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Taking the above expression for Δμp, Eq. [6.A1] implies that the quartz precipitation velocity 
on the clast wall within the pore is given

(6.C1)

The compaction strain rate of the unit cell is then obtained from ε.comp = (2VpApore)/Vu, where 
Vu = (D-x)DL is the unit cell volume. Using Eq. [6.A1], Δμp = Sn2Ω and the geometry shown 
in Fig. 6.3b yields

(6.C2)

The effective normal stress Sn2 can be obtained by considering the force balance in Fig. 6.3b 
(taking L1 ≈ L2), yielding

(6.C3)

This approaches σn
eff for small values of Ψfr. We will therefore use the approximation Sn2 ≈ 

σn
eff, yielding

(6.C4)
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Chapter 7

General conclusions and suggestions for 
future research
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Chapter 7

This thesis has reported an experimental study aimed at determining the frictional behaviour 
of compositionally realistic subduction megathrust fault gouges under near in-situ P-T 
conditions, addressing low sliding velocities relevant to earthquake nucleation. In addition, 
an attempt was made to explain the underlying microscale processes both qualitatively and 
in terms of a microphysical model. The experimental programme focused in particular 
on simulated illite-quartz and muscovite-quartz gouges, thus capturing the main effect 
of increasing metamorphic grade with depth/temperature on pelitic, megathrust fault 
rock composition. The work done has provided some of the frist results on the frictional 
behaviour of realistic gouges under realistic P-T conditions. In the following, the principal 
conclusions will be integrated and summarized and the overall implications for subduction 
megathrust behaviour assessed. Finally, questions which remain unanswered are identified 
and suggestions are made for future research.

Main findings7.1 
Effect of temperature on the frictional properties of illite-quartz gouge7.1.1 

An extensive series of ring shear experiments was performed on simulated 65:35 illite-
quartz gouge at temperatures (T) covering the range 150-500°C, at an effective normal 
stress (σn

eff) of 170 MPa, a pore fluid pressure (Pf) of 100 MPa and sliding velocities (V) of 
1-100 μm/s. Velocity-stepping experiments (Chapter 3) showed three regimes of velocity-
dependence, with velocity-strengthening behaviour occurring at ~150-250°C (Regime 1), 
velocity-weakening at ~250-400°C (Regime 2) and velocity-strengthening at ~400-500°C 
(Regime 3). Increasing the temperature was also found to lead to an increase in friction 
coefficient (μ), this being sharpest at ~350°C (i.e. in velocity-weakening Regime 2). The 
velocity-strengthening, velocity-weakening, velocity-strengthening behaviour observed 
with increasing temperature bears a striking parallel to the sequence of aseismic-seismic-
aseismic behaviour seen on megathrusts at slightly (50-100°C) lower temperature.

Effects of other variables on frictional properties7.1.2 
The above ring shear experiments on 65:35 illite-quartz mixtures also showed an effect 
of slip rate on the frictional properties. Specifically, a decrease in slip rate was found to 
result in a shift of the three “slip stability” regimes towards lower temperatures (Chapters 
3 and 4). Ring shear experiments were also performed on the illite-quartz gouge at effective 
normal stresses of 25-200 MPa, pore fluid pressures of 50-200 MPa, sliding velocities of 1-100 
μm/s and at 140-600°C to determine the effects of σn

eff and Pf on frictional behaviour of 65:35 
illite-quartz gouge. The results (Chapter 4) showed a shift of the velocity-weakening regime 
(Regime 2) towards higher temperatures with a decrease in the effective normal stress, 
being located at ~350-600°C at σn

eff = 50 MPa. The pore fluid pressure slightly increased 
(a-b) at all temperatures explored, apparently narrowing Regime 2, although a shift of the 
entire (a-b) profile towards lower temperatures could not be excluded. These effects of T, 
V, σn

eff and Pf suggest that velocity-weakening can occur in illite-quartz gouge at a range of 
depths on subduction zone megathrusts, including the range where seismogenic behaviour 
is typically observed (seismogenic zone).

Alongside the ring shear experiments performed at elevated temperature, double direct 
shear (biaxial) experiments were performed at room temperature, using the same, wet, 
illite-quartz gouge, extending the dataset to connect with previous work (Chapter 2). These 
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experiments showed positive (a-b) values, consistent with velocity-strengthening, Regime 1 
behaviour seen in the ring shear machine from 140-250°C. In contrast to the effect of σn

eff on 
(a-b) at these temperatures, (a-b) determined at room temperature increased with increasing 
normal stress over the investigated range of 5-30 MPa, as did the friction coefficient μ.

Nearly all experiments, whether ring or double direct shear, showed and increase in μ with 
displacement, i.e. slip hardening behaviour. In the direct shear tests, a trend of increasing 
slip hardening rate with increasing normal stress was found. Reduced strain hardening 
rates in ring shear control experiments, conducted dry, suggested this was caused by 
preferred phyllosilicate loss from wet samples.

Effect of quartz-phyllosilicate composition on frictional properties7.1.3 
The effect of varying quartz content on the frictional behaviour of illite-quartz gouge was 
investigated in experiments employing an illite:quartz ratio of 65:35 to zero, at an effective 
normal stress of 100 MPa, a pore fluid pressure of 200 MPa, sliding velocities of 1-100 μm/s 
and a temperature of 140°C (Chapter 4). These conditions fall in the Regime 1 velocity-
strengthening field for the 65:35 gouge mixture. The experiments showed an increase in the 
friction coefficient with increasing quartz  content, in line with previous studies addressing 
the frictional properties of phyllosilicate-quartz gouges. In addition, values of (a-b) were 
found to decrease towards velocity-neutral values with increasing quartz content, pointing 
to either a horizontal or vertical shift of the (a-b) versus temperature profile, and suggesting 
that increased quartz content can lead to velocity-weakening slip at low temperatures 
(140°C) associated with the nucleation of events such as the Tohoku-Oki earthquake for 
example.

Friction experiments were also performed on phyllosilicate-quartz gouges with other 
phyllosilicates. The frictional properties of wet, smectite-rich Nankai ODP material were 
determined in biaxial (double direct shear) experiments, performed at room temperature, 
normal stresses of 10 and 15 MPa and sliding velocities of 0.18-18 μm/s (Chapter 2). This 
material showed similar behaviour to the 65:35 illite-quartz mixtures deformed under 
the same conditions, being characterized by velocity-strengthening behaviour and an 
increase in slip hardening rate with increasing normal stress, but also with increasing 
sliding velocity. These results confirmed previous work on smectite-rich gouges at room 
temperature, pointing to positive (a-b) on megathrusts (at least) down to the smectite-illite 
transition.

Ring shear experiments on 65:35 muscovite-quartz mixtures performed at the same 
conditions as the 65:35 illite-quartz mixtures (i.e. σn

eff = 170 MPa, Pf = 100 MPa, V = 1-100 μm/s) 
but at temperatures of 100-600°C, showed very similar behaviour to illite-quartz gouge 
(Chapter 5). In particular, three similar regimes of (a-b) versus temperature were observed, 
along with a similar increase in μ with temperature. However, the temperature range of 
velocity-weakening (Regime 2) was shifted towards higher temperatures for muscovite-
quartz mixtures, being located at ~350-500°C compared with ~250-400°C for illite-quartz 
gouge (Chapter 5). The overlap in the velocity-weakening regimes exhibited by the two 
gouges suggests that the illite-muscovite transition extends the zone of velocity-weakening 
behaviour on megathrusts to a total width in temperature of 250-500°C, i.e. extending the 
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seismogenic zone beyond that expected for illite-quartz.

Finally, the effect of the presence versus the absence of quartz was addressed by experiments 
on 100% pure muscovite gouge, performed at the same P-T and velocity conditions as the 
muscovite-quartz mixtures and at temperatures of 200, 400 and 600°C (Chapter 5). This 
material showed mainly velocity-strengthening or neutral behaviour, with a minimum in 
the (a-b) versus T curve, i.e. predominantly neutral (a-b) values, occurring at 400°C, where 
velocity-weakening occurs in megathrusts. This implies a key role of quartz in causing 
velocity-weakening. The control ring shear experiments conducted on dry illite-quartz 
gouge also showed near-neutral (a-b) values, suggesting that water is also necessary for 
velocity-weakening behaviour in phyllosilicate-quartz mixtures. 

Microscale processes7.1.4 
The microstructures of the ODP material and illite-quartz gouge deformed at room 
temperature showed an anastomosing phyllosilicate network, defining a foliation in the 
P shear orientation, with embedded quartz clasts and discrete shears in the P, R1 and Y 
orientations. The microstructure of the illite-quartz and muscovite-quartz gouges deformed 
at in-situ P-T was also characterised by quartz clasts surrounded by fine, aligned and often 
anastomosing phyllosilicates. The quartz clasts present in the illite-quartz samples were 
mostly monocrystalline, in contrast to the muscovite-quartz mixtures, in which small 
quartz grains were concentrated in polycrystalline clusters. No clear evidence for pressure 
solution of clasts was found, and the main deformation mechanism leading to clast size 
reduction was inferred to be cataclasis, probably involving Stress Corrosion Cracking 
(SCC). Any pressure solution of the clasts which did occur was insufficiently active to 
produce observable microstructures, such as tailed quartz clasts in the illite-quartz samples. 
In the muscovite-quartz mixtures, however, the fine quartz grain clusters, formed from 
originally larger quartz clasts, often displayed a sigmoidal shape, possibly deforming by 
pressure solution as a whole. The otherwise broadly similar microstructures seen in the 
illite-quartz and muscovite-quartz gouges were cross-cut by discrete shears, in the P, R1 
and Y orientations. 

Based on the microstructural observations on illite-quartz gouge deformed under near in-
situ megathrust conditions (σn

eff = 170 MPa, T = 150-500°C, Pf = 100 MPa), a microphysical 
model for the frictional behaviour of illite-quartz gouge at steady state was developed 
(Chapter 6), accounting for the phyllosilicate matrix-supported nature of the material. 
The aim was to develop a model describing the deformation behaviour occurring in such 
materials under the experimental conditions, and to apply it to constrain behaviour in situ. 
Illite-quartz gouge was chosen because of its simpler microstructures (monocrystalline 
clasts embedded in phyllosilicate matrix). The model resembles the model of Niemeijer 
and Spiers (2007) in that it assumes deformation by rate-independent frictional sliding 
on the phyllosilicate foliation coupled with thermally activated deformation of the 
intervening quartz clasts. However, it differs in assuming a phyllosilicate-rich, matrix-
supported microstructure as opposed to a clast-supported microstructure with subordinate 
phyllosilicates, supporting the clasts at grain boundaries. Velocity-strengthening in the 
present model is the result of non-dilatant slip on flat portions of the phyllosilicate foliation 
with serial accommodation by thermally activated shear deformation of the intervening 
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quartz grains. Velocity-weakening, on the other hand, results from a balance between (i) 
porosity generation, caused by activation of dilatant slip on anastomosing, curved portions 
of the phyllosilicate foliation, and (ii) compaction caused by deformation of the quartz 
clasts by the thermally activated mechanism. Assuming pressure solution as the thermally 
activated mechanism, the trends in friction coefficient and (a-b) versus T, V and σn

eff (and 
in (a-b) versus quartz content) predicted by this model were in good agreement with those 
observed in the experiments on illite-quartz gouge. This suggests that pressure solution 
played an important role in controlling frictional behaviour, though not evident in the 
microstructure. The main discrepancies between the predictions and observations were 
attributed to the discontinuous transition from non-dilatant to dilatant behaviour predicted 
by the model, which is expected to be smoothed out in reality. 

Implications for subduction megathrust behaviour: a synthesis7.2 
The experimental results on smectite-rich ODP material, and on simulated illite-quartz 
and muscovite-quartz gouges, reported in this thesis, have been shown to have several 
important implications for the frictional behaviour of subduction zone megathrusts and 
their seismogenic potential. The results are applicable to subduction zones dominated by 
metapelitic input, in which the composition with increasing temperature is expected to 
be dominated by smectite-quartz (<~150°C), followed by illite-quartz (~150-200/300°C) and 
finally muscovite-quartz (>200/300°C). The observed effect of temperature on (a-b) values 
for the illite- and muscovite-quartz gouges implies velocity-weakening behaviour over the 
entire range of ~250 to 500°C, at least at σn

eff = 170 MPa, Pf = 100 MPa and V = 1-100 μm/s. 
Rough extrapolation of the experimental data on (a-b) versus sliding velocity to earthquake 
nucleation slip rates of ~10-9 m/s (Chapter 4) suggests the onset of velocity-weakening at 
155°C, in reasonable agreement with the upper limit of the seismogenic zone at ~150°C. 
Though data for muscovite-quartz mixtures were too limited to determine whether a 
systematic relationship with V also existed for this material, the similarity in frictional 
behaviour to illite-quartz gouge suggests it, potentially shifting the maximum temperature 
of velocity-weakening behaviour towards lower values as well (Chapter 5). This would 
improve correspondence with the down-dip limit of seismogenesis on subduction 
megathrusts at ~350°C.

The microphysical model developed for shear deformation of illite-quartz gouge provided 
an improved basis for extrapolation of the experimental results to earthquake nucleation slip 
rates. This yielded a temperature of ~140°C for the onset of velocity-weakening behaviour 
(Chapter 6), in very good agreement with the temperature usually associated with the 
up-dip seismogenic limit on subduction megathrusts. An improved prediction of the 
temperature at which velocity-weakening behaviour changes back to velocity-strengthening 
with continued increase in temperature, requires the formulation of a microphysical 
model for muscovite-quartz mixtures, taking into account possible differences in the 
microstructure of these materials (e.g. the presence of sigmoidal quartz clusters as seen 
in the present experiments on muscovite-quartz mixtures), as well as possible differences 
in the behaviour of illite versus muscovite. Viewed overall, the agreement obtained 
in the main trends of frictional behaviour versus T, V, σn

eff and quartz content, between 
model predictions, experimental data, and the location of the up-dip seismogenic limit 
on subduction megathrusts, implies that seismogenesis is caused by a key brittle-ductile 
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transitional process, namely competition between dilation, due to slip on an anastomosing 
phyllosilicate foliation, and thermally activated compaction, most likely involving pressure 
solution of quartz clasts.

Apart from the slip rate, the results presented in Chapter 4 have shown that the temperature 
range of velocity-weakening in illite-quartz and muscovite-quartz at in-situ P-T conditions 
also depends on effective normal stress, quartz content and to a lesser extent on the 
pore fluid pressure. This implies that prediction of the temperature and depth range of 
seismogenesis on subduction megathrusts should ideally incorporate these effects too. 
However, besides from a few constraints from sedimentary basins and from preliminary 
results of ODP drilling and NanTroSEIZE, accurate depth-profiles of the pore fluid 
pressure (and resulting effective normal stress profile) are not yet available for subduction 
zone megathrusts. In contrast, the quartz content of subduction megathrusts is often better 
constrained so that effects of local subducted sediment composition are easier to assess. 
For example, given the experimentally observed decrease in (a-b) with increasing quartz 
content at low temperatures, the high chert content of the sediments present in the Tohoku-
Oki region may explain the relatively low temperature of ~140°C at which nucleation of the 
Tohoku-Oki earthquake occurred.

Finally, the observed general increase in slip hardening rate with increasing normal stress 
and sliding velocity at room temperature implies that unstable slip behaviour is promoted 
at low effective normal stresses and at low sliding velocities, thus favouring the nucleation 
of earthquakes and SSEs when effective normal stresses are low.

Remaining problems and suggestions for further research7.3 
As already indicated, this research has provided some of the first results on the frictional 
behaviour of megathrust fault gouges under in-situ subduction zone conditions, at large 
shear displacements, and low sliding velocities relevant to earthquake nucleation. In 
addition, a first step towards understanding and quantifying the underlying microphysical 
mechanisms has been made. However, the work leaves behind a number of unsolved 
problems and has brought up a number of new issues that should be addressed as well. 
These are outlined below.

Unsolved issues and remaining data needs7.3.1 
A number of possible issues to address in future (experimental) work follow directly from 
the present research. In addition, the datasets are in not all cases complete and call for 
further work.

Cause of slip hardening
First, the cause of the ubiquitous slip/strain hardening, or occasionally softening, behaviour 
could not be unambiguously proven based on the current experiments. Reduced slip 
hardening in dry ring shear experiments compared to wet tests on illite-quartz gouge strongly 
suggested an important role of preferential loss of phyllosilicates. This was assumed to be 
the cause throughout much of this thesis and formed the basis for specifying the average 
quartz content in the illite-quartz samples in the comparison with the microphysical model 
(Chapter 6). An alternative process put forward in Chapter 2 to explain the slip hardening 
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behaviour was progressive refinement of quartz followed by mixing with phyllosilicates 
(see also Tembe et al., 2010). However, this hypothesis was not confirmed by the present 
experimental evidence because the relationship between grain size reduction, as visible in 
the microstructures after deformation, and shear displacement/strain was not systematically 
investigated. Given the slip neutral steady state or slip softening behaviour required for the 
nucleation of unstable, seismogenic slip or repetitive stick-slip behaviour, it is important to 
gain better insight into the cause of the slip hardening behaviour in the present experiments 
– and indeed in almost all friction experiments. Note here that hardening in the current 
experiments was not greater than in other experiments, but is more apparent because of 
large displacements. In particular, it is essential to know whether the underlying cause is 
an experimental artefact, or a material property of the gouge. Only in the second case will 
such behaviour affect slip zone stability in nature.

Effects of Pf on illite-quartz gouge 
The data presented on illite-quartz gouge in Chapter 4 was too limited to draw firm 
conclusions regarding the effect of the pore fluid pressure on the temperature-dependent 
three-regime behaviour of illite-quartz gouge. The pore fluid pressure was cautiously 
interpreted to result in an increase in (a-b) in all three regimes, but a shift of the three 
regimes towards lower temperatures with an increase in Pf could not be excluded. Clearly, 
more data are needed to firmly establish the effect of pore fluid pressure on the three-regime 
behaviour of illite-quartz gouge, whether mechanical, poroelastic or through a change of 
the total normal stress, or chemical by affecting the dissolution kinetics of quartz.

Model versus shear band microstructure
The mechanical behaviour of illite-quartz gouges could be reasonably well predicted by the 
microphysical model presented in Chapter 6, assuming pressure solution as the deformation 
mechanism affecting the quartz clasts and assuming deformation to be accommodated in 
foliated, P, R1 and Y shear bands. It was further assumed that deformation dominated by slip 
on P, R1 or Y shears would be similar, treating Y shears for simplicity. These are reasonable 
assumptions, but do not address why the shear bands form. While the general reasons 
have been discussed in the literature (e.g. Logan et al., 1992; Marone, 1998), a complete 
model should address this too – or a complimentary model should be added. Notably, 
macroscopic fractures in the R1 orientation seemed to develop only at temperatures up 
to 350°C (Chapter 3), an observation that has not been explained in the current research, 
beyond noting here that this is the region where the porosity is greatest, as predicted by the 
model due to dilatation. 

Behaviour of pure muscovite and pure illite gouges
In the present study, only a few experiments were performed on pure muscovite gouge, 
for comparison with the muscovite-quartz samples. This was adequate for identifying that 
velocity-weakening in the mixtures depends on the presence of quartz. However, more 
data are needed to gain insight into the behaviour of muscovite itself under (near) in-
situ P-T conditions. Note here that the muscovite used in previous studies performed at 
elevated P-T conditions (Mariani et al., 2006; Van Diggelen et al., 2010), was not 100% pure 
muscovite. Since no experiments were conducted on pure illite gouge, and since previous 
data is at room temperature (Tembe et al., 2010), it is more important still to obtain data on 
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the frictional properties of this at in-situ P-T conditions. This would yield not only additional 
information on the effect of quartz, in the illite-quartz gouge, but would also serve as input 
to the microphysical model, in which the temperature-dependent illite friction coefficient 
is currently based on μ at room temperature plus the effect of temperature on the friction 
coefficient observed for pure muscovite. Furthermore, comparison of the data for pure illite 
with that for pure muscovite should yield insight into the cause of the observed shift of 
the temperature regime of velocity-weakening behaviour of muscovite-quartz compared to 
that for illite-quartz. Data on both pure phylloslicates is important for future microphysical 
modelling of the frictional behaviour of these materials and of mixtures with quartz.

Dry versus wet behaviour
Only two dry control experiments on illite-quartz gouge were performed in the current 
study. These showed near-neutral behaviour at 200 and 350°C, i.e. in Regimes 1 (velocity-
strengthening) and 2 (velocity-weakening) identified for the wet experiments, thus 
indicating a key role of water in causing velocity-weakening. Better insight into the effect 
of water on the frictional behaviour of megathrust fault gouges clearly requires additional 
control experiments on dry materials, including muscovite-quartz gouge, pure illite and 
pure muscovite gouge, at a wider range of P-T conditions, covering Regimes 1 through 3.

Extrapolation to natural slip rates
The slowest slip rates addressed in the current study (1.8 x 10-7 m/s) were still high 
compared to earthquake nucleation slip rates which are likely around 10-9

 m/s or 10-8 m/s. 
Our microphysical model provides a basis for extrapolation to rates below lab rates – this 
was a strong motivation to develop it. However, to test the model predictions for slow slip 
rates, experiments should ideally be performed at the lowest slip rates that can reasonably 
be achieved – probably ~3 x 10-9 m/s. It should be noted, on the other hand, that strain 
rate rather than the sliding velocity is likely to be the controlling variable and thus it is 
this parameter that should be matched to nature in experiments. This, though, requires an 
accurate estimate of the width of the active slip zone. Input from field studies is needed on 
this.

Additional data needed for the materials investigated
The frictional properties of (natural) smectite-rich materials have not been determined 
under in-situ P-T conditions in this study, nor have the effects of normal stress and pore 
fluid pressure on the temperature-dependent behaviour of muscovite-quartz gouge. Such 
data would add to the depth/temperature profiles presented in Chapters 2 and 3 and would 
be valuable additional input for modelling studies. In addition, no tests were performed 
on any of the materials studied at very low effective normal stress (< 25 MPa) and a high 
temperature (>~300°C), which are believed to prevail at depths were Slow Slip Events 
(SSEs) nucleate, especially just beyond the down-dip limit of the seismogenic zone. This is 
an important aim for the future.

Broader challenges for the future7.3.2 
In the current research, several issues have been identified that are outside the scope of a 
direct follow-up study, adding to the data obtained in this one, but deserve attention in 
parallel efforts in their own right.
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Microphysical model developments
Given the absence of a realistic microphysical model for thermally activated (rate-
dependent) clast deformation by SCC, predictions were made with the microphysical 
model developed in this thesis including pressure solution as the thermally activated 
process (Chapter 6). Although the agreement between the predicted trends and those 
observed in the experiments on illite-quartz gouge was surprisingly good, these predictions 
should ideally be compared with alternative predictions made using SCC as the thermally 
activated mechanism. This means developing a realistic microphysical model for clast 
deformation by SCC. Moreover, the governing parameter values need to be determined 
by testing such a model against specifically designed experiments. Besides extension of 
the microphysical model by inclusion of quartz deformation by SCC, it should also be 
improved by incorporating velocity-strengthening phyllosilicate friction. This requires the 
formulation of a separate model for phyllosilicate friction. In addition, extension of the 
model to the case of polycrystalline quartz clasts, of the type observed in our muscovite-
quartz experiments, should be attempted. 

Finally, the microphysical model developed in Chapter 6 applies to steady state behaviour, 
whereas a complete treatment of frictional behaviour should involve transient effects as 
well. The model can be generalized to account for such behaviour by avoiding the steady 
state assumption of zero net compaction rate, caused by a balance between dilatation and 
thermally activated compaction, and instead using the differential equation describing 
the net compaction rate as the difference between the dilatation and thermally activated 
compaction rate. This would allow for prediction of trends in μ, a, b, (a-b) and dc with 
V, T, σn

eff and quartz content. The microphysical model would also benefit from further 
refinement allowing for a more realistic description of critical state frictional behaviour 
and for a non-homogeneous microstructure (characterized by, for example, a distributed 
grain size).

In-situ pore and effective stress profiles
The attempt in this thesis to assess the implications of the measured and modelled frictional 
properties and trends, for subduction megathrust seismicity, clearly demonstrated that 
quantitative information on pore fluid pressure and effective normal stress versus depth 
profiles is needed to allow proper extrapolation of the experimental results to natural 
conditions. Since direct measurement of the pore fluid pressure at depths exceeding 
several kilometres is impossible, this demands an integrated approach, involving not only 
seismological observations, but also hydrological modelling or even coupled hydrological/
fault-mechanics modelling.

Other gouge compositions: from metabasaltic to carbonate-bearing
The materials used in this study have been limited to either natural or synthetic mixtures of 
phyllosilicates and quartz, while other minerals could be present within the accreted and 
subducting sediments as well, such as carbonates. In addition, it cannot be excluded that the 
basaltic rocks forming the oceanic crust become incorporated in the base of the subduction 
megathrusts, accommodating slip as well, if they become weaker than metapelitic fault rocks 
present. Thus, a more complete understanding of megathrust frictional properties would 
involve the determination of the frictional behaviour of gouges derived from carbonate-
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rich sediments (Ikari, pers. comm; cf. Verberne et al., 2010) and basalts (cf. gabbroic gouge 
investigated by He et al., 2007; 2006) under in-situ megathrust conditions. Such knowledge, 
combined with the available data on that of the weak, aseismically deforming serpentinite-
rich mantle wedge, at depths beyond the seismogenic zone (e.g. Hirauchi et al., 2012; Moore 
and Lockner, 2011), will all contribute to the development of a more complete picture of 
subduction megathrust behaviour.

In addition, simulated phyllosilicate-quartz mixtures have been used here as a representation 
of the main phases present in metapelitic materials at deeper levels in the subduction 
megathrust. However, field studies (e.g. Moore et al., 2007; Rowe et al., 2009) of exhumed 
materials show that minerals such as albite, chlorite, pyrite and pumpellyite are also 
present depending on bulk chemistry and metamorphic grade. Although direct extraction 
of natural materials from depths >~7 km is technically impossible, either exhumed fault 
rocks or perhaps even laboratory-reacted, natural, ODP materials recovered from shallow 
depths could be considered for future experimental studies, as these probably approach 
in-situ fault rock and gouge composition. As a related issue, the use of pore fluids that 
are similar in composition to those found at convergent margins (e.g. Kastner et al., 1991) 
could be considered. This may be of particular importance since fluid assisted processes 
such as pressure solution and SCC of quartz clasts, inferred to be active in the experiments 
presented in this thesis, can be strongly affected by the ionic species present in the pore 
fluid.

Advances in experimental methodology
This thesis has focused on active megathrust behaviour, i.e. on determining the mechanical 
behaviour during fault slip imposed as a velocity boundary condition. Almost all experiments 
done in other studies to date have also been performed by imposing a fixed sliding velocity. 
However, in reality, rupture nucleation and displacement along a megathrust represents 
the response to the ambient state of stress. Therefore, natural conditions are better simulated 
by performing constant stress and stress relaxation experiments, whereby the shear stress 
decays as elastic distortion of the loading environment is converted into fault zone slip. 
These rarely used testing methods are a future challenge and will give new insight into 
nucleation of unstable seismogenic slip and notably into SSE behaviour, as the resulting 
displacement rates are expected to approach those actually occurring during SSEs (1-100 
nm/s). 

To understand the seismic cycle at subduction megathrusts, the current results should 
also be complemented by data on post-seismic creep and the healing behaviour of realistic 
megathrust gouges under in-situ conditions. This too indicates a need for constant shear 
stress and slide-hold-slide experiments, in which the evolution of the decay of frictional 
strength (shear stress relaxation – Rutter and Mainprice, 1978) during the hold stage and the 
subsequent increase during re-initiation of shear are examined could yield useful insight 
into the thermally activated deformation mechanisms operative in the system, useful for 
understanding both slip nucleation (low velocity frictional behaviour) and post-seismic 
slip.

A further issue to consider in future experimental studies addressing the frictional 
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behaviour of subduction megathrusts is accurate measurement of sample thickness and 
sample porosity during shear. This will be especially important for testing microphysical 
models such as that developed in Chapter 6, in which the porosity is an important dynamic 
parameter governing frictional behaviour. The technical challenge, however, is a formidable 
one, since it ideally requires displacement measurements to be performed inside the high 
P-T environment, with zero sample loss.

Finally, a crucial aspect of understanding megathrust seismicity includes addressing rupture 
acceleration and propagation at high velocity besides the nucleation velocities addressed 
here. This requires data on the frictional properties of realistic megathrust gouges at in-
situ P-T and Pf conditions, at coseismic slip rates. This means ongoing developments are 
needed in the field of high velocity friction and in linking low and high velocity behaviour, 
through development of appropriate machines and experimental methods.
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De grootste en meest destructieve aardbevingen op Aarde onstaan op plaatsen waar de ene 
tektonische plaat of aardschol onder de andere beweegt in een zogenaamde subductiezone 
(zie Figuur 1.1). Dit gebeurt langs een mega-breuk of, preciezer, een mega-opschuiving. Een 
mega-aardbeving, zeker wanneer deze leidt tot een tsunami, is desastreus, zowel wat betreft 
het menselijk leed als de gevolgen voor het milieu en de economie. Recente voorbeelden 
van aardbevingen met gerelateerde tsunami’s zijn die in Sumatra in december 2004 en de 
Tohoku-Oki aardbeving in Japan in maart 2011. De impact van deze natuurrampen heeft 
het besef doen toenemen dat het cruciaal is om het risico op aardbevingen langs mega-
opschuivingen en daaraan gerelateerde tsunami’s goed in te kunnen schatten. Om dit te 
kunnen doen is het noodzakelijk om te weten welke processen er ten grondslag liggen aan 
het ontstaan van aardbevingen.

Eén manier om inzicht te krijgen in de processen die leiden tot mega-aardbevingen is het 
doen van laboratoriumexperimenten. Het doel van zulke experimenten is het bepalen 
van het wrijvingsgedrag van breukgesteenten onder de verplaatsingssnelheden waarbij 
aardbevingen ontstaan. Het is bekend dat het wrijvingsgedrag afhangt van verschillende 
factoren, zoals de samenstelling van het gesteente en de druk en temperatuur condities 
waaronder de experimenten uitgevoerd worden. Het is daarom belangrijk dat experimenten 
die tot doel hebben om inzicht te krijgen in het ontstaan van mega-aardbevingen gedaan 
worden op de juiste materialen en onder de juiste condities. Dit was tot nu toe veelal niet 
het geval, met name omdat het technisch een uitdaging is om de hoge temperatuur en druk 
condities die heersen op de dieptes waar aardbevingen ontstaan – de in situ P-T condities 
– in het laboratorium na te bootsen. In het onderzoek omschreven in dit proefschrift wordt 
gebruik gemaakt van een unieke machine, de ring shear machine (ringwrijvingsmachine) in 
het hoge druk en temperatuur laboratorium van Universiteit Utrecht, waarmee de in situ 
P-T condities wèl kunnen worden nagebootst. De resultaten beschreven in dit proefschrift 
leveren zodoende een belangrijke bijdrage aan de kennis van de wrijvingseigenschappen 
van breuken waarlangs mega-aardbevingen plaats kunnen vinden.

Beweging langs het breukvlak leidt tot vermaling van het breukgesteente zodat er fijn 
verpoederd materiaal ontstaat, zogenaamd breukmeel. Experimenten worden dan ook vaak 
gedaan op zulk breukmeel. Dit materiaal wordt in een wrijvingsexperiment tussen twee 
(stalen of stenen) cylinders (of blokken) aangebracht en die cylinders worden vervolgens 
op elkaar geperst, oftewel, onder druk gezet. Deze druk bootst de druk als gevolg van het 
bovenliggende gesteente in de Aarde na. Vervolgens worden één van de cylinders langs de 
andere geroteerd en de kracht die hier voor nodig is, in combinatie met de uitgeoefende 
druk, is een maat voor de wrijvingsweerstand van het breukmeel. Van cruciaal belang voor 
het ontstaan van een aardbeving is het effect dat een verandering in de rotatatiesnelheid 
van de cylinder heeft op de wrijvingsweerstand. Een aardbeving, oftewel onstabiel 
gedrag, kan alleen ontstaan als de wrijvingsweerstand afneemt met een toename in de 
snelheid. Dit gedrag noemen we snelheidsverzwakking. Het tegenovergestelde gedrag, 
snelheidsversterking, geeft stabiel gedrag en kan dus niet tot een aardbeving leiden.

De wrijvingsexperimenten uitgevoerd onder in situ P-T condities in dit promotieonderzoek 
worden beschreven in Hoofdstukken 2-5, direct na de algemene Introductie (Hoofdstuk 
1). In Hoofdstukken 2-4 wordt hoofdzakelijk gekeken naar het effect van de experimentele 
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condities op het wrijvingsgedrag van breukmeel bestaande uit illiet (klei) en kwarts. 
In Hoofdstuk 5 wordt vervolgens het effect van de samenstelling van het breukmeel 
onderzocht door een mengsel van muscoviet (een klei-achtig mineraal karakteristiek 
voor hogere temperaturen) en kwarts te gebruiken. Het belangrijkste resultaat van deze 
experimenten samen is dat de snelheidsafhankelijkheid van de wrijvingsweerstand sterk 
afhangt van de temperatuur, zowel voor illiet-kwarts als voor muscoviet-kwarts. Op lage 
en hoge temperaturen domineert snelheidsversterkend gedrag, terwijl op tussenliggende 
temperaturen het gedrag snelheidsverzwakkend is. Deze opeenvolging van stabiel-
onstabiel-stabiel gedrag met toenemende temperatuur is vergelijkbaar met wat er in 
subductiezones met toenemende diepte (en dus toenemende temperatuur) gevonden 
wordt: aardbevingen ontstaan alleen op ~10-40 km diepte, waar de temperatuur tussen 
~150°C en 350°C ligt.

De mate van snelheidsverzwakking en snelheidsversterking wordt in Hoofdstukken 2-5 
op de gebruikelijke manier gekwantificeerd met standaard parameters (zogenaamde rate 
and state friction parameters). Dit zijn beschrijvende parameters, die geen verband leggen 
met de onderliggende, microschaal processen en daarom alleen iets zeggen over de 
wrijvingseigenschappen van een materiaal onder de condities waarbij de experimenten 
gedaan zijn. Extrapolatie van de experimentele resultaten naar andere condities kan alleen 
gedaan worden als we de onderliggende processen begrijpen en in een fysisch/mathematisch 
model kunnen vangen. In Hoofdstuk 6 wordt een dergelijk model ontwikkeld om het 
wrijvingsgedrag, en de snelheidsafhankelijkheid daarvan, beschreven in Hoofdstuk 2-5, te 
verklaren. De ontwikkeling van dit model wordt grotendeels gebaseerd op de structuren 
zoals onder de (elektronen) microscoop zichtbaar zijn. In dit nieuwe model speelt 
vervorming van het mineraal kwarts door temperatuursafhankelijke processen die water 
nodig hebben een grote rol. Dit model vormt een verbeterd uitgangspunt voor studies die 
met behulp van computersimulaties proberen om mega-aardbevingen te reproduceren, en 
op termijn ook te voorspellen. Als laatste worden de belangrijkste conclusies die volgen 
uit dit promotieonderzoek beschreven in Hoofdstuk 7, gevolgd door suggesties voor 
vervolgonderzoeken.
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