-trivial
and densely ordered (for hinged p, we may clearly omit non-triviality).
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4.18. Proposition. Let p be a non-maximal hinged prime. Then each germ at p is either a
successor or a dense germ.

Proof. In view of Proposition 4.16, it suffices to show that in any jump-the-gap ladder
(J, �, (Ci)i∈J) any non-maximal point i either has an immediate successor or is the lower end-
point of a non-trivial densely ordered convex segment. The only alternative to both scenarios
could consist in �-gaps descending onto i: for each j � i there are k and ` with i ≺ k ≺· ` � j.
We argue by reductio ad Steel sequence:

Let j0 ∈ J be an arbitrary point with j0 � i. Put S0 = ( j0,Cj0).
Given Sn = ( jn,Cjn) with jn � i, let jn+1 ∈ J be the least (in the conventional ordering of ω)

such that

i ≺ jn+1 ≺ jn & jn+1 is the lower endpoint of a �-gap.

By our descending-gaps assumption and since jn � i, such a jn+1 exists. Put Sn+1 = ( jn+1,Cjn+1).
We claim that (Sn)n∈ω is a Steel sequence:
By property (J1) of (J, �, (Ci)i∈J), the point jn+1 is uniformly arithmetical in Sn. By (J2)

so is Cjn+1 and hence also Sn+1. In particular, Sn+1 is a uniformly arithmetical in Sn singleton as
required in Definition 4.10.

By (J3) and (J2) we have C′jn+1 ≤T Cjn because of the �-gap that abuts on jn+1. Hence

S′n+1 ≡T C′jn+1 ≤T Cjn ≡T Sn,

which confirms that (Sn)n∈ω is a Steel sequence.

4.F. Dense germs

With Corollary 1.23 we have seen that any prime in the shadow of a hhsimple set only has successor
germs. The next proposition shows that this behaviour is somewhat atypical for hinged primes.

4.19. Proposition. Suppose Q is r.e. and p is a cylindric prime in the shadow of Q. Then there
exists a prime q > p hinged on Q such that –q ≤T –p. If, on top of that, p is hinged, then [p, q]G is
densely ordered.

4.20. Construction. We are going to compile, recursively in –p, two non-decreasing sequences
(αn, χn)n∈ω of finite sets of indices of r.e. sets together with a growing collection (bi)i∈αn of
(indices of) total recursive functions. Our intention is that –q =

⋃
n∈ω αn be the index set of the

required prime and
⋃

n∈ω χn complement –q so that –q ≤T –p. The functions {bi} will help to keep
q hinged on Q.

We consruct αn, χn, and bn aiming to preserve the consistency of the L (x) theories

Tn = TA + { x ∈ Wk }k ∈–p + x ∈ Q +
�
x ∈ Wi \ {bi} Q

	
i∈αn
+ { x < W j } j ∈χn

which will be shown later.
Put α0 = χ0 = ∅.
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Consider the total recursive function h which takes as arguments two natural numbers, two
finite sets α and χ of (indices of) r.e. sets, and a recursive function index ci for each i ∈ α:

�
h

�
k, α, (ci)i∈α, χ,m�	(t)
= µy

[
∀z

(
z ∈ Wk, t & z ∈ Qat t & &

i∈α
z ∈ Wi,{ci}(t) −→ z ∈ Wm,y ∨

∨
j ∈χ

z ∈ W j,y

)]
.

If any of {ci}(t) with i ∈ α fails to converge, then so does {h(k, α, (ci)i∈α, χ,m)}(t). Note that
in view of Definition 3.5, the quantifier ∀z is bounded by a total recursive function of t.

With αn, χn and (bi)i∈αn already in place, we decide whether Wn goes into αn+1 or into χn+1
as follows: One can determine effectively in –p whether

∃k ∈ –p
(�

h
�
k, αn, (bi)i∈αn, χn, n

�	
is total

)
,

for this question e-reduces via Lemma 4.1 to –p and, since –p is a cylinder, is also m-reducible to –p,
recalling that for a fixed p, an index for the m-reduction is found effectively in the one for the
e-reduction.

If such k exists, we find a witnessing instance effectively in –p by exhaustive search — using
Lemma 4.1 — and put

αn+1 = αn ∪ {n}, bn = h
�
k, αn, (bi)i∈αn, χn, n

�
, and χn+1 = χn.

If no k ∈ –p such that {h(k, αn, (bi)i∈αn, χn, n)} is total exists, we let
αn+1 = αn and χn+1 = χn ∪ {n}.

4.21. Proof of Proposition 4.19. We first note that in any model Mx of any Tn we have x > �
because x ∈ ω − m ∈ p for each m ∈ ω, so x > m.

Let us show by induction on n that Tn is consistent. The consistency of T0 follows from the
assumptions of 4.19, for p extends to a larger prime that contains Q. Suppose Tn is consistent and
consider Tn+1. There are two cases:

Case 1: ∃k ∈ –p ({h(k, αn, (bi)i∈αn, χn, n)} is total).
In this case Tn+1 = Tn + x ∈ Wn \ {bn} Q. Let Mx |= Tn. In Mx, let t be such that

x ∈ Qat t. Observe that Mx |= x ∈ Wi,{bi}(t) for all i ∈ αn as Tn |− x ∈ Wi \ {bi} Q. Since
Q < p and Wk ∈ p ⊆ ThΣ1 Mx, it follows by (i)⇒ (ii) of Proposition 3.11 that x ∈ Wk, t. For
y = {h(k, αn, (bi)i∈αn, χn, n)}(t) = {bn}(t) we have x ∈ Wn,y by the construction of h because
x < W j for all j ∈ χn. Hence x ∈ Wn \ {bn} Q. Thus Tn+1 is consistent, for Mx |= Tn+1.

Case 2: ∀k ∈ –p ({h(k, αn, (bi)i∈αn, χn, n)} is not total).
Now Tn+1 = Tn + x < Wn. Suppose Tn+1 were inconsistent. Then by compactness there

exists k ∈ –p — a single k suffices since p is closed under finite intersections — such that the
following is a consequence of TA and hence true:

∀x
(
x ∈ Wk & x ∈ Q & &

i∈αn

x ∈ Wi \ {bi} Q −→ x ∈ Wn ∨
∨
j ∈χn

x ∈ W j

)
.

Since all {bi} with i ∈ αn are total and x is bounded by a total recursive function of t for all
x ∈ Wk, t, it follows that {h(k, αn, (bi)i∈αn, χn, n)} must be total as well which contradicts the
assumption of Case 2. Hence Tn+1 is consistent.
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We conclude that T =
⋃

n∈ω Tn is consistent. We have T |Σ1(x) = q where –q =
⋃

n∈ω αn, and
q > p as p = Q ∈ q and k ∈ αk+1 ⊆ –q for each Wk ∈ p, any function of the form {h(k, . . . , k)}
being total. The set Q is a hinge for q because T |− x ∈ Wi \ {bi} Q with {bi} total whenever
Wi ∈ q, hence Wi \ {bi} Q ∈ q.

Finally, if p is hinged, then [p, q]G is densely ordered because for hinged primes r and s, a gap
of the form p ≤ r <· s ≤ q would by Jump-the-Gap Lemma imply –p

′ ≤T –q, contradicting –q ≤T –p.

A similar construction also makes sense in Σ1/T (Shavrukov & Solovay [36]). There, instead of
totality of recursive functions, one uses provability in T to distinguish between cases.

4.22. Corollary. All (minimal) primes found in the shadow of any D-hhsimple set are single-sky.

Proof. Let D be D-hhsimple. Any prime in the shadow of D is hinged because, by Proposi-
tion 1.26, it is minimal. If any such prime p was multi-sky then it would also be cylindric by
Lemma 4.6(b). Hence by Proposition 4.19 there is a prime q ∈ min D? with [p, q]G densely
ordered. Therefore p fails to have successors on branches passing through (both p and) q. But this
contradicts Corollary 1.27. (Alternatively, one argues that since q ∈ min D?, the interval [p, q) is
an infinite chain within the shadow of D, which is impossible because that shadow is an antichain.)

In particular, all primes in the shadow of a hhsimple set are also single-sky. Schmerl & Shavru-
kov [34] find out that the class of single-sky minimal primes includes all minimax primes as well as
all heels of r-maximal sets.

4.G. Complexity of immediate successors

Corollary 3.33(a) pointed out a large number of primes in (E ∗)? with successor germs. The next
proposition constructs immediate successors with Turing complexity of index sets that, for hinged
primes, does not exceed that necessitated by Jump-the-Gap Lemma (b). This constitutes evidence
that that lemma is reasonably optimal.

4.23. Proposition. Let B ⊆ Q ⊂∞ A be r.e. with Q promptly simple in [B, A]. Suppose p is a
prime such that Q < p 3 A. Then there is a prime q hinged on Q with p <· q = B and –q ≤T –p

′.

4.24. Construction. This follows the general pattern of 4.20. Thus we shall also build two
non-decreasing sequences (αn, χn)n∈ω of finite sets of (indices of) r.e. sets and collections (bi)i∈αn

of total recursive indices — this time, recursively in –p
′. As before,

⋃
n∈ω χn complements

–q =
⋃

n∈ω αn. The theories we would like to keep consistent are

Tn = TA + { x ∈ We,s }e∈–p + { x < Wd,s }d<–p + x ∈ Q f (s)

+
�
x ∈ Wi,{bi}(s)

	
i∈αn
+ { x < W j } j ∈χn + x < B,

where f is the total recursive function associated by Theorem 3.30 to Q’s being promptly simple
in [B, A], and s is a new constant. Here we also assume that the distinguished enumeration
(We, t)e, t ∈ω is ∆0 (see Definition 3.5).

Put α0 = χ0 = ∅.
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Compared to 4.20, the function h has two finite-set arguments κ and λ instead of a single
integer k:

�
h

�
κ, λ, α, (ci)i∈α, χ,m�	(s)

= µy
[
∀z

(
&
k ∈κ

z ∈ Wk,s & &̀
∈λ

z < W`,s & z ∈ Q f (s) & &
i∈α

z ∈ Wi,{ci}(s)

−→ z ∈ Wm,y ∨
∨
j ∈χ

z ∈ W j,y ∨ z ∈ By

)]
.

If any {ci}(s) with i ∈ α diverges, then {h(κ, λ, α, (ci)i∈α, χ,m)}(s) is left undefined.
At the (n + 1)st stage we find out effectively in –p′ whether

∃κ ⊆ –p ∃λ ⊆ ω − –p
(�

h
�
κ, λ, αn, (bi)i∈αn, χn, n

�	
is total

)
.

If κ and λ exist, find such a pair (effectively in –p by Lemma 4.1), and put

αn+1 = αn ∪ {n}, bn = h
�
κ, λ, αn, (bi)i∈αn, χn, n

�
, and χn+1 = χn.

Otherwise, αn+1 = αn and χn+1 = χn ∪ {n}.
4.25. Proof of Proposition 4.23. As in 4.21, x is non-standard in any model of any Tn.

To show T0 consistent, take any countable model Mx |= TA with ThΣ1 Mx = p. Just as in
the proof of Corollary 3.33(a), we may select an s ≥ x such that Mx |= x ∈ We → x ∈ We,s

for each e ∈ ω. Since A ∈ p, we have Mx |= x ∈ As. Theorem 3.30 then constructs a model
(Kx, s) |= TA + x ∈ Q f (s) + x < B. Since we have assumed the enumeration (We, t)e, t ∈ω to be ∆0
and the L ′(x)-structures [0, s]K and [0, s]M are isomorphic by Theorem 3.30, formulas of the form
x ∈ Wi,s are absolute between (Kx, s) and (Mx, s) when i ∈ ω. Thus (Kx, s) |= T0.

Assuming Tn consistent, consider Tn+1:
If there are κ ⊆ –p and λ ⊆ ω − –p such that {bn} = {h(κ, λ, αn, (bi)i∈αn, χn, n)} is total, then

Tn |− x ∈ Wn,{bn}(s) by the construction of h, so that Tn+1 is entailed by Tn.
If κ and λ as above fail to exist and Tn+1 = Tn + x < Wn were inconsistent, compactness

provides finite sets κ′ ⊆ –p and λ ′ ⊆ ω − –p such that

∀x, s
(
&
k ∈κ′

x ∈ Wk,s & &̀
∈λ′

x < W`,s & x ∈ Q f (s) & &
i∈αn

x ∈ Wi,{bi}(s)

−→ x ∈ Wn ∨
∨
j ∈χn

x ∈ W j ∨ x ∈ B
)
.

Which brings about a contradiction, for {h(κ′, λ ′, αn, (bi)i∈αn, χn, n)} is then total.
It follows that T =

⋃
n∈ω Tn is consistent. Hence q = T |Σ1(x) is a prime, where –q =

⋃
n∈ω αn.

We clearly have p < q ∈ Q? − B?. In any model (Nx, s) |= T , if x ∈ Qat t then t ≤ f (s)
and t ≥≥ s because Q < p = {Wi | (Nx, s) |= x ∈ Wi,s }. Since for each Wi ∈ q we have
(Nx, s) |= x ∈ Wi,{bi}(s) where {bi} is total, we also have (Nx, s) |= x ∈ Wi \gi

Q for some total
recursive gi. Thus Wi \gi

Q ∈ ThΣ1 Nx = q, which shows that q hinges on Q.
Suppose p ≤ r < q. Then by Proposition 2.13 there are models Ix ⊆e Nx such that

(Nx, s) |= T for some s ∈ N , and ThΣ1 Ix = r . Note that s ∈ I cannot happen, for then
Ix |= x ∈ Q, while Q, being a hinge for q, cannot belong to ThΣ1 Ix = r < q. Therefore
ThΣ1 Ix ⊆ {Wi | (Nx, s) |= x ∈ Wi,s } = p. Thus r = p, establishing that p <· q.
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5. Questions

In this section we present a small selection of open questions about the structure of (E ∗)?.
Unfortunately, I cannot guarantee that all of these questions are difficult.

5.A. Automorphisms of E ∗

Every automorphism ϕ of E ∗ gives rise to an order-autohomeomorphism ϕ? of (E ∗)?:
ϕ?(p) = �

r.e. X
�
ϕ(X) ∈ p

	
.

Shore [37, Lemma 4] shows that each automorphism of E ∗ is uniquely determined by its action
on R ∗, the sublattice of recursive sets. It follows that each automorphism is also determined by
the action of its dual ϕ? on min(E ∗)?, as well as by the action on max(E ∗)?. This suggests that
the main direction of the action of ϕ? is horizontal.

5.1. Question. Is there an automorphism ϕ such that ϕ?(p) > p for some prime p ?

We have seen in Proposition 4.19 and Corollary 4.22 that the multi-/single-sky distinction among
minimal primes affects their position in (E ∗)?.

5.2. Question. Is the collection of single-sky minimal primes invariant under automorphisms?

5.B. Minimal primes

For minimal primes, we have in section 4 established some implications between the multi-sky
property, cylindricity, and existence of dense germs. It is natural to ask if any of these can be
reversed:

5.3. Questions. (a) Can a single-sky minimal prime be cylindric? In particular, can the heel of
an r-maximal set or a minimax prime be cylindric?

(b) Can a non-maximal acylindric minimal prime have a dense germ? In particular, can a
prime in the shadow of a D-hhsimple set have a dense germ?

(c) Suppose a minimal non-maximal prime only has successor germs. Must it lie outside
some hhsimple set?

Known non-maximal examples of single-sky minimal primes come from D-hhsimple and r-
maximal sets. We know that in the shadow of an appropriate hhsimple set one already finds
2ℵ0 many single-sky primes, whereas all r-maximal sets can only account for countably many
heels. What we do not know is whether the heels of r-maximal sets contribute anything new
compared to the shadows of D-hhsimple sets. Accordingly, we ask:

5.4. Question. Is there an r-maximal set whose heel does not lie in the shadow of any D-hhsimple
set?
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5.C. Order types of branches

We conjecture that the minimax primes are responsible for the only difference between the col-
lections of order types of branches through the E-tree (Shavrukov & Solovay [36]) and those of
branches through (E ∗)?. Recall that it is sufficient to describe the hinged skeleta of such branches.

5.5. Conjecture. The order types of hinged skeleta of branches through (E ∗)? are singleton
order types (given by minimax primes) together with all countable linear ordertypes that have
a least point, have non-trivial densely ordered subsegments occur cofinally often, and support a
jump-the-gap ladder.

A positive answer to some variant of the next question could likely be a step towards verification
of the conjecture, taking care of densely ordered subsegments.

5.6. Question. Let A1 be a major subset of A0. Does there exist a uniformly r.e. family
(Aα)α∈�∩(0,1) such that for all α < β where α, β ∈ � ∩ (0, 1) we have

(i) A1 ⊂∞ Aβ ⊂∞ Aα ⊂∞ A0;

(ii) for each prime p ∈ A?0 − A?α there is a q > p such that q ∈ A?α − A?β;

(iii) for each prime r ∈ A?β − A?1 there is an s < r such that s ∈ A?α − A?β ?

A0

AαAβ
A1 qr

p
s

This really is a question about M∗, for its answer does not depend on the particular position
within E ∗ of the individual instance of the major inerval.

Starting with an r.e. non-recursive A0 and letting Ai+1 be a small major subset of Ai, we obtain an
ω-sequence with properties similar to (i)–(iii), but it is not sufficiently dense. Theorem 1.4.6 in
Stob [44] offers a mechanism for subdivision, but clause (iii) then becomes problematic.

In Σ1/T , the analogue of an individual r.e. set Aα satisfying (i)–(iii) is a Σ1 sentence which is
doubly conservative in the enveloping interval (see Lindström [22, Theorem 5.3(a)]). Dense effec-
tive sequences of Σ1 sentences with properties (i)–(iii) are produced in Shavrukov & Solovay [36]
and Lindström [23]. Rather than use subdivision, however, both constructions proceed as a single
operation. In Σ1/T , the role of the major interval [A1, A0] can be played by any non-trivial interval.

Another ingredient to a hypothetical positive answer to Conjecture 5.5 are successor germs.
While we may infer from Corollary 3.33(a) and results of Maass [26] that the π-closure of the set
of primes that have successor germs includes at least all non-minimal primes, we still want more.

5.7. Question. Does every hinged non-maximal prime sprout a successor germ? Is there a
workable class of r.e. sets that satisfy Corollary 3.33(a) which is larger than the class of sets
promptly simple in a given interval?
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5.D. RK

In conclusion, we would just like to spell out the definition of a semi-effective miniaturization of
the Rudin–Keisler pre-ordering for elements of (E ∗)?:

5.8. Definition. p ≤rk q if there is a partial recursive function f with q 3 dom f such that for
each r.e. X one has X ∈ p ⇔ f −1[X] ∈ q.
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