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Spin transport in a unitary Fermi gas close to the BCS transition
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We consider spin transport in a two-component ultracold Fermi gas with attractive interspecies interactions
close to the BCS pairing transition. In particular, we consider the spin-transport relaxation rate and the spin-
diffusion constant. Upon approaching the transition, the scattering amplitude is enhanced by pairing fluctuations.
However, as the system approaches the transition, the spectral weight for excitations close to the Fermi level
is decreased by the formation of a pseudogap. To study the consequence of these two competing effects, we
determine the spin-transport relaxation rate and the spin-diffusion constant using both a Boltzmann approach
and a diagrammatic approach. The former ignores pseudogap physics and finite lifetime effects. In the latter,
we incorporate the full pseudogap physics and lifetime effects, but we ignore vertex corrections, so that we
effectively calculate single-particle relaxation rates instead of transport relaxation rates. We find that there is
qualitative agreement between these two approaches, although the results for the transport coefficients differ
quantitatively.
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I. INTRODUCTION

Over the last decade, there has been a growing interest in the
physics community in the properties of spin transport, spurred
by the idea of using the electron spin as a carrier of information.
A spin current is a net flow of spin and is fundamentally
different from a charge current because it relaxes in a different
way. In particular, spin currents can be strongly affected by
interactions, even in Galilean-invariant systems.

Ultracold fermion systems consisting of two spin species
provide a valuable model system for the study of the effects
of interactions on spin transport because of their high tun-
ability and the absence of other factors which limit the spin
conductivity, such as disorder. When the cloud of one species
moves relative to the cloud of the other species, the latter is
dragged along due to momentum relaxation by the interatomic
interaction, and as a consequence, the spin current relaxes.
This mechanism is called spin drag [1]. A similar phenomenon,
Coulomb drag, occurs in bilayer systems, in which the drift
momentum difference between the carriers in the top and
bottom layers relaxes due to the Coulomb interaction [2,3].

In an important recent experimental study, the spin suscep-
tibility, the spin-diffusion constant, and the relaxation rate of
spin transport were investigated in a ultracold two-component
fermion gas in the unitarity regime, where the interspecies
scattering length goes to infinity so that the interactions are
as strong as quantum mechanics allows [4,5]. Inspired by this
work, the spin-transport relaxation rate and the spin-diffusion
constant were calculated using a Boltzmann approach for high-
and low-temperature ranges separately [6]. We also note the
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recent experimental work on the dynamic spin response in
these gases by Hoinka et al. [7].

When an ultracold Fermi gas with two spin species and
an attractive interaction between the spins is cooled to low
enough temperatures, it shows a transition to a superfluid state,
where the opposite-spin atoms pair up to form Cooper pairs.
The effect of interactions on spin transport close to this BCS
pairing transition is an interesting subject since two effects are
competing. On the one hand, the scattering amplitude between
fermions is enhanced by pairing fluctuations (preformed
Cooper pairs) not taken into account in Ref. [6]. When
the temperature is lowered, this effect ultimately leads to
a diverging interaction strength and an instability in the
system towards the BCS state at the critical temperature. As a
consequence, transport coefficients such as the spin-transport
relaxation rate and the spin-diffusion constant are expected to
be strongly affected when the system approaches the transition.
These effects were not seen experimentally in Ref. [4], possibly
because Tc was not reached but possibly also due to the
competing effect we discuss shortly.

In related work, for ultracold fermions with repulsive
interactions, enhancement of the spin-transport relaxation rate
was predicted close to the ferromagnetic transition [8] and for
ultracold bosons close to Bose-Einstein condensation [9]. The
latter was recently also observed experimentally [10]. Riedl
et al. studied the frequencies and damping of collective modes
in an ultracold Fermi gas close to the BCS pairing transition
[11] and found an enhancement of the collision rate in a
fermionic gas close to the BCS pairing transition. The behavior
of the viscosity was studied in Ref. [12]. In electron-hole
bilayers the electrons in one layer and holes in the other can
form excitons, which are expected to condense for low enough
temperatures. Theoretically, it was predicted that the transport
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relaxation rate is enhanced when approaching this transition
[13]. An enhancement was measured experimentally [14],
although it is still under debate whether this enhancement was
indeed caused by exciton condensation. Also, for a topological
insulator thin film, an enhancement of the transport relaxation
rate was predicted close to (in this case topological) exciton
condensation [15].

However, as already mentioned, there is a competing effect
at play. For temperatures below the transition temperature, the
system is in the superfluid state, and the excitation spectrum is
gapped. Already above Tc, a precursor of this gap can be seen
as the suppression of spectral weight close to the Fermi level,
a so-called pseudogap [16]. The suppressed spectral weight
is closely linked to the reduced lifetime for these excitations.
The effect of this pseudogap is to reduce the phase space for
scattering events around the Fermi level, which is expected to
reduce the enhancement of transport coefficients. We consider
the competition between the increase in scattering amplitude
due to pairing fluctuations on the one hand and the decrease
in available phase space due to the pseudogap on the other
and its effect on the transport relaxation rate and the spin-
diffusion constant in this paper. For the spin susceptibility
this competition was considered in Ref. [17], and we also
note related work determining the static spin susceptibility for
repulsive interactions in Ref. [18].

In general, the relaxation rate of a current and the decay
rate of a single-particle excitation are different because of the
amount the possible scattering directions contribute to either
case. In the case of the decay of a single-particle excitation,
all directions are weighed equally, but in the case of current
relaxation, forward scattering (in the direction of the current)
contributes much less than backscattering (in the direction
opposite to the current). Theoretically, in diagrammatic calcu-
lations, a transport relaxation rate is obtained by inclusion
of so-called vertex corrections to the appropriate response
function. If these are neglected, the transport relaxation time
is essentially equal to the single-particle relaxation time.

In this paper we consider a two-component gas of fermions
consisting of two spin states labeled by σ = ↑,↓. We consider
the balanced case where the densities of each spin component
are n↑ = n↓ ≡ n and where both species have the dispersion
ξ (k) = h̄2k2/2m − μ. This article consists of two parts. In the
first part in Sec. II we use Boltzmann theory to calculate the
relaxation rate for spin transport in this system for arbitrary
interaction strength, both close to the BCS pairing transition
and for temperatures much higher than the Fermi temperature.
Then, using the noninteracting spin susceptibility, we can de-
termine the spin-diffusion constant using the Einstein relation.
This calculation incorporates the effect of pairing fluctuations
but does not take into account the pseudogap physics or the
effect of the finite lifetime of the quasiparticle eigenstates.
At the diagrammatic level, however, this calculation includes
vertex corrections.

In the second part in Sec. III we calculate the fermion
self-energy at unitarity both close to the BCS pairing transition
and for high temperatures within the many-body T -matrix
approximation. This self-energy is the many-body T matrix
closed with a bare (noninteracting) fermion line. Using this
self-energy, we determine the spectral function and the spin-
transport relaxation rate and spin susceptibility ignoring vertex

corrections. Again, the spin-diffusion constant can be obtained
using the Einstein relation. We end in Sec. IV with our
conclusions.

By comparing the spin-transport relaxation rate and dif-
fusion constant obtained using both methods, we assess the
importance of pseudogap physics, finite lifetime effects, and
vertex corrections. We find that although the results of these
two methods for the transport coefficients differ quantitatively,
there is qualitative agreement. This indicates that pseudogap
physics, finite lifetime effects, and vertex corrections do not
have a critical influence on the prediction using Boltzmann
theory for the behavior of transport coefficients close to the
BCS transition.

II. BOLTZMANN THEORY

In this section we derive an expression for the spin-transport
relaxation rate using the Boltzmann equation. We incorporate
many-body effects, so-called pair correlations, close the BCS
pairing transition. We apply a spin-dependent driving force
F↑ = F and F↓ = −F, which will give rise to a spin current
j s . The momentum increase by the driving force is balanced
by the momentum relaxation due to the interaction between
opposite spins, so that the system reaches a steady state. This
mechanism is called spin drag. In linear response, the quantum
kinetic equations are written as

1

h̄
F · ∂knF (ξ (k)) = �↑(k), (1)

−1

h̄
F · ∂knF (ξ (k)) = �↓(k), (2)

where nF (ε) = 1/[1 + exp(βε)] is the Fermi-Dirac distribu-
tion, with β = 1/kBT being the inverse thermal energy, and
where the collision integral �σ (k) gives the net particle flux
into the (k,|σ 〉) state due to interspecies interactions. The
Fermi’s golden rule expression for �↑(k) is

�↑(k) = 2π

h̄V 2

∑
k1,k2,k3,k4

δk1+k2,k3+k4δ(ξ1 + ξ2 − ξ3 − ξ4)

× |T MB |2f↑,1f↓,2(1 − f↓,3)(1 − f↑,4)(δk1,k − δk4,k),

(3)

where V is the volume and where we used a shorthand
notation for the energy ξi = ξ (ki) and for the nonequilib-
rium distributions fσ,i = fσ (ki). We note that an analogous
expression holds for �↓(k). Equation (3) considers the total
effect of incoming particles with momenta and spin k1, ↑
and k2, ↓ that are scattered into momenta and spin k3, ↓
and k4, ↑. Momentum and energy conservation is ensured
by the Kronecker δ and Dirac δ, respectively. The many-body
T matrix T MB gives the scattering amplitude incorporating the
effects of the medium and will be specified below.

The distribution functions are shifted from the equilibrium
distribution by a momentum kσ = mvσ /h̄, where v is the
so-called drift velocity, which is related to the spin current by
j s = n↑v↑ − n↓v↓ = 2nv. Here, we used the fact that due to
symmetry the drift velocities of the two species will be opposite
and of equal magnitude for both species. The distribution
function fσ (k) to first order in the drift velocity is fσ (k) =
nF (ξσ (k)) + f 1

σ (k), where f 1
σ (k) = −h̄(vσ · k)n′

F (ξσ (k)). By
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subtracting Eq. (2) from Eq. (1), multiplying with h̄k, and
summing over k, we arrive at the momentum balance equation,

−nF = 1

V

∑
k

(h̄k)�(k) = �̃v + O(v2), (4)

where the coefficient �̃ of the linear term in the right-hand side
is given by

�̃ = −πβh̄

6V 3

∑
ki

δk1+k2,k3+k4δ(ξ1 + ξ2 − ξ3 − ξ4)

× |T MB |2n1n2(1 − n3)(1 − n4)(k1 − k2 + k3 − k4)2

(5)

and we introduced the shorthand notation ni = nF (ξ (ki)).
We introduce the spin-drag conductivity σD via j s = σD F
and from Eq. (4) we identify σD = −2n2/�̃. The spin-drag
conductivity can be related to the spin-transport relaxation
rate 1/τD by the Drude formula σD = 2nτD/m, leading to
1/τD = −�̃/mn.

To make further progress, we rewrite Eq. (5) in a form that
is convenient to account for a divergence in the pairing channel
due to pairing fluctuations close to the superfluid transition.
First, we introduce an additional energy integral over the
variable h̄ω = ξ (k1) + ξ (k2), i.e., the sum of the energies of
the two incoming particles in the scattering event. This choice
is convenient because close to the superfluid transition, in the
on-shell approximation, the dominant energy on which T MB

depends is h̄ω. We stress that this choice is different from
the conventional one, where h̄ω is taken to be the difference
between the energies of the incoming and outgoing ↑ particles
[3]. Next, we resolve the momentum-conserving Kronecker
delta δk1+k2,k3+k4 in Eq. (5) by choosing k1 = k + K/2,
k2 = K/2 − k, k3 = k′ + K/2, and k4 = K/2 − k′, and we
introduce an additional energy integral via

δ(ξ1 + ξ2 − ξ3 − ξ4)

=
∫

d(h̄ω)δ(ξ1 + ξ2 − h̄ω)δ(ξ3 + ξ4 − h̄ω). (6)

Then, after using the Dirac identity Im[1/(x + i0)] = −πδ(x),
we rewrite Eq. (5) into

1

τD

= πβh̄

6π2mn

∫
dk

(2π )3

dk′

(2π )3

d K
(2π )3

d(h̄ω)(k′ + k)2

× |T MB(K ,h̄ω)|2
sinh2(βh̄ω/2)

× Im

[
1 − nF (ξ (k + K/2)) − nF (ξ (K/2 − k))
h̄ω + i0 − [ξ (k + K/2) + ξ (K/2 − k)]

]

× Im

[
1 − nF (ξ (k′ + K/2)) − nF (ξ (K/2 − k′))
h̄ω + i0 − [ξ (k′ + K/2) + ξ (K/2 − k′)]

]
.

(7)

The effective interaction is given by the many-body matrix
element T MB(K ,h̄ω), which takes a simple form close to the
superfluid transition in these variables:

T MB(K ,h̄ω) = V0

1 − V0�(K ,h̄ω)
, (8)

where V0 = 4πah̄2/m, with a being the s-wave scattering
length. The bare pairing susceptibility � is given by

�(K ,h̄ω) = 1

V

∑
k

[
1 − nF (ξ (k + K/2)) − nF (ξ (k − K/2))
h̄ω + i0 − [ξ (k + K/2) + ξ (k − K/2)]

+ 1

2ε(k)

]
, (9)

with ε(k) = h̄2k2/2m. The second term of the summand
cures the ultraviolet divergence of summing the first term.
Its derivation can be found in Ref. [19]. We note that the
transition temperature Tc to the superfluid state is determined
by 1/T MB(0,0) = 0. In Eq. (7), we can perform the integrals
over k, k′, and the angles of K exactly. The integrals over ω

and the length of K must then be performed numerically. Our
theory does not take into account the superfluid gap or the
presence of Cooper pairs for T < Tc and is thus only valid for
temperature higher than the transition temperature.

To obtain results for 1/τD at constant density, we
need to solve the noninteracting equation of state n =
(1/V )

∑
k nF (ξ (k)), which yields the function μ(T ,n). For low

temperatures, μ is given by the familiar relation μ = εF [1 −
(π2/12)(kBT /εF )2]. Here, the Fermi energy εF = kBTF =
h̄2k2

F /2m, with the Fermi wave number kF = (6π2n)1/3. The
transition temperature can then be determined as a function
of the dimensionless interaction parameter kF a. We find
at unitarity (−1/kF a = 0) Tc ≈ 0.50TF and that for weak
coupling (where −1/kF a � 1) Tc ∝ TF exp(−π/2kF |a|). In
Fig. 1 we show the dimensionless spin-transport relaxation
rate h̄/εF τD obtained from Eq. (7) as a function of the reduced
temperature T/TF . Each curve terminates at the value of the
transition temperature corresponding to its kF a value. These
curves illustrate a number of effects. First, we see that, for all
kF a, the relaxation rate is enhanced (but remains finite) when
approaching Tc from above. This enhancement is larger in
the strong-coupling case than in the weak-coupling case. The
reason for this enhancement is that pairing fluctuations become
important close to the superfluid transition, which leads to the

0.1 0.2 0.5 1.0 2.0 5.0 10.0 20.0
T TF

0.05
0.10

0.50
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FIG. 1. The dimensionless spin-transport relaxation rate h̄/εF τD

obtained from Eq. (7) as a function of the reduced temperature T/TF .
From top to bottom the curves correspond to interaction parameters
−1/kF a = {0,0.56,1.0,1.4}. Each curve terminates at the value of the
transition temperature corresponding to its kF a value: in decreasing
order these are T/TF ≈ {0.50,0.24,0.13,0.064}. The dashed line is
the high-temperature asymptote 1/τD ∝ 1/

√
T predicted in Ref. [6].
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appearance of a pole in T MB in the integrand of Eq. (7) at
K = 0 and ω = 0.

For large temperatures, all curves approach the dashed
line in Fig. 1 given by 1/τD = (εF /h̄)(32

√
2/9π3/2)

√
TF /T ,

which falls off as 1/
√

T and was determined in [6]. The 1/
√

T

dependence can be understood by noting that 1/τ ∝ nvσ ,
where n is the density, v is the mean particle velocity, and
σ is the cross section at unitarity. For temperatures T � TF ,
the scattering cross section is given by the square of the
thermal de Broglie wavelength, and thus σ decreases like
1/T . Since for high temperatures it holds that v ∝ √

T , we
find 1/τ ∝ 1/

√
T . This high-temperature behavior was also

measured experimentally [4].
In the weak-coupling case (−1/kF a � 1), we note an

increase of 1/τD with temperature up to T ≈ TF . An increase
in temperature leads to a larger phase space being available
for scattering events due to reduced Pauli blocking. In
the absence of many-body effects (T MB = V0), this effect
would lead to the standard T 2 dependence of transport
coefficients in a Fermi liquid. Indeed, when T MB = V0,
we recover the weak-coupling result by Bruun, 1/τD =
(16π/9)(k2

F a2εF /h̄)(T/TF )2 for T � Tc [6].
We note that our theory overestimates Tc at unitarity in

comparison with the value Tc = 0.15TF obtained by Monte
Carlo and renormalization group methods (see, e.g., Ref. [20]).
In this sense, the experimental result for the spin-transport
relaxation rate in Ref. [4] should not be compared to the top
curve in Fig. 1 at unitarity but instead to the second one from
the bottom, which has a finite kF a value and Tc = 0.13TF .
Then, we see that our result agrees qualitatively with the
experimental results in Ref. [4].

To obtain the diffusion constant Ds we use the Einstein
relation Ds = σD/χs . For the spin susceptibility, we use the
noninteracting result χs = −(1/V )

∑
k n′(ξ (k)). The result is

shown in Fig. 2, where we plot the diffusion constant scaled
by m/h̄ versus the reduced temperature. The vertical order
of the curves is reversed with respect to Fig. 1. Each curve
again terminates at the value of the transition temperature

0.1 0.2 0.5 1.0 2.0 5.0 10.0 20.0
T TF

0.5
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5.0
10.0

50.0
100.0

Ds m

FIG. 2. The dimensionless spin-diffusion constant Dsm/h̄ ob-
tained from the result of Fig. 1 using the Einstein relation. From bot-
tom to top the curves correspond to interaction parameters −1/kF a =
{0,0.56,1.0,1.4}. Each curve terminates at the value of the transition
temperature corresponding to its kF a value. The dashed line is the
high-temperature asymptote Ds = (h̄/m)(9π 3/2/16

√
2)(T/TF )3/2.

corresponding to its kF a value. The remarks made about Fig. 1
largely carry over to our results for the diffusion constant
in Fig. 2. We see a suppression of Ds when approaching
the transition for all kF a values. For the top two curves
with −1/kF a = {1.0,1.4} we see that the nonmonotonic
behavior of 1/τD is also present in the curves for Ds ,
which for these kF a values now have a minimum around
T/TF = 0.5. Since χs follows the Curie law χs = n/kBT

for high temperatures, we find that for high temperatures
Ds = (h̄/m)(9π3/2/16

√
2)(T/TF )3/2, which is shown as the

dashed line in Fig. 2. We note the factor of 2 difference with
the result for this asymptote from Ref. [6], which is caused by a
different definition of σD . We note that if we again compare the
second curve from the top, which has a finite kF a value and
Tc = 0.13TF , with the experimental results from Ref. [4] at
unitarity, we see qualitative agreement: both curves flatten off
for temperatures below T/TF = 0.5. Considering our results,
we see that this behavior is actually the crossover behavior
between the monotonic behavior of the unitary (bottom) curve
in Fig. 2 and the nonmonotonic behavior of the weak-coupling
(top) curve. Clearly, a strength of our approach is that we
can determine the whole temperature range using a single
approach.

III. DIAGRAMMATIC THEORY

In the second part of this work, we use a diagrammatic
approach to determine the self-energy, spectral functions, and
transport coefficients.

A. Definitions

First, we recall some aspects of the microscopic theory of
an interacting gas of fermions. The central quantity in this
theory is the self-energy, which is the sum of all one-particle
reducible diagrams, and the spectral function derived from
it. For reference we give the expressions for the spectral
function and the density of states and the particle density in
an interacting system in terms of the spectral function. For a
system which is translationally invariant in space and time, the
retarded fermion Green’s function is given by

G(k,ω) = −h̄

−h̄ω+ + ξ (k) + h̄�(k,ω)
, (10)

where �(k,ω) is the retarded self-energy. The spectral function
describes the weight of a single-particle excitation and is
given by

ρ(k,ω) = − 1

πh̄
Im[G(k,ω)]

= − 1

πh̄

Im�(k,ω)

[−ω + ξ (k)/h̄ + Re�(k,ω)]2 + Im2�(k,ω)
.

(11)

In the absence of interactions, � = 0 and the spectral function
is a δ peak at h̄ω = ξ (k). A nonzero real part of � will shift
the δ peak to the solution of ω = ξ (k)/h̄ + Re�(k,ω), while a
nonzero Im� will lead to a broadening of the peak, indicating
a finite lifetime of the single-particle excitation. In particular,
a constant Im� = −1/2τ will lead to a spectral function with
a Lorentzian shape with width τ . We note several relations for
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the spectral function that we use later. The sum rule states that∫
d(h̄ω)ρ(k,ω) = 1, (12)

and it follows from the anticommutation relation of the fermion
fields. The density of states is

ν(ω) = 1

(2π )3

∫
dkρ(k,ω), (13)

and the equation of state is

n =
∫

d(h̄ω)nF (ω)ν(ω). (14)

Using the Kubo formalism, we obtain the spin-transport
relaxation rate 1/τD and spin susceptibility χs = ∂(n↑ − n↓)/
∂(μ↑ − μ↓) in terms of the spectral function. These are in the
absence of vertex corrections given by

1

τD

= −3mn

πh̄3

[
1

V

∑
k

k2
∫

d(h̄ω)ρ2(k,ω)n′(h̄ω)

]−1

(15)

and

χs = − 1

V

∑
k

∫
d(h̄ω)d(h̄ω′)

× ρ(k,ω)ρ(k,ω′)
nF (h̄ω) − nF (h̄ω′)

h̄ω − h̄ω′ . (16)

We note that Eq. (15) can be derived by calculating the ordinary
Drude conductivity of the atoms with spin up, say, in the
presence of scattering from an “external” potential which is
due to the presence of atoms with spin down. We note that
for � = −i/2τ , Eq. (15) gives 1/τD = 1/τ and that in the
noninteracting case for low temperatures, Eq. (16) reduces to
the well-known χ0 = 3n/2εF . Finally, we note that we can
obtain the spin-diffusion constant Ds via the Einstein relation
Ds = σD/χs .

B. Self-energy

We calculate the fermion self-energy which is appropriate
for this system both close to the BCS pairing transition and
for high temperatures at unitarity [21]. Indeed, the many-body
T matrix closed with a noninteracting fermion line, shown in
Fig. 3, incorporates the effect of enhancement of the interaction
close to the BCS transition. In the dilute limit for weak
interactions, where T MB → V0, it reduces to the standard

TMB G0

FIG. 3. The self-energy � is the many-body T matrix closed with
a single noninteracting Green’s-function line. The external lines are
indicated by the dashed lines.

mean-field shift of the dispersion V0n. The expression for
� as a function of momentum k and fermionic Matsubara
frequency ωn is

�(k,iωn) = 1

h̄2β

1

V

∑
K ,ωm

T MB(K ,ih̄ωm)

×G0(K − k,ih̄(ωm − ωn)), (17)

where the summation is over the bosonic Matsubara fre-
quencies ωm, G0 is the noninteracting Green’s function, and
T MB(K ,ih̄ωm) denotes the many-body T matrix [Eq. (8)]. We
compute the Matsubara summation of Eq. (17) to obtain

Im�(k,ω) = 1

h̄

1

V

∑
K

[nF (ξ (K − k)) + nb(ξ (K − k) + h̄ω)]

× Im[T MB(K ,ξ (K − k) + h̄ω)]. (18)

Using Im[T MB(K ,h̄ω)] = Im[�(K ,h̄ω)]|T MB(K ,h̄ω)|2, we
can rewrite Eq. (18) as

Im�(k,ω) = − π

h̄V 2

∑
k2,k3,k4

δ(h̄ω + ξ (k2) − ξ (k3) − ξ (k4))

× δk+k2,k3+k4 |T MB(k + k2,h̄ω + ξ (k2))|2
× [n2(1 − n3)(1 − n4) + (1 − n2)n3n4], (19)

where we again used the shorthand notation ni = nF (ξ (ki)).
Since Im� is a single-particle relaxation rate, we see that this
rate is exactly the sum of the in and out rates for the state
with momentum k and energy h̄ω, as would be obtained from
a Fermi’s golden-rule expression. In Eq. (19), we introduce
the center-of-mass momentum K = k + k2 and an additional
energy integral

δ(h̄ω + ξ (k2) − ξ (k3) − ξ (k4))

=
∫

d(h̄�)δ(h̄ω + ξ (k2) − h̄�)δ(ξ (k3) + ξ (k4) − h̄�).

(20)

After some rewriting, we then arrive at the following expres-
sion for Im�:

nF (ω)[1 − nF (ω)]Im�(k,h̄ω)

= m

8π2kh̄3

∫
R

d(h̄�)dK
|T MB(K,h̄�)|2
sinh2(βh̄�/2)

Im[�(K,h̄�)]

× [1 − nF (h̄� − h̄ω) − nF (h̄ω)], (21)

which is a convenient starting point for numerical evaluation.
In going from Eqs. (19) to (21), we introduced Im� from
Eq. (9). The δ functions on the right-hand side of Eq. (20)
restrict the integration range to R, which is defined by the
following inequalities:

2μ + h̄ω − 1
2ε(K) > 0, μ + h̄� − h̄ω > 0, (22)

and

|
√

ε(k) −
√

μ + h̄� − h̄ω| <
√

ε(K)

<
√

ε(k) +
√

μ + h̄� − h̄ω, (23)

where we defined ε(k) = h̄2k2/2m. Then, the real part of the
self-energy is obtained by a Kramers-Kronig transform,

Re�(k,ω) = 1

π

∫
dω′ Im�(k,h̄ω)

ω′ − ω
. (24)

063631-5



MINK, JACOBS, STOOF, DUINE, POLINI, AND VIGNALE PHYSICAL REVIEW A 86, 063631 (2012)

10 5 5 10
Ω Μ

4

2

2

4

Μ

ImRe

a

10 5 5 10
Ω Μ

4

2

2

4

Μ

ImRe

b

FIG. 4. The imaginary (solid line) and real (dashed line) parts of
the self-energy at unitarity for h̄k = √

2mμ for (a) kBT /μ = 1 and
(b) T = Tc.

In the next section, we show the results for the spectral
function and spin-transport coefficients obtained by evaluating
Eqs. (21) and (24).

C. Results

In the simplest approximation the spin-drag relaxation rate
is determined by the imaginary part of the self-energy at the
Fermi energy and Fermi momentum. Hence, we first determine
the self-energy. By evaluating Eqs. (21) and (24) numerically,
we obtain Fig. 4, where we show the imaginary (solid line) and
real (dashed line) parts of the self-energy for the momentum
h̄k = √

2mμ at unitarity (see also Ref. [16]). Figure 4(a) shows
the results far from the transition at T = μ/kB ≈ 1.5Tc, and
Fig. 4(b) shows the results at the transition T = Tc. From Fig. 4
we see that upon approaching the transition, a divergence
develops at ω = 0 in the imaginary part of the self-energy
and a corresponding discontinuity develops in the real part.
Closer inspection shows that the imaginary part diverges
logarithmically. When Im� diverges as x ln(�ω), with �ω

being the distance from the pole, the resulting jump in the
real part is πx. For general k, the position of the divergence
is h̄ω = −ξ (k), which can be understood as follows: the
transition is accompanied by a pole in the many-body T matrix
T MB(K ,h̄�) for K = 0 and h̄� = 0. In the expression for Im�

[Eq. (19)] the T matrix enters as T MB(k + k2,h̄ω + ξ (k2)), so
that for h̄ω = −ξ (k), the conditions K = 0 and h̄� = 0 are
satisfied when k2 = −k.

As a check, we may also obtain the logarithmic divergence
analytically. The divergence is caused by the development of
a pole at � = 0 and K = 0 in Eq. (21). For small � and K ,
T MB ∝ 1/[a1� + a2K

2 + a3(T − Tc) + ia4�] (with ai being
real) while the rest of the integrand is linear in K . Integration
over � and K then yields a divergence ln(T − Tc). In contrast,
for small � and K the integrand in the Boltzmann case [Eq. (7)]

6 4 2 0 2 4 6
Ω Μ

0.05

0.10

0.15

0.20

0.25

0.30

T Tc

T kB

FIG. 5. The spectral function ρ at unitarity for h̄k = √
2mμ for

kBT /μ = 1 (dashed line) and T = Tc (solid line).

goes as K2. Integration shows that there is then no divergence,
as was shown in Fig. 1.

From Eq. (11) we see that a divergence of Im� will
lead to a suppression of the spectral function ρ. Indeed, in
Fig. 5 we show the spectral function ρ at unitarity for h̄k =√

2mμ for kBT /μ = 1 (dashed line) and T = Tc (solid line).
Already, quite far from the transition at T = μ/kB ≈ 1.5Tc,
interactions cause a suppression of the spectral weight close to
ω = 0, which moves into peaks on both sides of ω = 0 in order
to keep the sum rule satisfied. At T = Tc, this suppression is
maximal, and here ρ vanishes logarithmically as |ω| → 0.
We note, however, that the suppression of the spectral weight
occurs at lower temperatures when considering the spectral
function at k = kF [16].

In Fig. 6 we show the solution of the equation of state
n = ∫

d(h̄ω)nF (ω)ν(ω) for μ. The dashed line corresponds
to the noninteracting result, which was used to obtain the
Boltzmann results in Fig. 1. The solid line is the solution of the
number equation at unitarity, which terminates at the critical
temperature Tc ≈ 0.29TF . The difference of this value for Tc

from the mean-field value for Tc at unitarity Tc ≈ 0.5TF used in
Sec. II is that there we used the noninteracting equation of state.
That μ is lower than the noninteracting value is intuitively
clear: an attractive interaction will lower the energy of the

0.2 0.4 0.6 0.8 1.0 1.2 1.4
T�TF

�1.5

�1.0

�0.5

0.0

0.5

1.0
Μ�ΕF

Non�interacting

Unitarity

FIG. 6. The solution of the number equation giving μ as a
function of temperature. The dashed line is the noninteracting result.
The solid line gives the result at unitarity.
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FIG. 7. The density of states ν vs ω. The dashed curve is the
noninteracting result for T = 0, while the solid curve corresponds to
the unitary case for T = Tc.

atoms, and thus μ must also be lowered in order to keep the
number of particles the same.

In Fig. 7 we show the density of states ν versus ω. The
dashed curve is the noninteracting result at T = 0, which goes
as ν ∝ √

ω − εF . The solid curve is the result at unitarity at
T = Tc. We see that the suppressed spectral weight around
ω = 0 leads to a greatly reduced density of states, a so-called
pseudogap. We note that since Tc is not particularly low,
the spectral functions are never very sharply peaked, and
the density of states remains nonzero in the pseudogap, in
agreement with the results of Ref. [16].

In Fig. 8 we show the spin-transport relaxation rate obtained
by evaluating Eq. (15) at unitarity as a solid line. The dashed
line is the unitarity result from the Boltzmann calculation
(the top line in Fig. 1). Since both lines are determined
using different equations of state, they terminate at different
Tc. Similarly, in Fig. 9 we show the spin-diffusion constant.
The dashed line is the unitarity result from the Boltzmann
calculation (the bottom line in Fig. 2), while the solid line is
obtained by evaluating the spin susceptibility in Eq. (16) and
using the Einstein relation to find Ds .

0.0 0.5 1.0 1.5 2.0 2.5 3.0
T�TF0

1

2

3

4

5

	�ΕFΤD

Boltzmann

Diagrammatic

FIG. 8. The spin-transport relaxation rate 1/τD as a function of
temperature at unitarity. The dashed line is the Boltzmann result,
and the solid line is the diagrammatic result obtained by evaluating
Eq. (15).
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T�TF
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2
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4
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6

7
m Ds�
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Diagrammatic

FIG. 9. The spin-diffusion constant Ds as a function of temper-
ature at unitarity. The dashed line is the Boltzmann result, and the
solid line is the diagrammatic result obtained by evaluating the spin
susceptibility in Eq. (16) and using the Einstein relation.

In Fig. 10 we show the spin susceptibility χs obtained
by evaluating Eq. (16) scaled by the noninteracting zero-
temperature value χ0 = 3n/2εF as a solid line. The dashed
line corresponds to the noninteracting result. We see that
for large temperatures the lines converge and that our result
shows a downturn close to Tc. This downturn is expected
physically since the magnetic response should diminish when
↑ and ↓ spins become more correlated. The inclusion of Maki-
Thompson vertex correction leads to a further suppression of
the susceptibility of the spin susceptibility [17]. For a detailed
comparison between theory and experiment regarding the spin
susceptibility, we also refer to Ref. [17]. We note that in
BCS theory (without fluctuations) the downturn of the spin
susceptibility happens below Tc.

IV. CONCLUSIONS AND DISCUSSION

We have determined the spin-diffusion constant and the
spin-transport relaxation rate using a Boltzmann approach and
a diagrammatic approach at unitarity, as shown in Figs. 8 and 9.
On a diagrammatic level, the Boltzmann calculation takes into

0.5 1.0 1.5 2.0 2.5 3.0
T�TF0.0

0.2

0.4

0.6

0.8

1.0
Χ�Χ0

Non�interacting

Unitarity

FIG. 10. The spin susceptibility obtained by evaluating Eq. (16)
scaled by the noninteracting zero-temperature value χ0 = 3n/2εF as
the solid line. The dashed line corresponds to the noninteracting result.
The solid curve terminates at the critical temperature Tc = 0.29TF .
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account vertex corrections, while our diagrammatic approach
does not. Conversely, the diagrammatic approach takes into
account pseudogap physics which suppresses the spectral
weight close to the Fermi level, while the Boltzmann approach
does not. Surprisingly, we find qualitatively equivalent be-
havior for both transport coefficients using these approaches.
Apparently, pseudogap physics and vertex corrections are
not of critical importance when evaluating these transport
coefficients close to the BCS transition. [We note, however,
that if we would use the approximation 1/τD ∝ Im�(kF ,εF ),
we would find that the spin-drag rate would diverge.] To
research this claim further, vertex corrections appropriate to
the self-energy we used should be evaluated. For the static spin
susceptibility we find our results to be in qualitative agreement
with those of Ref. [17], which include both self-energy and
vertex corrections. In particular, while the vertex correction is
found to significantly reduce the spin susceptibility, a sharp
downturn is still clearly observed as the critical temperature
is approached from above. In contrast to this, no downturn in

the spin susceptibility and no upturn in the spin-drag rate have
been found in a recent work [22] in which the Luttinger-Ward
theory is used to study spin diffusion in Fermi gases.

In comparing our results to the work of Sommer et al. [4],
we note that there is some amount of qualitative agreement.
One interesting direction for experimental research would be
to explore suppression of the spin-drag rate in the Fermi-liquid
regime more quantitatively by going to weaker interactions.
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