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We theoretically investigate spin transfer between a system of quasiequilibrated Bose-Einstein-
condensed magnons in an insulator in direct contact with a conductor. While charge transfer is prohibited
across the interface, spin transport arises from the exchange coupling between insulator and conductor
spins. In a normal insulator phase, spin transport is governed solely by the presence of thermal and
spin-diffusive gradients; the presence of Bose-Einstein condensation (BEC), meanwhile, gives rise to a
temperature-independent condensate spin current. Depending on the thermodynamic bias of the system,
spin may flow in either direction across the interface, engendering the possibility of a dynamical phase
transition of magnons. We discuss the experimental feasibility of observing a BEC steady state (fomented
by a spin Seebeck effect), which is contrasted to the more familiar spin-transfer-induced classical

instabilities.
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Bose-Einstein condensation (BEC) has been observed in
a growing number of physical systems, including trapped
ultracold atoms and molecules [1], semiconductor exciton
polaritons [2], and microcavity photons [3]. In magnetic
insulators, a quasiequilibrated BEC of magnons was cre-
ated at room temperature by parametric pumping [4],
which is especially intriguing as it represents the possibil-
ity of phase transitions in spintronic devices. In the case of
short-lived bosonic excitations such as polaritons, photons,
and magnons, the system needs to be optically pumped to
exhibit spontaneous condensation [5].

In magnetic systems, Gilbert damping of magnons is
known to increase upon the introduction of an adjacent
conductor [6]: If the magnet is made to precess, conduction
electrons may carry away spin upon colliding with the
interface separating conductor and insulator, tilting the
insulator’s magnetization toward its axis of precession.
Known as spin pumping, this magnetic relaxation process
is reciprocal to spin-transfer torque [7,8], by which the
angular momentum and energy can be pumped back into
the magnetic region [9]. We consider here the consequences
of these reciprocal interactions on an insulator with inho-
mogeneous spatial fluctuations in the magnetization, in
particular, a system of Bose-Einstein-condensed magnons
similar to that mentioned above. In this Letter, we construct
rate equations for spin transfer between a magnetic insula-
tor and adjacent normal metal and solve for the time-
dependent spin accumulation in the metal and the phase
behavior of the insulator. The main text is supplemented
with a discussion of the thermodynamics of spin transfer in
our system and a proposal of possible methods by which
to detect the predicted dynamical phase transition [10].

Let us consider the insulating ferromagnet subjected to a
magnetic field B in the positive z direction and attached to
a metallic conductor, as sketched in Fig. 1. Electrons in the
ferromagnetic insulator are localized (typically in deep d
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or f orbitals) near atomics sites, precluding charge trans-
port. The corresponding magnetic moments constitute in-
dividual degrees of freedom, which give rise to collective
spin-wave excitations. Meanwhile, (s-character) electrons
in the metal are considered completely delocalized and
noninteracting. We shall henceforth denote the ferromag-
netic subsystem as “‘left” or L and the metallic conductor
subsystem as “‘right” or R. As a starting point, we treat
them as uncoupled so that the electronic state of the entire
system is |m) = |m;) ® |mg). |m;) is an eigenket of the
linearized (i.e., noninteracting magnon) left Hamiltonian
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FIG. 1 (color online). The magnetic moments of insulator
atoms (left) are coupled to the itinerant electrons of an adjacent
conductor (right); an electron scatters inelastically off the inter-
face, flipping its spin and creating or annihilating a magnon in
the insulator. While coupling across the interface requires some
degree of overlap between electrons in the conductor and local-
ized electron orbitals in the insulator, a net electron tunneling
between the two subsystems is prohibited, so that only spin
density is transferred. The magnetic field in the insulator, and
hence static magnetization, point in the positive z direction; for a
negative gyromagnetic ratio, the static spin density is therefore
oriented in the —z direction, so that magnons carry spin +%.
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H, ; in other words, it is an element of the Fock space of
Holstein-Primakoff magnons, each indexed by the mode
number q. The magnon spectrum €, is gapped [ min(eq) =
€ > 0] by the presence of the magnetic field or anisotropy.
Meanwhile, |mp) is an element of electron Fock space and
represents an antisymmetrized product of single-particle
states corresponding to the quasiparticle Hamiltonian H g,
each indexed by orbital quantum number k and spin o.
Itinerant electrons in the conductor are coupled across
the insulator-conductor interface to the magnetic moments
of the insulator by a generic exchange interaction. We
suppose that this interaction V;, can be phenomenologi-
cally written in terms of creation (annihilation) operators 62;
(¢q) for free Holstein-Primakoff magnons and creation

(annihilation) operators altg (ay ) for conduction electrons:

1nt= Z

qkk’

kk/cqak,Takl + H.c, (D

where o =1 or | denote electron spin in the +z or —z
directions, respectively. Information about scattering off
of the static component of the insulator magnetization is
entirely contained in the conduction electron wave function
¥k +(X), which we consider to have a finite albeit exponen-
tially vanishing extension into the insulator; more specifi-
cally, ¢,(x) are eigenstates of the total mean-field
Hamiltonian, including the interaction just on the inside
of the insulator between the evanescent conduction electron
tails and the static z component of the insulator magnetiza-
tion. We approximate the static component of the magneti-
zation as spatially uniform in what follows. The effect on
conduction electron scattering due to the rofating magneti-
zation component in the xy plane, i.e., Eq. (1), which we
consider small in comparison to the static component, is
responsible for spin pumping [6] and spin-transfer torque
[7,8] and is treated perturbatively below.

The first term on the right-hand side of Eq. (1) describes
a magnon (carrying spin-up %) annihilating in the insulator
to create a spin-down-hole—spin-up-electron pair in the
conductor, while its Hermitian conjugate (H.c.) corre-
sponds to a reverse electron spin-flip scattering off the
insulator-conductor interface to create a magnon. The scat-
tering amplitude Vg is assumed to be a full matrix
element describing this process. Notice that while energy
is exchanged in this interaction, momentum is not gener-
ally conserved. Moreover, this is not the only means by
which conduction electrons can exchange energy with the
magnetic insulator: One could, for example, write down an

inelastic scattering term of the form ~c(7; 1Cqa ]t, dy ., that

conserves the magnon number (and therefore preserves the
spin of the scattering conduction electron), which physi-
cally corresponds to a deviation of the spin-conserving part
of the Hamiltonian from its mean-field form. Since such a
process does not contribute to the transfer of the z compo-
nent of spin across the interface, however, it becomes
irrelevant when temperatures are maintained by thermal

reservoirs. It should also be noted that the presence of
shape anisotropy generally gives rise to elliptical magnons.
The elliptical magnon operators b and b1L are hnear
combinations of circular magnon operators ¢4 and ¢ cq, SO
that ¢4 and é:{ no longer diagonalize H,. While our de-
tailed analysis in the following assumes circular magnons,
a finite magnon eccentricity is not expected to significantly
alter our findings qualitatively.

The total Hamiltonian can be expanded as H,,, = H, +
Hy + V., +H; + H,,,, where H; is a thermalizing
Hamiltonian that contains magnon-magnon interactions
and conduction electron-electron interactions, while H.,,
describes interactions between magnons and conduction
electrons with their environments: magnon-phonon cou-
pling, electron-phonon coupling, etc. Here, we consider
dephasing effects significant enough that coherence be-
tween the left and right subsystems is destroyed and the
density matrix for the entire system is always in the form
Dot = P ® pr. We further assert, subject to sufficiently
fast thermalization in respective subsystems, that

- M(T))akkl6(T(7'l’
nB(:BL(Gq - /‘LL))‘Sqq’r (2)

where np(x) = (e* + 1)~ and ng(x) = (e* — 1)~ ! are the
(quasiequilibrium) Fermi-Dirac and Bose-Einstein distri-
butions, respectively, and €y (€g) is the electron (magnon)
spectrum. Because each subsystem maintains internal
equilibrium, magnons obey Bose-Einstein statistics while
conduction electrons are described by a Fermi-Dirac dis-
tribution. Information about the allotment of spin and
energy between them is now contained in the inverse
temperatures 3; and S, the chemical potential w, for
conduction electrons with spin ¢, and the effective magnon
chemical potential w; (which does not have to vanish in a
pumped system). Note that w; = €;, where ¢, is the
ground-state magnon energy; the magnons become Bose-
Einstein-condensed when w; = €.

It is straightforward to calculate the spin current (per
interfacial area A) j flowing into the insulator from the
conductor in terms of temperatures and chemical potentials
to lowest order in V,, using Fermi’s golden rule:

1d<S)
A dt

where the ground-state, j,, and excited, j,, magnon con-
tributions are functions of the magnon chemical potential
Mp, electron spin accumulation Ay = uy — u, and their
temperatures 7; and Tk. In the thermodynamic limit, the
spin-current density jj, describing the rate of flow of
ground-state magnons into and out of the insulator, is
proportional to the number of ground-state magnons N,
per insulator volume V;, ny = No(up, Tp)/Vy:

Jjo = 27Vol2(Ap — €)giny. 4)

Trl pratapne] = np(Br(e

Trp édeq ] =

=JotJx 3)

246601-2



PRL 108, 246601 (2012)

PHYSICAL REVIEW LETTERS

week ending
15 JUNE 2012

Here, gj is the Fermi-level density of states of conduction
electrons and

Vi (E)z &Pk &k’
A \gr Qm)? Q2m)}
>< 5(6](/ - EF), (5)

[Vol? = Vo [*8(ex — €r)

where € is the Fermi energy (assumed to be much larger
than €, and temperature) and V; the volume of the con-
ductor. Note that the current density j; is only present in
the thermodynamic limit in the BEC phase, u; = €,. For
simplicity, we are assuming the ground-state mode to be
nondegenerate, placing the corresponding q at 0. On the
other hand, the spin-current density j, (carrying spin trans-
fer via the excited magnon states) is present in both normal
and BEC phases and, after some manipulations, can be
written as

jo=2m [ " del V()P (A — )ghgr ()ng(By(e— 1))

—np(Brle —Ap))], (6)

in terms of the energy-dependent density of magnon states
g1.(€). The (relatively weakly) energy-dependent quantity

s Vi (VY &’k &Pk dq
@F = b5 G S Gy Gy Gy

X &(ex — €p)d(ex — €p)d(eq — €) (7

contains information about inelastic transition rates involv-
ing excited magnons.

The dynamics of spin flow across the interface are there-
fore determined by the sum of the condensate current
density j,, which is determined by spin accumulation in
the conductor and the ground-state magnon energy €, (and
thus the applied magnetic field) and the thermal current
density j,, which depends on both temperature and spin-
potential biases. Note that sufficiently large spin splitting
A in the conductor could, in principle, drive spin density
into the insulator until the required density of magnons is
attained and the system undergoes Bose-Einstein conden-
sation. In a recent experiment by Sandweg et al. [11], spin
pumping into a metal by a magnetic insulator is driven by
the presence of parametrically excited magnons; in addi-
tion, a spin current between the metal and insulator arises
from a thermal gradient, as discussed above. The authors of
Ref. [11] made use of the inverse spin Hall effect, wherein
spin diffusion along a metal strip produces a detectable
Hall signal. Reciprocally, an electric current could be used
to generate spin accumulation on the surface of a metal via
the spin Hall effect; this surface spin accumulation may
then drive magnons into the insulator [12].

We henceforth focus on the regime where the tempera-
tures of both the left and right subsystems are fixed so that
any energy gain or loss, independent of spin gain or loss, is
completely absorbed or resupplied by thermal reservoirs. At
fixed T;, the density of excited magnons n, becomes a

[V ?

monotonic function of p; = €, alone. Let us further suppose
that spin accumulation A g in the right reservoir is indepen-
dent of spin diffusion from the insulator and fixed. If the total
density of magnons exceeds the critical BEC density n,
(corresponding to w; = €), n, reaches and remains pinned
at this value, n., and only 7, is free to vary. In the BEC phase,
then, the time dependence of n is given by

Tje

hd,

mo(® =20+ [0 — S le @

dp

where the excited magnon flux j, = j,(u; — €) is time-
independent, as long as u; is anchored by the condensate at
€0, 1/ =2m|Vy|*(eg — Ap)gx/d;,andd;, = V, /Aisthe
magnetic layer thickness. The behavior of the Bose-Einstein-
condensed system thus falls into one of four regimes, as
depicted in Fig. 2. In the first, Ay > €, (so that 77! < 0)
and ny(0) > 7j./hd; , and ny grows exponentially until satu-
rating at a value ~M,/ up (Where M is the magnetization of
the ferromagnet and wp is the Bohr magneton). In this case,
magnon-magnon interactions become important ultimately
and the system must be treated more carefully here. This is
a realization of the “swaser” (i.e., a spin-wave analog of a
laser) put forward in Ref. [8] and observed in the context most
similar to ours [in a magnetic insulator yttrium iron garnet
(YIG)] in Ref. [12]. In the second regime, Au > €, but
ny(0) < 7j./hd; (requiring j. <0), n, decreases towards
zero, and the system enters the normal phase. The last two
regimes (corresponding to j,. > 0 and j. < 0), which are of
more interest to us, occur when spin splitting in the conductor
is sufficiently small that Ay < €, and thus 7=! >0, as
depicted in Fig. 3. Here, the steady-state phase no longer
depends on the initial condition: When j,. > 0, the magnons
will Bose-Einstein condense (lower half of the main panel in
Fig. 3), and, if j. < 0, the normal phase with ny, = 0 must
eventually be reached (upper half of the main panel in Fig. 3).
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FIG. 2 (color online). Behavior of n, as predicted by the rate
equation 7y = jioi/hd; = j./hd; — ng/7. If j. had the sign
opposite to that shown in the figure, the crossing point
7j./hd; would fall in the normal phase (n, = 0), thus preclud-
ing a BEC formation.
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FIG. 3 (color online). When Au < €, the steady-state phase
is insensitive to the initial condition for n; but depends on the
temperature bias T; — Ty and the difference Ay — €. As the
splitting A u increases, the critical temperature for 7, increases
until it equals Tk. Examples of time dependence in the normal
and BEC phase regions are shown in the upper- and lower-left
panels, respectively. When Au > €,, depending on the initial
condition, the driven magnon system is either unstable or relaxes
towards the normal phase.

In the normal phase (n, < n,), p;, acquires time depen-
dence, and the rate of change of the total number of
magnons is 7y, = 7y = j,(£)/hd;. To illustrate these dy-
namics in a specific example, we consider a simple model
where the density of magnon states per unit insulator
volume V; has the form g;(e) = G;(e/ey — 1) (with
w >0 and G; a positive real number). In terms of the

polylogarithm function
1 o0 x"
Fw+1 jO dx ex—lnz -1 (9)

the density of excited magnons becomes

Li w+1(Z) =

1—‘w lLiw I(ZL)
ny = n(W)(BL’ IU’L) = GL +,8W+l_;w s
L 0

where z; (B, uy) = ePr#.=€) jg the effective magnon
fugacity (with z; =1 corresponding to a BEC).
Assuming for simplicity that V,(e) is energy-independent
and equal to V;, one obtains from Eq. (6) an excited spin
current

(10)

: :M<W+ ) _ <w>) (1n
Jx T 1—Au/e e =M )

where 17" = n™(B,, ;) and 1y’ = 7™ (Bg, Ap). In
general, to find the spin accumulation in the normal phase
as a function of time, one must solve the rate equation
for the magnon fugacity z;. At low temperatures,
(B; 1, BrY) < leg — Apl, the first term in Eq. (11) can
be neglected, allowing for a simple solution to the excited
magnon density:

ne (1) = 0 + [n,(0) — 9" ]e/7, (12)

provided n, <n,. If Au<e¢€, 7' >0 and n, decays
towards nﬁ;”, irrespective of its initial condition. If ’Ogew) <
n., the insulator always remains in normal phase; when
ngew) > n,, on the other hand, the magnons eventually

Bose-Einstein condense, and the system is henceforth

described by Eq. (8). Notice that the conditions nf,ew) = n,
are (in the spirit of the aforementioned low-temperature
approximation) equivalent to j. = 0, which are consistent
with the conditions considered above for the system to
settle in the BEC or normal phase, respectively, as t — .
The time dependence in the opposite high-temperature
regime, B!, Bx! > leg — Aul, is more complicated
than but in principle similar in behavior to the low-
temperature solution given by Eq. (12).

If the insulator temperature 7 is left floating, the energy
flow between the two subsystems would give rise to the
dynamics of T; (supposing for simplicity T is still fixed).
In the most extreme case, the insulator is allowed to ex-
change energy only with the conductor (and only by the
electron-magnon scattering discussed above, neglecting
phonon heat transfer), so changes in 7; are dictated by the
rate at which energy is transferred across the barrier along
with spin. The coupled rate equations for energy and spin
transfer can then be solved to give time-dependent solutions
to the temperature 7; and the ground and excited magnon
densities, n, and ny. While this program is beyond our scope
here, we may expect a significantly more complex phase
diagram, with hysteretic features sensitive to the initial
conditions and reentrant phase behavior.

All of the relevant quantities may be readily inferred
from existing measurements. In particular, the squared
matrix element |V,|? is directly related to the real spin-
mixing conductance (per unit area) g" by equating the
ground-state current density j, for Ay = 0 with the ex-
pression for current pumped by a precessing magnetic
monodomain given in Ref. [6]: One obtains |V,|?> =
g/ 47*sg%, where s is the ferromagnetic spin density in
units of 7. From this relation, the ‘“magnon dwell time”
Ta = Tlau—0 = 27sd; /gt w, and the effective Gilbert
damping constant o' = 1/2w,7, = g'‘'/4msd, (corre-
sponding to the interfacial, i.e., spin-pumping [6], magnon
decay) are expressed in terms of the spin-mixing conduc-
tance. (w, = €y/h here is the ferromagnetic-resonance
frequency.) We use the term “Gilbert damping” here to
refer to dynamical magnetization damping generally, in-
cluding damping of inhomogeneous fluctuations, in lieu of
the alternative ‘“‘Landau-Lifshitz”” damping; while the two
are mathematically equivalent, historically the former
has become generally favored over the latter, and so we
follow this convention. In YIG films (47M, = 2 kG,
gV ~ 10" cm™2 [12,13]), the spin-pumping Gilbert
damping «’ dominates over the intrinsic Gilbert damping
(a ~ 107%) below thicknesses d; ~ 100 nm. Theoretically
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predicted [14] and recently measured [15] mixing conduc-
tance that is a factor of 5 larger (g' = 5 X 10'* cm™2)
proportionately increases the maximum film thickness.
Having fixed o’ for a given d;, the applied magnetic field
can be chosen to be sufficiently small that the time scale 7,
for magnon thermalization is significantly less than the
characteristic dwell time 7, = 1/2a’ w,. For example, tak-
ing 74, ~ 100 ns for room-temperature YIG [4], the dwell
time 7~ 1 us for damping a’ ~ 10™# corresponds to a
frequency of ~100 MHz or (effective) field of ~10 G. At
this field, the condition for the formation of BEC (j,. > 0)
requires a temperature bias AT = Ty — T} ~ €3/kg of a
few mK for w = 1/2 (i.e., quadratic dispersion), in the
absence of any spin bias (i.e., Au = 0). In practice, for a
good thermal contact at the interface, this corresponds to a
temperature difference maintained across the magnon cor-
relation length, which we estimate by the magnetic ex-
change length (~ 10 nm in YIG); such thermal gradients
have already been realized in experiment [16].

Considering that the classically unstable region (Au >
€p) has already been realized in practice [12] in a Pt-YIG
bilayer spin-biased by the inverse spin Hall effect, and that
the spin-caloritronic properties [17] are presently under
intense experimental scrutiny in such composites [11,18],
the experimental observation of the current-induced BEC
phase in Pt-YIG hybrids appears very feasible. YIG film
thickness larger than the characteristic de Broglie wave-
length of magnons (~ 1 nm at room temperature using
standard YIG parameters [19]) would justify a three-
dimensional treatment of BEC. A d; = 1 um-thick YIG
film with Gilbert damping & < 10~* like that employed in
Ref. [12] appears adequate to our ends, in order for the
spin-pumping efficiency o’ to be comparable to the intrin-
sic Gilbert damping «.

We conclude that the BEC phase can be established
under a steady-state transport condition when the ferro-
magnet is colder than the normal metal (thus facilitated by
a spin Seebeck effect [17]) and the spin accumulation
A is slightly below the spin-transfer torque instability
(Au ~ €p), in our model. Implicit in our discussion is the
assumption that the magnon gas is dilute and can therefore
be treated as noninteracting, aside from thermalization
effects. In reality, these interactions must be accounted
for, in order to fully understand the ensuing dynamics of
the magnon condensate. In such a treatment, spectral prop-
erties would be self-consistently modified deep in the BEC
phase, but the essential behavior of the system close to the
transition point could still be addressed by the present
theory. The emergent magnon superfluid properties [20]
due to their interactions are left for a future work.

The authors would like to thank Silas Hoffman for his
fruitful insights. This work was supported in part by the
NSF under Grant No. DMR-0840965, DARPA (Y. T.), the
FOM, NWO, and ERC (R.D.).
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