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Intensive blood glucose lowering can significantly reduce the risk of micro- and macrovascular complicationsAbstract
in patients with diabetes mellitus. However, 30% of all treated patients do not achieve optimal blood glucose
levels. Genetic factors may influence the response to glucose-lowering medication.

A search of MEDLINE-indexed literature published between January 1966 and July 2007 revealed 37 studies
reporting data on genetic polymorphisms and response to glucose-lowering drugs.

Most studies involving cytochrome P450 (CYP) genes had small sample sizes (21 studies <50 subjects) and
were among healthy volunteers. Multiple studies indicated that the CYP2C9 *3 allele (Ile359Leu polymorphism)
was associated with decreased clearance of sulfonylurea drugs. Supporting this, one study reported an increased
insulin secretion in CYP2C9*3 allele carriers when using the sulfonylurea agent glyburide. The CYP2C9*3 allele
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was also associated with a decreased clearance of meglitinides, whereas the CYP2C8*3 (Arg139Lys;
Lys399Arg) variant increased the clearance of meglitinides.

Polymorphisms in genes encoding the inwardly rectifying potassium channel Kir6.2 (KCNJ11) and the
insulin receptor substrate-1 (IRS1) were reported to be associated with an increased risk of (secondary) failure to
respond to sulfonylurea therapy. A significant decrease in fasting plasma glucose and hemoglobin A1c (HbA1c)
in response to rosiglitazone was seen in subjects carrying the Pro12Ala polymorphism of the peroxisome
proliferator-activated receptor-γ (PPARG) gene. Conversely, carriers of this polymorphism also had a higher
conversion to diabetes mellitus when treated with acarbose; this effect was also seen in adiponectin (ADIPOQ)
gene polymorphism carriers.

Future studies with adequate sample sizes in which several SNPs in multiple candidate genes are genotyped in
patients with diabetes should provide reliable information on genetic variants and response to glucose-lowering
drugs.

Diabetes mellitus is a growing global health burden. Up to 80% the search were ‘gene’, ‘genotype’, ‘polymorphism’, ‘genetics’,
of patients with type 2 diabetes die from macrovascular cardiovas- ‘diabetes’, ‘pharmacogenetics’, ‘SNP’, and ‘variant’, in combina-
cular disease.[1] Several trials have demonstrated that achieving tion with the names of specific oral antidiabetic drugs. The refer-
near normal glycemic control in patients with type 1 and type 2 ences of all identified articles were checked. All clinical studies
diabetes reduces the risk of microvascular complications.[1,2] In- reporting data on pharmacokinetic and pharmacodynamic re-
tensive control of blood glucose can significantly reduce and sponse to antidiabetic drugs and genetic polymorphisms were
retard the microvascular complications of retinopathy, nephropa- included. Response was not further defined.
thy, and neuropathy.[3] According to previous research, 30% of The literature search identified 42 articles, of which 5 were case
patients in general practice do not achieve the targets for good reports; the case reports were excluded.[6,10-13] The details and
glycemic control.[4] Interindividual variation in response to glu- main findings of all included studies are summarized in table I.
cose-lowering drugs is common, and there is no single agent that Table II shows the frequency of the most common polymorphisms
leads to optimal blood glucose in all treated patients.[5] Factors studied.
such as obesity, the level of physical activity, diet, and genetic risk
factors[6] are thought to play a role in the interindividual variation 2. Candidate Genes Affecting Pharmacokinetics
in response to diabetic medication. A pharmacogenetic approach
may help to elucidate the role of genetics in variable response to

2.1 Cytochrome P450 (CYP) 2C9 Polymorphisms andglucose-lowering drugs.[7]

Response to SulfonylureasPharmacogenetics aims to study the role of genetic variation in
interindividual differences in drug response.[8] The information

The pharmacokinetics of oral hypoglycemic agents can be
gathered from pharmacogenetic research may be used to optimize

altered through polymorphisms involved in drug metabolism
treatment regimens that reduce the risk of adverse drug reactions

(cytochrome P450 [CYP] 2 genes, e.g. CYP3A5) and transport
and improve treatment efficacy in susceptible persons. Genetic

(organic anion transporters [OATs] and organic cation transporters
variability can influence response to medication through several

[OCTs]). CYP2C9, CYP2C8, and CYP2D6 are major CYP en-
pathways: variation in genes involved in pharmacokinetics, phar-

zymes that are involved in the metabolic clearance of a wide
macodynamics, and in genes that are in the causal pathway of the

variety of therapeutic agents.[69] CYP3A5 is a principal catalyst of
disease.[8,9]

the biotransformation of repaglinide.[70] Important drug transport-
The aim of this review is to summarize what is known about

ers include the OATs (e.g. SLCO1B1), and the OCTs (e.g.
genetic variants that have been studied in relation to the response

SLC22A1), which are involved in the uptake of many hydrophilic
to glucose-lowering drug therapy.

organic cations.[71]

Most of the studies involving the CYP genes have a very small
1. Published Pharmacogenetic Studies

sample size and/or were performed in healthy subjects. Healthy
A literature search in MEDLINE of publications between Janu- carriers of the Ile359Leu polymorphism of the CYP2C9 gene, also

ary 1966 and July 2007 was conducted to identify studies contain- referred to as CYP2C9*3, showed decreased clearance of tolbuta-
ing information on the pharmacogenetics of diabetes. Keywords of mide,[15-18] glyburide,[19-21] glimepiride,[19,22] and chlor-

 2007 Adis Data Information BV. All rights reserved. Mol Diag Ther 2007; 11 (5)
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Table I. The influence of genetic polymorphisms on the effect of glucose-lowering medicine

Drug Gene and allelea Study population Result [95% CI] Reference

Sulfonylureas (SU)/cytochrome P450 (CYP) genes

Tolbutamide CYP2C9*2, *3 172 DM Significantly lower increase in prescribed daily dose between first 14

and tenth prescription for *3 carriers vs *1/*1

Tolbutamide CYP2C9*2, *3 15 ND Reduction in clearance in *1/*3: 48%; *1/*2: 29% vs *1/*1 15

(p < 0.05); no association with blood glucose lowering

Tolbutamide CYP2C9*2, *3 23 ND Reduction in clearance in *1/*2: 12%; *2/*2: 23%; *1/*3: 42%; 16

*2/*3: 54%; *3/*3: 84% vs *1/*1; no association with blood

glucose, plasma insulin levels

Tolbutamide CYP2C9*2, *3 16 ND Reduction in 24h formation clearance of tolbutamide metabolites 17

in *1/*2: 32%; *1/*3: 42% vs *1/*1

Tolbutamide CYP2C9*3 18 ND (Korean) Reduction in t1/2 in *1/*3: 24% vs *1/*1 18

Tolbutamide CYP2C19*2, *3 18 ND (Korean) No effect on pharmacokinetic nor pharmacodynamic parameters 18

Glyburide CYP2C9*2, *3 29 ND t1/2 (h) in *1/*1: 1.7[1.5; 1.9]; *1/*3 or *2/*3: 2.6 [2.3; 2.8] 19

(p ≤ 0.05); no association with blood glucose lowering

Glyburide CYP2C9*2, *3 21 ND Reduction in oral clearance in *3: 50% vs *1 (p ≤ 0.001); 20

significant increase in insulin secretion 12h after administration

Glyburide CYP2C9*3 18 ND (Chinese) Increase in t1/2 in *1/*3: 71% vs *1/*1 (p < 0.03), ∆ glucose (2h) 21

17.85% more decrease in *3, ∆ insulin (2h) 161.1% more

increase in *3 vs *1*1

Glyburide CYP2C19*2, *3 18 ND (Chinese) No effect on pharmacokinetic nor pharmacodynamic parameters 21

Glimepiride CYP2C9*2, *3 29 ND t1/2 (h) in *1/*1: 1.9 [1.1; 2.5]; *1/*3 or *2/*3:3.0 [2.5; 4.0] 19

(p ≤ 0.01); no association with blood glucose lowering

Glimepiride CYP2C9*3 19 ND (Chinese) Increase of t1/2 in *1/*3: 163% vs *1/*1 (p < 0.05); reduction in 22

clearance in *3/*3: 75% vs *1/*1 (p < 0.05)

Chlorpropamide CYP2C9*3 21 ND (Korean) Nonrenal clearance in *1/*1: 1.8 ± 0.2; *1/*3: 2.4 ± 0.1 mL/h/kg 23

(p < 0.05)

Chlorpropamide CYP2C19*2, *3 21 ND (Korean) No effect on pharmacokinetic nor pharmacodynamic parameters 23

SU (unspecified) CYP2C9*2, *3 20 DM *3 associated with higher risk of severe hypoglycemia 24

Meglitinides/CYP genes

Nateglinide CYP2C9*2, *3 24 ND 2-fold increased median AUC in *3/*3 vs *1/*1 25

Nateglinide CYP2D6*4, *5 24 ND No effect on pharmacokinetic nor pharmacodynamic parameters 25

Repaglinide CYP2C8*3, *4 28 ND Decreased mean AUC in *1/*3: 45% vs *1/*1 (p < 0.05); no 26

association with blood glucose lowering

Repaglinide CYP2C8*3, *4 56 ND Cmax 44% lower in *3 carriers vs *1; no effect on blood glucose 27

levels

Repaglinide CYP3A5 +6986G/A 56 ND No effect on pharmacokinetics 27

Thiazolidinediones/CYP genes

Rosiglitazone CYP2C8*3 31 ND Decreased mean AUC in *3: 36% vs *1/*1; no effect on blood 28

glucose

Meglitinides/organic anion transporter (OAT) genes

Repaglinide SLCO1B –11187G/A 56 ND –11187A allele associated with an increased glucose-lowering 27

effect; maximum decrease 1.8 ± 0.9 mmol/L (p < 0.05)

Continued next page
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Table I. Contd

Drug Gene and allelea Study population Result [95% CI] Reference

Nateglinide SLCO1B1 +521T/C 31 ND Increase of t1/2 by 78% in CC vs TT genotype; increase in AUC 29

by 82% in TC and 108% in CC vs TT

Thiazolidinediones/OAT genes

Rosiglitazone, SLCO1B1 +521T/C 16 ND No effect on pharmacokinetic parameters 30

pioglitazone

SU/receptor and channel genes

SU (unspecified) SUR1 16–3T/C 70 T2DM –3T allele associated with significant decrease in plasma 31

(triglycerides) [p = 0.026]; no association with plasma insulin

and glucose

SU or SUR1 16–3T/C 68 T2DM No significant differences in allele distribution in T2DM patients 32

combination with early treatment failure compared with T2DM patients

responding to SU

Tolbutamide SUR1 C/T exon 18; 449 T2DM Significant reduction insulin response (19–22 min) in carriers of 33

16–3T/C combined genotype exon18/exon16 (nt-3): 124 ± 27 vs 231 ± 10

min × pmol/L; p = 0.045

Tolbutamide SUR1 –437A/T 233 ND No difference in tolbutamide-stimulated insulin response between 34

carriers and noncarriers of the –437T allele

Tolbutamide SUR1–/– 24 HI SUR1–/– no acute insulin response to tolbutamide compared 35

with heterozygote and normal subjects

SU (unspecified) IRS1 Gly972Arg 477 T2DM Arg972 associated with SU treatment failure 36

SU (unspecified) KCNJ11 Glu23Lys 525 T2DM Lys23 variant associated with secondary failure to SU (relative 37

risk carriers of Lys23 allele vs Glu23 homozygotes; 1.45;

p = 0.04)

Thiazolidinediones/ receptor genes

Pioglitazone PPARG Pro12Ala 131 T2DM No association with blood glucose lowering 38

Troglitazone PPARG Pro12Ala 3548 impaired glucose No association with incidence of T2DM 39

tolerance

Troglitazone PPARG Pro12Ala 93 GD No association with blood glucose lowering 40

Rosiglitazone PPARG Pro12Ala 198 T2DM (Korean) Ala12 allele associated with FPG level (50.6 ± 27.8 mg/dL vs 41

24.3 ± 41.9 mg/dL [noncarriers]; p = 0.026) and decrease in

HbA1c level (1.41% ± 1.47% vs 0.57% ± 1.16% [noncarriers],

p = 0.015)

Other combinations

Rosiglitazone ADIPOQ +45T/G, 166 T2DM (Korean) GG in both SNPs associated with lower reduction in FPG and 42

+276G/T HbA1c

Pioglitazone LPL Ser447X 113 DM (Chinese) Significant decrease in FPG in X allele carriers treated with 43

rosiglitazone

Metformin IRS1 Gly972Arg 60 PCOS Reduced efficacy in lowering fasting insulin level and insulin 44

resistance in Arg972 carriers vs noncarriers (p < 0.001)

Metformin KCNJ11 Glu23Lys 3234 IGT Preventive effect against DM in Glu/Glu homozygotes, HR: 0.55 45

(0.54–1.67); Glu/Lys HR: 0.89 (0.66–1.19); and Lys/Lys HR: 0.95

(0.54–1.67) vs placebo

Metformin HNF1Ab 36 T2DM MODY No difference in response 46

Continued next page
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Table I. Contd

Drug Gene and allelea Study population Result [95% CI] Reference

Gliclazide HNF1Ab 36 T2DM MODY Improved response of fasting glucose to gliclazide; FPG 46

reduction from baseline (mmol/L) T2DM vs HNF1A 1.2 [0; 2.4]

vs 4.7 [3.3; 6.2]

Tolbutamide HNF1Ab 7 MODY Normal response to tolbutamide 47

SU (unspecified) TCF7L2 Rs12255372G/T, 4469 T2DM Higher rate of SU treatment failure in Rs12255372 TT vs GG: 48

Rs7903146 OR (95% CI): 1.95 (1.23, 3.06)

Metformin TCF7L2 Rs12255372G/T, 4469 T2DM No association between polymorphisms and metformin response 48

Rs7903146

Acarbose PPARG Pro12Ala 356 IGT 2.9-times higher conversion to T2DM in women with Pro/Pro vs 49

Pro/Ala genotype

Acarbose PPARGC1A Gly482Ser 356 IGT Prevention of diabetes among carriers of the Ser482 allele 49

Acarbose ADIPOQ +45T/G, 356 IGT TT genotype of SNP+276 associated with higher conversion to 50

+276G/T T2DM than in GG genotype carriers OR 2.83 (95% CI 1.26,

6.36; p = 0.012)

Combination of the +45 G-allele and +276 TT genotype further

increases risk OR 3.05 (95% CI 1.34, 6.96; p = 0.008)

a CYP2C9*2 = Arg144Cys; CYP2C9*3 = Ile359Leu; CYP2C8*3 = Arg139Lys, Lys399Arg (416G/A, 1196A/G); and CYP2C8*4 = Ile264Met (792C/G).

b Several mutations; not mentioned in article.

ADIPOQ = adiponectin (ACDC); AUC = area under the concentration-time curve; Cmax = maximum drug concentration; DM = diabetes mellitus; EM =

extensive metabolizer; FPG = fasting plasma glucose; GD = gestational diabetes; HbA1c = hemoglobin A1c; HI = hyperinsulinemic; HNF1A = hepatocyte

nuclear factor-1α; HR = hazard ratio; IGT = impaired glucose tolerance; IRS1 = insulin receptor substrate-1; KCNJ11 = inwardly rectifying potassium

channel Kir6.2; MODY = maturity onset diabetes of the young; ND = nondiabetic; OR = odds ratio; PCOS = polycystic ovarian syndrome; PM = poor

metabolizer; PPARG = peroxisome proliferator-activated receptor-γ2; PPARGC1A = PPARγ coactivator 1α (PCG1α); SLCO1B1 = solute carrier OAT

family, member 1B1; SNP = single nucleotide polymorphism; SUR1 = sulfonylurea receptor; t1/2 = half-life; T2DM = type 2 diabetes mellitus.

propamide.[23] These findings did not differ substantially between 521T/C.[29] The CYP2D6*4/*5[25] and CYP3A5*3[27] polymorph-
Caucasians,[15-17,19,20] Korean,[18,23] or Chinese[21,22] populations. isms did not change the response of meglitinides. While no statisti-
Blood glucose response was not influenced by the CYP2C9 cally significant changes were seen in blood glucose response to
polymorphisms among Caucasians[19,20] although insulin secretion

meglitinides with regard to SLCO1B1 521T/C and CYP2C9*3, the
was increased within 12 hours of ingestion.[20] Among Chinese,

SLCO1B1 –11187G>A[27] single nucleotide polymorphism (SNP)2-hour blood glucose response and 2-hour insulin response was
was significantly associated with an increased glucose-loweringreduced to a greater extent in CYP2C9*3 carriers.[21]

effect.The CYP2C9*3/*3 and the *2/*3 genotypes were more com-
mon in diabetic patients admitted to the emergency department
with severe hypoglycemia during sulfonylurea drug treatment 2.3 CYP2C8 and SLCO1B1 Polymorphisms and Response
compared with a control group of patients with type 2 diabetes but

to Thiazolidinediones
without a history of severe hypoglycemia.[24] Diabetic patients
carrying the CYP2C9*3 polymorphism require lower doses of

The CYP2C8*3[28] and SLCO1B1 521T/C[30] polymorphisms
tolbutamide to regulate serum glucose than do carriers of the wild-

did not affect the pharmacokinetics of thiazolidinediones intype genotype.[14]

healthy volunteers.No differences related to CYP2C19 polymorphism, tolbuta-
mide,[18] glyburide,[21] or chlorpropamide[23] use were found.

2.4 Organic Cation Transporter (OCT) Polymorphisms and
2.2 CYP2C9, CYP2C8, CYP3A5, SLCO1B1, and CYP2D6

Response to Biguanides
Polymorphisms and Response to Meglitinides

Eleven OCT1 (SLC22A1) and two OCT2 (SLC22A2)The pharmacokinetics of meglitinides was altered in healthy
polymorphisms did not change the response to metformin.[63]carriers of the CYP2C9*3,[25] CYP2C8*3,[26,27] and SLCO1B1

 2007 Adis Data Information BV. All rights reserved. Mol Diag Ther 2007; 11 (5)
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Table II. Allele frequencies for studied candidate genes

Gene and allele Frequency (%) Population References

CYP2C9*2 10.7–15.0 Caucasians 51-55

0 Korean, Chinese 56-58

CYP2C9*3 7.4–9.8 Caucasians 51-54

1.1 Korean 56

1.7–4.9 Chinese 57,58

CYP2C19 PM 12.6 Korean 59

11.1–17.65 Chinese 60

CYP2C8*3 13 Caucasians 61

SLCO1B1 –11187A 14.3–17.7 Finnish 27,62

OCT1 Val408 0.19–0.28 Japanese/T2DM 63

SUR1 16–3T/C (T allele) 47 Caucasians/T2DM 64

SUR1 C/T exon 18 (T allele) 3 Caucasians/T2DM 64

SUR1 combined alleles 4 Caucasians/T2DM 64

IRS1 ARG972 9.8–22.6 Caucasians/T2DM 65

PPARG Ala12 10 Caucasians/T2DM 66

PPARGC1A Ser482 35.6 Danish/metabolic syndrome 67

ADIPOQ +45G 31.3 Korean/T2DM 42

19.4 Caucasian/IGT 50

ADIPOQ +276T 28.3 Korean/T2DM 42

50.8 Caucasian/IGT 50

KCNJ11 Lys23 61.5 Caucasian/T2DM 37

HNF1A 5.2 Caucasian/MODY3 68

ADIPOQ = adiponectin; CYP = cytochrome P450; HNF1A = hepatocyte nuclear factor-1α; IGT = impaired glucose tolerance; IRS1 = insulin receptor

substrate-1; MODY3 = maturity onset diabetes of the young – type 3; OCT = organic cation transporter; PM = poor metabolizer; PPARG = peroxisome

proliferator-activated receptor-γ 2; PPARGC1A = PPARγ coactivator 1α; SUR1 = sulfonylurea receptor 1; T2DM = type 2 diabetes mellitus.

3. Candidate Genes Affecting Pharmacodynamics glucose tolerance test with intravenous tolbutamide injections;[34]

children with diffuse SUR1–/– hyperinsulinism, characterized by

two abnormal SUR1 alleles, showed no acute insulin response to
3.1 SUR1 Polymorphisms and Response to Sulfonylureas

tolbutamide.[35]

Sulfonylurea receptor 1 (SUR1; also known as ABCC8 [ATP-
binding cassette, subfamily c, member 8]) is a subunit of the 3.2 Insulin Receptor Substrate-1 (IRS1) Polymorphisms and

pancreatic β-cell K (ATP) channel and plays a key role in the Response to Sulfonylureas and Biguanides
regulation of glucose-induced insulin secretion.[72] SUR1
polymorphisms may bind sulfonylureas with different affinity, Insulin receptor substrate-1 (IRS1), a member of the IRS prote-
which might explain the difference in response. in substrate family, is considered to play a role in the insulin

An influence of the SUR1 intron 16–3T/C polymorphism and signaling pathway.[73] This receptor substrate can be activated by
the impact of sulfonylurea therapy on plasma insulin, glucose, and

several sulfonylureas.
triglyceride concentrations could not be detected in subjects with

The Arg972 allele of the IRS1 Gly972Arg polymorphism wastype 2 diabetes.[31,32] However, there was a significant reduction of
associated with an increased risk of nonresponse to sulfonylureainsulin response in diabetic subjects carrying the combined geno-
therapy.[36] This polymorphism also modified the response totype, silent exon 18 Thr775Thr (ACC→ACT) and intron 16–3T/C
metformin. In subjects without the variant allele, metformin low-of the SUR1 gene,[33] after tolbutamide administration. Carriers of
ered fasting insulin levels and insulin resistance more effectivelythe SUR1 –437A/T polymorphism did not differ from noncarriers

in glucose- or tolbutamide-stimulated insulin response during a and significantly than in carriers of the Arg972 allele.[44]
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3.3 Peroxisome Proliferator-Activated Receptor-γ and HbA1c value after rosiglitazone treatment than heterozygotes
Polymorphisms and Response to Thiazolidinediones and those without the polymorphism.[42] No association was found
and Acarbose between the ADIPOQ +45T/G polymorphism and conversion to

type 2 diabetes among acarbose-treated patients with impaired
glucose tolerance.[50] However, the TT genotype of the ADIPOQ

Peroxisome proliferator-activated receptor-γ (PPARγ) recep-
+276G/T polymorphism was associated with a higher risk of type

tors are found in key target tissues for insulin action, such as
2 diabetes than the GG genotype in all subjects treated with

adipose tissue, skeletal muscle, and liver. Studies indicate that
acarbose.

these receptors are important regulators of adipocyte differentia-
tion, lipid homeostasis, and insulin action.[74] This receptor is the
target receptor for thiazolidinediones compounds, which are a 3.5 KCNJ11 Polymorphisms and Response to Sulfonylurea
class of insulin-sensitizing drugs used in the treatment of type 2 and Biguanides
diabetes.[5] The PPARγ coactivator 1α (PGC-1α) activates PPARγ
and regulates the determination of muscle fiber type,[75] controls

The KATP channel is comprised of four pore-forming inwardlyinsulin sensitive glucose transporter expression in muscle cell,[76]

rectifying potassium channel (Kir channel) 6.2 subunits and fourand phosphoenolpyruvate carboxykinase and glucose-6-phos-
regulatory sulfonylurea receptor (SUR) subunits. Kir6.2 is foundphatase in the liver.[77] The Gly482Ser polymorphism in the
in the pancreatic β-cell, cardiac and skeletal muscle, and nonvas-PPARG gene has been reported to be associated with type 2
cular smooth muscle. KCNJ11, encoding Kir6.2, has been showndiabetes.[78]

to be associated with both type 2 diabetes and cardiovascular
The response to pioglitazone[38] and troglitazone[40] was not disease in several populations.[81]

modified by the presence of the PPARG Pro12Ala polymorphism. Carriers of the Lys23 variant allele of the KCNJ11 Glu23Lys
In contrast, patients with impaired glucose tolerance who also had polymorphism more often showed secondary failure to
the homozygous wild-type (Pro/Pro) genotype showed a higher sulfonylurea[37] (secondary failure is defined as requiring insulin
conversion to type 2 diabetes compared with other genotypes due to uncontrolled hyperglycemia after adding metformin to the
while treated with troglitazone[39] or acarbose.[49] Acarbose also therapy of patients whose plasma glucose rose to >300 mg/dL after
prevented the development of diabetes among carriers of the 3 months of SU treatment). Lys23 allele carriers had a tendency
Ser482 allele of the Gly482Ser polymorphism of the PPARγ toward a shorter duration of therapy with oral agents before
coactivator 1α (PPARGC1A) gene. Treatment with rosiglitazone sulfonylurea failure compared with subjects who were homozy-
significantly decreased hemoglobin A1c (HbA1c) levels in Korean gous for the wild-type Glu23 allele. Those who were homozygous
subjects with the PPARG Ala12 allele, compared those without for the Lys23 variant allele responded less well to the protective
this allele.[41]

effect of metformin than Glu23 homozygotes.[45]

3.4 Adiponectin Polymorphisms and Response to 3.6 Transcription Factor-7-Like 2 (TCF7L2) Polymorphisms
Thiazolidinediones and Acarbose and Response to Sulfonylureas and Biguanides

Adiponectin (ACDC; ADIPOQ) is a protein secreted by adipo- Transcription factor-7-like 2 (TCF7L2) is one of the most
cytes and is known to be a potent insulin sensitizer. A low fasting important type 2 diabetes susceptibility genes.[82] Genetic variants
adiponectin concentration is associated with low insulin-stimulat- in the gene encoding TCF7L2 have been associated with type 2
ed skeletal muscle insulin receptor tyrosine phosphorylation. Al- diabetes and impaired β-cell function, but the mechanisms remains
though ADIPOQ gene expression in adipose tissue is associated unknown. It has been suggested that risk alleles, such as
with obesity, insulin resistance, and type 2 diabetes, hypoadi- Rs12255372T and Rs7903146T, increase TCF7L2 expression in
ponectinemia is more strongly related to the degree of insulin the pancreatic β cell, reducing insulin secretion and predisposing
resistance than the degree of adiposity or glucose intolerance.[79]

the individual to diabetes.[82,83]

Genetic polymorphisms may be involved in the regulation of Carriers of a risk allele have been found to respond less to
adiponectin.[80]

sulfonylurea treatment and had a higher risk for failure to
Carriers of the GG genotype for ADIPOQ +45T/G polymor- sulfonylurea. The response to metformin was not found to be

phism showed smaller reductions in fasting plasma glucose level modified by this polymorphism.[48]
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4. Candidate Genes in the Causal Pathway The most often studied genes were related to pharmacokinetics,
such as the CYP450 complex genes, OCTs and OATs (see table
III). Most of these studies reported a decrease in drug clearance

4.1 Hepatocyte Nuclear Factor-1α (HNF-1α)
when subjects had the variant gene, whereas no effects were seen

Polymorphisms and Response to Sulfonylureas
on insulin secretion and blood glucose levels.

and Biguanides
The published studies focused mainly on a small number of

SNPs in a small number of genes, so it is not surprising thatHepatocyte nuclear factor-1α (HNF-1α) constitutes part of a
appropriate genes, SNPs, or haplotypes of major importance havenetwork of transcription factors controlling organ-specific gene
not yet been identified. In many cases it is also unclear in whichexpression during embryonic development and in adult tissues.
tissue a given polymorphism exerts its effect to influence theHNF-1α is expressed in the pancreatic β-cell, and mutations in this
phenotype of interest.gene lead to β-cell dysfunction and maturity onset diabetes of the

young – type 3 (MODY3). MODY3 diabetes is the most common When comparing the study population of the abovementioned
form of MODY in many countries.[84] The presence of two defec- studies, questions concerning study power, false-positive findings,
tive HNF1A alleles is assumed to be lethal in humans. Heterozy- and ethnic-specific effects may rise. Since the majority of the
gous carriers may be more sensitive to sulfonylureas. pharmacogenetic studies involved very small numbers of partici-

The plasma insulin responses to glucose and tolbutamide in pants, it is not surprising that contradictory results with regard to
HNF1A mutation carriers was decreased.[47] Normoglycemic as some polymorphisms have been reported. While some studies
well as recently diagnosed diabetic HNF1A mutation carriers were not able to show an interaction, others might suffer from
showed a normal response to sulfonylureas. false-positive results due to the small numbers of subjects and the

potentially small contribution of any given polymorphism to bloodThe response of fasting glucose and fructosamine to treatment
glucose lowering. Except for a few studies, most studies werewith gliclazide was better in diabetes associated with several
performed among Caucasians. Since the frequency of somemutations in the HNF1A gene than in patients with type 2 diabe-
polymorphisms is related to ethnicity, the results seen in thetes.[46] The fall in fasting plasma glucose in response to gliclazide
studied population should be interpreted with care.was 3.9-fold larger in HNF1A diabetic patients than in type 2

diabetic patients. No difference was found in the glucose-lowering Notably, many pharmacokinetic studies used healthy subjects.
response to metformin between HNF1A diabetes patients and type One can imagine that certain drugs have different effects in
2 diabetic patients.[46] healthy individuals compared with diabetic patients. Also environ-

mental factors and gene-gene interactions were not always taken
4.2 Lipoprotein Lipase Polymorphism and Response into account. This is very important since it is known that diabetes
to Thiazolidinediones is a multifactorial disease and several environmental factors can

reveal or facilitate the phenotypic expression of susceptibility
Lipoprotein lipase (LPL) is an enzyme that plays a central role

genes. These interactions may help to find other possible candidate
in lipid metabolism. LPL catalyzes the hydrolysis of triglycerides,

genes and drug targets.
providing free fatty acids for cells and affecting the maturation of

Unfortunately, it is not yet possible to predict individual patient
circulating lipoproteins.[43,85] It has been proposed that the enzyme

responses to blood glucose-lowering medicines based on their
plays a role in the development of obesity and atherosclerosis.[86]

genetic background. New candidate genes are ready to be investi-
The presence of one defective allele of the LPL Ser447X

gated and several interactions with other genes and the environ-
polymorphism was associated with lower response rate to pio-

ment are becoming clearer. However, the magnitude of the genetic
glitazone. In contrast, subjects homozygous for the normal Ser447

effects is still not known, making it difficult to calculate the
allele had a more significant decrease in blood pressure after

required number of study participants needed to obtain conclusive
pioglitazone treatment than S447X genotype carriers.[87]

results.

Genes involved in pancreatic development and in the control of5. Discussion
insulin secretion have been linked to an increased risk to develop

The published literature suggests that pharmacogenetics could diabetes. Several loci have been found which contain genes poten-
play an important role in the treatment of patients with diabetes. tially involved in β-cell development or function, such as those
Several studies have indicated a pharmacogenetic interaction be- encoding insulin degrading enzyme (IDE), hematopoietically ex-
tween blood glucose-lowering medication and genetic polymorph- pressed homeobox protein (HHEX), and kinesin family member
isms. 11 (KIF11).[88] Genes encoding factors involved in hypertension
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Table III. Gene-drug interactions stratified according to pathway of drug response. Results presented are comparisons between carriers of the variant allele vs wild-type unless

stated otherwise

Drug class Drug Parameter Genes

pharmacokinetic pathway pharmacodynamic pathway causal pathway

Sulfonylurea Sulfonylurea derivatives Hypoglycemia ↑ (CYP2C9*3)

Insulin response ↔ (SUR1)

Secondary failurea ↑ (IRS1, KCNJ11)

Early failureb ↔ (SUR1)

Tolbutamide Clearance ↓ (CYP2C9*2/*3)

Blood glucose ↔ (CYP2C9*2/*3)

Insulin response ↔ (CYP2C9*2/*3) ↔ ↓ (SUR1) ↔ (HNF1A)

Glyburide Clearance ↓ (CYP2C9*3)

Blood glucose ↔ (CYP2C9*2)

↓ (CYP2C9*3)c

Insulin secretion ↔ (CYP2C9*2)

↑ (CYP2C9*3)c

Glimepiride Clearance ↓ (CYP2C9*3)

Blood glucose ↔ (CYP2C9*2/*3)

Chlorpropamide Clearance ↓ (CYP2C9*3)

Gliclazide Fasting plasma glucose ↓ (HNF1A)

Meglitinides Nateglinide Clearance ↔ (CYP2C9*2, CYP2D6*4/*5)

↓ (CYP2C9*3)

Repaglinide Clearance ↓ (CYP2C9*3, CYP2C8*3)

Blood glucose ↔ (CYP2D6*4/*5, SLCO1B1)

Biguanides Metformin Fasting insulin level ↓ Noncarriers (IRS1)

Insulin resistance ↓ Noncarriers (IRS1)

Insulin response ↔ (HNF1A)

HbA1c ↔ (SLC22A1, SLC22A2)

Thiazolidinediones Pioglitazone Blood glucose ↔ (PPARG)

Troglitazone Blood glucose ↔ (PPARG)

Rosiglitazone Fasting plasma glucose ↓↓ (PPARG)

Less reduction (ADIPOQ)

HbA1c ↓↓ (PPARG)

Less reduction (ADIPOQ)

α-Glucosidase inhibitors Acarbose Conversion to diabetes mellitus ↑ (PPARG)

↓ (ADIPOQ)

a Secondary failure is defined as requiring insulin due to uncontrolled hyperglycemia after adding metformin in patients whose plasma glucose rose to >300 mg/dL after SU

treatment.

b Early failure is defined as receiving insulin treatment in the first 5 years after diabetes diagnosis.

c In a Chinese population.

ADIPOQ = adiponectin; CYP = cytochrome P450; HbA1c = hemoglobin A1c; HNF1A = hepatocyte nuclear factor-1α; IRS1 = Insulin receptor substrate-1; KCNJ11 = inwardly

rectifying potassium channel Kir6.2; PPARG = peroxisome proliferator-activated receptor-γ 2; SLC22A1, SLC22A2 = solute carrier family 22 (organic cation transporter), members

1 and 2; SLCO1B1 = solute carrier organic anion transporter family, member 1B1 SUR1 = sulfonylurea receptor 1; ↓ indicates decreased; ↑ indicates increased, ↔ indicates no

effect.
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