
Refinements of the Weyl tensor classification in five dimensions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2012 Class. Quantum Grav. 29 155016

(http://iopscience.iop.org/0264-9381/29/15/155016)

Download details:

IP Address: 131.211.104.243

The article was downloaded on 13/02/2013 at 15:45

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0264-9381/29/15
http://iopscience.iop.org/0264-9381
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING CLASSICAL AND QUANTUM GRAVITY

Class. Quantum Grav. 29 (2012) 155016 (50pp) doi:10.1088/0264-9381/29/15/155016

Refinements of the Weyl tensor classification
in five dimensions

Alan Coley1, Sigbjørn Hervik2, Marcello Ortaggio3

and Lode Wylleman2,4,5

1 Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia
B3H 3J5, Canada
2 Faculty of Science and Technology, University of Stavanger, N-4036 Stavanger, Norway
3 Institute of Mathematics, Academy of Sciences of the Czech Republic, Žitná 25,
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Abstract
We refine the null alignment classification of the Weyl tensor of a five-
dimensional spacetime. The paper focusses on the algebraically special
alignment types N, III, II and D, while types I and G are briefly discussed.
A first refinement is provided by the notion of spin type of the components
of highest boost weight. Second, we analyze the Segre types of the Weyl
operator acting on bivector space and examine the intersection with the spin
type classification. We present a full treatment for types N and III, and
illustrate the classification from different viewpoints (Segre type, rank, spin
type) for types II and D, paying particular attention to possible nilpotence,
which is a new feature of higher dimensions. We also point out other essential
differences with the four-dimensional case. In passing, we exemplify the refined
classification by mentioning the special subtypes associated to certain important
spacetimes, such as Myers–Perry black holes, black strings, Robinson–
Trautman spacetimes and purely electric/magnetic type D spacetimes.
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1. Introduction

Lorentzian spacetimes with more than four dimensions are of current interest in mathematical
physics. It is consequently useful to have higher dimensional generalizations of the
classification schemes which have been successfully employed in four dimensions. In
particular, the introduction of the alignment theory [1–3], based on the concept of boost
weight (abbreviated b.w. throughout this paper), has made it possible to algebraically classify
any tensor in a Lorentzian spacetime of arbitrary dimensions by its (null) alignment type,
including the classification of the Weyl tensor and the Ricci tensor. To complement this, a
higher dimensional generalization of the Newman–Penrose formalism has been presented,
which consists of the Bianchi [4] and Ricci identities [5] and of the commutator relations [6]
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written out for a null frame. More recently, the corresponding GHP formalism has also been
developed [7].

However, other mathematical tools for the study of higher dimensional Lorentzian
spacetimes can also be developed including, e.g., the classification of tensors utilizing
bivectors. From this viewpoint, the algebraic (Segre type) classification of the Weyl tensor,
considered as a linear operator on bivector space, turns out to be equivalent to the algebraic
classification by alignment type in the special case of four dimensions (i.e. the Petrov
classification [8]); however, these two classification schemes are non-equivalent in higher
dimensions. In particular, the alignment classification is rather course, and developing
the algebraic classification of the Weyl bivector operator may lead to a more refined
scheme.

For this purpose the bivector formalism in higher dimensional Lorentzian spacetimes
was developed in [9]. The Weyl bivector operator was defined in a manner consistent with
its b.w. decomposition. Components of fixed b.w. were then characterized in terms of basic
constituents which transform under irreducible representations of the spins. This leads to
another refinement of the alignment classification, based on geometric relations between the
highest b.w. constituents. The types arising will be referred to as spin types.

In this paper we study the general scheme of [9] (and thus the two classification
refinements mentioned above, and their interplay) in the case of five-dimensional (5D)
Lorentzian spacetimes. These are of particular interest for a number of reasons. First,
they provide the simplest arena in which properties of gravity qualitatively differ from
the well-known 4D case. Certain important new solutions such as black rings, which are
intrinsically higher-dimensional, seem to admit a closed exact form only in five dimensions
(see, e.g., [10] and references therein). An alternative spinor classification of the Weyl
tensor has also been developed in 5D, and its connection with the b.w. approach has
been discussed [11–13]. Since the two classifications are not equivalent, the refinements
we propose may also be useful in the spinor classification. Finally, as a peculiar feature
of five dimensions (see also [9]), the highest b.w. constituents are represented by square
matrices, vectors and a single scalar. In this way both refinements of the 5D Weyl tensor
classification can be carried out in a fully explicit manner and its main properties can be easily
displayed.

The structure of the paper is as follows. In section 2 we review the algebraic properties
of the 5D Weyl tensor (i.e. the constituents, the null alignment types and the Weyl bivector
operator). The definitions and the main ideas regarding the spin type and the Weyl operator
refinements are presented in section 3. In sections 4–6 we elaborate on both types of refinement
and their intersections separately for each of the primary alignment types N, III and II, where
special attention is given to the type D subcase of II. In section 7 we discuss the split of the
Weyl operator in electric and magnetic parts, which is most useful for types I and G. We
conclude in section 8 with a discussion and we make some brief remarks regarding future
work. Finally, there are three appendices. Appendix A summarizes some useful basic facts
about the Jordan normal form of square matrices. Appendix B provides further details of the
Weyl operator classification for type III. The intersection of the spin type and eigenvalue
structure classifications in the type II case is exemplified in appendix C.

2. Preliminaries

In this section we recapitulate the necessary definitions and results from earlier work,
meanwhile introducing the notation and conventions to be used.
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2.1. Boost weight and Weyl tensor constituents

Consider a point p of a 5D spacetime (M, g) with Lorentzian metric signature 3, and assume
that the Weyl tensor at p is non-zero. By definition this tensor inherits the basic Riemann
tensor symmetries and is moreover traceless:

Cabcd = Ccdab, Cabcd = −Cbacd, Ca[bcd] = 0, Ca
bad = 0, (1)

where round (square) brackets denote complete (anti-)symmetrization as usual. Let
(�, n, mi, i = 3, . . . , 5) be a null frame of TpM, consisting of two null vectors � and n,
normalized by lana = 1, and three spacelike orthonormal vectors mi, orthogonal to the null
vectors (mi

am ja = δi j, mi
a�a = mi

ana = 0, with δi j the Kronecker delta). We take 0 and
1 to be the frame indices corresponding to � and n, respectively (e.g., Tala = T0), whereas
i, j, k, . . . denote spacelike indices, running from 3 to 5.6 For a joint notation of the null frame
indices we use capital Roman letters Ai in the following.

Under a boost in the (�, n)-plane the frame vectors transform according to

� �→ λ�, n �→ λ−1n, mi �→ mi, λ ∈ R \ {0}, (2)

such that the components of a rank p tensor Ta1,...,ap change as follows:

TA1,...,Ap �→ λbA1 ,...,Ap TA1,...,Ap, bA1,...,Ap ≡
p∑

i=1

(δAi0 − δAi1), (3)

where δAB is the Kronecker-delta symbol. Thus the integer bA1,...,Ap is the difference between
the numbers of 0- and 1-indices, and is called the boost weight (b.w.) of the frame component
TA1,...,Ap (or, rather, of the p-tuple (A1, . . . , Ap)). For the Weyl tensor, the conditions (1) imply
that all components of b.w. ±4 or ±3 are zero, as well as algebraic relations between the Weyl
components of fixed b.w. (−2 � b.w. � 2) [1, 4]:

b.w. 2 : C0
i
0i = 0; b.w. − 2 : C1

i
1i = 0; (4)

b.w. 1 : C010i = C0
j
i j; b.w. − 1 : C101i = C1

j
i j; (5)

b.w. 0 : 2C0(i j)1 = Ci
k

jk, 2C0[i j]1 = −C01i j, 2C0101 = −Ci j
i j = 2C0

i
1i. (6)

Consider now the spin group, which is isomorphic to O(3) and acts on the null frame
according to

� �→ �, n �→ n, m j �→ miG
i
j, Gi

jGk
j = δi

k. (7)

The independent Weyl tensor components of a fixed b.w. q define objects which transform
under irreducible representations of the spin group. These objects were presented in [9], for
general spacetime dimension n + 2, and are here referred to as the b.w. q (Weyl) constituents7.
In particular, the components Ci jkl (b.w. 0) and C1i jk (b.w. −1) are decomposed as follows
(n � 3):

Ci j
kl ≡ H̄[i j]

[kl] = C̄i j
kl + 4

n − 2
δ

[i
[kS̄ j]

l] + 2

n(n − 1)
R̄δ

[i
[kδ

j]
l] , (8)

6 We omit the index 2. This is in accordance with [9], but in contrast with [1, 4] and [12], where (01,234), (12,345)
are used, respectively.
7 We will use the notation of the Weyl tensor components and constituents used in [9]. It may be useful to compare it
with that employed in other works. For negative b.w. components reference [4] defined 2�i j = C1i1 j , 2� jki = C1i jk
and �i = −C011i, while for zero b.w. components, reference [14] introduced �i j = C0i1 j , with �S

i j and �A
i j for

its symmetric, respectively, antisymmetric part and � for its trace. These quantities have then appeared in several
subsequent papers. A different set of symbols for the full set of Weyl components has been defined in [7].

4



Class. Quantum Grav. 29 (2012) 155016 A Coley et al

Table 1. 5D Weyl tensor components and constituents.

b.w. Constituents Weyl tensor components

+2 Ĥi j C0i0 j ≡ Ĥi j

+1 n̂i j, v̂i C0i jk ≡ L̂i[ jk] = 2δi[ jv̂k] + n̂i
lεl jk

C010i ≡ K̂i = −2v̂i

0 S̄i j, w̄i, R̄ Ci j
kl ≡ H̄ [i j]

[kl] = 4δ
[i
[kS̄ j]

l] + 1
3 R̄δ

[i
[kδ

j]
l]

C1i0 j ≡ Mi j = − 1
2 S̄i j − 1

6 R̄δi j − 1
2 εi jkw̄

k

C01i j ≡ A[i j] = εi jkw̄
k

C0101 ≡ � = − 1
2 R̄

−1 v̌i, ňi j C1i jk ≡ Ľi[ jk] = 2δi[ jv̌k] + ňi
lεl jk

C101i ≡ Ǩi = −2v̌i

−2 Ȟi j C1i1 j ≡ Ȟi j

C1i jk ≡ Ľi[ jk] = 2δi[ jv̌k] + Ťi jk, Ť i
ik = 0 = Ťi( jk). (9)

Here H̄i jkl symbolizes a n-dimensional Riemann-like tensor (i.e. a tensor exhibiting all the
properties (1), except for the last one), while C̄i jkl , R̄ ≡ H̄i j

i j and S̄i j ≡ H̄k
ik j − 1

n R̄δi j stand for
the associated Weyl tensor, Ricci scalar and tracefree Ricci tensor, respectively. For the case
of five dimensions (n = 3) to be treated here, we have that the b.w. 0 Weyl constituent C̄i jkl

vanishes identically,

C̄i jkl = 0, (10)

while the b.w. −1 constituent Ť is equivalent to a traceless symmetric matrix ň:

ňi j ≡ 1
2εkl

(iŤj)kl ⇔ Ť i
jk = ε jkl ň

il, ňi j = ň(i j), ňi
i = 0, (11)

where εi jk denotes the sign of the permutation (i jk) of (345). Analogously for C0i jk, giving
rise to b.w. 1 constituents v̂ and n̂. Regarding the b.w. 0 constituent A, defined for general
dimensions by Ai j ≡ C01i j, we will use one more simplification specific to n = 3 (not made
explicit in [9]): as Ai j is antisymmetric in i j, we will use its dual vector w̄ as the equivalent
Weyl constituent:

w̄i = 1
2εi jkA jk ⇔ Ai j = εi jkw̄

k. (12)

The symbols of the Weyl constituents and their relation with the Weyl components are
summarized in table 1, where the relations (4)–(6) have been implicitly included. The two-
index constituents Ĥ, n̂, S̄, ň and Ȟ are traceless and symmetric 3 × 3 matrices; those with one
index define 3×1 column vectors v̂, w̄ and v̌. Together with R̄ they add up to the 25+9+1 = 35
independent components of the 5D Weyl tensor.

2.2. Null alignment type

Given the null frame (�, n, mi) of TpM, the boost order of a rank p tensor Ta1,...,ap with
respect to the frame is defined to be the maximal b.w. of its non-vanishing components in
the frame decomposition [2]. This integer is invariant under the subgroup Fix([�]) of Lorentz
transformations fixing the null direction [�].8 It follows that the boost order is a function of [�]
only, denoted by bT ([�]). For the Weyl tensor Cabcd and for generic � we have bC([�]) = 2.

8 The subgroup of Fix([�]), consisting of special Lorentz transformations, is also known as Sim(n) in n + 2
dimensions.
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If a null direction [�] exists for which bC([�]) � 1, it is called a Weyl aligned null direction
(WAND) of alignment order 1 − bC([�]). A WAND is called single if its alignment order is
0, and multiple (double, triple, quadruple) if the alignment order is greater than zero (1, 2, 3).
The integer

ζ ≡ min
�

bC([�]) (13)

is a pointwise invariant of (M, g), defining the (Weyl) primary or principal alignment type
2 − ζ at p; if ζ = 2, 1, 0, 1 or −2 this type is still denoted by G, I, II, III or N, respectively
[1, 2].9 For types N and III the quadruple, respectively triple, WAND [�] is in fact the unique
multiple WAND [1].10 If there is a unique double WAND in the type II case we will denote
this by II0; if there are more of them we denote this by D ≡ IIii, in accordance with the
secondary alignment type notation introduced in [1, 2]. In the present paper we will focus on
the algebraically special types N, III and II (or II0 and D separately) in the Weyl algebraic
classification scheme (and where the context is clear, we will refer to these algebraically
special types simply by type II or one of its specializations). Similarly, for type I we will write
I0 if there is a unique single WAND, and Ii if there more than one. In general, a spacetime
admits no WANDs, and we denote the general case by type G.

2.3. The Weyl bivector operator

Let ∧2TpM be the ten-dimensional real vector space of contravariant bivectors (antisymmetric
two-tensors Fab = F [ab]) at p. By the first couple of equations in (1), the map

C : Fab �→ 1
2Cab

cdFcd = 1
2 FcdCcd

ab (14)

determines a linear operator (or endomorphism) on ∧2TpM, which we shall refer to as the Weyl
operator.

A null frame of TpM

(�, n, mi), (15)

where i = 3, 4, 5, induces a null basis of ∧2TpM:

(U3, U4, U5, W, W[45], W[53], W[34], V3, V4, V5), (16)

consisting of the simple bivectors (in abstract index notation):

Uab
i = n[ami

b], Wab = �[anb], Wab
[ jk] = m j

[amk
b], Vab

i = �[ami
b]. (17)

The only non-zero scalar products among these (as induced by the spacetime metric) are given
by

2Uab
i V jab = δi j, 2WabWab = −1, 2Wab

[ jk]W[lm]ab = δ jlδkm − δ jmδkl .

With the notation of table 1, the matrix representation of C with respect to (16)–(17) can be
written in a (3+4+3) block form [9]:

C ≡
⎡⎣Mt ĈK Ĥ

ČK
t 	 Ĉ−K

t

Ȟ Č−K M

⎤⎦, (18)

9 This generalizes the Petrov types I, II, D, III and N from four to higher dimensions. Petrov types II and D together
correspond to primary alignment type II. Type G does not occur in four dimensions, but is the generic situation in
higher dimensions [2]. Type O corresponds to the trivial case Cabcd = 0, which we have excluded here.
10 If there was another multiple WAND [�∗] we would get the contradiction Cabcd = 0 by considering components
with respect to a null frame (�, �∗, mi).

6
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where

Ĉ±K ≡ [±K̂ L̂], 	 ≡
[−� −At

A H̄

]
, Č±K ≡ [±Ǩ Ľ]. (19)

Note that, with respect to the given basis (17), the subspaces

U ≡ 〈U3, U4, U5〉, W ≡ 〈W, W[45], W[53], W[34]〉, V ≡ 〈V3, V4, V5〉
precisely contain the bivectors of b.w. −1, 0 and +1, respectively. If we denote the projection
operator onto X by pX and the restriction to X by ·|X , then the block entries of C are the
respective matrix representations of the maps

Mt ≡ pU ◦ C|U , ĈK ≡ pU ◦ C|W , Ĥ ≡ pU ◦ C|V , (20)

ČK
t ≡ pW ◦ C|U , Ω ≡ pW ◦ C|W , Ĉ−K

t ≡ pW ◦ C|V , (21)

Ȟ ≡ pV ◦ C|U , Č−K ≡ pV ◦ C|W , M ≡ pV ◦ C|V . (22)

3. Refinements of the null alignment classification

3.1. Spin type refinement

3.1.1. Weyl spin type of a null direction. The boost order of the Weyl tensor with respect
to a null frame (�, n, mi) is defined to be the maximal b.w. of its non-vanishing components
and is a function of [�] only, denoted by bC([�]) (cf section 2.2). The last statement follows
by considering the induced action of an element g ∈ Fix([�]) on the leading terms. A more
detailed consideration leads to other invariants for this action, and thus to other functions of
(that is, properties associated with) [�]. To this end, we (uniquely) decompose g into a product
S[G] A[λ] N[z], where S[G] is a spin (7), A[λ] a boost (2) and N(z) a null rotation about [�],
acting on the null frame according to (|z|2 ≡ zizi)

� �→ �, n �→ n + z jm j − 1
2 |z|2�, mi �→ mi − zi�. (23)

In conjunction with the vanishing of all b.w. > bC([�]) terms, (23) readily implies that
N(z) leaves the leading terms (or, equivalently, the b.w. bC([�]) constituents) invariant [2].
Moreover, A[λ] has the effect of simply multiplying the bC([�]) constituent components by
a common factor λbC ([�]). It follows that spin-invariant quantities defined by the b.w. bC([�])
constituents are properties associated with [�]. More specifically for 5D Weyl tensors, the
spin-irreducible constituents of b.w. bC([�]) consist of a traceless, symmetric matrix X (for all
values of bC([�])), a column vector x (for −1 � bC([�]) � 1) and a scalar R̄ (for bC([�]) = 0
only). This leads to the notion of spin type of [�], as follows.

The matrix X is either zero or (symmetric and thus) diagonalizable by applying spins. By
tracelessness this leads to four possible primary spin types of [�], symbolized in a Segre-like
notation by

{(000)}, {(11)1}, {110}, {111}. (24)

Here a zero (one) indicates a zero (non-zero) eigenvalue, and round brackets indicate equal
eigenvalues. Hence, {(000)} corresponds to the trivial case X = 0. For primary spin type
{(11)1} there is one non-degenerate eigendirection and an eigenplane orthogonal to it. The
last two types are the non-degenerate primary spin types characterized by three different
eigenvalues, each with one corresponding eigendirection; if the distinction between zero and
non-zero eigenvalues is irrelevant the joint notation {111/0} will be utilized.

7



Class. Quantum Grav. 29 (2012) 155016 A Coley et al

Table 2. Primary spin types of [�] and normal forms for X (X3X4 �= 0).

Primary spin type {(000)} {(11)1} {110} {111}
Normal form of X 0 X3κ3 diff[X3, −X3] diff[X3, X4]

If we denote the eigenvalues (without multiplicity) by Xi, i = 3 , . . . , 5, we get
X = diag[X3, X4] ≡ diag(X3, X4,−X3 − X4) after diagonalization. For the non-degenerate
primary types {111/0} we write X = diff[X3, X4] to indicate that Xi �= Xj for i �= j. We may
interchange the mis such that X = diff[X3,−X3] (X5 = 0) in the case of spin type {110}, and
X = X3κ3 in the case of spin type {(11)1}, where

κ3 ≡ diag
(
1,− 1

2 ,− 1
2

) ↔ X4 = X5 = − 1
2 X3. (25)

The possible normal forms for X are summarized in table 2. Note that for bC([�]) = ±2 the
case {(000)} should be excluded by definition of boost order (cf table 1).

Next, if −1 � bC([�]) � 1 we consider the vector x and first suppose that X �= 0. If
x is non-zero, its position relative to the X-eigendirections is a Fix([�])-invariant, and one
distinguishes three qualitatively different cases. Together with the possibility x = 0 we get
four secondary spin types of [�], which we symbolize by

• 0: x = 0;
• ‖: x is parallel to a non-degenerate eigendirection;
• ⊥: x is orthogonal to a non-degenerate eigendirection, and not coinciding with the other

two such directions in the case of primary types {111/0};
• g: x is in ‘general’ position; i.e. none of the above hold.

These symbols are added in subscript to the primary spin type to form the (total) spin
type of [�]. For spin type {110}‖ it may be important to indicate whether x is parallel to
the 0-eigendirection or not, and we will symbolize this by {110}‖0 and {110}‖1, respectively.
Likewise, for spin type {110}⊥ we will write {110}⊥0 if x is orthogonal to the 0-eigendirection,
and {110}⊥1 if it is not.

In the case X = 0 the spin type can be {(000)}‖ (x �= 0) for −1 � bC([�]) � 1, and
{(000)}0[R �= 0] (x = 0) for bC[�] = 0 (for this case we will add R̄ = 0 or R̄ �= 0 between
square brackets after the spin type symbol whenever this distinction is important).

Regarding normal forms, it is possible and advantageous to order the mis such that x4 = 0
(except for spin type {111}g) and x3 �= 0 whenever x �= 0, instead of taking an arrangement
where the X-normal forms of table 2 are guaranteed. In fact, this has only implications for spin
types {111}‖0, {110}⊥0 and {(11)1}⊥, where the normal forms X = diff[0, X4], X = diff[X3, 0]
and, for example, X = X5κ5 should be taken instead, where

κ5 ≡ diag
(− 1

2 ,− 1
2 , 1
) ↔ X3 = X4 = − 1

2 X5. (26)

Additionally, we will take X = X5κ5 for type {(11)1}g as well. The resulting normal forms for
the highest b.w. constituents are summarized in table 3. For bC([�]) = ±1 the case {(000)}0

should be excluded by definition of boost order.

3.1.2. Weyl spin type at a point. Since on the one hand Weyl-preferred null directions may
exist, and since there are only a finite number of possible spin types on the other, it is natural
to define the notion of Weyl spin type at a spacetime point p. It is possible to distinguish four
cases:

(1) If the Weyl tensor is of alignment type N, III, II0 or I0, then the WAND of maximal
alignment order 1 − ζ (cf definition (13)) is unique.

8
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Table 3. Spin types of [�] and normal forms for X and x (−1 � bC([�]) � 1). The scalars xi are
non-zero. For spin types {111}‖0 and {110}⊥0 we have X3 = 0, resp. X4 = 0, but in all other cases
the scalars Xi are non-zero as well.

Sec. type
{111/0}

X = diff[X3, X4] {(11)1} {(000)}
X = 0

0 x = 0 X = X3κ3, x = 0 x = 0
‖ x = (x3, 0, 0) X = X3κ3, x = (x3, 0, 0) x = (x3, 0, 0)
⊥ x = (x3, 0, x5) X = X5κ5, x = (x3, 0, 0) –
g x = (x3, x4, x5) X = X5κ5, x = (x3, 0, x5) –

(2) If the alignment type is D, consider two distinct double WANDs [�] �= [n]. With respect
to null frames (�, n, mi) and (n, �, mi), the b.w. ζ = 0 constituents (which are then the
only non-zero Weyl components) relate like (S̄, w̄, R̄) and (S̄,−w̄, R̄), and it immediately
follows that the spin types of [n] and [�] are the same.

(3) If the alignment type is Ii, one considers the single WANDs and, for instance, the total
ordering

(X1, x1) < (X2, x2) ⇔ X1 < X2 or X1 = X2, x1 < x2, (27)

on the set of possible spin types, where

{(000)} < {110} < {(11)1} < {111}, 0 < ‖ < ⊥ < g. (28)

(4) If the alignment type is G, one considers all null directions and, for example, the ordering

{110} < {(11)1} < {111} (29)

on the set of possible spin types.

Definition 3.1. The Weyl spin type at a spacetime point p is defined to be the spin type of
any maximally aligned null direction in the case of the algebraically special alignment type II
(and its specializations) and alignment type I0, and the minimal spin type of the single WANDs
[of all null directions] with respect to the ordering (28) [(29)] in the case of alignment type
Ii [G].

Remark 3.2.

(1) The notion of spin type, introduced here for a 5D Weyl tensor, may be readily transferred
(in principle) to any dimension and any tensor. Regarding the different alignment types
of the Weyl tensor in general dimensions, some spin type subcases have already been
pointed out in earlier work [1, 9, 15], which will be commented on later.

(2) The spin type can be used as a classification tool. In particular, we may try to determine all
spacetimes with given Ricci–Segre and Weyl alignment-spin types. In this respect, all 5D
Einstein spacetimes (Rab = R

5 gab) of alignment type D and spin type {(11)1}‖, {(11)1}0,
{(000)}‖ or {(000)}0[R̄ �= 0] have been invariantly classified and partially integrated in
[16]; the collection of these spin types corresponds to the situation where the Weyl tensor
is isotropic in some spacelike plane, in addition to the boost isotropy in any plane spanned
by double WANDs.

9
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3.2. Weyl operator refinement

The Weyl operator C on ∧2TpM is characterized by the list of elementary divisors

(x − λi)
mi j , i = 1, . . . , r, j = 1, . . . , νi,

where the λi are the distinct, possibly complex, eigenvalues of C and νi ≡ dim(Eλi ) is the
dimension of the λi-eigenspace, which equals the number of Jordan blocks corresponding to
λi in the Jordan normal form of C. The Segre type of C is the list of the orders mi j where,
for fixed i, round brackets are used to enclose them in the case where νi > 1. For instance,
[(3211)12] would indicate that there are three distinct eigenvalues, the first one corresponding
to four Jordan blocks of dimension 3, 2, 1 and 1, while the other two correspond to one Jordan
block each, of dimensions 1 and 2, respectively. The integer

∑
1� j�νi

mi j (equaling 7, 1 and 2
for the respective eigenvalues in the example) is the dimension of the generalized eigenspace
Mλi corresponding to λi, which is a C-invariant subspace of ∧2TpM. A basis of the latter is
built by concatenating νi Jordan normal sequences (JNSs) of the form

F j[mi j] ≡ (F j, Cλ(F j), . . . , C
mi j−1
λ (F j)), Cλ ≡ C − λ id∧2TpM. (30)

We shall use the notation W
′λi
k for the span of those bivectors Fj for which the length mi j of the

corresponding JNS equals k, and pk(λi) for the invariant dim(W
′λi
k ). The concatenation of the

Mλi -bases yields a Jordan normal basis (JNB) realizing the Jordan normal form of C. We refer
to appendix A or standard text books on linear algebra (such as [17]) for a further discussion,
dealing with vector space endomorphisms in general.

In four dimensions (4D), the Segre type classification of the Weyl bivector operator is
fully equivalent to the alignment type classification, and both reduce to the six distinct Petrov
types. In higher dimensions, however, a particular alignment type can allow for different Segre
types. In the present 5D analysis we shall focus on the algebraically special alignment type II
(and its specializations), and regard classification of a certain property of the Weyl operator as
a refinement thereof.

We will treat alignment types N and III in full detail: we shall deduce the possible Segre
types, and write down the kernel Ker(C), image Im(C) and a JNB of C. As a type N (III) Weyl
operator is nilpotent of index 2 (3), it suffices to study the possibilities of ρ(C) (and ρ(C2)),
according to formula (A.15); here and henceforth, we denote ρ(Z) as the rank of a matrix/linear
operator Z. We also present the compatibility of the Segre and spin type classifications.

Regarding type II (covering II0 and D), we shall emphasize the classification based on
ρ(M) and ρ(	), and on the potential nilpotence of C. We shall also determine the possible spin
types in the case where M is nilpotent and 	 has a quadruple eigenvalue. The determination
of all possible Segre types for a given spin type would involve a straightforward but tedious
investigation. Rather, for illustration, we shall present the complete eigenvalue degeneracies
for spin types {·}0, {·}‖ and {(11)1}⊥ in appendix C.

4. Type N

In general dimensions, a type N Weyl tensor is characterized by having a quadruple WAND
[�]. With respect to any null frame (�, n, mi) all components of b.w. greater than ζ = −2
vanish; i.e. only the Weyl constituent Ȟ is non-zero:

Ĥ = 0, n̂ = v̂ = 0, S̄ = w̄ = R̄ = 0, ň = v̌ = 0, Ȟ �= 0. (31)

In fact, the argument given in footnote 10 shows that [�] is the only WAND.

10
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Table 4. Type N Weyl tensors: spin types (columns) for given Segre types (rows). The symbols –
and x indicate that the corresponding Segre type is not or is allowed, respectively.

{110} {(11)1} {111}
[(2221111)] – x x
[(22111111)] x – –

4.1. Spin types

The allowed spin types of the WAND, and thus of the spacetime, are {(11)1}, {110} and {111}
(these were summed up in section 4.5 of [9]). We shall use the normal forms for X = Ȟ of
table 2. By an additional boost-normalization, we could naturally take Ȟ = diff[1,−1] in the
case of spin type {110}, and Ȟ3 = ±κ3 in the {(11)1} case (where ± is the sign of X3).

4.2. Weyl operator

With (31) and the diagonal normal form of Ȟ the Weyl operator takes the form:

C =
⎡⎣0 0 0

0 0 0
Ȟ 0 0

⎤⎦, Ȟ = diag(Ȟ3, Ȟ4, Ȟ5). (32)

Obviously C2 = 0; i.e. C is nilpotent of index 2 such that its only eigenvalue is 0, and
V ⊕ W � Ker(C). Also, C(Ui) = ȞiVi (no sum over i), and by Ȟ3Ȟ4 �= 0 it follows
that 2 � ρ(C) = ρ(Ȟ) � 3, where ρ(C) = 2 ⇔ Ȟ5 = 0. From formula (A.15), with
λA = 0, s(0) = 2, NA = C, we get

p2(0) = ρ(C), p1(0) = 10 − 2ρ(C).

This leads to two possibilities (cf section 3.2 for the notation).

(1) Segre type [(2221111)] ⇔ ρ(C) = 3 ⇔ Ȟ5 �= 0, with

Im(C) = V = 〈V3, V4, V5〉, Ker(C) = V ⊕ W,

JNB = (U3[2], U4[2], U5[2], [W], [W[45]], [W[53]], [W[34]]),

corresponding to W ′(0)

2 = U and W ′(0)

1 = W .

(2) Segre type [(22111111)] ⇔ ρ(C) = 2 ⇔ Ȟ5 = 0, with

Im(C) = 〈V3, V4〉, Ker(C) = 〈U5〉 ⊕ V ⊕ W,

JNB = (U3[2], U4[2], [U5], [V5], [W], [W[45]], [W[53]], [W[34]]),

corresponding to W ′(0)

2 = 〈U3, U4〉 and W ′(0)

1 = 〈U5〉 ⊕ 〈V5〉 ⊕ W .

Here Ui[2] = [Ui, ȞiVi] for Ȟi �= 0 (cf (30)).

4.3. Intersection of the two refinements

The intersection of the spin type and Segre type classifications is trivial and summarized in
table 4: case 1 above covers spin types {111} and {(11)1}, whereas case 2 corresponds precisely
to spin type {110}.

11
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4.4. Comparison with 4D

Consider a 4D spacetime which is of (Weyl–Petrov) type N at a point. With respect to any null
frame (�, n, m3, m4) with [�] the quadruple, unique WAND, we formally have (31), so that
with respect to a bivector frame

(U3, U4, W, W[34], V3, V4), (33)

defined as in (17), the Weyl operator C takes the (2+2+2)-block form formally equal to (32).
Hence C is nilpotent of index 2. However, {11} is the only possible spin type here, where we
may take Ȟ = diag(1,−1) after boost-normalization. Also, ρ(C) = 2 and the only possible
Segre type of C is [(2211)]. On writing

V ≡ 〈V3, V4〉, W ≡ 〈W, W[34]〉, U ≡ 〈U3, U4〉
we have

Im(C) = V, Ker(C) = V ⊕ W,

JNB = ([U3, V3], [U4,−V4], [W], [W[34]]).

We note that certain four-dimensional results on the Weyl operator (including the rank
properties) were given in [18, 19].

4.5. Discussion

From the above we conclude that for alignment type N Weyl tensors, the spin type classification
refines the Weyl operator Segre type classification; the latter coincides with the classification
based on the rank of C; i.e. on the number of non-zero eigenvalues of the matrix Ȟ. Although
only the 5D case has been treated here, it is clear that these statements still hold in n + 2
spacetime dimensions: for ρ(C) = m � 2 we will have precisely m two-dimensional and
n − 2(m − 1) one-dimensional Jordan blocks, reflected in the Segre type; this Segre type
is independent of the degeneracies of non-zero Ȟ-eigenvalues. Note that m � 2 is due to
the tracelessness of Ȟ; the case m = 2 (Segre type [(2211 · · · 1)]) corresponds precisely to
the unique spin type {1100 · · · 0}, while for fixed m > 2 Ȟ-eigenvalue degeneracies become
possible and the corresponding Segre type covers several spin types.

In 4D the matrix Ȟ is two-dimensional and m = 2 is the only possibility, corresponding
to spin type {11}. Most remarkably, for type N non-Kundt Einstein spacetimes (Rab = R

D gab)
in any dimensions D, the case m = 2 is the unique possibility as well, which is due to the
compatibility with the Bianchi identities [4, 7]. Some explicit examples have been constructed
in [20].

However, such a constraint does not apply to Kundt–Einstein spacetimes. As an
illustration, let us recall the homogeneous plane-wave spacetimes,

ds2 = 2du(dv + ai jx
ix j du) + δi j dxi dx j,

where ai j is a constant matrix. If the matrix ai j is traceless then this is Ricci-flat, otherwise
some pure radiation will be present. In both cases this metric is of Weyl type N and the
eigenvalue type of ai j is directly related to the spin type of the Weyl tensor.

5. Type III

In general dimensions, a type III Weyl tensor is characterized by having a triple WAND [�].
With respect to any null frame (�, n, mi) all components of b.w. greater than ζ = −1 vanish,
whereas those of b.w. −1 are not all zero; in terms of constituents this is

Ĥ = 0, n̂ = v̂ = 0, S̄ = w̄ = R̄ = 0, (ň, v̌) �= (0, 0). (34)

12
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The argument given in footnote 10 shows that any other WAND must be single; i.e. [�] is the
unique triple WAND and there can be no double WANDs. The existence of a single WAND
corresponds to Ȟ = 0, and is symbolized within the full alignment type notation by IIIi [1].

5.1. Spin types

The allowed spin types of the unique triple WAND, and thus of the spacetime, are the
combinations in table 2, with the exception of {(000)}0 (which would yield type N or O). The
secondary spin type ‘0’ (i.e. v̌ = 0) was denoted as type III(a) in [1, 15] and III(A) in [9]. The
primary spin types were also mentioned in [9], where {(000)} (ň = 0) was denoted by III(B).

5.2. Weyl operator

From (34), and taking the diagonal normal form for ň, the Weyl operator takes the form:

C ≡
⎡⎣ 0 0 0

ČK
t 0 0

Ȟ Č−K 0

⎤⎦, Č±K ≡ [±Ǩ Ľ] =
⎡⎣∓2v̌3 ň3 −v̌5 v̌4

∓2v̌4 v̌5 ň4 −v̌3

∓2v̌5 −v̌4 v̌3 ň5

⎤⎦. (35)

Obviously we have C3 = 0 and thus 0 is the only eigenvalue, just as for type N. However,
contrary to the type N case, a type III Weyl operator satisfies C2 �= 0. A proof hereof, in general
dimensions, was given in [6], lemma 12; however, let us present a shortcut, specifically for
five dimensions.

Proposition 5.1. A 5D type III Weyl operator C is nilpotent of index 3; i.e. C3 = 0 �= C2.

Proof. We have

C2 ≡
⎡⎣ 0 0 0

0 0 0
Č−K · ČK

t 0 0

⎤⎦, (36)

where a dot denotes matrix multiplication. Suppose that C2 = 0 ⇔ Č−K · ČK
t = 0. By

Č±K = [±Ǩ Ľ], this is equivalent to

Ľ · Ľt = Ǩ · Ǩt . (37)

This would imply ρ(Ľ) = ρ(Ľ · Ľt ) = 1 and hence Ľ = axt , with a, x ∈ R3×1. Compatibility
with (37) then requires Ľ = Ǩet , with e a unit vector in R3×1. But then ČK = Ǩ[1 et] such that
2 � ρ(ČK ) = 1: this is a contradiction. �

The difference between the indices of nilpotence serves as an easily testable criterion for
distinguishing the alignment types III and N.

Next, from (35) it is clear that the order 2 minors11 ČK
(

i1 i2
j1 j2

)
of Č±K cannot all be zero,

as this would lead to v̌ = ň = 0 and thus type N. Hence, ρ(ČK ) = ρ(Č−K) = ρ(ČK
t ) equals

2 or 3. Moreover, from the structure of (35) we immediately see that V � Ker(C) and

4 � 2ρ(ČK ) � ρ(C) � 3 + ρ(ČK ) � 6.

Defining the order 3 minors

d ≡ det(Ľ) = ň3ň4ň5 + ň3v̌
2
3 + ň4v̌

2
4 + ň5v̌

2
5, (38)

11 An order p minor M
(i1 i2 · · · ip

j1 j2 · · · jp

)
of a matrix M ∈ R

m×n, 1 � i1 < · · · < ip � m, 1 � j1 < · · · < jp � n,

is the determinant of the p × p submatrix A of M with Akl = Mik jl , 1 � k, l � p.
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Table 5. Type III Weyl bivector operators: summary of the (six) possible Segre types and
corresponding conditions on relevant determinants (defined in the text).

ρ(C2) = 3 ρ(C2) = 2 ρ(C2) = 1

ρ(C) = 6 (D6 �= 0) [(3331)] (D6< �= 0) [(3322)] (D6< = 0) –
ρ(C) = 5 (D6 = 0 �= D45) – [(33211)] (D45< �= 0) [(32221)] (D45< = 0)
ρ(C) = 4 (D6 = 0 = D45) – [(331111)] (D45< �= 0) [(322111)] (D45< = 0)

di ≡ 2
[
v̌ jv̌k(ň j − ňk) − v̌i

(
v̌2

3 + v̌2
4 + v̌2

5 + ň jňk
)]

, (39)

we have

ρ(C) = 6 ⇔ ρ(CK ) = 3 ⇔ D6 ≡ d2 + d2
3 + d2

4 + d2
5 �= 0. (40)

Conforming to the canonical forms of table 3, we take v̌3 �= 0 whenever v̌ �= 0, while in the
case v̌ = 0 we may permute the mis such that ň3ň4 �= 0. Then, the first and second columns
of ČK

t are always independent, as well as columns j and k of Č−K , where

v̌ = 0 (ň3ň4 �= 0) : j = 2, k = 3; (41)

v̌ �= 0 (v̌3 �= 0) : j = 1, k = 4 or 3. (42)

It is then easily seen that only one order 5 minor is needed to distinguish between ρ(C) = 4
and ρ(C) = 5:

ρ(C) = 4 ⇔ D45 ≡ C
(

j + 3 k + 3 8 9 10
1 2 3 j + 3 k + 3

)
= 0. (43)

Finally, based on formula (A.15) with λA = 0, s(0) = 3, NA = C, the numbers pi(0) of
Jordan blocks of dimension i are determined by ρ(C) and ρ(C2):

p1(0) = 10 − 2ρ(C) + ρ(C2), p2(0) = ρ(C) − 2ρ(C2), p3(0) = ρ(C2). (44)

For ρ(C) = 6 we get 2 � ρ(C2) � 3 from p1(0) � 0, where

ρ(C2) = 2 ⇔ D6< ≡ det(Č−K .CK
t ) ≡ d2 − d2

3 − d2
4 − d2

5 = 0. (45)

For ρ(C) < 6, proposition 5.1 and p2(0) � 0 yield 1 � ρ(C2) � 2, where

ρ(C2) = 1 ⇔ D45< ≡ (ň2
3 + v̌2

4 + v̌2
5 − 4v̌2

3

)(
ň2

4 + v̌2 − 5v̌2
4

)
− (v̌5(ň3 − ň4) − 5v̌3v̌4)

2 = 0.

This leads to table 5, which summarizes the possible Segre types that arise in the
classification based on the Weyl operator geometry in the type III case. For further details
(like Ker(C), Im(C) and the determination of JNBs in the different cases) we refer to
appendices B.1 and B.2.

Remark 5.2. If the full alignment type is IIIi (Ȟ = 0 in (35)) we clearly have ρ(C) =
2ρ(ČK ) = 6 or 4, i.e. D45 vanishes in this case (cf (B.26) and (B.33)).

5.3. Comparison with 4D

Consider a 4D, alignment (Weyl–Petrov) type III Weyl tensor, and let [�] be the unique triple
WAND. Referring to the decomposition (9) we have Ťi jk = 0 (⇔ ň = 0) [9], such that the only
possible spin type is {00}‖. By applying a spin and a boost we may set v̌ ≡ (v̌3, v̌4) = (0, 1),

14
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while Ȟ can be transformed to zero by a null rotation (23) about [�], such that the full alignment
type is IIIi [8, 9]. In this gauge the Weyl operator C takes the (2+2+2)-block form

C =
⎡⎣ 0 0 0

ČK
t 0 0

0 Č−K 0

⎤⎦, ČK
t =
[

0 1
1 0

]
, Č−K =

[
0 −1
1 0

]
. (46)

Obviously C3 = 0 �= C2, ρ(C) = 2ρ(C2) = 4, and the only possible Segre type is [(33)] and

Im(C) = W ⊕ V, Ker(C) = V, JNB = ([U3, W[34],−V3], [U4, W, V4]).

Cf also [18, 19].

5.4. Discussion

It is clear that the Weyl operator geometry approach distinguishes between type III and
type N (for this purpose it suffices to consider ρ(C), equivalent to specifying the number
of eigenvectors, or simply the index of nilpotence of C). However, for type III there exist
different spin types that are indistinguishable from the Segre type viewpoint (and vice versa).
We refer to appendix B.3 for a full discussion. Table B1 summarizes the relation between the
spin type and Segre type refinement schemes for 5D alignment type III Weyl tensors. Just as
for type N, a certain Segre type covers several spin types, and different spin types may allow
for exactly the same list of Segre types. However, except for spin types {(11)1}0, {111}0 and
{(000)}‖, such a list does not contain a unique element any more (as was the case for type N).

Even before studying more general Weyl types (and/or going to higher dimensions), it is
thus already clear from the above 5D type III analysis that the two schemes are essentially
independent and represent substantial refinements. This is in contrast to the 4D case, where
type III exactly corresponds to a Segre type [(33)] Weyl operator and allows for a single spin
type ({00}‖); the same happens for the 4D types II and I (see below).

Finally, we mention that some of the discussed features readily generalize to (n + 2)-
dimensional type III Weyl tensors. In particular, the index of nilpotence for C is still 3 [6] such
that formula (44) still holds, with 10 replaced by (n+2)(n+1)/2. Also, ρ(C) � 2n, ρ(C2) � n
a priori, but the lower bounds would need a detailed analysis. Constraints on type III Ricci-
flat spacetimes were derived in [4] using the Bianchi identities. Some examples of type III
Ricci-flat/Einstein spacetimes were constructed in [20], where the ‘asymptotic’ behavior of
the Weyl tensor was also discussed.

6. Type II

In general dimensions, a (primary) type II Weyl tensor is characterized by having a double
WAND [�]. With respect to any null frame (�, n, mi) all components of b.w. greater than ζ = 0
vanish, whereas those of b.w. 0 are not all zero; in terms of constituents this is:

Ĥ = 0, n̂ = v̂ = 0, (S̄, w̄, R̄) �= (0, 0, 0). (47)

If the (full) type is D, and if n is a second double WAND, then the components of b.w. less
than 0 also vanish:

ň = v̌ = 0, Ȟ = 0. (48)
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6.1. Spin types

The allowed spin types of any double WAND, and thus of the spacetime (cf section 3.1), are
the combinations in table 2, with the exception of {(000)}0[R̄ = 0]. In [1, 9, 15] the secondary
spin type ‘0’ (i.e. w̄ = 0) was denoted by subtype II(d), the primary spin type {(000)} (S̄ = 0)
by II(b), and the case R̄ = 0 by II(a). In general dimensions the subtype II(c) is defined by
equation (10); however, this is identically satisfied in five dimensions.

6.2. Weyl operator

With (47) the block representation of the Weyl operator reduces to

C ≡
⎡⎣Mt 0 0

ČK
t 	 0

Ȟ Č−K M

⎤⎦. (49)

The various submatrices are defined in table 1 and (19), and we work with the diagonal normal
form for S̄, where

R̄i ≡ S̄i + 1
3 R̄,

with S̄i being the diagonal entries (i.e. eigenvalues) of S̄. Then the diagonal block entries M
and 	 take the form

M =

⎡⎢⎢⎢⎢⎢⎢⎣
− R̄3

2
− w̄5

2

w̄4

2
w̄5

2
− R̄4

2
− w̄3

2

− w̄4

2

w̄3

2
− R̄5

2

⎤⎥⎥⎥⎥⎥⎥⎦, 	 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R̄

2
−w̄3 −w̄4 −w̄5

w̄3
R̄

2
− R̄3 0 0

w̄4 0
R̄

2
− R̄4 0

w̄5 0 0
R̄

2
− R̄5.

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (50)

We have

M = 0 ⇔ 	 = 0 ⇔ R̄i = w̄i = 0, (51)

which is not allowed for type II. Also note that M, being the sum of an antisymmetric and a
diagonalized symmetric part, may represent any 3 × 3 matrix and thus may take any Jordan
normal form, while this is not the case for 	.

We shall start by showing that a 5D, primary alignment type II Weyl operator C can be
nilpotent, in contrast with the 4D case (cf section 6.4). We will then study its classification
from different perspectives: Segre type of M or 	, ρ(M) and ρ(	), and spin type. More
precisely, we will exemplify the Segre type classifications by treating particular cases and
determining all possibilities for the other properties. We then give the conditions for when the
ranks M and 	 attain a given value, and comment on the relation with ρ(C). We also describe
the kernels and images of M and 	, and pay special attention to the type D subcase. Finally,
in appendix C we present the possible eigenvalue degeneracies for spin types {·}0, {·}‖ and
{(11)1}⊥, and comment on the more general spin types.

We shall use an extended Segre type notation to indicate the Jordan block dimensions
(elementary divisors) of M, 	 and C (cf section 3.2). If there is a single eigenvalue zero
we indicate this by writing 0 instead of 1. For a multiple zero eigenvalue, or if we want to
emphasize a specific eigenvalue, we write this value followed by the corresponding Jordan
block dimensions between round brackets. For a pair of single complex eigenvalues we use
ZZ̄ or a ± ib(ZZ̄) (and, e.g., (Z21)(Z̄21) or a + ib(Z21), a − ib(Z̄21) if both correspond
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to one Jordan block of dimension 2 and one of dimension 1). WW̄ indicates a different pair
of complex eigenvalues (for instance, C[R̄(2211),±3iω(ZZ̄), 10] indicates that C has one
eigenvalue R̄ with Jordan block dimensions 2, 2, 1, 1, one pair of single complex eigenvalues
±3iω, one single zero and one single non-zero eigenvalue).

6.2.1. Nilpotence of C. The lower-triangular block structure of a type II Weyl operator
(49) is preserved by taking powers Ck, which have ((Mk)t,	k, Mk) on the diagonal. Hence,
if Mk0 = 	k0 = 0 then Ck0 is (at most) a type III operator, and thus C3k0 = 0. Therefore, C is
nilpotent if and only if both M and Ω are nilpotent.

The characteristic polynomials of M and 	 are:

kM(x) = x3 − σ 1
Mx2 + σ 2

Mx − σ 3
M, (52)

k	(x) = x4 − σ 1
	x3 + σ 2

	x2 − σ 3
	x + σ 4

	, (53)

where

−2σ 1
M = −2TrM = σ 1

	 = Tr	 = R̄ = R̄3 + R̄4 + R̄5, (54)

4σ 2
M = σ 2

	 = R̄4R̄5 + R̄5R̄3 + R̄3R̄4 + w̄2
3 + w̄2

4 + w̄2
5, (55)

−8σ 3
M = −8 det(M) = R̄3R̄4R̄5 + R̄3w̄

2
3 + R̄4w̄

2
4 + R̄5w̄

2
5, (56)

σ 3
	 = −8σ 3

M + 1
4 (R̄ − 2R̄3)(R̄ − 2R̄4)(R̄ − 2R̄5), (57)

4σ 4
	 = 4 det(	) = (R̄ − 2R̄4)(R̄ − 2R̄5)w̄

2
3 + (R̄ − 2R̄5)(R̄ − 2R̄3)w̄

2
4

+(R̄ − 2R̄3)(R̄ − 2R̄4)w̄
2
5 + 1

4 R̄(R̄ − 2R̄3)(R̄ − 2R̄4)(R̄ − 2R̄5). (58)

For further purpose, note that these coefficients are linear polynomials in w̄2
3, w̄2

4 and
w̄2

5. The matrices M and 	 are nilpotent if and only if (abbreviated iff henceforward) all
their eigenvalues are zero, which is equivalent to the vanishing of all σ i

M and σ i
	. From

σ 1
M = σ 3

	 + 8σ 3
M = 0 it follows that R̄4 = 0 = R̄3 + R̄5 (by suitable axis permutation), and

then from σ 2
M = σ 3

M = σ 4
	 = 0 we obtain

R̄4 = 0, R̄3 = −R̄5 �= 0, 2w̄2
3 = 2w̄2

5 = R̄2
5, w̄4 = 0. (59)

Hence, C is nilpotent iff (59) is satisfied. Note that the spin type is then {110}⊥0[R̄ = 0]. We
easily find that M3 = 0 �= M2 and 	3 = 0 �= 	2 in this case, such that the Segre types of
M and 	 are M[0(3)] and 	[0(31)]. Thus, the value of k0 above equals 3, and the operator
C will be generically nilpotent of index 9, but lower indices � 3 can occur. In particular, we
clearly have that if a 5 D, alignment type D Weyl bivector operator is nilpotent, its index of
nilpotence is 3, the Segre type being C[(3331)]. Thus, in this case and from this viewpoint, it
is undistinguishable from a generic type III Weyl operator. Let us discuss an easily testable
criterion distinguishing between these two situations.

From lemma 8 in [6] we know that any type D (and, in fact, any primary type II) Weyl
tensor (in arbitrary dimensions) must have a non-zero polynomial invariant, whereas all such
invariants necessarily vanish in the type III (or N) case12. The polynomial invariants of the
Weyl tensor Cabcd are (by definition) traces of curvature operators built from Cabcd [22]. An
example of a first order operator is the aforementioned operator C acting on bivector space.

12 Indeed, this is true for any tensor: the alignment theorem and the VSI corollary in [21] state that a tensor has only
vanishing polynomial invariants if and only if it is of type III, or simpler.
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An example of a second order operator is CabcdCde f g, acting on the space of contravariant 3-
tensors. Remarkably, there is another natural first order operator associated to the Weyl tensor,
which does not seem to have been considered in the literature before (not even in the 4D case).
This is the following operator, acting on the space S2(TpM) of symmetric two-tensors13:

Cs : Zab = Z(ab) �→ Ca
c

b
dZcd . (60)

Now, both C and Cs are nilpotent in the type III (or N) case, and it is easy to verify, in an
ad hoc manner in the present 5D context, that in the proper type II case where C is nilpotent
(i.e. when (59) holds), then Cs cannot be nilpotent at the same time. However, let us first
explicitly prove the following more general result, slightly strengthening lemma 8 in [6] and
valid in any dimension.

Proposition 6.1. Suppose that a rank 4 tensor Tabcd has symmetries Tabcd = −Tbacd = Tcdab,
is of primary type II or more special and has nilpotent associated operators T and Ts. Then
Tabcd is necessarily of type III or N, i.e. a frame exists in which all components of b.w. 0, 1
and 2 vanish.

Note. For a tensor Tabcd satisfying the mentioned symmetries we can indeed define the
operators T and Ts on �2TpM and S2(TpM) by formally replacing Cabcd by Tabcd in (14) and
(60), respectively. A null frame (15) of TpM, where the indices i now run from 3 to the
dimension (n + 2) of the spacetime, induce a basis (17) of �2TpM w.r.t. which T takes a 3 × 3
block matrix representation T as in (18), where we will use the same symbols as there but
with a tilde decoration. On the other hand, (15) induces the basis

Pab = nanb, Qab
i =

√
2 n(amb)

i , (61)

Oab =
√

2 n(a�b), Oab
i j =

√
2 m(a

i mb)
j (i < j), Oab

ii = ma
i mb

i (no sum over i), (62)

Rab
i =

√
2 �(amb)

i , Sab = �a�b (63)

of S2(TpM). Note that the boost orders of the tensors P, Qi, (O, Oi j), Ri and S along � are
−2, −1, 0, 1 and 2, respectively; accordingly, w.r.t. such a frame the operator Ts takes a 5 × 5
block matrix representation T s.

Proof. Since Tabcd is of primary type II or more special, a null frame exists in which all its
components of strictly positive b.w. (1 or 2) vanish, such that the block matrices T and T s

are lower triangular. Hence, the nilpotence of T and Ts is equivalent to the nilpotence of all
block entries on the diagonals of T and T s. Consider first the middle (b.w. 0) block of T s,
corresponding to (62). It is easy to check that it is symmetric14, and thus should vanish (since
a symmetric matrix is diagonalizable). In particular we get OabTacbdOcd = −T0101 = 0, and
OabTacbdOcd

i j = M̃i j +M̃ ji = 0 (for all i and j) implying that the matrix with entries M̃i j := T1i0 j

is antisymmetric. Next, consider the first block on the diagonal of T and the second block on the
diagonal of T s: these have entries 2(Vi)abT(U j)

ab = −M̃i j and (Ri)abTs(Q j)
ab = T01i j − M̃i j.

Thus they are antisymmetric, whence diagonalizable and 0. This gives T01i j = T1i0 j = 0.
Finally, the middle block 	̃ of T is now symmetric and thus should also vanish; this gives
Ti jkl = 0. Hence, all b.w. 0 components of Tabcd also vanish in the considered frame, and thus
the tensor is of type III or N. �

In particular we thus conclude that if a proper type II Weyl tensor has a nilpotent
Weyl operator C, then the operator Cs has non-zero eigenvalues, and consequently non-zero
polynomial invariants (contrary to any type III tensor).

13 It can be shown that the same operator acting on bivector space is equivalent to C.
14 The

√
2 normalization factors in (62) have been introduced for this reason. Essentially this normalization implies

that the dual basis vectors of the (62) frame vectors are the metric dual ones.
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6.2.2. Case of a nilpotent M. In order to illustrate the classification of a type II operator
C from the viewpoint of the extended Segre type of M, we shall determine the possible
spin types and the extended Segre types of 	, in the case of a nilpotent M; i.e. when the
extended Segre type of M is either M[0(3)] (M3 = 0 �= M2 ↔ ρ(M) = 2) or M[0(21)]
(M2 = 0 �= M ↔ ρ(M) = 1).

The matrix M �= 0 is nilpotent iff all of the eigenvalues are zero. This happens iff

σ 1
M = 0, σ 2

M = 0, σ 3
M = 0. (64)

The first equation gives R̄ = 0, so that R̄i = S̄i, and the second equation together with (55)
implies that spin type {(000)}‖ (all R̄i = 0) is not allowed. Therefore, when M is nilpotent at
least two R̄i must be non-zero, and at most two of them can coincide. Hence, without loss of
generality, we may assume that R̄3 �= R̄5. We can then solve σ 2

M = σ 3
M = 0 for w̄2

3 and w̄2
5,

yielding the necessary and sufficient conditions for M being nilpotent:

R̄4 = −R̄3 − R̄5, w̄2
3 = R̄3

5 − w̄2
4(R̄3 + 2R̄5)

R̄5 − R̄3
, w̄2

5 = R̄3
3 − w̄2

4(2R̄3 + R̄5)

R̄3 − R̄5
. (65)

To determine which spin types are allowed we use the normal forms of table 3 with
(X, x) = (S̄, w̄) and proceed by increasing the number of zero w̄-components. The generic
spin type is {111/0}g, corresponding to w̄3w̄4w̄5 �= 0. If w̄4 = 0 �= w̄3w̄5 we generically have
spin type {111}⊥; the special case of spin type {(11)1}g corresponds to the subcase

R̄3 = R̄4 = − 1
2 R̄5, w̄4 = 0, 3w̄2

3 = 24w̄2
5 = 2R̄2

5 (66)

of (65), while {110}⊥ leads to {110}⊥0 and gives back (59). If w̄4 = w̄5 = 0 �= w̄3, we find
from (65):

R̄3 = 0, R̄4 = −R̄5 �= 0, w̄4 = w̄5 = 0, w̄2
3 = R̄2

5. (67)

It can be readily verified that this subcase corresponds precisely to the case where the nilpotence
index of M is 2 (Segre type M[0(21)]), whereas in all other cases this index is 3 (Segre type
M[0(3)]). Note that (67) is a subcase of spin type {110}‖0[R̄ = 0]. Finally, w̄ = 0 leads to a
diagonal, and hence non-nilpotent, M.

To determine the possible Segre types of 	, we first determine the possible multiplicities
and nature (real or complex) of the eigenvalues. This is most easily done by means of the
discriminant sequence of (53) [23, 24]. Given (65) the coefficients (54)–(58) reduce to

σ	
1 = σ	

2 = 0, (68)

σ	
3 = −2R̄3R̄4R̄5, (69)

σ	
4 = (R̄3 − R̄4)(R̄5 − R̄4)w̄

2
4 − (R̄2

3 + R̄2
5)R̄

2
4, (70)

where R̄4 = −R̄3 − R̄5, and the discriminant sequence list becomes

[4, 0,−36(σ	
3 )2, D4], D4 = 256(σ	

4 )3 − 27(σ	
3 )4. (71)

Here D4 is the classical discriminant of the degree 4 polynomial k	(x) (given (68)) which
vanishes iff the latter has multiple roots. If σ	

3 = σ	
4 = 0 (i.e. 0 is a multiple root) we are in

the case (59) of a nilpotent C. In all other cases it follows that the so-called revised sign list
(see [23, 24]) must have at least one sign switch, such that 	 has at least one pair of complex
eigenvalues. If D4 > 0 there are two (differing) complex pairs (Segre type 	[ZZ̄WW̄ ]), while
for D4 � 0 there are two additional real eigenvalues, which coincide iff D4 = 0. In this
last case one can further show that this real (non-zero) eigenvalue must correspond to a two-
dimensional Jordan block (i.e. the Segre type of 	 must be [ZZ̄2]); if D4 < 0 we either have
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Table 6. Type II Weyl tensors: allowed spin types, and corresponding Segre types and ranks of M
and 	, in the case of a nilpotent matrix M. Spin types {110}⊥0, {(11)1}g and {110}‖0 correspond
to the special cases (59), (66) and (67) of the characterizing equations (65), respectively. In all
cases R̄ = 0.

Spin types Segre type of M ρ(M) Segre type of 	 ρ(	)

{110}‖0 [0(21)] 1 [ZZ̄11] 4
{110}⊥0 [0(3)] 2 [0(31)] 2
{(11)1}g, {111}⊥, {110}g [0(3)] 2 [ZZ̄11] 4
{111}g [0(3)] 2 [ZZ̄11], [ZZ̄WW̄ ], [ZZ̄2] 4

[ZZ̄10] 3

[ZZ̄11] (σ	
4 �= 0) or [ZZ̄10] (σ	

4 = 0 �= σ	
3 ). In the latter case we have ρ(	) = 3, while

ρ(	) = 2 in the nilpotent case (59); in all other cases we have ρ(	) = 4.
Regarding the compatibility of the spin types and the Segre types of 	, we first observe

from (71) that D4 < 0 is implied by σ	
4 < 0. Primary spin type {110} is equivalent to σ	

3 = 0
(see (69)), and we may take R̄4 = R̄3 + R̄5 = 0 by permuting the axes; moreover, if w̄4 �= 0 we
then see from (70) that σ	

4 < 0. The case w̄4 = 0 �= R̄4 immediately yields σ	
4 < 0 as well.

It follows that D4 � 0 is only consistent with the most generic spin type {111}g and the spin
type {110}⊥0 (w̄4 = 0 = R̄4) corresponding to nilpotent C; in all other case we have D4 < 0
and thus Segre type 	[ZZ̄11].

A summary of the allowed spin types and Segre types of M and 	, and their compatibility,
in the case of a nilpotent M is given in table 6.

6.2.3. Case of a quadruple Ω-eigenvalue. Given the analysis of the previous paragraph, we
now illustrate the classification of a type II operator C from the viewpoint of the extended Segre
type of 	, by working out the case where 	 has a quadruple eigenvalue x0. This comprises
the subcase x0 = 0 of a nilpotent 	. Strikingly, we will see that the spin type classification
forms a pure refinement of the 	-Segre type classification (in the sense that a certain spin type
is compatible with at most one 	-Segre type) and that the extended Segre type of M is almost
always M[ZZ̄1].

The characteristic polynomial k	(x) of the matrix 	 has a quadruple root, namely

x0 = 1
4σ	

1 = 1
4 R̄, (72)

if and only if

σ	
2 = 3

8 R̄2, σ	
3 = 1

16 R̄3, σ	
4 = 1

256 R̄4. (73)

By (54), (55) and (57) it follows that the σ M
i can be written in terms of the R̄i only:

σ M
1 = − 1

2 R̄, σ M
2 = 3

32 R̄2, σ M
3 = 1

32

(
F − 1

4 R̄3
)
, (74)

where

F ≡ (R̄ − 2R̄3)(R̄ − 2R̄4)(R̄ − 2R̄5), R̄ = R̄3 + R̄4 + R̄5. (75)

Therefore, the cases where kM(x) has a root 0 or x0 respectively correspond to

F = 1
4 R̄3, F = 5

2 R̄3, (76)

and they occur simultaneously iff C is nilpotent. Also, the discriminant sequence of a general
degree 3 polynomial (52), with arbitrary σ i

M , is

[3, F3, D3], F3 ≡ 2
(
σ M

1

)2 − 6σ M
2 , 27D3 ≡ −[27σ M

3 − σ 1
M

(
9σ M

2 − 2
(
σ 1

M

)2)]2 + 4F3
3 .

(77)
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Table 7. Type II Weyl tensors: allowed spin types, and corresponding Segre types and ranks of 	

and M, in the case where 	 has a quadruple eigenvalue. The second row corresponds the case of
a nilpotent C.

Spin types Segre type of 	 ρ(	) Segre type of M ρ(M)

{(11)1}‖[R̄ �= 0] [(211)] 4 [ZZ̄1] 3
{110}⊥0[R̄ = 0] [0(31)] 2 [0(3)] 2
{111}⊥[R̄ �= 0] [(31)] 4 [ZZ̄1] 3
{111}g[R̄ = 0] [0(4)] 3 [ZZ̄1] 3
{110}g[R̄ �= 0] [4] 4 [ZZ̄1] 3
{111}g[R̄ �= 0] [4] 4 [ZZ̄1], [ZZ̄1c] 3

[ZZ̄0] 2

In the considered situation of a type II Weyl operator with a quadruple 	-eigenvalue, (54)–(55)
and the first equation of (73) imply F3 = − 1

16 R̄2 � 0, such that D3 � 0 from (77), where
F3 < 0 ⇒ D3 < 0. It follows that either C is nilpotent or kM(x) has a pair of complex roots.
The nilpotent case is characterized here by R̄ = R̄3R̄4R̄5 = 0. Regarding the latter case we
will indicate the respective subcases in (76) by M[ZZ̄0] and M[ZZ̄1c], and otherwise write
M[ZZ̄1].

Just as in the case of a nilpotent M, we can show that w̄ = 0 and spin type {(000)}‖ are
not allowed. The assumptions of w̄3 �= 0 = w̄4 = w̄5 or primary spin type {(11)1} both lead
to the case (up to permutation of the axes):

w̄4 = w̄5 = 0, 1
2 R̄3 = R̄4 = R̄5 = w̄3 (x0 = w̄3), (78)

which is a subcase of spin type {(11)1}‖[R̄ �= 0]. It can be verified that this is the only case
where 	 has Jordan blocks of dimension at most 2, and that we have extended Segre types
	[w̄3(211)] and M[− 1±i

2 (ZZ̄),−w̄3(1)] and thus C[(ZZ)(Z̄Z̄)(11)(1111)]. In all other cases,
given (55), (57) and (58), (73) can be solved for the w̄2

i , yielding:

w̄2
3 =

(
R̄3 − 1

4 R̄
)4

(R̄3 − R̄4)(R̄3 − R̄5)
, w̄2

4 =
(
R̄4 − 1

4 R̄
)4

(R̄4 − R̄5)(R̄4 − R̄3)
, w̄2

5 =
(
R̄5 − 1

4 R̄
)4

(R̄5 − R̄3)(R̄5 − R̄4)
.

(79)

By substituting this into
(
	 − 1

4 R̄
)3

we find that Segre type 	[(31)]) corresponds precisely to
spin type {111/0}⊥ (i.e. the situation where exactly one w̄-component vanishes); in agreement
with table 3 this is for

w̄4 = 0 �= w̄3w̄5 ⇔ 4R̄4 − R̄ = 0 �= (4R̄3 − R̄)(4R̄5 − R̄). (80)

The case R̄ = R̄4 = 0 is equivalent to spin type {110}⊥0 and gives the case (59) of nilpotent
C; for R̄ �= 0 one necessarily has spin type {111}⊥ (i.e. {110}⊥1 is not allowed) and extended
Segre type M[ZZ̄1] (i.e. (80) is incompatible with (75)–(76)). Finally, the Segre type 	[4]
allows for the spin types {110}g[R̄ �= 0], {111}g[R̄ = 0] and {111}g, where the second one
gives a nilpotent 	 and only the last one is compatible with either of the equations in (76).

A summary of the allowed spin types and Segre types of 	 and M, and their compatibility,
in the case of a quadruple 	-eigenvalue is given in table 7.

6.2.4. Classification based on ρ(M) and ρ(	). The classification by the ranks of M and
	, and their intersection, gives a rather course subclassification of an alignment type II Weyl
tensor, but in combination with the determination of the (kernel and) image of C may be useful
for particular purposes.
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For example, the image has a particular implication for the holonomy group of the
spacetime under consideration. The infinitesimal generators of the holonomy group are
spanned by:

RabcdXcY d, Rabcd;e1 XcY dZe1 , . . .

for all vectors X,Y, Z, . . . ∈ TpM, through the isomorphism ῑ : ∧2T ∗
p M �→ o(1, n − 1),

where o(1, n − 1) is the Lie algebra of the Lorentz group. The map ῑ is explicitly given
by raising an index: Xab �→ Xa

b . Similarly, by lowering an index we have an isomorphism
ι : ∧2TpM �→ o(1, n − 1). In particular, this implies that the image of the Riemann bivector
operator generates a vector subspace of hol (the Lie algebra of the holonomy group); i.e.

ι(Im(R)) ⊂ hol.

In the case of a Ricci-flat spacetime, this implies that ι(Im(C)) ⊂ hol, and thus we can obtain
a minimal dimension for the holonomy algebra by considering the rank of C. Indeed, if the
ι(Im(C)) does not close as a Lie algebra, we can consider the algebra it generates (which must
also be in hol). For example, since the dimension of the Lorentz group is 10, we immediately
get that the vacuum cases where ρ(C) = 10 generate the whole Lorentz group (=holonomy
group). Indeed, since there are no nine- or eight-dimensional proper subgroups of the Lorentz
group, we also have that ρ(C) � 8 must have the full Lorentz group as its holonomy group.
Thus to conclude, the image Im(C) generates a subalgebra of the infinitesimal holonomy
algebra. The allowed spin types in each case can be computed.

The generic case, of course, corresponds to having ρ(M) = 3 and ρ(	) = 4. We will
now work out all possible special cases where lower rank combinations are allowed. From
(51) we have ρ(M) �= 0 �= ρ(	) and cases of zero-rank matrices can thus be ruled out from
the start. Moreover, by considering the order 2 minors of 	 it is easily shown that ρ(	) = 1
is not allowed either. As a final preliminary remark we mention that ρ(	) = 2 (all order
3 	-minors being zero) leads to the two cases (87) and (88) below, for which ρ(M) = 2.

We now work out the classification based on ρ(M), and its intersection with that of ρ(	).
ρ(M) = 3. This is the case of a generic matrix M, corresponding to

− 8 det(M) = R̄3R̄4R̄5 + R̄3w̄
2
3 + R̄4w̄

2
4 + R̄5w̄

2
5 �= 0. (81)

If 	 is also generic then ρ(	) = 4. The case ρ(	) < 4 necessarily gives ρ(	) = 3 by the
above remark. This happens if det(	) = 0 (i.e. if (58) vanishes while (81) is valid), and occurs
for either

w2
3 = R̄4 + R̄5 − R̄3

4(R̄4 − R̄5 − R̄3)(R̄4 − R̄5 + R̄3)
P,

P = R̄3
[
R̄2

3 + R̄3(R̄4 + R̄5) − (R̄4 − R̄5)
2 + 4

(
w̄2

3 + w̄2
4

)]
−R̄5

[
R̄2

5 − R̄4R̄5 − R̄2
4 + 4

(
w̄2

4 − w̄2
5

)]− R̄4
[
R̄2

4 − 4
(
w̄2

4 − w̄2
5

)]
, (82)

or

R̄3 = 0 = R̄4 − R̄5. (83)

In the latter case (81) reduces to R̄5(w̄
2
4 + w̄2

5 ) �= 0. It is understood that other cases can
be obtained from these two by simple axis-permutations (hereafter we will not mention such
possibilities any further). The case of nilpotent 	, corresponding to (79) with R̄ = 0 �= R̄3R̄4R̄5,
is a subcase of (82) (cf also table 7).

ρ(M) = 1. This is the case where all order 2 minors of M vanish, which happens iff

R̄3 = 0, w̄4 = w̄5 = 0, w̄2
3 = −R̄4R̄5, (R̄4, R̄5) �= (0, 0). (84)
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We have σ M
3 = σ M

2 = 0, and generically the zero-M eigenvalue is double (σ M
1 ∼ R̄ �= 0).

It becomes triple (i.e. M is nilpotent of index 2) for R̄ = R̄4 + R̄5 = 0 (cf (67)). Note that
R̄4 �= R̄5, and since 16 det(	) = −(R̄4 − R̄5)

4 by (58) we have ρ(	) = 4.
ρ(M) = 2. By setting σ M

3 = det(M) = 0 to zero we find all cases with ρ(M) < 3,
where we just have to exclude (84) and its permutations to get ρ(M) = 2 (this is implicitly
understood in the following). Generically, M has a single zero eigenvalue. This comprises the
case where all Ris coincide; by (81) it then follows that all of the Ris are zero, which is the case
(87) below. Otherwise it is always possible to solve σ M

3 = 0 for one w̄2
i , and we may assume

R̄3 �= R̄5. The zero eigenvalue becomes at least double iff σ M
3 = σ M

2 = 0, which is the case iff

w̄2
3 = −R̄2

5(R̄3 + R̄4) + w̄2
4(R̄4 − R̄5)

R̄5 − R̄3
, w̄2

5 = −R̄2
3(R̄4 + R̄5) + w̄2

4(R̄4 − R̄3)

R̄3 − R̄5
(85)

(note that different subcases have already been discussed in the tables). There is a triple zero
eigenvalue iff, in addition, σ M

1 = 0, which is the case (65) of a nilpotent M of index 3; the last
three rows of table 6 produce examples fitting in the subsequent discussion of ρ(	).

Generically, we have ρ(	) = 4. For ρ(	) < 4 we have two possibilities. If (83) holds
then det(	) = 0 automatically, and det(M) = 0 ⇔ R̄5(w̄

2
4 + w̄2

5 ) = 0, which leads to
(87) and a subcase of (88). If (83) or its permutations do not hold, we necessarily have
(e.g., (R̄4 − R̄5)(R̄3 − R̄4 − R̄5) �= 0) and the conditions det(M) = 0 = det(	) are solved
simultaneously by

w̄2
4 = (R̄3 − R̄4 + R̄5)

2

R̄4 − R̄5

[
R̄5 − R̄3

(R̄3 − R̄4 − R̄5)2
w̄2

3 + 1

4
R̄5

]
,

w̄2
5 = (R̄3 + R̄4 − R̄5)

2

R̄4 − R̄5

[
R̄3 − R̄4

(R̄3 − R̄4 − R̄5)2
w̄2

3 − 1

4
R̄4

]
. (86)

This generically corresponds to ρ(	) = 3.
The case ρ(	) = 2 arises for two different choices of the parameters.

(1) The first possibility is

R̄i = 0, i = 3, 4, 5. (87)

This is precisely spin type {(000)}‖[R̄ = 0]. In this case the extended Segre types are
M[±iω(ZZ̄), 0], 	[±iω(ZZ̄), 0(11)] and thus C[iω(Z111),−iω(Z̄111), 0(1111)].

(2) The second possibility is

R̄5 = R̄4 − R̄3, w̄4 = 0, w̄2
5 = R̄3

(
R̄3R̄4 − R̄2

4 − w̄2
3

)
R̄4 − R̄3

, (88)

which can be understood as a subcase of (86). The further subcase hereof

R̄4 = 0, w̄2
3 = 1

2 R̄2
3, (89)

is precisely the case (59) of a nilpotent C (cf also table 6).

A summary for the possible relative ranks of M and 	 is given in table 8.

6.2.5. Ker(M) and Ker(Ω). From (49) it is easy to see that Ker(M) � Ker(C). Of course, in
the generic case M and Ω have full rank (i.e. ρ(M) = 3 and ρ(Ω) = 4), so that Ker(M) = {0}
and Ker(Ω) = {0}. The spin type is generically {111}g[R̄ �= 0], but many special subcases are
possible. In particular, we have the type {(000)}‖[R̄ �= 0] if R̄3 = R̄4 = R̄5, or {(000)}0[R̄ �= 0]
if, additionally, w̄ = 0. For these two simple types the conditions ρ(M) = 3 and ρ(Ω) = 4
are, in fact, necessary.

The more special cases of table 8 are now discussed.
ρ(M) = 3, ρ(	) = 3. This case is defined by either (82) or (83). Clearly Ker(M) = {0}

here.
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Table 8. Weyl operator geometry for type II spacetimes: possible relative ranks of M and 	 and
equation numbers of the corresponding conditions (up to permutations of the axes).

ρ(	) = 4 ρ(	) = 3 ρ(	) = 2 ρ(	) = 1

ρ(M) = 3 ⇔ (81) Generic case (82) or (83) – –
ρ(M) = 2 (92) (86) (87) or (88) –
ρ(M) = 1 (84) – – –

(1) When (82) is satisfied we find that

Ker(Ω) = 〈W+〉, W+ = [(R̄4 − R̄5)
2 − R̄2

3]W + 2(R̄4 − R̄5 + R̄3)w̄4W[53]

+ 2(R̄5 + R̄3 − R̄4)w̄5W[34] +
√
P
[
R̄2

3 − (R̄4 − R̄5)2
]

R̄3 − R̄4 − R̄5
W[45].

(90)

The spin type is generically {111}g[R̄ �= 0], but many special subcases are possible.
(2) If, instead, (83) holds we get

Ker(Ω) = 〈W∗〉, W∗ = −w̄5W[53] + w̄4W[34]. (91)

Here the spin type is {(11)1}g[R̄ �= 0]; it specializes to {(11)1}⊥[R̄ �= 0] if w̄3 = 0.

ρ(M) = 2, ρ(	) = 4. It is easy to see that if R̄3 = R̄4 = R̄5 = 0 then ρ(	) = 2; therefore,
here we can assume that the R̄i are not all identically zero. Let us take, for definiteness, R̄3 �= 0.
Then, from (81) the condition det(M) = 0 gives

w̄2
3 = − R̄3R̄4R̄5 + R̄4w̄

2
4 + R̄5w̄

2
5

R̄3
. (92)

It is now straightforward to see that

Ker(M) = 〈V+〉, V+ = R̄4w̄
2
4 + R̄5w̄

2
5

R̄3
V3 − (R̄5w̄5 + w̄3w̄4)V4 + (R̄4w̄4 − w̄3w̄5)V5,

(93)

where we substitute w̄3 from (92). Again, the spin type is generically {111}g[R̄ �= 0], but many
special subcases are possible.

ρ(M) = 2, ρ(	) = 3. Using (86) we can easily compute the generators of the one-
dimensional spaces Ker(M) and Ker(Ω); the expressions are rather long and non-illuminating,
and are therefore omitted.

The spin type is in general {111}g[R̄ �= 0]. This specializes to {(11)1}g[R̄ �= 0] (but in a
non-canonical frame) if R̄4 = R̄3, or to {111}g[R̄ = 0] if R̄5 = −R̄3 − R̄4. When w̄3 = 0 we
get the type {111}⊥[R̄ �= 0], which becomes {111}⊥[R̄ = 0] if, additionally, R̄5 = −R̄3 − R̄4.
Further, the type is {110}g[R̄ �= 0] if R̄5 = 2R̄3 − R̄4; this becomes {110}⊥0[R̄ �= 0] with the
further condition w̄3 = 0, or {110}⊥1[R̄ �= 0] for w̄4 = 0.

ρ(M) = 2, ρ(	) = 2. There are two different possibilities corresponding to this situation.

(1) When (87) holds we get

Ker(M) = 〈V∗〉, V∗ = w̄3V3 + w̄4V4 + w̄5V5,

Ker(Ω) = 〈W∗1, W∗2〉, W∗1 = −w̄5W[45] + w̄3W[34], W∗2 = −w̄4W[45] + w̄3W[53].

(94)

This corresponds univocally to spin type {(000)}‖[R̄ = 0].
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Table 9. Possible values of ρ(C) for all permitted combinations of values of ρ(M) and ρ(	) in
type II spacetimes.

ρ(	) = 4 ρ(	) = 3 ρ(	) = 2

ρ(M) = 3 ρ(C) = 10 ρ(C) = 9 –
ρ(M) = 2 8 � ρ(C) � 9 7 � ρ(C) � 9 6 � ρ(C) � 8
ρ(M) = 1 6 � ρ(C) � 8 – –

(2) Assuming, instead, that (88) is satisfied we obtain

Ker(M)= 〈V×〉, V× = w̄5(R̄3 − R̄4)V3 − R̄3(R̄3 − R̄4)V4 + w̄3R̄3V5,

Ker(Ω)= 〈W[53], W×〉, W× = w̄5(R̄3 − R̄4)W + w̄3w̄5W[45] +
(
R̄3R̄4 − R̄2

4 − w̄2
3

)
W[34],

(95)

where it is understood that w̄5 is as in (88). We also recall the special subcase (89) where
both M and Ω are nilpotent.

The spin type is in general {111}⊥[R̄ �= 0]. It becomes {(11)1}‖[R̄ �= 0] when R̄3 = 0
(and {(11)1}0[R̄ �= 0] if, additionally, w̄3 = 0); this is the situation, for instance, for the
Kerr black string (where w̄3 = 0 in the equatorial plane). In addition, we may have the
type {110}⊥0[R̄ = 0] for R̄4 = 0 (and {110}0[R̄ = 0] if also w̄3 = 0), which includes
the case when C is nilpotent; or {111}‖[R̄ �= 0] if, instead, w̄3 = 0.

ρ(M) = 1. The conditions for this to occur were already given in (84) (and correspond
to a specialization of (92) above). Now we have (without loss of generality we can assume
R̄4 �= 0)

Ker(M) = 〈V3, V0〉, V0 = − w̄3

R̄4
V4 + V5, (96)

Im(M) = 〈−R̄4V4 + w̄3V5〉, (97)

while Ker(Ω) = {0}. If R̄ �= 0 then M also admits a non-zero eigenvalue −R̄/2 =
(w̄2

3 − R̄2
4)/(2R̄4), with eigendirection Im(M). If R̄ = 0 then M is nilpotent and Im(M)

coincides with the subspace 〈V0〉 of Ker(M).
Here the spin type is in general {111}‖[R̄ �= 0]. It specializes to {(11)1}0[R̄ �= 0] for

R̄5 = 0, and to {110}‖0[R̄ = 0] for R̄5 = −R̄4 (in which case M is nilpotent). The Segre types
of M, 	 and C are easy to determine (some cases are presented below).

6.2.6. ρ(C) in the various subcases. We have

6 � 2ρ(M) + ρ(	) � ρ(C) � min{ρ(M) + 7, ρ(	) + 6} � 10. (98)

All inequalities are a priori clear from (49), except for 6 � 2ρ(M) + ρ(	) which follows
from the detailed discussion above. Considering the various previous subcases we thus obtain
the possibilities summarized in table 9. In general, the precise value of ρ(C) also depends on
the negative b.w. components.

6.3. Type D spacetimes

Type II spacetimes specialize to type D when ČK
t = Ȟ = Č−K = 0 in (49). In this case, U , W

andV are all invariant subspaces (recall also (20)–(22)) and the equality ρ(C) = 2ρ(M)+ρ(	)

holds. Therefore, in each case ρ(C) sticks to the lower value given in table 9 and we can
explicitly present the Kernel and Image of C, as follows.
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ρ(M) = 3, ρ(	) = 4. Here ρ(C) = 10, so that

Ker(C) = {0}, Im(C) = U ⊕ W ⊕ V. (99)

Both the Schwarzschild–Tangherlini and Myers–Perry solutions belong to this class.
ρ(M) = 3, ρ(	) = 3. Here ρ(C) = 9, and we have

Ker(C) = 〈W+〉, Im(C) = U ⊕ Im(Ω|W\〈W+〉) ⊕ V. (100)

with W+ defined as in (90).
ρ(M) = 2, ρ(	) = 4. Here ρ(C) = 8 and

Ker(C) = 〈V+〉 ⊕ 〈U+〉, Im(C) = Im(M|V\〈V+〉) ⊕ W ⊕ Im(Mt |U\〈U+〉). (101)

with V+ as in (93) and U+ defined analogously (i.e. Ker(Mt ) = 〈U+〉).
ρ(M) = 2, ρ(	) = 3. Now ρ(C) = 7 and

Ker(C) = Ker(M) ⊕ Ker(Mt ) ⊕ Ker(Ω),

Im(C) = Im(M|V\Ker(M)) ⊕ Im(Ω|W\Ker(Ω)) ⊕ Im(Mt |U\Ker(Mt )), (102)

with long expressions for Ker(M), Ker(Mt ) and Ker(Ω), that we omit.
ρ(M) = 2, ρ(	) = 2. Now ρ(C) = 6 and there are two possibilities, so that either

Ker(C) = 〈V∗〉 ⊕ 〈U∗〉 ⊕ 〈W∗1, W∗2〉,
Im(C) = Im(M|V\〈V∗〉) ⊕ Im(Ω|W\〈W∗1,W∗2〉) ⊕ Im(Mt |U\〈U∗〉), (103)

with the definitions of (94) (and Ker(Mt ) = 〈U∗〉), or

Ker(C) = 〈V×〉 ⊕ 〈U×〉 ⊕ 〈W[53], W×〉,
Im(C) = Im(M|V\〈V×〉) ⊕ Im(Ω|W\〈W[53],W×〉) ⊕ Im(Mt |U\〈U×〉), (104)

with the definitions of (95) (and Ker(Mt ) = 〈U×〉). For instance, the Kerr black string belongs
to the latter class (see the text after (95)).

ρ(M) = 1, ρ(	) = 4. Also in this case ρ(C) = 6, but now

Ker(C) = 〈V5, V0〉 ⊕ 〈U5, U0〉, Im(C) = Im(M|V\〈V5,V0〉) ⊕ W ⊕ Im(Mt |U\〈U5,U0〉),
(105)

with V0 as in (96) and U0 defined analogously (i.e. Ker(Mt ) = 〈U5, U0〉). Cf (97) for the
explicit form of Im(M).

6.4. Comparison with 4D

For n = 2 we have S̄ = 0 in addition to (10). Thus the only possible spin types for a 4D
primary alignment type II (i.e. Petrov type II or D) Weyl bivector operator are {(00)}‖[R �= 0],
{(00)}‖[R = 0] and {(00)}0[R �= 0]. The first one is the generic case. In the type D subcase,
in the second and third cases the Weyl tensor is dubbed purely magnetic and purely electric,
respectively (see also section 7.2)15.

The 2 × 2 matrices M and 	 take the form [9]:

M =
[
− 1

4 R̄ − 1
2 A34

1
2 A34 − 1

4 R̄

]
, 	 =

[
1
2 R̄ −A34

A34
1
2 R̄

]
, (106)

15 Observe that R̄ and A34 correspond, in the Newman–Penrose notation, to the real and imaginary part of �2,
respectively.
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with respective eigenvalues − 1
4 (R̄ ± 2iA34) and 1

2 (R̄ ± 2iA34). Thus the eigenvalue
degeneracies are

Spin type{(00)}‖ : M[ZZ̄], 	[WW̄ ], C[(ZZ)(Z̄Z̄)(WW̄ )]; (107)

Spin type{(00)}0 : M[(11)], 	[(11)], C[(1111)(11)]. (108)

For Petrov type D this also gives the extended Segre types for C; for Petrov type II the extended
Segre types are C[Z[2]Z̄[2],WW̄ ] and C[(22)(11)], respectively. Note that neither M nor 	

can be nilpotent, basically due to the fact that they are the sum of an antisymmetric matrix and
a multiple of the identity (instead of a general symmetric matrix).

6.5. Discussion

We have studied the (refined) algebraic classification of the 5D primary alignment type II
Weyl operator C from the perspectives of Segre type (of M or 	, and also of ρ(M) and
ρ(	)) and spin type. In particular, we have described the Segre type classifications by treating
particular cases, and then determined other properties such as the values of the ranks of
M and 	, the relation with ρ(C), and the kernels and images of M and 	, within each
particular case.

The nilpotence of C is of particular interest. We found that the type II Weyl operator C
is nilpotent if and only if both M and Ω are nilpotent (and the Segre types of M and 	 are
M[0(3)] and 	[0(31)], respectively), and the operator C is generically nilpotent of index 9
(but lower indices can occur). In order to illustrate the classification of a type II operator C we
determined the possible spin types and the extended Segre types of 	 in the case of a nilpotent
M; a summary of the allowed spin types and Segre types of M and 	, and their compatibility,
was given in table 6.

The classification of a type II operator C from the viewpoint of the extended Segre type of
	 was also illustrated in the case where 	 has a quadruple eigenvalue. Remarkably, we found
that the spin type classification forms a pure refinement of the 	-Segre type classification
and that the extended Segre type of M is almost always M[ZZ̄1]. A summary of the allowed
spin types and Segre types of 	 and M, and their compatibility, in the case of a quadruple
	-eigenvalue was given in table 7.

We then focussed attention on the special type D subcase of type II spacetimes. In this
case, the Kernel and Image of C were explicitly presented, and the possible values of ρ(C) for
all permitted combinations of values of ρ(M) and ρ(	) in type II spacetimes were given (see
table 9).

In appendix C we discuss the classification of a type II Weyl operator based on its spin
type. For spin types {·}0, {·}‖ and {(11)1}⊥ we present the degeneracies in the eigenvalue
spectra of M, Ω and C, and briefly comment on the more general spin types. As was the case
for type III, a certain spin type gives rise to several possible eigenvalue degeneracies, opposed
to the situation in 4D.

Finally, let us point out that several other properties of type II/D Einstein spacetimes in
higher (in particular, five) dimensions have been studied in [14, 28].

7. Types I and G

In general dimensions, a type I Weyl tensor is characterized by having a single WAND [�] and
no multiple WANDs. With respect to any null frame (�, n, mi) all components of b.w. greater
than ζ = 1 vanish, whereas those of b.w. 1 are not all zero:

Ĥ = 0, (n̂, v̂) �= (0, 0). (109)
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If this is the unique single WAND the type is I0, otherwise the type is Ii. If there are no WANDs
at all, the Weyl type is G.

In 4D type G does not occur (i.e. WANDs always exist), and if the type is I then there are
exactly four WANDs (such that the type is automatically Ii; this is the so called algebraically
general case in 4D). In higher than four dimensions, however, type G is generic [2] and type I
is algebraically special with respect to type G. However, in many applications the presence of
a multiple WAND is important, and thus the distinction between types I/G and types II/III/N
also appears to be significant.

We further note that type I(A) [9] (i.e. type I (a) of [1]) corresponds to the collection of
the spin types I{·}0 (i.e. v̂ = 0), and type I(B) to I{(000)}‖ (n̂ = 0). See, e.g., [29, 30] for
examples of type I/G (vacuum) spacetimes in five dimensions.

7.1. The ‘electric’ and ‘magnetic’ parts of the Weyl operator

For the type I/G case there is another split which may be useful [25]. The split can be done
for any of the types, but it is probably most useful for the type I/G cases (and also possibly
for type D). The split utilizes the existence of a Cartan involution of the general linear group.

Consider the full Lorentz group G = O(1, 4). Let K ∼= O(4) be a maximal compact
subgroup of O(1, 4). Then there exists a unique Cartan involution θ of G with the following
properties [31]: (i) θ is invariant under the adjoint action of K: AdK (θ ) = θ . (ii) O(1, 4) is
θ -stable. (iii) θ is the following automorphism of the Lie algebra gl(n, R): X �→ −X∗, where
∗ denotes the adjoint (which is equal to the transpose here since the coefficients are real).

If θ1 and θ2 are two such Cartan involutions of G, associated with maximal compact
subgroups K1 and K2, then there exists a g ∈ G such that θ1 = Int(g)θ2Int(g−1), where Int(g)

is the inner automorphism by g. By a slight abuse of notation, we will denote any representation
of θ simply by θ .

First, let us consider the case when θ : TpM �→ TpM. The above-mentioned requirements
enable us to choose a unit time-like vector u that is K-invariant, and let us then choose the θ

which has u as an eigenvector. Therefore, in the orthonormal basis, {u, mi=2,...,5}, we have the
matrix representation:

θ = (θa
b) = diag(−1, 1, 1, 1, 1).

We note that θ2 = 1. This consequently picks out a special time-like direction and any other
θ2 is related to a (different) time-like vector u2.

Through the tensor structure of bivector space, we can let θ act on bivector space; explicitly,
θ : Fab �→ θa

c θb
dFcd . By choosing the θ adapted to the time-like vector u = (� + n)/

√
2, we

get the matrix representation of θ acting on bivector space in a (3 + 4 + 3)-block form relative
to the basis (16)–(17):

θ =
⎡⎣0 0 1

0 η 0
1 0 0

⎤⎦, η = diag(−1, 1, 1, 1). (110)

This will then act on the Weyl operator C through conjugation θCθ .
Since θ2 = 1, the eigenvalues of θ are ±1. We can thus project the operator C along the

eigenspaces of θ :

C = C+ + C−, where C+ = 1
2 (C + θCθ ), C− = 1

2 (C − θCθ ). (111)
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Using the Weyl operator (18) we can then compute the components of the matrix representation
of C± relative to (16)–(17):

C+ =

⎡⎢⎢⎢⎢⎣
1
2 (M + Mt ) 1

2 (K̂ + Ǩ) 1
2 (L̂ + Ľ) 1

2 (Ĥ + Ȟ)

1
2 (K̂t + Ǩt ) −� 0 − 1

2 (K̂t + Ǩt )

1
2 (L̂t + Ľt ) 0 H̄ 1

2 (L̂t + Ľt )

1
2 (Ĥ + Ȟ) − 1

2 (K̂ + Ǩ) 1
2 (L̂ + Ľ) 1

2 (M + Mt )

⎤⎥⎥⎥⎥⎦ (112)

C− =

⎡⎢⎢⎢⎢⎣
1
2 (M − Mt ) 1

2 (K̂ − Ǩ) 1
2 (L̂ − Ľ) 1

2 (Ĥ − Ȟ)

− 1
2 (K̂t − Ǩt ) 0 −At − 1

2 (K̂t − Ǩt )

− 1
2 (L̂t − Ľt ) A 0 1

2 (L̂t − Ľt )

− 1
2 (Ĥ − Ȟ) 1

2 (K̂ − Ǩ) − 1
2 (L̂ − Ľ) 1

2 (Mt − M)

⎤⎥⎥⎥⎥⎦. (113)

Therefore, we can see that the components C± are the symmetric and anti-symmetric parts
of the Weyl operator with respect to the Euclidean metric on bivector space. In 4D these
components are referred to as the electric and magnetic parts of the Weyl tensor. In [25] these
were defined as the higher dimensional electric and magnetic part of the Weyl tensors; thus,
henceforth we will refer to the component C+ as the electric part of the Weyl operator (tensor),
while C− will be referred to as the magnetic part. Note that, as in 4D, these parts depend on
the choice of a time-like vector u (and their representation with respect to a different time-like
vector u2 will change accordingly).

For type I/G Weyl tensors it is cumbersome to say anything general about their eigenvalue
structure; however, for purely electric or purely magnetic Weyl operators, we have the
following [25]:

Theorem 7.1. A purely electric (PE, C− = 0) Weyl operator has only real eigenvalues. A purely
magnetic (PM, C+ = 0) Weyl operator has at least 2 zero eigenvalues while the remaining
eigenvalues are purely imaginary.

This can be seen more easily if we switch to an orthonormal frame (see [9]). Then using
a (4 + 6)-block form:

C+ =
[

S1 0
0 S2

]
, C− =

[
0 T

−T t 0

]
, S1, S2 symmetric, T a 4 × 6 matrix. (114)

In the purely electric case, the eigenvalues are the eigenvalues of S1 and S2, which are clearly
real. In the purely magnetic case, we note that the matrix T can be decomposed (using the
singular value decomposition) as T = g1Dg2, where g1 and g2 are SO(4) and SO(6) matrices,
respectively, and D is a diagonal 4×6 matrix D = diag(λ1, λ2, λ3, λ4). Consequently, a purely
magnetic Weyl operator has eigenvalues {0, 0,±iλ1,±iλ2,±iλ3,±iλ4}.

From the vanishing of the diagonal in (113) we see, in particular, that the b.w. 0 part
of a PE Weyl tensor has spin type {· · ·}0. The fact that PE implies only real eigenvalues is
illustrated, for example, by the classification of the eigenvalue structure of the 5D type D Weyl
operator in appendix C. On the other hand, the converse is not true—these are only necessary
criteria, not sufficient; indeed, among (C.14)–(C.79) in appendix C.2, one can find cases where
the Weyl operator has only real eigenvalues (i.e. only 1 and 0 occurring), which thus constitute
counterexamples to the converse (since w̄ �= 0 and hence not PE).

For a PM Weyl tensor the b.w. 0 part has spin type {(000)}‖[R̄ = 0] (the diagonal of (112)
vanishes) which does indeed give purely imaginary eigenvalues, as illustrated by (C.43) in
appendix C.2 in the type D case. Also for the PM case the converse is not true, as is illustrated
by (C.51) in appendix C.2 which has purely imaginary eigenvalues but is not PM.
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7.2. Exact purely electric/magnetic solutions

In 4D there have been many studies attempting to classify purely electric or magnetic solutions
with various sources. There is a wealth of 4D purely electric Weyl spacetimes; e.g., all static
spacetimes (or, more generally, all those admitting a shear- and vorticity-free time-like vector
field), all spacetimes with spherical, hyperbolical or planar symmetry, all Bianchi type I
spacetimes, and the Schwarzschild, C and Gödel metrics. However, only a very limited number
of 4D purely magnetic Weyl spacetimes are known to exist. It has even been conjectured that
purely magnetic vacuum or dust spacetimes do not exist (and this has been proved under quite
mild conditions, but not in general; see, e.g., [32–36]). For an extensive review of known 4D
purely magnetic Weyl solutions see [37]; see also [38, 39] for two more recent contributions.
All known purely magnetic metrics are algebraically general (Petrov type I), except for the
locally rotationally symmetric metrics given in [40, 41], which are of Petrov type D.

There are also many examples of purely electric spacetimes in 5D, including static
spacetimes, spacetimes with an R4 spatial translational invariance, spherically symmetric
spacetimes, and spacetimes with SO(2) × SO(2) isotropy or with spatial isotropy H ⊃
SO(2) × SO(2) [9]. Remarkably, with our general definition of Weyl electric and magnetic
parts and of PE/PM spacetimes, many of the generic examples mentioned above can be lifted
to five or higher dimensions—see [25] for full details. It would be useful to classify all such
solutions. In addition, the purely magnetic spacetimes are much harder to find. The only purely
magnetic spacetimes known so far in higher than four dimensions are conformally related to a
two-parameter family of Riemann purely magnetic spacetimes; these are all type Ii, see [25].
A complete algebraic classification may be helpful in the search for new exact 5D solutions.

8. Conclusions and discussion

In this paper we have presented a refinement of the null alignment classification of the Weyl
tensor of a 5D spacetime based on the notion of spin type of the components of highest boost
weight and the Segre types of the Weyl operator acting on bivector space (and we have examined
the intersection between the two (sub)classifications). We have presented a full treatment for
types N and III, and illustrated the classification from different viewpoints (Segre type, rank,
spin type) for types II and D, paying particular attention to possible nilpotence, since this is
a completely new feature of higher dimensions. We also briefly discussed alignment types I
and G.

In future work we shall develop the algebraic classification further. In particular, it is hoped
that canonical forms can be determined explicitly in each algebraic subcase. The analysis may
be used to study particular spacetimes of special interest in detail; for example, stationary
(static) spacetimes and warped product spacetimes. In particular, we could attempt to classify
and analyze all vacuum Einstein type III spacetimes in 5D. We also note that the algebraic
techniques may be of use in other applications, since the analysis is independent of any field
equations.

This work is timely because of the recent interest in the study of general relativity (GR)
in higher dimensions and, in particular, in higher dimensional black holes [10], motivated, in
part, by supergravity, string theory and the gauge-gravity correspondence. Indeed, even at the
classical level gravity in higher dimensions exhibits a much richer structure than in 4D. For
example, there is no unique black hole solution in higher dimensions. In fact, there now exist
a number of different asymptotically flat, higher dimensional vacuum black hole solutions
[10], including Myers–Perry black holes [42], black rings [43, 44], and various solutions with
multiple horizons (e.g., [45, 46]).
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Since the algebraic classification of spacetimes has played such a crucial role in
understanding exact solutions in 4D, it is likely to play an important role also in higher
dimensions. However, compared to 4D, the algebraic types defined by the higher dimensional
alignment classification are rather broad and it has proven more difficult to derive general
results. Therefore, it is important to develop more refined algebraic classifications, and it is
hoped that the work in this paper will prove useful in the search and analysis of exact higher
dimensional (and, in particular, 5D) black hole solutions.

It would also be useful to obtain a more constructive way of accessing the invariant
classification information in higher dimensions. For example, in [24] discriminants were used
to study the necessary conditions for the Weyl curvature operator (and hence the higher
dimensional Weyl tensor) to be of algebraic type II or D in terms of simple scalar polynomial
curvature invariants. In particular, the Sorkin–Gross–Perry soliton, the supersymmetric black
ring, the doubly spinning black ring and a number of other higher dimensional spacetimes
were investigated using discriminant techniques16.
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Appendix A. Jordan normal structure and projectors

Let V be the complexification of a real vector space of finite dimension m, and let T be a linear
operator (endomorphism) on V . For any λ ∈ C, define

Tλ ≡ T − λ idV , (A.1)

with idV the identity transformation on V , and

W (λ)

k ≡ Ker
(
Tk

λ

)
, k ∈ N. (A.2)

Note that W (λ)

0 = {0}. One can show that a smallest natural number s = s(λ), 0 � s � m,
exists such that for all k ∈ N:

W (λ)

0 � W (λ)

1 � · · · � W (λ)

s−1 � W (λ)
s = W (λ)

s+k. (A.3)

The complex number λ is an eigenvalue of T if and only if s(λ) � 1, i.e. it is a solution of
the characteristic equation det(T − x1m) = 0 of T, where 1m is the unit matrix of dimension
m and T is the representation matrix of T with respect to any basis of V . In this case,
Eλ ≡ W (λ)

1 �= {0} and M(λ) ≡ W (λ)
s are called the eigenspace, respectively, generalized

eigenspace of T corresponding to λ. Since Tλ

(
W (λ)

k+1

) � W (λ)

k , the number s(λ) is the index of
nilpotence of the restriction of Tλ to M(λ). If {λ1, . . . , λr} is the set of different eigenvalues of
T, then

V =
r⊕

A=1

M(λA ). (A.4)

16 Indeed, it was found that the Sorkin–Gross–Perry soliton spacetimes and the 5D supersymmetric rotating black
holes are of type I or G, while the doubly spinning black ring can only be of type II or more special at the horizon
[47] (in fact, it is more generally known that at Killing horizons the Weyl type must be II or more special, at least
under some assumptions on the matter content [14, 48]).
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Let λ be an eigenvalue of T, take an arbitrary complementary subspace W ′(λ)
s of W (λ)

s−1 in
M(λ) = W (λ)

s :

W (λ)
s = W (λ)

s−1 ⊕ Ws
′′(λ)

,

and put W ′′(λ)
s = W ′(λ)

s (for consistency with the next pair of equations). By induction, define
for k = 1, . . . , s − 1 an arbitrary complementary subspace W ′(λ)

s−k of W (λ)

s−k−1 ⊕ Tλ(W
′′(λ)

s−k+1) in
W (λ)

s−k via

W (λ)

s−k = W (λ)

s−k−1 ⊕ Tλ(W
′′(λ)

s−k+1) ⊕ W ′(λ)

s−k ,

W ′′(λ)

s−k ≡ Tλ(W
′′(λ)

s−k+1) ⊕ W ′(λ)

s−k .

By construction, the dimensions pk = pk(λ) of W ′(λ)

k are independent of the choice of W ′(λ)

k .
Let (eλ,k

ik
)ik=1,...,pk be an arbitrary basis of W ′(λ)

k , k = 1, . . . , s. A sequence eλ
ik

[k] of the form

eλ
ik [k] ≡ (eλ,k

ik
, Tλ

(
eλ,k

ik

)
, . . . , Tk−1

λ

(
eλ,k

ik

))
(A.5)

is called a Jordan normal sequence (JNS) of length k, corresponding to λ. It follows that a
basis of M(λ) is given by

s⋃
k=1

pk⋃
ik=1

eλ
ik [k]. (A.6)

Note that, since eλ,k
ik

∈ W (λ)

k = Ker(Tk
λ), the last element of a JNS, and only this one, is

an element of Ker(Tλ) = Eλ, i.e. it is an eigenvector of T corresponding to λ. Combining
(A.4)–(A.6) yields a basis of V , which is called a Jordan normal basis (JNB) for T. The matrix
representation of T with respect to the JNB has a block-diagonal form, called the Jordan
normal form of T; for a given eigenvalue λ the corresponding JNSs of length k give rise to
pk(λ) Jordan blocks of dimension k (1 � k � s(λ)):

Bλ[k] ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎣

λ 0 0 · · · 0

1 λ 0
. . .

...

0 1 λ
. . . 0

...
. . .

. . .
. . . 0

0 . . . 0 1 λ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (A.7)

It follows that the algebraic multiplicity of the eigenvalue λ (i.e. the power of x − λ in the
characteristic polynomial), dim(M(λ)), and the geometric multiplicity, dim(Eλ), are given by

dim(M(λ)) =
s(λ)∑
k=1

k pk(λ), dim(Eλ) =
s(λ)∑
k=1

pk(λ), (A.8)

the latter being the total number of Jordan blocks corresponding to the eigenvalue λ.
In particular, dim(Ker(T)) equals the total number

∑s
k=1 pk(0) = dim(E0) of blocks

corresponding to λ = 0. Also, blocks of dimension 1 give rise to a diagonal block of T.
Consider a particular element λA of the set {λB} of eigenvalues of T. As s(λA) is the index

of nilpotence of TλA , it follows that ⊥A defined by

⊥A ≡ idV − (idV − ⊥̃A
)s(λA )

, ⊥̃A ≡
∏

B�=A Ts(λB )
λB∏

B�=A(λA − λB)s(λB )
(A.9)

is the projection operator on M(λA ). Clearly, idV =∑r
A=1 ⊥A, and one can use these projectors

to decompose the operator T:

T = NT +
r∑

A=1

λA⊥A. (A.10)
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This defines the nilpotent operator NT which contains all the information not encapsulated in
the eigenvalues λA. The operator

NA ≡ ⊥ANT = NT⊥A (A.11)

has index of nilpotence s(λA), and since ⊥A⊥B = δAB⊥A and

NT =
r∑

A=1

NA (A.12)

it follows that NT has index of nilpotence maxA s(λA). Combining (A.10) and (A.12), we get
the orthogonal decomposition:

T =
r∑

A=1

TA, TA ≡ NA + λA⊥A. (A.13)

Note that for all A, ⊥A and NA are elements of the commutative algebra Q(λ1, . . . , λr)[T],
where Q(λ1, . . . , λr) is the field of rational functions in the eigenvalues λA over Q. Since
the polynomial invariant tr(T l ) of T equals the sum of the lth powers of the eigenvalues,
namely

∑r
A=1 dim(M(λ))λl

A, and since the coefficients of the characteristic equation of T are
combinations of the latter via Newton’s identities, the eigenvalues are uniquely determined
by the polynomial invariants. It follows that ⊥A and NA can be determined (in principle) by
taking powers of T and traces thereof.

Finally, given the eigenvalues of T its Jordan normal form can be easily determined by
calculating ρ(N j

A), j = 0, . . . , s(λA) − 1, with ρ(N0
A) ≡ dim(M(λA)). Indeed, for 1 � i � k

we have ρ([BλA [k] − λA1k] j) = k − j. Hence,

ρ(N j
A) =

s(λA )∑
k= j+1

(k − j)pk(λA), j = 0, . . . , s(λA) − 1. (A.14)

This gives a linear system of s(λA) equations in the same number of unknowns pk(λA),17

which can be readily solved to give

pk(λA) = ρ(Nk−1
A ) − 2ρ(Nk

A) + ρ(Nk+1
A ), k = 1, . . . , s(λA). (A.15)

Given the eigenvalues, NA can be represented with respect to any basis, and the ranks of its
powers can be easily determined by computing determinants.

Appendix B. Details of the type III Weyl operator classification

B.1. Classification based on ρ(C)

Let (i jk) be a cyclic permutation of (345). We symbolize the order 2 minors ČK
(

i1 i2
j1 j2

)
of

ČK—up to sign—by (no summation over repeated indices)

αi ≡ 2(v̌2
j + v̌2

k ), βi ≡ v̌2
i + ň jňk, (B.1)

γi+ = v̌ jv̌k + ňiv̌i, γi− = v̌ jv̌k − ňiv̌i, (B.2)

δi+ = 2(v̌ jv̌k + ň jv̌i), δi− = 2(v̌ jv̌k − ňkv̌i). (B.3)

Adding to Č−K its ith row and taking the determinant we arrive at the identity

2v̌id + ňidi − v̌kd j + v̌ jdk = 0. (B.4)

17 Note that (A.14), j = 0 is the first relation in (A.8), while subtracting (A.14), j = 1 from it gives the second
relation.
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Referring to (20)–(22) we have

ρ(C) = 3 + ρ(ČK ) ⇔ ρ(C) = 6 or 5 ⇔ Im(C) = Im(C|U ) ⊕ Im(Č−K). (B.5)

When ρ(C) = 4 (⇒ ρ(ČK ) = 2) the last sum is no longer direct (see also (B.12) below). This
leads to the following discussion (see (38)–(43) for definitions).

• ρ(C) = 6 ⇔ ρ(CK ) = 3 ⇔ D6 �= 0. In this case ČK
t , and hence C|U , is one-to-one

while Č−K maps onto V . Hence, by (B.5):

Im(C) = 〈C(U3), C(U4), C(U5)〉 ⊕ V = Im(ČK
t ) ⊕ V,

Im(ČK
t ) = 〈ČK

t (U3), ČK
t (U4), ČK

t (U5)〉. (B.6)

As (B.4) is the ith component of the vector relation Č−KY = 0, where

Y ≡ [d d3 d4 d5]t ↔ Y ≡ dW +
5∑

i=3

diW[ jk], (B.7)

we have that

Ker(C) = Ker(Č−K) ⊕ V, Ker(Č−K) = 〈Y〉. (B.8)

• ρ(C) < 6 ⇔ ρ(CK ) = 2 ⇔ D6 = 0. With the choice (41)–(42), for this case we have
that

Im(ČK
t ) = 〈ČK

t (U3), ČK
t (U4)〉, Ker(ČK

t ) ≡ 〈U+〉, (B.9)

Im(Č−K ) = 〈(Č−K )∗ j, (Č−K )∗k〉, Ker(Č−K) ≡ 〈Y1, Y2〉. (B.10)

Here and in general, N∗i (Ni∗) stands for the ith column (row) of a matrix N. One has
U+ ∈ U , U+ /∈ 〈U3, U4〉 and C(U+) ∈ V , and

ρ(C) = 4 ⇔ D45 = 0 ⇔ C(U+) ∈ Im(Č−K).

In summary, we have that

(i) ρ(C) = 5 ⇔ D6 = 0 �= D45, where, with the aid of (B.5):

Im(C) = 〈C(U3), C(U4), C(U+)〉 ⊕ Im(Č−K) = Im(ČK
t ) ⊕ V,

Ker(C) = Ker(Č−K) ⊕ V. (B.11)

(ii) ρ(C) = 4 ⇔ D6 = 0 = D45, where

Im(C) = 〈C(U3), C(U4)〉 ⊕ Im(Č−K),

Ker(C) = 〈U+ + W+〉 ⊕ Ker(Č−K) ⊕ V. (B.12)

In appendix B.3 we will give explicit expressions for Y1, Y2, W+ (which all belong to
W), U+ and D45, in the separate cases v̌ = 0 and v̌ �= 0.

B.2. Subclassification based on ρ(C2)

Referring to (36) we explicitly have

Č−K · ČK
t =
⎡⎣ ň2

3 + v̌2 − 5v̌2
3 v̌5(ň3 − ň4) − 5v̌3v̌4 v̌4(ň5 − ň3) − 5v̌5v̌3

v̌5(ň3 − ň4) − 5v̌3v̌4 ň2
4 + v̌2 − 5v̌2

4 v̌3(ň4 − ň5) − 5v̌4v̌5

v̌4(ň5 − ň3) − 5v̌5v̌3 v̌3(ň4 − ň5) − 5v̌4v̌5 ň2
5 + v̌2 − 5v̌2

5

⎤⎦. (B.13)
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Referring to (20)–(22), the restriction of the map Č−K to Im(ČK
t ) induces the isomorphism of

vector spaces

Im(C2) ∼= Im(ČK
t )

Im(ČK
t ) ∩ Ker(Č−K)

, (B.14)

such that

ρ(ČK ) − ρ(C2) = dim(Im(ČK
t ) ∩ Ker(Č−K)). (B.15)

For ρ(ČK ) = 3 we have dim(Im(ČK
t ) ∩ Ker(Č−K)) � dim(Ker(Č−K)) = 1; regarding

ρ(ČK ) = 2, and in view of (B.14), proposition 5.1 essentially states that the two-
dimensional vector spaces Ker(Č−K) and Im(ČK

t ) do not coincide. It follows that the difference
ρ(ČK ) − ρ(C2) in (B.15) is either 0 or 1, the latter case characterized by the existence of a
(unique) bivector direction 〈U0〉, U0 ∈ U , satisfying

0 �= ČK
t (U0) ∈ Ker(Č−K), i.e. C(U0) /∈ V, C2(U0) = Č−K(ČK

t (U0)) = 0. (B.16)

This reconfirms the possible Segre types mentioned in table 5. For fixed value of ρ(C)

the first Segre type, corresponding to the highest value of ρ(C2), is the generic case. This
leads to the following discussion (using also the corresponding previous results of subsection
appendix B.1).

• ρ(C) = 6 ⇔ ρ(ČK ) = 3. In this case ρ(C2) is either 3 or 2, where (cf (B.8))

ρ(C2) = 2 ⇔ D6< = 0 ⇔ 〈ČK
t (U0)〉 = 〈Y〉. (B.17)

Here the determinant D6< is given by

D6< ≡ det
(
Č−K .CK

t
)

= det

⎛⎝⎡⎣(Č−K )1∗
(Č−K )2∗
(Č−K )3∗

⎤⎦.
[
(CK

t )∗1 (CK
t )∗2 (CK

t )∗3
]⎞⎠

= d2 − d2
3 − d2

4 − d2
5

= det([Y (ČK
t )∗1 (ČK

t )∗2 (ČK
t )∗3]), (B.18)

with d, di and Y as defined in (38), (39) and (B.7). For later use, we notice that

ρ(C) = 6, d = 0 ⇒ D6< �= 0. (B.19)

∗ In the case ρ(C2) = 2 ↔ Segre type [(3322)], we have W (0)

2 ≡ Ker(C2) =
W⊕V⊕〈U0〉. If we take U′

3, U′
4 such that U = 〈U′

3, U′
4, U0〉 and W∗ ∈ W \ Im(ČK

t ),
a Jordan basis is given by

JNB = (U′
3[3], U′

4[3], U0[2], W∗[2]), (B.20)

corresponding to W ′(0)

3 = 〈U′
3, U′

4〉 and W ′(0)

2 = 〈U0, W∗〉.18

∗ In the generic case ρ(C2) = 3 ↔ Segre type [(3331)], we have W (0)

2 ≡ Ker(C2) =
W ⊕ V and

JNB = (U3[3], U4[3], U5[3], Y[1]), (B.21)
corresponding to W ′(0)

3 = U and W ′(0)

1 = 〈Y〉.
• ρ(C) < 6 ⇔ ρ(ČK ) = 2. We choose V∗ ∈ V \ Im(Č−K) and write

X ≡
{

U+[2], ρ(C) = 5;
(U+ + W+)[1], V∗[1], ρ(C) = 4.

(B.22)

In this case ρ(C2) is either 2 or 1. With the choice (41)–(42) we have

ρ(C2) = 1 ⇔ D45< = 0 ⇔ ČK
t (U0) ∈ 〈Y1, Y2〉, (B.23)

18 We have used the result Im(ČK
t ) = 〈ČK

t (U′
3), ČK

t (U′
4), Y〉, which follows from (B.6) and (B.17).
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where the determinant D45< is given by

D45< ≡ det

([
(Č−K )1∗
(Č−K )2∗

]
.
[
(CK

t )∗1(CK
t )∗2
])

= β2
5 + γ 2

3+ + γ 2
4− − α2

5 − δ2
3+ − δ2

4−
= (ň2

3 + v̌2 − 5v̌2
3

)(
ň2

4 + v̌2 − 5v̌2
4

)− (v̌5(ň3 − ň4) − 5v̌3v̌4)
2

∼ det([Y 1Y 2(CK
t )∗1(CK

t )∗2]).

Here definitions (B.1)–(B.3) and (B.10) have been used, as well as the correspondence
Y 1 ↔ Y1 and Y 2 ↔ Y2 between column vectors in R4×1 and elements of W , as in (B.7).
∗ In the case ρ(C2) = 1 we have W (0)

2 ≡ Ker(C2) = W ⊕ V ⊕ 〈U+〉 ⊕ 〈U0〉. If we take
U′

3 such that U = 〈U′
3, U0, U+), and

Y∗ ∈ Ker(Č−K) \ 〈ČK
t (U0)〉, W∗ ∈ W \ (ImČK

t + Ker(Č−K))

= W \ (〈Y1, Y2〉 ⊕ 〈ČK
t (U′

3)〉),
a Jordan basis is then given by

JNB = (U′
3[3], U0[2], W∗[2], X, Y∗[1]), (B.24)

corresponding for ρ(C) = 5 to W ′(0)

3 = 〈U′
3〉, W ′(0)

2 = 〈U0, W∗, U+〉, W ′(0)

1 = 〈Y∗〉
and for ρ(C) = 4 to W ′(0)

3 = 〈U′
3〉, W ′(0)

2 = 〈U0, W∗〉, W ′(0)

1 = 〈U+ + W+, V∗, Y∗〉.
∗ In the generic case ρ(C2) = 2 we have W (0)

2 ≡ Ker(C2) = W ⊕ V ⊕ 〈U+〉. A Jordan
basis is

JNB = (U3[3], U4[3], X, Y1[1], Y2[1]), (B.25)
corresponding for ρ(C) = 5 to W ′(0)

3 = 〈U3, U4〉, W ′(0)

2 = 〈U+〉, W ′(0)

1 = 〈Y1, Y2〉
and for ρ(C) = 4 to W ′(0)

3 = 〈U3, U4〉, W ′(0)

1 = 〈U+ + W+, V∗, Y1, Y2〉.

B.3. Intersection of the two refinements

In the subsequent analysis we will use the normal forms for (X, x) = (ň, v̌) of table 2, which
is compatible with (42) when v̌ �= 0. Referring to these forms, it is advantageous to distinguish
between the cases v̌ = 0, v̌3 �= 0 = v̌4 = v̌5, v̌3v̌5 �= 0 = v̌4 and v̌3v̌4v̌5 �= 0. For v̌ = 0 we
will work with the choice (41).

B.3.1. Case v̌ = 0 (spin types {·}0). This case is characterized by W ∈ Ker(Č−K) � Ker(C)

or diagonal Ľ, cf (35). Regarding Im(ČK
t ), note that we may replace ČK

t (U3) by W[45] etc in
(B.6) and (B.9); thus Im(ČK

t ) = 〈ň3W[45], ň4W[53], ň5W[34]〉 in a unified form for all values
of ρ(C).

Regarding ρ(C) all dis vanish, such that by (40):

D6 = d2 = (ň3ň4ň5)
2 = det(Ľ)2.

Thus, with the choice (41):

ρ(C) = 6 ⇔ ň5 �= 0 → 〈Y〉 = 〈W〉.
This precisely covers the primary spin types {(11)1} and {111}, while ρ(C) < 6 is equivalent
to primary type {110}. In the latter case we get Im(Č−K) = 〈V3, V4〉 and

〈Y1, Y2〉 = 〈W, W[34]〉, U+ = U5, D45 = β2
5 Ȟ55. (B.26)

Thus

ρ(C) = 5 ⇔ ň5 = 0 �= Ȟ55; (B.27)
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ρ(C) = 4 ⇔ ň5 = 0 = Ȟ55 → W+ = 0. (B.28)

Regarding ρ(C2) we obtain

ρ(C2) = ρ(diag(ň2
3, ň2

4, ň2
5)) = ρ(diag(ň3, ň4, ň5)) = ρ(Ľ) = ρ(ČK ),

such that for fixed value of ρ(C) the Segre type is always the generic one. Referring to (B.15)
this tells that Ker(Č−K) and Im(ČK

t ) only have the zero vector in common (as is readily
checked), and is also in accordance with

D6< = d2 �= 0 [ρ(C) = 6], D45< = β2
5 �= 0 [ρ(C) < 6].

B.3.2. Specifications for v̌ �= 0. With the choice (42), and referring to (40) and identity
(B.4), it is easily seen that

ρ(C) < 6 ⇔ d3 = d4 = 0 or d3 = d5 = 0, (B.29)

respectively. None of these conditions are automatically satisfied; i.e. the generic situation for
all v̌ �= 0 spin types is ρ(C) = 6. Regarding ρ(C) < 6, the choice j = 1, k = 4k naturally
leads to the explicit expressions

〈Y1, Y2〉 = 〈α5W[45] + δ4−W[34] − γ3+W, α5W[53] + δ3+W[34] − γ4−W〉 (B.30)

and

U+ = δ4+U3 + δ3−U4 − α5U5, (B.31)

W+ = (− δ4+v̌3Ȟ33 − δ3−v̌4Ȟ44 + 2(ň5(v̌
2
3 − v̌2

4 ) − 2v̌3v̌4v̌5)Ȟ34
)W
α5

+ 2
(− δ4+v̌4Ȟ33 + δ3−v̌3Ȟ44 + 2(v̌5(v̌

2
3 − v̌2

4 ) + 2v̌3v̌4ň5)Ȟ34
)W[34]

α5

+(v̌3W + 2v̌4W[34])Ȟ35 + (v̌4W − 2v̌3W[34])Ȟ45, (B.32)

− D45 = δ2
4+Ȟ33 + δ2

3−Ȟ44 + α2
5Ȟ55 + 2δ3−δ4+Ȟ34 − 2δ4+α5Ȟ35 − 2δ3−α5Ȟ45. (B.33)

In the cases where ρ(C2) = ρ(CK )− 1, the bivector U0 can be determined from ČK
t (U0) = Y

by Cramer’s method (case ρ(C) = 6, D6< = 0) or from a3C2(U3) + a4C2(U4) = 0 (case
ρ(C) < 6, D45< = 0).

B.3.3. Case v̌3 �= 0 = v̌4 = v̌5 (spin types {·}‖ and {(11)1}⊥). Regarding ρ(C) we have

d4 = d5 = 0, d3 = −2v̌3(v̌
2
3 + ň4ň5), d = ň3(v̌

2
3 + ň4ň5), (B.34)

such that (cf (B.29))

ρ(C) < 6 ⇔ v̌2
3 + ň4ň5 = 0. (B.35)

This condition is only compatible with ň4ň5 �= 0 and ň4 �= ň5, and thus occurs in the following
cases:

{110}‖0, ň3 = 0, ň5 = −ň4 = ±v̌3; (B.36)

{111}‖, v̌2
3 + ň4ň5 = 0; (B.37)

{(11)1}⊥, ň5 = −2ň3 = −2ň4, v̌2
3 = 2ň2

3. (B.38)
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Then (B.30) and (B.33) reduce to

〈Y1, Y2〉 = 〈−ň3W + 2v̌3W[45], ň4W[34] + v̌3W[53]〉,
D45 = 4ň4ň2

5(ň5Ȟ44 − ň4Ȟ55 + 2v̌3Ȟ45).

Thus, for the cases (B.36)–(B.38) we have ρ(C) = 4 if and only if

ň5Ȟ44 − ň4Ȟ55 + 2v̌3Ȟ45 = 0, (B.39)

else ρ(C) = 5 (cf also remark 5.2). In all cases different from (B.36)–(B.38) we have ρ(C) = 6
and, from (B.7) with (B.34):

〈Y〉 = 〈ň3W − 2v̌3W[45]〉.
Regarding ρ(C2) the governing determinants reduce to

D6< = (ň2
3 − 4v̌2

3 )(v̌2
3 + ň4ň5)

2, D45< = (ň2
3 − 4v̌2

3 )(ň2
4 + v̌2

3 ),

such that, also in view of (B.35):

ρ(C2) = ρ(ČK ) − 1 ⇔ ň3 = ±2v̌3. (B.40)

In conjunction with (B.13) it follows that U0 = U3 in this case. If ρ(C) = 6, (B.40)
↔ ρ(C2) = 2 is possible for spin types {(11)1}‖, {110}‖1, {111}‖ and {(11)1}⊥, but not
for {(000)}‖ and {110}‖0. Regarding the ρ(C) < 6 cases (B.36)–(B.38) only (B.37) allows for
the subcase (B.40) giving ρ(C2) = 1, namely

v̌3 = ± ň3

2
, ň4 = −1 + √

2

2
ň3, ň5 = −1 − √

2

2
ň3. (B.41)

B.3.4. Case v̌3v̌5 �= 0 = v̌4 (spin types {111/0}⊥ and {(11)1}g). From (39) we have

d4 = 2v̌3v̌5(ň5 − ň3) �= 0

such that ρ(C) = 6. It is readily checked that D6< = 0 (see (B.18)) admits solutions for both
spin types, leading to subcases where ρ(C2) = 2.

B.3.5. Case v̌3v̌4v̌5 �= 0 (spin type {111/0}g). First we take {110}g, with ň5 = 0 and
ň4 = −ň3 �= 0. As a necessary condition for ρ(C) < 6 we obtain from (38):

d = 0 ⇔ v̌2
3 = v̌2

4 . (B.42)

By possibly reflecting the mis we may assume that the v̌is are positive. Then we obtain

ρ(C) < 6 ⇔ v̌3 = v̌4, ň3 = −2v̌2
3 + v̌2

5

v̌5
. (B.43)

Moreover, if ρ(C) < 6 it is readily computed that the condition for having ρ(C2) = 1 reads

D45< = 0 ⇔ ň3 = −5v̌5, v̌3 =
√

2v̌5, (B.44)

while the condition for ρ(C) = 4 follows from (B.33) and can always be solved for one of the
Ȟi j.

In the case ρ(C) = 6, the condition for ρ(C2) = 2 is D6< = 0, which reads

v̌2
5 ň4

3 + 4v̌3v̌4v̌5ň3
3 −
[(

v̌2
3

2
+ v̌2

4

2
+ v̌2

5

)2

+ v̌4
5 − 5v̌2

3 v̌
2
4

]
ň2

3 + (v̌2
3 + v̌2

4 + v̌2
5 )3 = 0. (B.45)

Relations (B.19) and (B.42) imply that there are no solutions to this equation with v̌2
3 = v̌2

4 .
However, an infinity of solutions exists: it is readily verified that there are, e.g., two real
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Table B1. Type III Weyl tensors: possible Segre types (columns) for given spin types (rows). The
normal forms for (X, x) = (ň, v̌) of table 2 are used to define the spin types. The symbols – and
x indicate that the corresponding Segre type is either not allowed or is unique, respectively. If
[(3331)] is the generic case (but other Segre types are allowed) this is denoted by G, where it
is understood that the relations in columns 3 and 4 of the same row are not satisfied; for Segre
type [(3322)] the relation in column 4 is not satisfied. If a spin type allows for a Segre type
corresponding to ρ(C) < 6 (columns 4–7), the Segre type is defined by the mentioned relation(s)
and the negation of the remaining relations in columns 4–7 of the same row; e.g., spin type {111}‖
will be of Segre type [(32221)] if (B.37) and (B.40) hold (being equivalent to (B.41)), but not
(B.39). In this manner, the relations written down for spin type {111}g are the general Segre type
defining relations; for more degenerate spin types these reduce to more specific conditions, as
mentioned in the text and indicated here.

[(3331)] [(3322)] [(33211)] [(32221)] [(331111)] [(322111)]

{110}0 – – (B.27) – (B.28) –
{(11)1}0 x – – – – –
{111}0 x – – – – –
{(000)}‖ x – – – – –
{(11)1}‖ G (B.40) – – – –
{110}‖1 G (B.40) – – – –
{110}‖0 G – (B.36) – (B.36), (B.39) –
{111}‖ G (B.40) (B.37) (B.37), (B.40) (B.37), (B.39) (B.37), (B.39), (B.40)
{(11)1}⊥ G (B.40) (B.38) – (B.38), (B.39) –
{111/0}⊥ G D6< = 0 – – – –
{(11)1}g G D6< = 0 – – – –
{110}g G (B.45) (B.43) (B.43), (B.44) (B.43), D45 = 0 (B.43), (B.44), D45 = 0
{111}g G D6< = 0 D6 = 0 D6 = D6< = 0 D6 = D45=0 D6 = D6< = D45 = 0

solutions ň3/v̌5 when v̌3 = v̌5 and v̌4 = 3v̌5. We conclude that for spin type III{110}g all six
Segre types of table 5 are possible.

The same conclusion is valid, a fortiori, for III{111}g. Note from (38) that v̌3 = v̌4 = v̌5

implies d = ň3ň4ň5 �= 0 (recall ň3 + ň4 + ň5 = 0) and thus ρ(C) = 6; there are, e.g., two real
solutions ň3/v̌5 to D6< = 0 for the subcase ň4 = 2ň3 thereof. For v̌3 = v̌4( �= ±v̌5), we have
that

ρ(C) < 6 ⇔ ň3 − ň4 = 3v̌5, ň5 = ±
√

4v̌2
3 + 5v̌2

5,

while D45< = 0 if, in addition, v̌2
5 = 7v̌2

3.
Table B1 summarizes the relation between the spin type and Segre type refinement

schemes for 5D alignment type III Weyl tensors.

Appendix C. Spin types versus eigenvalues for Weyl type II

In this section we shall illustrate the classification of a type II Weyl operator based on its
spin type. We shall indicate the degeneracies in the eigenvalue spectra of M, Ω and C, and
indicate a zero eigenvalue by 0. So, for instance, C{(000)(1111)(11)1} indicates that C has
one single, one double and one quadruple non-zero eigenvalue, while 0 is a triple eigenvalue.
In particular, we present the case w̄ = 0 and comment on the more general situations, where
the subdivision is based on the number of zero components in the normal forms of table 3.

C.1. Case w̄ = 0

The spin type can be any of the {· · ·}0 types. The matrices M and 	 are diagonal so that
their eigenvalues can be immediately read off; namely [−R̄3/2,−R̄4/2,−R̄5/2] for M and
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[R̄/2, R̄/2 − R̄3, R̄/2 − R̄4, R̄/2 − R̄5] for 	. Obviously, none of these can be nilpotent in this
case (unless they vanish identically, leading to type III spacetimes). We also observe that the
combination ρ(M) = 2, ρ(	) = 3 is not permitted here. Let us remark that, in the case of type
D, the presently considered case w̄ = 0 is of some interest since it defines a purely electric
type D Weyl tensor—several properties and explicit examples of such spacetimes are known
[25] (see also section 7).

{(000)}0[R̄ �= 0]. This type arises when R̄3 = R̄4 = R̄5 = R̄/3 �= 0. Clearly we have
M : {(111)} (or M : {−R̄/6[3]}), 	 : {(111)1} (or 	 : {R̄/6[3], R̄/2[1]}), so that

C : {(111111)(111)1}, (C.1)

or C : {−R̄/6[6], R̄/6[3], R̄/2[1]}. We observe that in the case of type D this is the spin type
of the five-dimensional Schwarzschild–Tangherlini solution (cf subsection 6.4 of [14]) and,
more generally, of any Robinson–Trautman spacetime (not necessarily empty) [26].

{(11)1}0[R̄ �= 0]. This occurs for R̄5 = R̄4 (up to permutations of the axes). In general we
have M : {(11)1}, 	 : {(11)11}, so that

C : {(1111)(11)(11)11}. (C.2)

It is interesting to observe that, for type D Einstein spacetimes, the presence of a non-geodetic
multiple WAND is equivalent to the spacetime having this spin type, with R̄5 = R̄4 = −R̄3

(see proposition 9 in [14] and [16, 27]). All such spacetimes have in fact been found in [27],
where it was also shown that in any dimensions an Einstein spacetime with a non-geodetic
multiple WAND must be of type D.

If R̄3 = 2R̄4 the second (non-degenerate) eigenvalue of 	 turns into 0, so that
C : {(1111)(11)(11)10}. There may be more special types in the following cases.

(1) For R̄3 = 0, M : {(11)0} (M : {−R̄/4[2], 0[1]}), 	 : {(11)(00)} (	 : {R̄/2[2], 0[2]}), so
that

C : {(1111)(0000)(11)}. (C.3)

In the case of type D this is, in particular, the spin type of Schwarzschild black strings
(and Kerr black strings on the equatorial plane).

(2) For R̄4 = 0, M : {(00)1} (M : {0[2],−R̄/2[1]}), 	 : {(111)1} (	 : {R̄/2[3],−R̄/2[1]}),
so that

C : {(0000)(111)(111)}, (C.4)

or C : {0[4], R̄/2[3],−R̄/2[3]}.
{(11)1}0[R̄ = 0]. This can be seen as a subcase of the previous spin type, and occurs for

R̄5 = R̄4, R̄3 = −2R̄4. We find M : {(11)1} and 	 : {(11)10}, so that

C : {(1111)(11)(11)10}. (C.5)

{111/0}0[R̄ �= 0]. This is the case of a generic matrix S̄, and in general we have M : {111},
	 : {1111} and hence

C : {(11)(11)(11)1111}. (C.6)

A single eigenvalue of 	 can be zero for special values of the R̄i (e.g., for R̄5 = R̄3 + R̄4; the
case R̄5 = −R̄3 − R̄4 corresponds to R̄ = 0 and is thus discussed separately below).

Further degeneracies in the spectrum of C can still occur when 	 has degenerate
eigenvalues, or when M and 	 have some common eigenvalues, as we now discuss.
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(1) 	 has a degenerate eigenvalue iff R̄5 = 0 (up to axis permutation) so that M : {110},
	 : {(11)11} (M : {−R̄3/2[1],−R̄4/2[1], 0[1]} and 	 : {R̄/2[2], (R̄3 − R̄4)/2[1],
(R̄4 − R̄3)/2[1]}) and

C : {(11)(11)(11)(00)11}. (C.7)

(2) For R̄5 = −R̄4, M : {111} and 	 : {1111} (more precisely, M :
{−R̄3/2[1],−R̄4/2[1], R̄4/2[1]} and 	 : {R̄3/2[1],−R̄3/2[1], (R̄3/2 − R̄4)[1], (R̄3/2 +
R̄4)[1]}), so that

C : {(111)(11)(11)111}. (C.8)

(3) For R̄5 = −(R̄3 + R̄4)/2, M : {111} and 	 : {1111} (more precisely, M :
{−R̄3/2[1],−R̄4/2[1], (R̄3 + R̄4)/4[1]} and 	 : {(R̄3 + R̄4)/4[1], (R̄4 −3R̄3)/4[1], (R̄3 −
3R̄4)/4[1], 3(R̄3 + R̄4)/4[1])), so that, again

C : {(111)(11)(11)111}. (C.9)

(4) For R̄5 = (R̄3 − R̄4)/2, M : {111} and 	 : {1111} (more precisely,
M : {−R̄3/2[1],−R̄4/2[1], (−R̄3 + R̄4)/4[1]} and 	 : {(3R̄3 + R̄4)/4[1], (R̄4 −
R̄3)/4[1], 3(R̄3 − R̄4)/4[1], (R̄3 + 3R̄4)/4[1])), and again

C : {(111)(11)(11)111}. (C.10)

{111}0[R̄ = 0]. This case arises for R̄5 = −R̄3 − R̄4. In general M and 	 have no common
eigenvalues, and 	 has no multiple eigenvalues, so that

C : {(11)(11)(11)1110}. (C.11)

However, if R̄4 = −R̄3 then M : {110} (M : {−R̄3/2[1], R̄3/2[1], 0[1]}) and 	 : {(00)11}
(	 : {0[2],−R̄3[1], R̄3[1])), and hence

C : {(0000)(11)(11)11}. (C.12)

C.2. Case w̄3 �= 0 = w̄4 = w̄5

It can easily be seen that the combination ρ(M) = 2, ρ(	) = 3 is still not permitted here, and
Ω cannot be nilpotent.

{111/0}‖[R̄ �= 0]. This is the spin type defined by the conditions w̄3 �= 0 = w̄4 = w̄5 when
no further restrictions apply (special subtypes are discussed in detail below). It is generically
{111}‖, although also type {110}‖ shows up in special instances described below. While we
focus here mostly on the case R̄ �= 0, some special subcases with R̄ = 0 will also be mentioned,
when they arise naturally.

The eigenvalues of M and 	 are

λM =
{
− R̄3

2
,

1

4

(− R̄4 − R̄5 ±
√

(R̄4 − R̄5)2 − 4w̄2
3

)}
,

λ	 =
{

1

2
(R̄3 + R̄4 − R̄5),

1

2
(R̄3 − R̄4 + R̄5),

1

2

(
R̄4 + R̄5 ±

√
R̄2

3 − 4w̄2
3

)}
.

(C.13)

Let us remark that our analysis is always restricted to Weyl tensors with real components
only. Note, however, that in certain ranges of the parameters M and 	 may admit a pair of
complex conjugate eigenvectors. When that happens the corresponding pair {11} should be
replaced by {XX̄}. For brevity, we shall sometimes omit this distinction at intermediate steps
(whenever it depends on the value of an arbitrary parameter), and we shall be fully explicit
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only in the summarizing results for the eigenvalue structure of C. Thus, with these conventions
we generically have M : {111} and 	 : {1111}.

An eigenvalue of M vanishes for R̄3 = 0 or w̄2
3 = −R̄4R̄5, while 	 has a zero eigenvalue

for R̄5 = ±R̄3 + R̄4. It easily follows that M is nilpotent (with M2 = 0) iff R̄3 = 0 = R̄4 + R̄5

(so that R̄ = 0) with w̄2
3 = R̄2

4, corresponding to a subcase of the case ρ(M) = 1, ρ(	) = 4,
cf (84) (up to a trivial axis permutation). As already mentioned, 	 can not be of type {(0000)}
here. Possible repeated eigenvalues are now discussed.

(1) For 2w̄3 = R̄4 − R̄5, M : {(11)1}, 	 : {1111}, and

C : {(1111)(11)1111}, (C.14)

where the last pair becomes {XX̄} if (R̄4 − R̄5)
2 > R̄2

3.

(a) If, additionally, 2R̄3 = R̄4 + R̄5 then M : {(111)}, 	 : {1111}, and

C : {(111111)1111}, (C.15)

where the last pair becomes {XX̄} if (R̄4 − 3R̄5)(R̄5 − 3R̄4) < 0. We observe that
the spin type becomes {110}‖[R̄ �= 0] here. Note also that for R̄5 = −R̄4 one
gets that M : {(000)} is nilpotent (as already mentioned above), 	 : {11XX̄} and
C : {(000000)11XX̄}} (with R̄ = 0 in this case).
(i) With the further condition R̄5 = 3R̄4 one gets M : {−R̄4[3]}, 	 : {2R̄4[3], 0}, so

that
C : {(111111)(111)0}. (C.16)

(ii) If, instead, R̄5 = 0 one gets M : {(111)}, 	 : {11XX̄} with one common
eigenvalue, hence

C : {(1111111)1XX̄}. (C.17)
(b) If 4R̄3R̄4 = 5R̄2

4 − 2R̄4R̄5 + R̄2
5 then M : {(11)1}, 	 : {(11)11}, therefore

C : {(1111)(11)(11)11}. (C.18)

(i) If R̄5 = −3R̄4 then M and 	 share their double eigenvalue and one single
eigenvalue, so that

C : {(111111)(111)1}. (C.19)
The spin type is {110}‖[R̄ �= 0] here.

(ii) If R̄5 = 9R̄4, the double M-eigenvalue equals a single 	-eigenvalue, hence
C : {(11111)(11)(11)1}. (C.20)

The spin type is {110}‖[R̄ �= 0] here.
(c) If R̄3 = R̄4 − R̄5 then M : {(11)1}, 	 : {(11)10}, so that

C : {(1111)(11)(11)10}. (C.21)

(i) If R̄5 = −R̄4 the double eigenvalues of M and 	 vanish, thus giving
C : {(0000000)(11)1}. (C.22)

(ii) If R̄4 = 0 the double eigenvalue of 	 equals the single eigenvalue of M, therefore
C : {(1111)(1111)10}. (C.23)

The spin type is {110}‖[R̄ = 0].
(iii) If 3R̄5 = 5R̄4 the single non-zero eigenvalue of 	 equals the double eigenvalue

of M, which implies
C : {(11111)(11)(11)0}. (C.24)

(d) If 2R̄3 = R̄4 − R̄5, M : {(11)1}, 	 : {11XX̄}, and the single eigenvalue of M is also
an eigenvalue of 	, hence

C : {(1111)(111)1XX̄}, (C.25)

which reduces to C : {(0000)(111)1XX̄} if R̄5 = −R̄4.
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When, additionally, R̄5 = 2R̄4, then also the double eigenvalue of M is an
eigenvalue of 	, so that

C : {(11111)(111)XX̄}. (C.26)
(e) If (R̄4 + R̄5)R̄3 = −(R̄2

4 + R̄2
5), M : {(11)1}, 	 : {1111}, and the single eigenvalue

of M is also an eigenvalue of 	, hence
C : {(1111)(111)111}. (C.27)

(f) If 2R̄3 = R̄4 − 3R̄5, M : {(11)1}, 	 : {1111}, and the double eigenvalue of M is also
an eigenvalue of 	, hence

C : {(11111)(11)111}, (C.28)
where the last pair becomes {XX̄} if (R̄4 + R̄5)(5R̄5 − 3R̄4) < 0.

(g) If 2R̄3 = ±
√

13(R̄2
4 + R̄2

5) + 10R̄4R̄5, M : {(11)1}, 	 : {1111}, and the double
eigenvalue of M is also an eigenvalue of 	, hence

C : {(11111)(11)111}. (C.29)

(2) For w̄2
3 = −(R̄3 − R̄4)(R̄3 − R̄5), M : {(11)1}, 	 : {1111}, and

C : {(1111)(11)1111}, (C.30)

where the last pair becomes {XX̄} if R̄2
3 + 4(R̄3 − R̄4)(R̄3 − R̄5) < 0. Note also that

F∗
3 = 0 identically here, therefore the spin type is {111}‖[R̄ �= 0] (including all the

following special subcases unless stated otherwise). For R̄3 = 0 (so that w̄2
3 = −R̄4R̄5)

one gets M : {(00)1}, 	 : {11XX̄} and C : {(0000)(11)11XX̄}, which describes the case
ρ(M) = 1, ρ(	) = 4 of (84) (the more special subcase M : {(000)} has been already
mentioned).
(a) If R̄3 = R̄4 − R̄5, M : {(11)1}, 	 : {(11)10}, hence

C : {(1111)(11)(11)10}. (C.31)
(b) If 4R̄5(R̄3 − R̄4) = R̄3(5R̄3 − 4R̄4), M : {(11)1}, 	 : {(11)11}, hence

C : {(1111)(11)(11)11}. (C.32)
(i) If, in addition,

√
3R̄3 = ±2R̄4, the double M-eigenvalue coincides with one of

the single 	-eigenvalues, so that
C : {(11111)(11)(11)1}. (C.33)

(ii) If 9R̄3 = 2(1 ± √
10)R̄4, the double M-eigenvalue coincides with the double

	-eigenvalue, so that
C : {(111111)(11)11}. (C.34)

The spin type is {111}‖[R̄ = 0].
(iii) If R̄4 = 0, the single M-eigenvalue coincides with one of the single 	-eigenvalues,

therefore
C : {(1111)(111)(11)1}. (C.35)

(iv) If 3R̄3 = (−1 ± √
13)R̄4, the single M-eigenvalue coincides with the double

	-eigenvalue, which implies
C : {(1111)(1111)11}. (C.36)

(c) If 2R̄3 = R̄5 − R̄4, M : {(11)1}, 	 : {1111}, where the double M-eigenvalue is also
an 	-eigenvalue, so that

C : {(11111)(11)111}, (C.37)
where the last pair becomes {XX̄} if 13R̄4 + 6R̄4R̄5 − 3R̄5 < 0 (with w̄2

3 > 0).
(d) Also for 4R̄3 = 3(R̄4 + R̄5) ±

√
13R̄4 + 10R̄4R̄5 + 13R̄5, M : {(11)1}, 	 : {1111},

with the double M-eigenvalue being also an 	-eigenvalue, so that
C : {(11111)(11)111}. (C.38)
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(e) If R̄4 = 0, M : {(11)1}, 	 : {1111}, now sharing the single M-eigenvalue, i.e.
C : {(1111)(111)111}, (C.39)

where the last pair becomes {XX̄} if R̄3(5R̄3 − 4R̄5) < 0 (with w̄2
3 > 0).

(f) If R̄3 = ±
√

R̄2
4 + R̄4R̄5 + R̄2

5, M : {(11)1} and 	 : {1111} again share the single
M-eigenvalue, thus

C : {(1111)(111)111}. (C.40)

(3) For 4w̄2
3 = R̄2

3, M : {111}, 	 : {(11)11}. Further possible subcases can easily be studied
as illustrated above, and listing all possibilities is not particularly illuminating.

(4) For w̄2
3 = R̄4(R̄3 − R̄4), one has again M : {111}, 	 : {(11)11}.

(5) There are four possible choices of parameters corresponding to M and 	 having a common
eigenvalue (which is thus a multiple eigenvalue of C). These are the cases (the common
roots x0 are indicated between square brackets):
(a) w̄2

3 = −(R̄3 + R̄5)(R̄3 − R̄4 + 2R̄5) [2x0 = R̄3 + R̄5 − R̄4];
(b) 4w̄2

3 = −(R̄4 + R̄5)(2R̄3 + R̄4 + R̄5);
(c) 3w̄2

3 = R̄2
3 −4(R̄2

4 + R̄2
5)−7R̄4R̄5 ± (R̄4 + R̄5)

√
D, D ≡ 3(4R̄2

4 +4R̄2
5 +4R̄4R̄5 − R̄2

3);
(d) 2R̄3 = R̄4 − R̄5.
The common roots x1 are given by: (a) 2x1 = R̄3 + R̄5 − R̄4, (b) and (d) 2x1 = R̄3,
(c) x1 = −(R̄4 + R̄5)/2 + √

D/6. Further specializations may give more common roots;
for instance, if R̄4 = −R̄5 additionally holds in case (c), such that the type becomes
{110}‖, then x2 = −√

D/6 is another common root. In general M : {111}, 	 : {1111} in
all the above cases, but some degeneracy is possible in special subcases.

{111/0}‖[R̄ = 0]. This case is analogous to the case {111/0}‖[R̄ �= 0] discussed above,
and can be analyzed similarly with the additional condition R̄ = 0. Some special subcases
have been already mentioned above.

{(000)}‖[R̄ �= 0]. Here we have R̄3 = R̄4 = R̄5 = R̄/3 �= 0. It follows from (C.13) that
M : {1XX̄} and 	 : {(11)11}, so that

C : {(11)(11)(XX )(X̄ X̄ )11}, (C.41)

where the last pair becomes {ZZ̄} if 4w̄2
3 > R̄2

3.
M cannot have any degenerate eigenvalues. For R̄2

3 = 4w̄2
3, however, 	 has two double

eigenvalues, namely R̄3 and R̄3/2, therefore

C : {(11)(11)(11)(XX )(X̄ X̄ )}. (C.42)

{(000)}‖[R̄ = 0]. If all R̄i = 0 then M : {0[1], iw̄3/2[1],−iw̄3/2[1]} and 	 :
{0[2], iw̄3[1],−iw̄3[1]}, so that

C : {(0000)(XX )(X̄ X̄ )ZZ̄}. (C.43)

Observe that, in the case of type D, this is the spin type that defines a purely magnetic type
D Weyl tensor. It has recently been shown that (in any higher dimensions) such spacetimes
cannot occur, if one adds also the Ricci-flat/Einstein condition [25]. So far no type D purely
magnetic spacetimes are known in 5D (or in any dimension higher than 4); in 4D the only
known such spacetimes are locally rotationally symmetric, see [40, 41].

{(11)1)}‖[R̄ �= 0]. This spin type occurs for R̄5 = R̄4. We observe, in particular, that in the
type D case this is the spin type of both five-dimensional Myers–Perry black holes and Kerr
black strings, and in fact of a ‘generic’ five-dimensional Kerr–Schild spacetime (cf subsection
6.4 of [14] and subsection 5.5 of [49]). From (C.13) one gets M : {1XX̄} and 	 : {(11)11}, so
that in general

C : {(11)(11)(XX )(X̄ X̄ )11}, (C.44)
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where the last pair becomes {ZZ̄} if 4w̄2
3 > R̄2

3. The Myers–Perry black hole has this
general eigenvalue spectrum. One of the non-degenerate eigenvalues of 	 becomes zero
if 4w̄2

3 = R̄2
3 − 4R̄2

4, in which case then

C : {(11)(11)(XX )(X̄ X̄ )10}. (C.45)

The eigenvalues of M can never be degenerate for this spin type. Nevertheless, further
degeneracies are possible in the following cases.

(1) For 4w̄2
3 = R̄2

3, M : {1XX̄}, 	 : {(11)(11)}, and

C : {(11)(11)(XX )(X̄ X̄ )(11)}. (C.46)

This becomes even more special if one of the followings additionally holds.

(a) If R̄3 = 2R̄4 then M : {1XX̄}, 	 : {(1111)} (or 	 : {R̄4[4]}), and
C : {(1111)(11)(XX )(X̄ X̄ )}. (C.47)

(b) If R̄4 = 0 then M : {0XX̄}, 	 : {(11)(00)}, and
C : {(0000)(11)(11)(XX )(X̄ X̄ )}. (C.48)

(2) For w̄2
3 = R̄4(R̄3 − R̄4), M : {1XX̄}, 	 : {(111)1}, and

C : {(111)(11)(XX )(X̄ X̄ )1}. (C.49)

The non-degenerate eigenvalue of 	 vanishes for R̄3 = 4R̄4, in which case

C : {(111)(11)(XX )(X̄ X̄ )0}. (C.50)

(3) For R̄3 = 0 we get M : {XX̄0}, 	 : {(00)ZZ̄}, thus

C : {(0000)(XX )(X̄ X̄ )ZZ̄}. (C.51)

This is the eigenvalue spectrum for the Kerr black string (away from the equatorial plane,
where it is (C.3)).

(4) For w̄2
3 = −R̄4(R̄3 + R̄4), we get M : {1XX̄} and 	 : {(11)11}, but M and 	 share one

non-degenerate eigenvalue (i.e. −R̄3/2), so that

C : {(111)(11)(XX )(X̄ X̄ )1}. (C.52)

The only non-degenerate eigenvalue of C vanishes for R̄3 = −4R̄4, in which case

C : {(111)(11)(XX )(X̄ X̄ )0}. (C.53)

(5) For R̄4 = 0 = R̄2
3 − 3w̄2

3, we have M : {1XX̄} and 	 : {(11)XX̄}, so that

C : {(XXX )(X̄ X̄ X̄ )(11)(11)}. (C.54)

{(11)1)}‖[R̄ = 0]. This can also be understood as a subcase of the previous spin type,
with again R̄5 = R̄4, and the additional condition R̄3 = −2R̄4. Similarly, we have in general
M : {1XX̄} and 	 : {(11)11}, which gives

C : {(11)(11)(XX )(X̄ X̄ )11}, (C.55)

where the last pair becomes {ZZ̄} if w̄2
3 > R̄2

4. No eigenvalues can vanish here.
The only case with further degeneracy now arises for w̄2

3 = R̄2
4, giving M : {1XX̄} and

	 : {(11)(11)} with a common eigenvalue (namely R̄4), so that

C : {(1111)(11)(XX )(X̄ X̄ )}. (C.56)

{(11)1)}⊥[R̄ �= 0]. This is defined by R̄4 = R̄3. Hence M : {111} (or M : {1XX̄} if
(R̄3 − R̄5)

2 < 4w̄2
3) and 	 : {1111} (or 	 : {11ZZ̄} if 4w̄2

3 > R̄2
3), so that

C : {(11)(11)(11)1111}, (C.57)
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or C : {(11)(XX )(X̄ X̄ )1111} or C : {(11)(XX )(X̄ X̄ )11ZZ̄} or C : {(11)(11)(11)11ZZ̄}
according to the specific values of the parameters. One of the M-eigenvalues vanishes for
either R̄3 = 0 or w̄2

3 = −R̄3R̄5, while 	 has a zero eigenvalue for R̄5 = 0 or R̄5 = 2R̄3 or
4w̄2

3 = −R̄5(2R̄3 + R̄5).
Additional degeneracies of the eigenvalues are possible in the following cases.

(1) For 4w̄2
3 = (R̄3 − R̄5)

2 M has a double eigenvalue, i.e. M : {(11)1}, 	 : {1111}, and

C : {(1111)(11)1111}, (C.58)

where the last pair becomes {XX̄} if R̄5(2R̄3 − R̄5) < 0. The single M-eigenvalue vanishes
for R̄3 = 0, in which case then M : {(11)0}, 	 : {1111}, and C : {(1111)(00)11XX̄}.
Other C-eigenvalues can possibly vanish only in more degenerate cases, which are all
now listed.

(a) If R̄3 = 5R̄5 then M : {(11)1}, 	 : {(11)11}, so that

C : {(1111)(11)(11)11}. (C.59)

(b) If R̄5 = 0 then M : {(11)1}, 	 : {(11)10}, and

C : {(1111)(11)(11)10}. (C.60)

(c) If R̄5 = 2R̄3 then M : {(11)1}, 	 : {(11)10}, and

C : {(1111)(11)(11)10}. (C.61)

(d) If R̄5 = 5R̄3 then M : {(11)1}, 	 : {11XX̄}, the repeated eigenvalue of M (i.e.
−3R̄3/2) is also an eigenvalue of 	, so that

C : {(11111)(11)1XX̄}. (C.62)

(e) If R̄3 = −3R̄5 then M : {(11)1}, 	 : {11XX̄}, the repeated eigenvalue of M (i.e.
R̄5/2) is also an eigenvalue of 	, so that

C : {(11111)(11)1XX̄}. (C.63)

(f) If R̄5 = −R̄3 then M : {(00)1}, 	 : {11XX̄}, the single eigenvalue of M (i.e. −R̄3/2)
is also an eigenvalue of 	, so that

C : {(0000)(111)1XX̄}. (C.64)

(2) For 4w̄2
3 = R̄2

3 it is 	 that has a double (real) eigenvalue, i.e. M : {111}, 	 : {(11)11},
and

C : {(11)(11)(11)(11)11}, (C.65)

where {(11)(11)} becomes {(XX )(X̄ X̄ )} if R̄5(R̄5 − R̄3) < 0. One eigenvalue of M
vanishes if R̄3 = −4R̄5, so that C : {(11)(11)(00)(11)11}. The vanishing of a single 	-
eigenvalue leads to M having a double eigenvalue and it has been thus already discussed
above, while the vanishing of the double eigenvalue of 	 leads to M and 	 sharing a
single eigenvalue and is discussed below.

Further degeneracy (omitting the already discussed cases M : {(11)1}) is possible
when other 	-eigenvalues coincide, or when 	 and M have some common eigenvalues,
as we now analyze.

(a) If R̄3 = 2R̄5 then M : {1XX̄}, 	 : {(111)1}, so that

C : {(111)(11)(XX )(X̄ X̄ )1}. (C.66)

(b) If R̄5 = 3R̄3 or 8R̄5 = 25R̄3 or 4R̄5 = (−2 ± √
2)R̄3, a single eigenvalue of 	 is also

an eigenvalue of M, so that M : {111}, 	 : {(11)11}, with

C : {(111)(11)(11)(11)(11)1}. (C.67)
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(c) Also for R̄5 = −R̄3 a single eigenvalue of 	 is also an eigenvalue of M, but
additionally the double eigenvalue of 	 vanishes, so that M : {111}, 	 : {(00)11}
and

C : {(111)(11)(11)(00)1}. (C.68)

(d) If R̄5 = −2R̄3 or 4R̄5 = (−5 ± √
7)R̄3, the double eigenvalue of 	 is also an

eigenvalue of M, so that M : {111}, 	 : {(11)11}, with

C : {(1111)(11)(11)11}. (C.69)

(3) Also for w̄2
3 = R̄5(R̄3 − R̄5) we have M : {111}, 	 : {(11)11} with

C : {(11)(11)(11)(11)11}, (C.70)

where {(11)(11)} becomes {(XX )(X̄ X̄ )} if (R̄3 − R̄5)(R̄3 − 5R̄5) < 0. No eigenvalue can
vanish here.

For R̄3 = 2R̄5 this further specializes to M : {1XX̄}, 	 : {(111)1} with

C : {(111)(11)(XX )(X̄ X̄ )1}. (C.71)

(4) For R̄5 = 3R̄3 or R̄5 = −R̄3 or w̄2
3 = 2R̄3(R̄5 − 3R̄3), M and 	 are of general Segre type,

however they share one eigenvalue, so that

C : {(111)(11)(11)111}. (C.72)

No eigenvalue can vanish here (unless one allows for more special cases, see the
appropriate paragraphs). Some eigenvalues can be complex, in which case one should
use the more precise notation {XX̄} etc, but we omit these details here.

(5) Also for w̄2
3 = −2R̄5(R̄3 + R̄5), M and 	 are of general Segre type with a common

eigenvalue, and

C : {(111)(11)(11)111}, (C.73)

where the last pair becomes {XX̄} if R̄2
3 + 8R̄5(R̄3 + R̄5) < 0 (along with w̄2

3 > 0).
An M-eigenvalue vanishes for R̄3 = −2R̄5, hence C : {(111)(11)(00)XX̄}. For

7R̄5 = −6R̄3 an 	-eigenvalue is zero, so that C : {(111)(11)(11)110}.
(6) Also for 4w̄2

3 = −(R̄3 + R̄5)(3R̄3 + R̄5), M and 	 are of general Segre type with a
common eigenvalue, and

C : {(111)(11)(11)111}. (C.74)

No M-eigenvalue can vanish here, whereas an 	-eigenvalue is zero when 2R̄5 = −3R̄3,
in which case C : {(111)(11)(11)110}.

For 23R̄5 = −45R̄3, M and 	 are still of generic type but they share two eigenvalues,
so that

C : {(111)(111)(11)11}. (C.75)

(7) The last case where M and 	 are of general Segre type with a common eigenvalue arises

for 3w̄2
3 = −(R̄3 + R̄5)(3R̄3 + 4R̄5 ±

√
9R̄2

3 + 12R̄3R̄5 + 12R̄2
5, with

C : {(111)(11)(11)111}. (C.76)

No M-eigenvalue can vanish here, whereas an 	-eigenvalue is zero when 23R̄5 =
(−25 ± √

73)R̄3, thus giving C : {(111)(11)(11)110}.
For 23R̄5 = −45R̄3, M and 	 share two eigenvalues, but this case has been just

discussed above.
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{(11)1)}⊥[R̄ = 0]. This is defined by R̄4 = R̄3, R̄5 = −2R̄3. Hence M : {111} (or
M : {1XX̄} if 4w̄2

3 > 9R̄2
3) and 	 : {1111} (or 	 : {11ZZ̄} if 4w̄2

3 > R̄2
3), so that

C : {(11)(11)(11)1111}, (C.77)

or C : {(11)(XX )(X̄ X̄ )11ZZ̄} or C : {(11)(11)(11)11ZZ̄} according to the specific
values of the parameters. For w̄2

3 = 2R̄2
3 we have M : {110} and 	 : {11ZZ̄}, hence

C : {(11)(11)(00)11ZZ̄}. More special cases may arise as follows.

(1) For 4w̄2
3 = 9R̄2

3, M : {(11)1}, 	 : {11ZZ̄} so that

C : {(1111)(11)11ZZ̄}. (C.78)

(2) For 4w̄2
3 = R̄2

3, M : {111}, 	 : {(11)11}, and the double 	-eigenvalue is also an eigenvalue
of M, hence

C : {(1111)(11)(11)11}. (C.79)

C.3. Case w̄4 = 0 �= w̄3w̄5

The possible spin types are {111/0}⊥ and {(11)1}g. Since R̄i − R̄ j = S̄i − S̄ j, at most two of
the R̄i can take the same value. In particular, we can assume that at least one R̄i is non-zero.
Note also that the combination ρ(M) = 1, ρ(	) = 4 is not permitted here (cf (84)), so
that, in particular, M2 �= 0. Both M and Ω can be nilpotent (with M2 �= 0, 	3 = 0), which
includes the special situation (59) when C is nilpotent (in which case the spin type specializes
to {110}⊥0[R̄ = 0], cf supra).

C.4. General case w̄3w̄4w̄5 �= 0

Here all of the R̄i take different values, otherwise (after a suitable spin) this would reduce to the
previous case. Accordingly, the only possible spin type is the most general one; i.e. {111/0}g.
In particular, we can assume that at least two R̄i are non-zero. The cases ρ(M) = 1 (which
implies ρ(	) = 4) and ρ(	) = 2 (which implies ρ(M) = 2) are not permitted here (cf
table 8). Both M and Ω can be nilpotent (with M2 �= 0, 	3 �= 0), but not simultaneously.
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[7] Durkee M, Pravda V, Pravdová A and Reall H S 2010 Generalization of the Geroch–Held–Penrose formalism

to higher dimensions Class. Quantum Grav. 27 215010
[8] Stephani H, Kramer D, MacCallum M, Hoenselaers C and Herlt E 2003 Exact Solutions of Einstein’s Field

Equations 2nd edn (Cambridge: Cambridge University Press)

48

http://dx.doi.org/10.1088/0264-9381/21/7/L01
http://dx.doi.org/10.1142/S0219887805000491
http://dx.doi.org/10.1088/0264-9381/25/3/033001
http://dx.doi.org/10.1088/0264-9381/21/12/007
http://dx.doi.org/10.1088/0264-9381/24/6/C01
http://dx.doi.org/10.1088/0264-9381/24/6/018
http://dx.doi.org/10.1088/0264-9381/21/23/014
http://dx.doi.org/10.1088/0264-9381/27/21/215010
http://dx.doi.org/10.1017/CBO9780511535185


Class. Quantum Grav. 29 (2012) 155016 A Coley et al

[9] Coley A and Hervik S 2009 Higher dimensional bivectors and classification of the Weyl operator Class. Quantum
Grav. 27 015002

[10] Emparan R and Reall H S 2008 Black holes in higher dimensions Living Rev. Rel. 11 6
[11] De Smet P J 2002 Black holes on cylinders are not algebraically special Class. Quantum Grav. 19 4877–95
[12] Garcia-Parrado Gomez-Lobo A and Martin-Garcia J M 2009 Spinor calculus on 5-dimensional spacetimes

J. Math. Phys. 50 122504
[13] Godazgar M 2010 Spinor classification of the Weyl tensor in five dimensions Class. Quantum Grav.

27 245013
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