
Fortschr. Phys. 59, No. 7 – 8, 665 – 670 (2011) / DOI 10.1002/prop.201100008

Hydrodynamics of holographic flavored plasmas
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We provide a short review of the hydrodynamical properties of a class of strongly coupled thermal gauge
theories, coupled to massless fundamental flavor fields, having a dual supergravity description. The analysis
is valid for more general classes of nearly conformal holographic plasmas, where the breaking of confor-
mality is driven by marginally (ir)relevant deformations.
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1 Introduction

The analysis of the experimental data associated to the production of the quark-gluon plasma (QGP) in
heavy ion collisions at RHIC (Brookhaven, USA) and LHC (CERN) is interpreted, despite the large errors
involved, as an evidence that this state of matter is a strongly interacting fluid at high temperature (∼ 200
MeV), composed of deconfined adjoint (gluons) and fundamental (quarks) matter. The QGP is supposed
to have existed in the immediate moments after the big bang, hence the importance to understand its
behaviour.

Unfortunately, due to the strong nature of the interaction, the well-known perturbative methods of QCD
are not sufficient to study the QGP. Lattice calculations proved a valuable tool, however they are not well
suited to study real-time properties of the system. These properties include the transport coefficients which
govern the hydrodynamic behaviour at long distances and times as compared to the inverse temperature.
Were these coefficients known, especially the viscosities and relaxation times, we would be able to run
computer simulations and compare the theoretical predictions with the observed experimental behaviour.

The AdS/CFT correspondence [1–3] exploits the holographic principle to study strongly coupled D-
dimensional conformal quantum field theories by means of dual D + 1-dimensional gravitational models
in asymptotically anti-de Sitter spaces. Within this correspondence (which can be extended to many non-
conformal setups as well) a thermal gauge theory is associated with a black hole background. Each fluid
mode in the plasma has a corresponding gravity mode, whose fluctuations, governed by gravity equations,
can be used to obtain retarded correlators, from where we can obtain the transport coefficients. The main
ingredient in the AdS/CFT correspondence is the relation

〈e−
∫

φ0O〉 = e−Sgravity(φ0) , (1)
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where the source φ0 of the field theory operator O is identified with the value of the dual gravitational
mode at the AdS boundary φ0 = limr→∞ φ(r), and r is the AdS radial coordinate. The correspondence
is actually a limit of a conjectured more general equivalence between quantum field theories and higher
dimensional string models having a gravitational description at low energy and weak coupling.

2 Hydrodynamics from AdS/CFT

At long distances and times as compared to the inverse temperature, field theories admit a hydrodynamic
description dictated by the conservation of energy and momentum. This hydrodynamic description can
be organized in a derivative expansion. Up to second derivatives the expansion of the energy-momentum
tensor for a relativistic uncharged fluid reads [4, 5]

T μν = εuμuν + pΔμν + πμν + ΔμνΠ , (2)

where ε is the energy density, uμ the velocity field, p(ε) the pressure, Δμν = hμν + uμuν with hμν the
4-dimensional metric and

πμν = −ησμν + ητπ

[
〈Dσμν〉 +

∇ · u
3

σμν
]

+ κ
[
R<μν> − 2uαuβR

α<μν>β
]

+λ1σ
<μ
λ σν>λ + λ2σ

<μ
λ Ων>λ + λ3Ω

<μ
λ Ων>λ + κ∗2uαuβR

α<μν>β

+ητ∗π
∇ · u

3
σμν + λ4∇<μ log s∇ν> log s , (3)

Π = −ζ(∇ · u) + ζτΠD(∇ · u) + ξ1σ
μνσμν + ξ2(∇ · u)2 + ξ3ΩμνΩμν

+ξ4∇⊥
μ log s∇μ

⊥ log s+ ξ5R+ ξ6u
αuβRαβ . (4)

We refer the reader to [5] for the precise definitions of the structures in these formulas, which will not be
necessary for the rest of this note. The shear viscosity η and the second order coefficients τπ (“shear” relax-
ation time), κ, λ1, λ2, λ3 are the only ones defined in conformal fluids. All other coefficients, i.e. the bulk
viscosity ζ and the second order coefficients κ∗, τ∗π , λ4, τΠ (“bulk” relaxation time), ξ1, ξ2, ξ3, ξ4, ξ5, ξ6,
are only defined in non-conformal plasmas.

Holographic methods allow to extract these transport coefficients in classes of strongly coupled plas-
mas having a dual gravity description. Moreover, in the regime where higher derivative corrections to the
gravity action can be neglected, the corresponding plasmas display some relevant universal features. For
example, they all have the same shear viscosity over entropy density ratio, η/s = 1/4π, as the N = 4 su-
persymmetric Yang-Mills (SYM) plasma [6]. Remarkably this ratio is compatible with the one which can
be deduced for the QGP at RHIC and LHC. This raises the hope that, at least in some limits, holographic
results (despite strictly valid for theories still quite far from QCD), can be used as benchmarks for realistic
simulations of real-time properties of the QGP.

A sketch of the relevant holographic methods is as follows. Consider a fluid moving along one (say, z) of
the 3 spatial directions x, y, z. For any field ψ on the dual gravity background, consider fluctuations of the
form exp(−iωt+ iqz)ψ(r), with ω and q frequency and momentum. The fluctuations ψ(r) are classified
according to their transformation under SO(2)x−y . Solving the equations of motions (with suitably chosen
boundary conditions) for the fluctuations, one can get the dispersion relations and thus deduce the transport
coefficients, taking into account general expressions like

ω = csq − iΓq2 +
Γ
cs

(
c2sτ

eff − Γ
2

)
q3 + O(q4) where Γ =

η

sT

(
2
3

+
ζ

2η

)

, (5)
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which holds for the scalar hydrodynamic modes [4, 5].1 Another source of information comes from the
study of retarded correlators of the stress-energy tensor. For the tensorial mode [4, 5]

Gxy,xy
R = p− iηω +

(
ητπ − κ

2
+ κ∗

)
ω2 − κ

2
q2 + O(q3, ω3) , (6)

where p is the pressure. The holographic computation of these correlators gives direct access to the related
transport coefficients.

3 A flavored N = 4 SYM plasma

Theories like (thermal) N = 4 SU(Nc) SYM, which has a dual AdS5 × S5 (black hole) description,
do not have matter fields transforming in the fundamental representation. The inclusion of fundamental
matter has a precise counterpart in the dual string/gravity setup. It amounts on adding extended sources
(like Nf “flavor” D7-branes) on the background. In the ’t Hooft limit (where Nc → ∞ whereas the ’t
Hooft coupling λ and Nf are kept fixed), the branes can be treated as probes [7] and thus do not deform
the original background. This corresponds to taking the quenched approximation for the flavor fields in the
dual gauge theory. Going beyond this approximation requires accounting for the backreaction of the flavor
branes on the background. This is a difficult task in general, since the branes (which have codimension 2
in the D7 case and thus are localized at some angles of the 5-sphere S5) enter as delta function sources
in the supegravity equations of motion and Bianchi identities. This gives rise to a set of partial differential
equations to be solved for.

In [8] a method named “smearing technique” was introduced. This method is appropriate in the Vene-
ziano limit in which Nc → ∞ and Nf → ∞ with their ratio fixed. Instead of considering Nf localized
branes one homogeneously distributes them in the transverse space, in such a way to replace delta function
sources with a density distribution 2-form and to recover (most of) the isometries of the original unflavored
background. In this way one often has to solve just ordinary differential equations in a radial variable
(see [9] for a review).

In [10] this method was applied to thermal N = 4 SYM with massless fundamental hypermultiplets
(and then extended to more general flavored quivers), finding a solution which takes into account the
D7-brane backreaction in a perturbative expansion in the parameter εh ∝ λh

Nf

Nc
, with λh the ’t Hooft

coupling at the energy scale set by the temperature T . This parameter would weigh the internal quark
loops in a perturbative expansion of, say, gluon polarization diagrams. In the string setup, it has to be taken
very small in order for the gravity description to be reliable. The solution in [10] was analytically found
to order ε2h. It is relevant to notice that the class of flavored plasmas here considered are examples of non-
conformal models. The breaking of conformal invariance, driven by quantum effects since the flavors are
massless, is precisely encoded by the running of the beta function for εh: T dεh

dT = ε2h + O(ε3h).
The gravity solution in [10] has a warped black hole metric of the form

ds2 =
r2

R2

[

−
(

1 − r4h
r4

)

dt2 + dxidxi

]

+
R2

r2

⎡

⎣ S8F 2

1 − r4
h

r4

dr2 + r2
(
S2ds2KE + F 2(dτ +AKE)2

)
⎤

⎦ , (7)

where rh is the horizon radius. The flavor brane backreaction is accounted for by the functions S(r), F (r)
and the metric of the original S5 is expressed as a U(1) fibration over a Kähler-Einstein base CP 2

(dAKE/2 = JKE is the Kähler form of the four-dimensional base of S5). Moreover

F = 1 − εh
24

+
17

1152
ε2h − ε2h

24
log

r

rh
, (8)

1 Here T and cs are the temperature and speed of sound of the plasma. Finally, τeff is an “effective relaxation time”.
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S = 1 +
εh
24

+
1

128
ε2h +

ε2h
24

log
r

rh
, (9)

Φ = Φh + εh log
r

rh
+
ε2h
6

log
r

rh
+
ε2h
2

log2 r

rh
+
ε2h
16
Li2

(

1 − r4h
r4

)

, (10)

where we have also included the running dilaton Φ. The solution contains F5 and F1 Ramond-Ramond
field strengths too. We refer to [10] for details and comments on the UV behaviour of the solution.

The solution described above allows us to study a number of effects of dynamical flavors in a strongly
coupled thermal theory in a completely controllable setting. Some thermodynamic quantities (entropy den-
sity s, energy density ε, free energy density f , speed of sound cs) are [10]

s =
1
2
π2N2

c T
3

[

1 +
1
2
εh +

7
24
ε2h

]

, (11)

f = −p = − 1
8
π2N2

c T
4

[

1 +
1
2
εh +

1
6
ε2h

]

, (12)

ε− 3p =
1
16
π2N2

c T
4ε2h , (13)

c2s =
1
3

[

1 − 1
6
ε2h

]

. (14)

The transport coefficients up to O(ε2h) obtained by studying the gravitational fluctuations, as sketched in
the previous section, are [11]

ζ

η
=

1
9
ε2h , (15)

τeffT = τπ,0T0 +
16 − π2

128π
ε2h , (16)

T 2

p
κ =

T 2
0

p0
κ0 , (17)

T 2

p
(κ∗ + ητπ) =

T 2
0

p0
η0τπ,0 +

T 2
0

p0
η0

( τπ,0

8
− 1

8πT0

)
ε2h , (18)

where τπ,0T0 = 2−log 2
2π and T 2

0
p0
κ0 = 1

π2 , are the corresponding values in the conformal plasmas.

4 Hydrodynamics from AdS/CFT revisited

There is a simple way to obtain, holographically, all the second order transport coefficients in the above
flavored plasmas, avoiding the explicit study of fluctuating modes and correlators. The flavored N = 4
plasma has a dual effective 5-dimensional description in terms of a metric and three scalars [11,12]. One of
these scalars is the dilaton. The others describe the volume of the compact deformed S5 and the squashing
between the fiber and the base. The corresponding field theory operators have dimensions Δ = 4, 8, 6
at the unflavored conformal fixed point. Thus, giving a non trivial profile to the dilaton around the AdS
background corresponds to turning on a (marginally irrelevant) deformation in the field theory. The other
scalars, instead, would drive irrelevant deformations.

At order ε2h the breaking of conformality can be accounted for just by the dilaton, so that the 5D model
reduces effectively to a single scalar one. Crucially, the latter is in the Chamblin-Reall class [13], already
studied in [14] as for some hydrodynamical properties. In more generality, Chamblin-Reall models (which
are characterized by a simple exponential potential for the scalar field) provide good effective holographic
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descriptions, at leading order in the deformation, for classes of strongly coupled conformal gauge theories
slightly deformed by marginally (ir)relevant operators [15].

Table 1 The transport coefficients at leading order in the conformality deformation parameter δ ≡ 1−3c2
s .

η
s

1
4π Tτπ

2−log 2
2π + 3(16−π2)

64π δ Tκ
s

1
4π2

(
1 − 3

4 δ
)

Tλ1
s

1
8π2

(
1 + 3

4 δ
)

Tλ2
s − 1

4π2

(
log 2 + 3π2

32 δ
)

Tλ3
s 0

Tκ∗
s − 3

8π2 δ T τ∗π − 2−log 2
2π δ Tλ4

s 0

ζ
η

2
3 δ T τΠ

2−log 2
2π

Tξ1
s

1
24π2 δ

Tξ2
s

2−log 2
36π2 δ Tξ3

s 0 Tξ4
s 0

Tξ5
s

1
12π2 δ

Tξ6
s

1
4π2 δ

Quite crucially, for the Chamblin-Reall theories, all the hydrodynamic transport coefficients up to sec-
ond order can be extracted [15] using the results in [16]. With the definition

δ ≡ 1 − 3c2s , (19)

where cs is the speed of sound, and referring to the hydrodynamic stress-energy tensor in (2), the transport
coefficients are given in Table 1.2 Considering the difficulty of dealing with such coefficients in QCD, this
information3 could be useful in numerical simulations of the hydrodynamic evolution of the QGP, provided
at some stage of its thermalization (well above the critical temperature Tc for deconfinement) it can be
approximated by a small deformation of a conformal plasma in the class describe above. Actually, some
of the thermodynamical properties of the QGP, as deduced from the lattice, in the temperature window
1.5Tc ≤ T ≤ 4Tc (relevant at RHIC and LHC), suggest that the QGP can be treated as a nearly conformal
system. In order to provide a numerical example, taking c2s ∼ 0.26 at T ∼ 1.5Tc as sensible estimate
from lattice studies for the current RHIC experiment [17–19], we would get the results collected in Table 2
(updating the ones in [15]).

Table 2 The transport coefficients at T ∼ 1.5 Tc and c2
s ∼ 0.26.

η
s

1
4π Tτπ 0.228 Tκ

s 0.021

Tλ1
s 0.015 Tλ2

s −0.023 Tλ3
s 0

Tκ∗
s −0.008 Tτ∗π −0.046 Tλ4

s 0

ζ
η 0.147 TτΠ 0.208 Tξ1

s 0.001

Tξ2
s 0.001 Tξ3

s 0 Tξ4
s 0

Tξ5
s 0.002 Tξ6

s 0.006

2 The flavored N = 4 SYM plasma has these same coefficients with δ = ε2h/6.
3 In particular, the behavior with the temperature and the speed of sound of the shear and bulk relaxation times τπ , τΠ is both

potentially relevant and unexpected.
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