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In systems with small spin-orbit coupling, current-induced torques on the magnetization require inhomoge-
neous magnetization textures. For large spin-orbit coupling, such torques exist even without gradients in the
magnetization direction. Here, we consider current-induced torques in ferromagnetic metals with both Rashba
spin-orbit coupling and inhomogeneous magnetization. We first phenomenologically construct all torques that
are allowed by the symmetries of the system, to first order in magnetization-direction gradients and electric
field. Second, we use a Boltzmann approach to calculate the spin torques that arise to second order in the
spin-orbit coupling. We apply our results to current-driven domain walls and find that the domain-wall mobility
is strongly affected by torques that result from the interplay between spin-orbit coupling and inhomogeneity of
the magnetization texture.
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I. INTRODUCTION

Current-induced torques on the magnetization in conduct-
ing ferromagnets are one of the main topics of research in spin-
tronics. In addition to being fundamentally interesting, these
torques are also key to developments in memory technology.1

Current-induced torques can be used to move domain walls
through a ferromagnetic wire. When a domain wall is present
the direction of the magnetization depends on the position in
the wire. This spatial dependence of the magnetization gives
rise to a mismatch between the electron spin polarization
and local magnetization, resulting in adiabatic reactive2,3

and dissipative (also known as nonadiabatic) spin transfer
torques (STTs).4–9 The occurrence of these two spin torques
is well estabished but their relative magnitude, parametrized
by the dimensionless parameter β which describes the relative
strength of the dissipative torque with respect to the reactive
one, is hard to measure10 and calculate.11

That there exist other current-induced torques related to
spin-orbit (SO) coupling of the carriers has been proposed
recently.12–15 In these works systems with SO coupling and
homogeneous magnetization are considered. Recent experi-
ments can be interpreted using these current-induced torques
originating from the SO coupling of the carriers16–20 that,
unlike the adiabatic STT mentioned above, do not require mag-
netization gradients. (Note, however, that these observations
can also be described via the spin-Hall effect in Pt as argued
in Ref. 17.) For Rashba SO coupling, two current-induced
torques have been found in the situation where there is no
magnetization gradient. In the experimental works, however,
a domain wall is present. This implies that the description in
terms of a homogeneous magnetization is incomplete, and a
more systematic description including both SO coupling and
an inhomogeneous magnetization is called for.

It is the purpose of this work to give such an inclusive
description that incorporates both SO coupling and inhomoge-
nous magnetization textures. For definiteness, we focus on the
Rashba SO coupling. In Sec. II we consider all current-induced
torques which are allowed by the symmetries of the system.
As the number of allowed torques is considerable, and because
the symmetry considerations do not yield their relative magni-
tudes, we investigate these within a semiclassical Boltzmann

description (Sec. III). In Sec. IV and V we respectively present
results for the conductivity and current-induced torques that
result from this approach. In Sec. VI the results for the torques
are used to calculate their effect on domain-wall dynamics. We
find that the current-induced domain-wall velocity depends
strongly on wall geometry. Furthermore, the domain-wall
mobility depends strongly on the inclusion of torques that
result from the interplay of SO coupling and gradients in the
magnetization.

II. SYMMETRY CONSIDERATIONS

In this section we use symmetry considerations to obtain
all allowed current-induced torques. To illustrate our method
we begin with the adiabatic spin torques in the absence of SO
coupling. Subsequently we investigate the situation with SO
coupling. We use the s-d model since this is a convenient model
to get a qualitative description of current-induced torques. In
this model the magnetization resides on the d orbitals and
transport is due to the mobile s electrons. We investigate the
system well below the Curie temperature, which means the
magnetization is represented using a unit-vector field since
fluctuations in its magnitude are negligible.

A. Absence of spin-orbit coupling

Within the s-d model the Hamiltonian is given by

Hsd = H0(x, p) − �

2
m · s, (1)

where H0 is the Hamiltonian that describes the motion of
the itinerant electrons and depends on electron momentum p
and position x. We have an exchange coupling between the
magnetic texture m(x,t) and the electron spin s(t) specified
by the exchange splitting �. The total Hamiltonian Hsd is
invariant under two independent rotations of the spin and
physical space, parametrized by the rotation matrices Rij

S
and Rij , respectively. (We neglect the coupling between the
magnetization and the orbit of the electrons that occurs via the
Lorentz force. We neglect this effect for the moment because
the magnetic field induced by the magnetization is very small.)
Moreover, in this description we neglect the ionic lattice. We
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explicitly have for the rotations

s̃i = Rij

S sj , m̃i = Rij

S mj ; (2)

x̃i = Rij xj , p̃i = Rijpj . (3)

Note that we use the summation convention of summing over
repeated indices. The invariance of the Hamiltonian implies
that Hsd ( p̃,x̃,s̃,m̃) = Hsd ( p,x,s,m). This means that these
symmetries should be respected at the level of the equations
of motion. We are interested in the (linear-response-) current-
induced torques; hence our expressions for the torques should
be linearly dependent on the applied electric field E. The
possible torques that are first order in the electric field E,
which transforms under the action of R, should involve an
inner product with another vector that transforms under the
same rotation and in this way creates an invariant scalar. The
only other vector that transforms in this way for this system is
the gradient ∇ that acts on the magnetization. These constraints
lead to the two possible current-induced torques

∂m
∂t

∣∣∣∣
ST

∝ (E · ∇)m + βm × (E · ∇)m. (4)

For a treatment of spin transfer torques that incorporates
the symmetries of the lattice see Ref. 21. These terms are
frequently written in terms of the current but we choose to
put in the electric field here as the external perturbation, to be
consistent with the rest of this paper. Note the parameter β,
which is defined as the ratio of the dissipative and reactive spin
transfer torques.

The two torques in Eq. (4) are mutually perpendicular.
Moreover, they transform differently under time reversal, since
they differ by a factor m which is odd under time reversal. This
difference in behavior under time-reversal symmetry implies
that the torques form a pair where one is reactive and the other
is dissipative.

B. Spin-orbit coupling

In the presence of SO coupling the Hamiltonian for the spin
of the s electron couples the spin and the momentum of the
electron. We represent SO coupling for spin- 1

2 carriers via the
Hamiltonian

HSO = −�(x, p) · s, (5)

where � contains both the exchange interaction of Eq. (1) and
SO coupling, and can be seen as a position- and momentum-
dependent effective exchange splitting.

For definiteness, and motivated by experiments,16,17 we
study the simplest form of SO coupling described by the
Rashba Hamiltonian22 HR = −λ( p × ez) · s. The Rashba
coupling together with the exchange interaction results in

�(x, p) = �

2
m(x) + λ p × ez. (6)

Rashba SO coupling occurs in two-dimensional electron
systems with inversion asymmetry along the direction per-
pendicular to the two-dimensional electron gas (which we
choose as our z axis). The SO coupling breaks the invariance
of the Hamiltonian under separate rotations of the spin and
orbital parts of the motion. Total angular momentum is still

conserved due to the invariance of the Hamiltonian under
combined rotations of spin and physical space, parametrized
by Rij

S = Rij .
The linear-response matrix LCIT(m,ez,∇m) that describes

the current-induced torques is defined by

ṁi = L
ij

CIT(m,ez,∇m)Ej , (7)

where E is the electric field in the plane and ez is a unit
vector in the z direction. The linear-response matrix depends
on this direction since inversion symmetry is broken along
this direction. The Hamiltonian is invariant under parity
transformations, which implies that the linear-response matrix
should obey −LCIT(m, −ez, −∇m) = LCIT(m,ez,∇m).
This shows that there can be torques on the magnetization
without a gradient in the magnetization. These torques
τSTi = Lij (m,ez)Ej have been found before12 and are given by

τ
(1)
ST ∝ m × (E × ez); (8)

τ
(1⊥)
ST ∝ m × [m × (E × ez)]. (9)

The spin torques are perpendicular to m because it is a
unit-vector field. Since the magnetization is embedded in
three-dimensional space there is a two-dimensional plane
perpendicular to it. This means that any spin torque τ

(i)
ST

allowed by the symmetry of the system immediately defines
another torque via τ

(i⊥)
ST = m × τ

(i)
ST. These pairs differ by a

factor m which changes its sign under time reversal; hence
the two torques form a reactive-dissipative pair, like the STTs
in Eq. (4). In the following we will show only one of the pair.
All terms to first order in the gradient of the magnetization
that do not involve ez are given by

τ
(2)
ST ∝ (E · ∇)m; (10)

τ
(3)
ST ∝ [(m × E) · ∇]m; (11)

τ
(4)
ST ∝ (m · E)(m · ∇)m; (12)

τ
(5)
ST ∝ Ea(m × ∇)ma; (13)

τ
(6)
ST ∝ (m × E)a(m × ∇)ma; (14)

τ
(7)
ST ∝ m × E(∇ · m); (15)

τ
(8)
ST ∝ (m × E) [m · (∇ × m)] . (16)

In the first line the familiar STT (Refs. 2 and 3) describing
the current-induced torque in systems with inhomogeneous
magnetization is obtained. Together with the dissipative STT
(Refs. 4–9) that is associated with it (τ 2⊥

ST ), those torques
describe the weak-SO-coupling situation. In the second line
we find a STT due to a Hall current. The other torques do not
have a straightforward physical interpretation.

Up to this point we have explicitly given the torques to
first order in either ez or ∇. There are more torques that
involve an even number of ez’s and are first order in ∇.
We will not list them because the list will be too long to be
illuminating. We proceed by actually calculating the torques
in the next section. The reason we do this is twofold. First,
having demonstrated the existence of many spin torques due
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to the combined effects of SO coupling and magnetization
gradients, we now explicitly calculate which torques occur
within a semiclassical approach to the Rashba model. The
second reason is to give an estimate of the relative magnitudes
of the various current-induced torques which cannot be found
using symmetry arguments.

III. SEMICLASSICAL FRAMEWORK

In order to investigate microscopically which current-
induced torques appear for the textured Rashba ferromagnet,
we use a semiclassical approach. This approach has proved
its merit in the description of the anomalous Hall effect.23 We
describe the system by the Hamiltonian

H = p2

2me

− �(x, p) · s + EMM [m] , (17)

where �(x, p) is the effective Zeeman field, given in Eq. (6),
which incorporates the Rashba SO coupling and the exchange
coupling, and EMM [m] is the micromagnetic energy functional
for the magnetization. Furthermore, me is the effective mass
of the electron. The equation of motion for the spin degree of
freedom is written as

ds
dt

= 1

h̄
s × � − α

h̄
s × (s × �),

where we introduced a damping term proportional to α that
describes relaxation of the spin into the direction of the
effective Zeeman field. The spin dynamics is much faster than
the motion of the electrons, such that we can solve the above
equation of motion up to first order in time derivatives of �.
We obtain the following solutions:

ss = s�̂ + s
h̄√

� · �

d�̂

dt
× �̂ − h̄α√

� · �

d�̂

dt
, (18)

where s = ±1 describe the majority (s = +) [minority
(s = −)] electrons, and �̂ = �/|�|. The first term describes
the adiabatic following of the effective magnetization texture
by the electron spins. The other terms describe the slight
mismatch of the spins with the effective magnetization. We
find the dynamics of the itinerant electrons by inserting the
first-order solutions of the spin degree of freedom, given
in Eq. (18), into the Hamilton equations of motion for the
electrons. We obtain

ẋi
s = ∂εs

∂pi
− sh̄

(
∂�̂

∂pi
× d�̂

dt

)
· �̂ + αh̄

∂�̂

∂pi
· d�̂

dt
;

ṗi
s = − ∂εs

∂xi
+ sh̄

(
∂�̂

∂xi
× d�̂

dt

)
· �̂ − αh̄

∂�̂

∂xi
· d�̂

dt
− |e|Ei ,

where εs = p2/2me − s|�| is the dispersion for the majority
(s = +) [minority (s = −)] electrons. Note that we added
an electric field to induce a transport current. The total time
derivatives on �̂ should be understood as

d�̂

dt
= ẋi

s

∂�̂

∂xi
+ ṗi

s

∂�̂

∂pi
.

Now that we have this semiclassical description of the single-
particle dynamics we calculate the spin torques using the
Boltzmann equation for the distribution function fs(x, p,t) of

the particles, which, in the relaxation-time (τr ) approximation,
is given by

d

dt
fs(x, p,t) = −fs(x, p,t) − f FD(εs)

τr

, (19)

where f FD(ε) = (1 + eβ(ε−εF ))−1 is the Fermi-Dirac distribu-
tion function, and εF is the Fermi energy. The relaxation-time
approximation is the simplest description of the Boltzmann
collision integral. We make the relaxation-time approximation
here for convenience. A detailed study of the collision integral
in the presence of strong SO coupling is beyond the scope
of this work. We refer to the work by Pesin and MacDonald
in Ref. 19 for more details on the situation of homogeneous
magnetization. The left-hand side in Eq. (19) should be read as

dfs

dt
= ∂fs(x, p,t)

∂t
+ ∂fs(x, p,t)

∂ p
· ṗs + ∂fs(x, p,t)

∂x
· ẋs .

The equation of motion for the magnetization is the
Landau-Lifshitz-Gilbert (LLG) equation

∂m
∂t

= −γ m × Heff + αGm × ∂m
∂t

+ τ sd , (20)

where γ is the gyromagnetic ratio and the torques due to
the s-d coupling τ sd = �/(2h̄)m × 〈s〉 contain the spin
torques of interest and a renormalization of the parameters
in the LLG equation4 which we discuss in this section. The
current-induced torques are proportional to the electric field
and will be given in Sec. V. The renormalized LLG equation
we obtain is given by

(1 − η)
∂m
∂t

= −γ m × H ′
eff + α′

Gm × ∂m
∂t

+ τ ST, (21)

where τ ST contains all terms of τ sd proportional to the electric
field, H ′

eff is defined as the effective magnetic field acting on
the magnetization, which acquires an additional term from
the coupling to the electrons,

H ′
eff = −δEMM

δm
+ α

m2
ea

2λ2
R

2γπh̄2

(
1 + 4ε2

F

�2

)
(ṁ · ez)ez, (22)

and the renormalized quantities in Eq. (21) are given by

η = mea
2

πh̄2

(
�

2
− 4

meλ
2εF

�
m2

z

)
,

where a is the lattice constant. The additional term in
Eq. (22) is an anisotropic damping term which for the
typical parameters (see Table II) we use in the calculation
of the domain-wall dynamics is negligible; moreover these
parameters also imply η � 1. Furthermore, we obtain that the
observed Gilbert damping constant is given by

α′
G = αG − α

a2me

πh̄2

[
εF − meλ

2

2

(
1 − 4ε2

F

�2

(
1 + 4m2

z

))]
.

(23)

Note that αG phenomenologically describes the damping
of the magnetzation due to interactions other than the
s-d coupling, such as relaxation due to magnon-phonon
interactions. Before we calculate the spin torques within
this semiclassical framework we determine the current as a
function of electric field within this simple model. We need
this later on to express the spin torques in terms of the current.
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IV. CONDUCTIVITY

In this section we give the conductivity for the Rashba
system. Note that the conductivity we find here is correct only
within this simple s-d description. We need the conductivity
in order to interpret the current-induced torques in the next
section. The conductivity σij is defined as j i

c = σ ijEi , where
j c is the charge-current density. We calculate the conductivity
up to first order in the gradient of the magnetization and up to
second order in the SO coupling strength. The expression for
the charge-current density is given by

j c = −|e|
∑
s=±

∫
d2 p

(2πh̄)2
fs(x, p,t)ẋs . (24)

Using the relaxation-time approximation described in the
previous section, we find that the conductivity has three
contributions, σ = σ0 + σAH + σAMR, corresponding to the
diagonal, anomalous Hall effect, and anisotropic mag-
netoresistance, respectively. The diagonal conductivity is
given by

σ
ij

0

G0
=

(
εF τr

h̄
+ α

4meλ
2εF

�2

)
δij , (25)

where G0 = 2|e|2/h is the quantum of conductance. The
second contribution

σ
ij

AH

G0
=

[
2meλ

2

�
mz + λτr

(
m · (∇ × m)

−α
2εF

�
(∇ · m)

)]
εijz, (26)

which is the anomalous Hall response generalized to in-
homogeneous magnetization. The last contribution to the
conductivity is

σ
ij

AMR

G0
= meλ

2

(
α

4εF

�2
− τr

h̄

)
εiazεjbzmamb, (27)

which depends on the relative orientation of the electric field
and the magnetization and hence corresponds to anisotropic
magnetoresistance. We also define the current polarization via

P j c ≡ −|e|
∑
s=±

∫
d2 p

(2πh̄)2
f (εs)s ẋs ,

for later reference.

V. CURRENT-INDUCED TORQUES

In this section we give the current-induced torques for the
Rashba model, introduced in Sec. III. The current-induced
torques can be calculated from the current-induced spin
density. They are given by

τ ST = �

2h̄
m × 〈s〉

= �a2

2h̄
m ×

∑
s=±

∫
d2 p

(2πh̄)2
fs(x, p,t)ss , (28)

where τ ST is the sum of all the separate spin torques we list
below. We evaluate the integral in Eq. (28) up to first order in
the damping parameter α and gradient of the magnetization

and up to second order in the spin-orbit-coupling strength λ.
Note that we include only terms linear in the electric field,
and that we take ∂m/∂t = 0. Taking into account this time
dependence gives rise to the renormalization of damping and
gyromagnetic ratio that we already discussed in the previous
section.

In agreement with our phenomenological arguments [see
Eqs. (8) and (9)], we obtain two spin torques that are zeroth
order in the gradient of the magnetization, which are given by

τ (1) = |e|meλa2

πh̄2

(
�τr

2h̄
− α

2εF

�

)
(E × ez) × m; (29)

τ (1⊥) = |e|meλa2

πh̄2 [(E × ez) × m] × m. (30)

These homogeneous SO-induced spin torques were derived
before.12,18 In the case α = 0, we agree with Manchon and
Zhang12 and with Kim et al.18 about the ratio between the
reactive and dissipative torques. In addition, for α 
= 0, we
find another contribution to these torques coming from spin
relaxation. Note that the two torques given above form a
perpendicular pair, one dissipative and one reactive. In what
follows we will group the torques into these pairs when both
reactive and dissipative torques emerge to second order in SO
coupling.

All other torques are first order in the gradient of the
magnetization. The first two torques we find are given by

τ STT = −|e|τra
2

πh̄2

(
�

2
+ 2

αh̄meλ
2

τr�
− 12meλ

2 εF

�

)
×(E · ∇)m; (31)

τ STT⊥ = |e|ατra
2

πh̄2

[
εF + meλ

2

2

(
7 + 4ε2

F

�2

(
3 + 4m2

z

))]
m

× (E · ∇)m, (32)

which are the well-known STTs that also occur in systems
with negligible SO coupling [see Eq. (4)] and are due to the
spin-polarized current in the direction of the electric field. The
ratio of these two torques defines the β parameter. We find that

β = −2α

�

[
εF + mλ2

R

(
7

2
+ ε2

F

�2

(
30 + 8m2

z

))]
. (33)

In the previous section we showed that the current can be
decomposed into three components. Several of the torques we
find can be interpreted as the ordinary spin transfer torques
[Eq. (4)] with current response modified due to the SO
coupling. First, we have the torques

−4|e|meεF λ2a2

π�2h̄
(m · ez)[(E × ez) · ∇]m;

2|e|meαλ2a2

π�h̄
(m · ez)m × [(E × ez) · ∇]m,

which are due to the anomalous Hall current j i
AH ≡ σ

ij

AHEj ,
and can therefore be written as

τAH = P( jAH · ∇)m; (34)

τAH⊥ = P α�

2εF

m × ( jAH · ∇)m. (35)
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Two torques can be interpreted to be a generalization of the
STTs coming from the anisotropic magnetoresistance response
given by Eq. (27). These torques are

τAMR = −2|e|meλ
2a2

π�h̄

(
α − 24

εF τr

h̄

)
[(E × ez) · m]

× [(m × ez) · ∇]m; (36)

τAMR⊥ = −|e|meλ
2ατra

2

πh̄2

(
5 + 16

ε2
F

�2

)
[(E × ez) · m]m

× [(m × ez) · ∇]m. (37)

The next torque, given by

τHall = −|e|meλ
2ατra

2

2πh̄2

(
1 + 4

ε2
F

�2

)
[(E × m) · ∇]m,

(38)

has the symmetry of a STT due to a normal Hall response. This
is not the normal Hall response because it is quadratic in the
SO-coupling parameter. In our description we did not include
the normal Hall response of the system, due to the smallness
of the effect.

The torques obtained up to this point could be interpreted as
the known SO-coupling-induced spin torques for Eqs. (29) and
(30) and the STTs [in Eqs. (31)–(38)] with a current response
that is modified due to SO coupling. Now we will list the
torques that cannot be interpreted as known current-induced
torques. We have the pairs

τ a = 2|e|meλ
2a2

π�h̄

(
εF τr

h̄
− α

)
[m × (E × ez)]

am

× (ez × ∇)ma; (39)

τ a⊥ = −4|e|meεF λ2a2

π�2h̄
[m × (E × ez)]

am

×[m × (ez × ∇)]ma, and (40)

τ b = −2
α|e|meλ

2a2

πh̄

τr

h̄
(E × ez)

am × (ez × ∇)ma; (41)

τ b⊥ = 2|e|meλ
2a2

π�h̄

(
α − εF τr

h̄

)
(E × ez)

am

× [m × (ez × ∇)]ma. (42)

We also have four torques that do not form reactive-
dissipative pairs, listed below:

τ c = 4
|e|meεF λ2τra

2

π�h̄2 (m · ∇m · ez)m × (E × ez); (43)

τ d = −4
|e|meεF λ2τra

2

π�h̄2 (E × ez)
a(m · ∇)ma(m × ez);

(44)

τ e = |e|meλ
2ατra

2

πh̄2

(
1 + 4

ε2
F

�2

)
Ea(m × ∇)ma; (45)

τ f = 3|e|meλ
2ατra

2

2πh̄2

(
1 + 4

ε2
F

�2

)
ea
z (m × ez)(E · ∇)ma,

(46)

When we discussed all the possible torques in Sec. II B we
always obtained pairs of a reactive and a dissipative torque.

TABLE I. Magnetic anisotropy configuration and the correspond-
ing domain-wall structures.

Easy axis (K) Hard axis (K⊥)

Bloch (z) z y

Néel (x) x z

Bloch (y) y x

There we looked only at the torques that respect the symmetries
of the system. That not all the torques we obtained via the
semiclassical approximation form reactive-dissipative pairs
means that within this approximation some of the allowed
torques are not realized. Note that the above torques are of
second order in ez, and have therefore not been explicitly
written down in Sec. II B. The current-induced spin torques in
this section are the central result of this paper. From the list of
torques we presented here it is clear that the interplay of SO
coupling and an inhomogeneous magnetization gives rise to
many spin torques. In the next section we consider their effect
on current-induced domain-wall motion.

VI. DOMAIN-WALL MOTION

In this section we investigate the effect the spin torques
have on current-induced domain-wall dynamics. We study
the domain-wall dynamics by employing the one-dimensional
rigid domain-wall model. Within this model the dynamics is
captured by the collective coordinates of the wall which are its
position rDW and central angle ϕDW. We study three different
realizations of domain walls summarized in Table I. Due to
the SO coupling the current-driven motion of the three walls
differs. In order to arrive at the equations of motion for the
collective coordinates we describe the direction of the magneti-
zation m = (cos ϕDW sin θDW, sin ϕDW sin θDW, cos θDW) using
two angles θDW and ϕDW. We use θDW(x,t) = 2 arctan{exp[x −
rDW(t)]/λDW} and the time-dependent but spatially homoge-
nous ϕDW(t), where λDW = √

J/K is the domain-wall width in
terms of the exchange stiffness J and the easy-axis anisotropy
K . This description of the domain wall is rigid, that is, the
domain wall can only move or rotate. The direction of the
electric field is specified by the angle φE with the x axis in
the x-y plane. The known13,24 equations of motion for the
collective coordinates rDW and ϕDW are augmented by terms
obtained from the current-induced torques of the previous
section. In the calculations we make use of the parameter
values as given in Table II. These parameters are typical for
metallic ferromagnets, and the value of the spin-orbit coupling

TABLE II. Parameters used in domain-wall motion calculations.

εF = 1 eV
� = 0.1 eV
mλ2 = 9 meV
α′

G = 0.05
α = 0.05
τ = 30 fs
λDW = 10 nm
a = 0.3 nm
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is taken from Ref. 16. Furthermore, we give the results as a
function of the critical field Ec and velocity vc for the case
without SO coupling, which are defined as24

vc = K⊥
h̄

λDW; Ec = vc

μ0
s

, (47)

where the spin mobility in the absence of SO coupling is
defined as

μ0
s = −|e|τr�a2

2πh̄2 ,

which is the zero-SO-coupling (λ → 0) limit of Eq. (31). In
Eq. (21) we introduced the renormalized Gilbert damping
parameter α′

G, which is the Gilbert damping parameter that

will be measured in experiments. We expect that the Gilbert
damping αG for the magnetization and the damping α for
the itinerant spins are of the same order of magnitude. In the
Appendix we give the equations of motion for the Néel (x)
and Bloch (y) wall configurations. Here we explicitly address
the Bloch (z) wall.

The equations of motion for the collective coordinates are
obtained by inserting the Bloch (z) domain-wall ansatz, as
given above, into the equation of motion for the magnetization
[see Eq. (21)]. To get the equations of motion we take the inner
product with δmBloch(z)/δrDW, for one equation of motion and
similarly for δmBloch(z)/δϕDW. Subsequently we integrate those
two equations over all space. The two equations of motion we
obtain in this way are given below:

ṙDW

λDW
− α′

Gϕ̇DW − K⊥
h̄

sin 2ϕDW =
(

π

2
τ (1) + 6τ a + 4τ c

6λDW
cos ϕDW − τ e

3λDW
sin ϕDW

)
E cos(φE − ϕDW)

+ 2τ b⊥ − 4τAMR

6λDW
E sin(φE − ϕDW) sin ϕDW − τ STT

λDW
E cos φE ; (48)

ϕ̇DW + α′
G

ṙDW

λDW
=

(
π

2
τ (1⊥) − τ a⊥

λDW
cos ϕDW

)
E cos(φE − ϕDW)

+ 4τAMR⊥ + 2τ b

3λDW
E sin(φE − ϕDW) sin ϕDW + 2τ f + 3τ STT⊥

3λDW
E cos φE. (49)

The scalars τ (i) are defined as the prefactors in front of the
vector quantities of the torques in Sec. V.

The boundary conditions for the current through the
ferromagnet are such that only a current in the x direction is
present. In the figures we took φE = 0, since the off-diagonal
contributions in the conductivity give rise to a small (<1% of
the external field for the parameters used) voltage gradient in
the y direction. The average domain-wall velocity is defined as
vDW = 〈ṙDW〉, where the angular brackets denote a long-time
average.

A. Interpretation of domain-wall motion

The results in Figs. 1–3 show that the inclusion of spin
torques due to the combined effect of SO coupling and
an inhomogenous magnetization changes the domain-wall
mobility μDW = dvDW/dE completely as compared to the
situation without these torques.

In Fig. 1 we show the average Bloch (z)–wall velocity
as a function of the applied electric field in the x direction.
The different lines correspond to the following situations: The
blue dashed and dot-dashed lines correspond to current-driven
domain-wall motion without torques induced by SO coupling,
i.e., only the STTs. The dashed line is the result of the limit
λR → 0 of Eqs. (48) and (49).

In Sec. III we obtained a renormalized version of the LLG
equation [see Eq. (21)] due to SO coupling, and in Sec. V we
showed that the parameter β also depends on the strength of
the SO coupling as can be seen from Eq. (33). The dot-dashed

line shows the result for keeping only the STTs in the equation
of motion but with the parameters renormalized by the SO
coupling. The dotted black line is the result with the STTs and
the homogeneous SO-coupling-induced torques in Eqs. (29)
and (30). The solid red line is the result for the full equations
of motion in Eqs. (48) and (49).

In Fig. 1 we see that the SO coupling splits the Walker
breakdown in two. Before Walker breakdown the domain-wall
angle is time independent, ϕDW(t) = φDW, where φDW is the
local minimum of a tilted washboard potential as shown in the
inset. This tilted washboard potential V (ϕDW) is obtained by
eliminating ṙDW from Eqs. (48) and (49), such that we obtain
the equation of motion ϕ̇DW = −dV (ϕDW)/dϕDW. When the
domain-wall angle is in a local minimum of the washboard
potential, ϕ̇DW = 0. Without SO coupling the washboard is
formed by the anisotropy energy only and the tilting is due to
the applied field E. When we add SO coupling to the equation,
the field also changes the washboard potential, leading to
inequivalent local minima. This explains the splitting of the
Walker breakdown for the Bloch (z) domain wall structure.

After Walker breakdown the asymptotic domain-wall ve-
locities are determined by the effective mobility, which is
simply μ0

s in the case without SO coupling. The effective
mobility for the case with only the homogeneous SO-induced
torques is the same as the mobility for renormalized current-
induced domain-wall motion with STTs only, which can be
seen by the asymptotic behaviour of the dot-dashed and dotted
lines. When we include all torques induced by the SO coupling
not only the magnitude but also the sign of this effective
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0. 0.02 0.04

1

0

1

E Ec

v D
W
v c

DW

V

FIG. 1. (Color online) Average velocity of a Bloch (z) wall as a
function of the applied field. The dashed (blue) line is the situation
without SO coupling (λR = 0), the dot-dashed (blue) line represents
current-driven domain-wall motion without torques induced by the
SO coupling but with the parameters renormalized by the SO
coupling, and the dotted (black) line shows the results with only
the homogeneous SO torques, i.e., τ (1) and τ (1⊥) added to the STTs.
The solid (red) line shows the result of the solution of the equations
of motion including all spin torques. The parameters used to obtain
these results are given in Table II. The inset is an illustration of the
tilted washboard potential of the ϕDW coordinate for increasing values
of applied field. Due to the SO coupling there are inequivalent local
minima. The angle points in the direction of the first local minimum,
with slightly more field the angle makes a fast rotation to the second
minimum. Above Walker breakdown there are no more local minima
and the angle rotates in time.

mobility changes with respect to the previously discussed
cases. The effective mobility is hard to calculate since the tilted
washboard potential for the domain-wall angle is nonlinearly
dependent on the applied field.

In Figs. 2 and 3 we show the results for the Néel (x) and
Bloch (y) walls, respectively. It is clear that also in these cases
the additional torques induce qualitatively different behaviour
of the domain-wall motion compared to the situation with
only the torques induced by SO coupling for homogeneous
magnetization.

0. 0.02 0.04

1

0

1

E Ec

v D
W
v c

FIG. 2. (Color online) Average velocity of a Néel (x) wall as a
function of applied electric field in the x direction. Lines are as in
Fig. 1. The equations of motion can be found in the Appendix.

0. 0.02 0.04

1

0

1

E Ec

v D
W
v c

FIG. 3. (Color online) Average velocity of a Bloch (y) wall as a
function of applied electric field in the x direction. Lines are as in
Fig. 1. The equations of motion can be found in the Appendix.

VII. DISCUSSION

In this paper we considered Rashba SO coupling. Our
results can be generalized straightforwardly to linear Dres-
selhaus SO coupling,25 which is linear in momentum too.
For linear Dresselhaus coupling the dispersion of the car-
riers is the same as for Rashba coupling. The effective
magnetization for the Dresselhaus SO coupling is given by
�D(x, p) = �m/2 + λD(−px,py,0)T . This means p × ez →
(−px,py,0)T when we go from the Rashba to the Dresselhaus
coupling. The current-induced torques we found in Sec. V
involve factors v × ez, where v is a vector. For clarity we
consider τ (1) ∝ (E × ez) × m [given in Eq. (29)]; for the
Dresselhaus system the torque would be in the direction
(E × ez) × m → (−Ex,Ey,0) × m. In this way we obtain
the results for the textured Dresselhaus ferromagnet. The
results for combined Rashba-Dresselhaus SO coupling are less
straightforward to obtain since the dispersion of the carriers
changes.

Another obvious place to look for the appearance of addi-
tional torques due to SO coupling would be in dilute magnetic
semiconductor systems, where the effective Hamiltonian for
the carriers also has strong SO coupling. In Ref. 26 spin
torques for the dilute limit are calculated for this system. In
that work one of the current-induced torques is interpreted as
an anisotropic dissipative STT. This anisotropic torque can as
well be interpreted as the torque given by Eq. (15). It would
be very interesting to see which other torques would appear in
those systems.

The reciprocal physical mechanism associated with current-
induced torques are currents driven by nonequilibrium mag-
netization dynamics, often referred to as spin-motive forces.
We obtain these using the Onsager reciprocal relations.27 We
do this via the linear-response matrix

(
ṁi

j i
c

)
=

(
mkεijk L

ij

CIT(m,ez,∇m)

L
ij

SMF(m,ez∇m) σ ij (m,ez,∇m)

)
·
(

H
j

eff

Ej

)
,

where L
ij

CIT(m,ez,∇m) is the (3 × 3) matrix that gives
the current-induced torques as defined in Eq. (7) and
L

ij

smf(m,ez,∇m) gives the spin-motive forces. These two
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matrices are related via Onsager reciprocity, which yields

L
ij

CIT(m,ez,∇m) = L
ji

SMF(−m,ez, −∇m).

VIII. CONCLUSION

We considered current-induced torques in systems that have
SO coupling and a textured magnetization. The effects of these
torques on domain-wall motion have been investigated. We
have shown that the effects of the interplay between the SO
coupling and the gradients in the magnetization are qualita-
tively important for domain-wall dynamics. In particular, we
showed that the inclusions of all torques typically changes the
domain-wall mobility as compared to including only the spin
transfer torques that occur at weak spin-orbit coupling and/or
the homogeneous spin torques due to SO coupling. The results
of this work may be used to discriminate between Rashba
SO coupling and injection of a spin current via the spin-Hall
effect, because the latter will show only the homogeneous
current-induced torques.

In future work we intend to explore in more detail the
spin-motive forces that arise due to SO coupling. Another
interesting direction for future research is the inclusion of
thermal gradients and heat currents.
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APPENDIX: DIFFERENT DOMAIN-WALL
CONFIGURATIONS

In this Appendix we give the equations of motion for
the Néel (x) and Bloch (y) domain-wall configurations. The
magnetic anisotropy configurations corresponding to these
different walls are given in Table I.

1. Néel (x) wall

The Néel (x) wall is parametrized as m = ( cos
[θ (x,t)], cos φ(x,t) sin[θ (x,t)], sin φ(x,t) sin[θ (x,t)])T . The
equations of motion are obtained as explained in Sec. VI
of the main text. The equations of motion for the collective
coordinates are given by

ṙDW

λDW
− α′

Gϕ̇DW = K⊥
h̄

sin 2ϕDW −
(

τ (1⊥) + 1

3λDW
τ e cos2 ϕDW + π

4λDW

(
τAH − τ b + τHall

)
sin ϕDW

)
E sin φE

−
(

π

2
τ (1) sin ϕDW + 1

3λDW

(
τ b⊥ + τ d − 2τAMR)

cos2 ϕDW − 1

3λDW
(3τ a + τ c) sin2 ϕDW + τ STT

λDW

)
E cos φE,

ϕ̇DW + α′
G

ṙdw

λDW
= 1

λDW

[
π

2

(
1

2
τ e−λDWτ (1⊥)

)
sin ϕDW− 1

3

[(
2τAMR+τ b

)
cos2 ϕDW−(−3τ a⊥+τ f ) sin2 ϕDW

]+τ STT⊥
]
E cos φE

+
(

τ (1) + π

16λDW
(4τAH⊥ − 4τ b⊥ − τ c − τ d) sin ϕDW

)
E sin φE.

2. Bloch ( y) wall

For the Bloch wall the magnetization is parametrized as m = ( cos φ(x,t) sin[θ (x,t)], cos[θ (x,t)], sin φ(x,t) sin[θ (x,t)])T . The
equations of motion are

ṙDW

λDW
− α′

Gϕ̇DW − K⊥
h̄

sin 2ϕDW = 1

3λDW
(τAMR − 2τ b − 3τ STT − τ d sin2 ϕDW + 3λDWτ (1)⊥)E cos φE

−
(

2

3λDW
τ e + π

4
(τAH − τ a⊥ + τHall + 2λDWτ (1)) cos ϕDW

)
E sin φE,

ϕ̇DW + α′
G

ṙDW

λDW
= − 1

3λDW
(τAMR⊥ + 2τ b + 3λDWτ (1) − 3τ STT⊥ − τ f cos2 ϕDW)E cos φE

+ π

32λDW
(8τ a + 8τAH⊥ + τ c + τ d − 16λDWτ (1⊥) − (τ c + τ d) cos 2ϕDW) cos ϕDWE sin φE.
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