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Chapter 1 

General introduction 

Inverse theory was developed by scientists and has been used in medical tomography, 
image enhancement, curve fitting, earthquake location, factor analysis, satellite naviga­
tion, mapping of celestial radio sources with interferometry, analysis of molecular struc­
ture by x-ray diffraction and determination of earth structure from geophysical data. 
Inverse theory provides mathematical techniques to obtain useful information about the 
physical world based on measurements (data). The resultant information from the inver­
sion usually are some specific properties of the world. These properties are called 
"model parameters" and there is some specific method, usually a mathematical theory or 
model, which relates the model parameters to the data. Inverse theory in contrast to for­
ward calculation, which predict the results of measurements on the basis of a model rel­
evant to the problem, estimates model parameters using the data and a general principle 
or model. It should be noted that inverse theory provides information about unknown 
numerical parameters that go into the model, not to provide the model itself. Neverthe­
less, inversion can often provide a means for discriminating between several possible 
models. The model parameters involved in the inverse problem are in the form of dis­
crete numerical quantities or of continuous functions of one or more variables. The first 
question that arises in the inverse problem is to determine whether the proposed model 
is an unique model or not. If it is not, then it is one of the infinite models that satisfy the 
observed data. This is known as the nonuniqueness of a solution of the inverse problem. 

1.1 Nonuniqueness 

Nonuniqueness of the inverse problem can occur because of:
 
- Inherent nonuniqueness.
 
- Uncertainty in the data and insufficient parameterization.
 

1 



2 CHAPTER 1 

- Combination of both inherent nonuniqueness and uncertainty in data and insufficient 
parameterization. 

1.1.1 Inherent nonuniqueness 

There is an infinite number of models which can satisfy the observed data. For instance, 
potential field data are inherently nonunique. The nonuniqueness of potential data has 
been proven by the equivalent layer theorem which states that the gravity potential at 
any point outside a surface which is due to the matter inside the surface is the same as 
would be produced by a layer of matter distributed on the surface. This theorem points 
out that an infinite range of distributions of matter are possible which could fit the 
observed data. However, the nonuniqueness can be reduced if some constraints or 
a priori information on the parameters are imposed. For example, if the shape of the 
body causing the gravity anomaly is assumed to be a sphere or a cylinder, a simple 
expression can be obtained that leads to the unique solution. This means that initial con­
straints have to be imposed upon the distribution of matter inside the surface. However, 
even the assumption that the structures are two-dimensional does not give a unique solu­
tion to the gravity problem (Skeels 1947). The question of nonuniqueness can be inves­
tigated by examining the global properties of the misfit function. If the surface of the 
misfit function has a single minimum then the solution is unique and if it has more than 
one minimum with the same value then the solution is nonunique . Some interesting 
publications for further reading are Roy (1962), Backus and Gilbert (1970), AI-Chalabi 
(1971-a), Negi et ai. (1973), Parker (1977), Menke (1989), Tarantola (1987). 

1.1.2 Uncertainty in the data and insufficient parameterization 

The uncertainty in the data can be caused by an experimental error and the insufficient 
parameterization by insufficient model specification. The inverse problem becomes ill­
conditioned due to these effects. The inversion schemes with noise are dependent on the 
covariance of the noise and one has to design a criterion to discard this dependency of 
noise at a certain level. There are some criteria to cut-off the noise by filtering small 
eigenvalues (known as regularization which suppress unwanted oscillations in the 
model), e.g. Wiggins (1972), Jackson (1972), Koch (1985) in which a well known 
damped least-squares inversion scheme is utilized with singular value decomposition of 
the matrix to be inverted. Other regularization techniques have been set up to handle the 
ill-conditionality of the inverse problem, e.g. Tikhonov et ai. (1977). Regularization 
techniques increase the accuracy of the estimated solution but degrade the spatial reso­
lution. The trade off between accuracy and the resolution of the estimated model param­
eters are well discussed by Backus and Gilbert (1970\ 
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1.1.3 Combination of both inherent nonuniqueness, uncertainty in 
data and parameterization. 

When both the effect of inherent nonuniqueness and of the uncertainty in the data and 
insufficient parameterization are present in the inversion, even more difficulties occur in 
finding a reliable solution. A special strategy should be chosen to handle this problem, 
e.g. constraining some of the model parameters and employing regularization tech­
niques. 

1.2 Classification of the inverse problem 

Inverse schemes are classified depending upon the relation between the changes in the 
model parameters and their effects on the observations. These relationships can be lin­
ear, weakly nonlinear and highly nonlinear. 

1.2.1 Linear inverse problem 

Linear dependency between data and model parameters, such as occurs for gravity and 
magnetic data which have a linear dependency with respect to density and magnetiza­
tion respectively, leads to a system of linear equations. This system may be overdeter­
mined (number of equations or data is more than number of model parameters) or 
underdetermined (number of equations is less than number of model parameters) or 
evendetermined (number of data is equal to number of model parameters). Since usually 
there is no exact solution for the resultant linear system of equations (even in cases 
where the problem is evendetermined), the system is usually solved in the least-squares 
sense which will lead to a matrix inversion. 

Due to singularity or near singularity the inverse of the matrix does not exist or is 
computed inaccurately. The remedy to overcome such a situation has been proposed in 
the damped least-squares inversion (Marquardt 1963) and in the singular value decom­
position technique (Penrose 1955). 

1.2.2 Weakly nonlinear inverse problem 

As long as the perturbation of the model from the initial model is small, we expect that 
the relationship between the change in model parameters and its effects on the observa­
tions is linear. Such problems are known as weakly nonlinear, and can be linearized. 
The linearization will results in a system of linear equations which can be solved, for the 
model perturbation, in the least squares sense by one of the available and stable 



4 CHAPTER 1 

algorithms. 

After estimating the model perturbation the current model is updated and the 
updated model should be used for further iterations. The iterations are continued until 
convergence is achieved, i.e. the model perturbation or the data misfit lies below a pre­
assigned threshold. This type of inverse problem usually is solved by one of the gradi­
ent methods (Dennis et ai. 1983). 

1.2.3 Highly nonlinear inverse problem 

The relationship is highly nonlinear and can not be linearized. Nonlinear inversion can 
be solved by the Simplex method (Polytope algorithm) or trial and error methods such 
as Simulated Annealing, Monte Carlo and Genetic Algorithm which are quite time con­
suming. 

1.3 Solution of potential field data inversion 

A solution of the inverse problem is often available by optimizing (minimizing or maxi­
mizing) a function of the model parameters. As mentioned before there may be a linear 
or a nonlinear dependence of the function on the parameters. The interpretation of 
potential field data (gravity and magnetic) in terms of the physical parameters (density 
or magnetization) is linear and in terms of shape parameters is nonlinear. Most opti­
mization methods require the provision of an initial estimate. This initial estimate usu­
ally is acquired from information about the anomalous body or from the anomaly profile 
(Smith 1960). The position of initial search points generally determines the minimum 
or maximum to which the search will converge. By proper choice of the initial point 
therefore, a certain aspect of the anomalous body can be emphasised so that the opti­
mum solution would be biased towards that aspect. The move from one point to another 
point in the model parameters space usually involves optimization of an objective func­
tion which is carried out by one of the optimization techniques. The process is repeated 
until some convergence criterion is satisfied (Al-Chalabi 1971-a). 

Optimization methods may be classified as gradient methods and direct search 
methods. The gradient methods involves the calculation of partial derivatives of the 
objective function with respect to the variable parameters. Direct search methods do not 
usually employ partial derivatives of the object function. They are slower than the gradi­
ent methods, but more useful when the current search point is far from the optimum 
(such as the simplex or polytope algorithm). Owing to the complexity of the objective 
function, direct search methods should be employed at the early stages of the search 
where gradient methods tend to converge to an iII-defined local minimum. 
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In certain cases of inversions of gravity or magnetic data, parameters are simulta­
neously and iteratively adjusted and it is tried to find a minimum point in parameters 
space. By trial and error one or several optimum points may be found. These local min­
ima with low function values may occur in geologically unfeasible regions. It is, there­
fore, important to confine such minima by using appropriate constraints. 

A geometric representation may also be useful. In this manner (adjusting simulta­
neously parameters) a contour map of the objective function is plotted. The behavior of 
the objective function may then be studied visually by means of two-dimensional cross­
sections. In feasible region, contours of a magnitude equal to the tolerance of the prob­
lem delimit domains in which each point provides a possible solution (possible ampli­
tude of observational errors). 

1.4 Nonuniqueness of gravity and magnetic data inversion 

The most important factors responsible for a nonunique solution in the inversion of
 
gravity and magnetic data are:
 
- Intrinsic ambiguity in potential fields.
 
- Incomplete knowledge of the full length of the anomaly which is a direct result of
 
practical limitations.
 
- The anomalous feature is usually represented by models which are substantially sim­

pler than the feature. This factor results in the existence of many models all satisfying
 
the data equally well.
 
- Observational errors resulting from measurement, reduction, etc.
 
- The widths of individual parts of the model are small compared with the depth (caus­
ing a large number of highly oscillating models may then produce anomalies which
 
closely agree with the observed anomaly).
 
- The decrease of resolving power of gravity and magnetic data with depth.
 
By improving these factors the solution becomes more unique (Al- Chalabi 1971-a).
 

I.S History of gravity and magnetic data inversion 

Gravity and magnetic surveys have been used widely over the years, resulting in a great 
amount of data with enormous areal coverage. Gravity and magnetic data have been 
used for mapping geological structures, especially in the reconnaissance stage of explo­
ration. In recent years also robust and efficient inversion algorithms have been devel­
oped for detailed prospecting. The work done so far in gravity and magnetic data inver­
sion can be classified into two domains: spatial domain and wavenumber or frequency 
domain. 
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Inversion of the data in the space or wave number domain can be implemented in 
one of the following ways: 
- Inversion for solving shape and physical parameters simultaneously. 
- Inversion for solving physical parameters (density, magnetization) while shape param­
eters are kept fixed. 
- Inversion for solving shape parameters (depth, thickness, etc) fixing physical parame­
ters (density or magnetization). 

1.5.1 Spatial domain 

In the three past decades considerable effort has been devoted to the explanation of 
gravity and magnetic anomalies by geometrical shapes whose parameters are estimated 
from data inversion in the spatial domain. From the many examples in the literature only 
some typical ones are given in the following. 

1.5.1.1 Inverting data for solving both physical and shape parameters 

In this case the inverse problem is completely nonunique which can be overcome by 
some special strategy. The behavior of the misfit function (discrepancy between the 
observed and predicted gravity data) was studied in the hyperspace of the model param­
eters (density and shape parameters) by Al-Chalabi (l971-b). The nonuniqueness of the 
problem is visible in the two-dimensional sections as a large number of well-defined 
local minima some of them being distinguished as unfeasible, others as possible solu­
tions. He showed that unacceptable solutions can be confined by specifying some of the 
model parameters (reducing the nonuniqueness of the problem). In this work the 
nonuniqueness of the inverse problem of gravity and magnetic data is well shown and 
discussed. An iterative method based on trial and error was constructed by Bhat­
tacharyya (1980) for evaluating the strike and magnetization vector and top and bottom 
of the blocks, constructing the model, with fixing the horizontal dimension of the block 
from the magnetic data. As he mentioned the drawback of this approach is that a unique 
solution can not be found. 

A 3-D algorithm for joint inversion of magnetic and gravimetric data was intro­
duced by Zeyen H. (1993) based on the use of a priori information. This information 
is used in the inversion in order to obtain a solution compatible with the given a priori 
information. The data is inverted for susceptibilities, remanent or total magnetizations, 
density and upper and lower bounds of a source whose form is restricted to a set of ver­
tical rectangular prisms with fixed lateral bounds. This restriction hardly affects the abil­
ity to adjust the anomaly data but simplifies the model input and helps to keep the inver­
sion process stable and fast. It is observed that the inversion process is more stable and 
straightforward for gravimetric than for magnetic data due to the higher second 
derivatives and therefore strong non-linearity of the magnetic depth parameters, 
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especially for near-surface sources, which introduce a tendency of these parameters to 
overshoot. 

A 3D inversion of high precision gravity data was introduced by Camacho et at. 
(1994) for detection of cavities and galleries. The method of least-squares prediction is 
applied to separate the different wavelengths of the field by interpolating the correlated 
signals and filtering the random errors. The final residual values were used for 3-D 
global least-squares inversion to determine the densities, the origins and the radii of the 
spheres constituting the model. After inversion the spheres which show the highest 
adjusted density contrast are assumed to correspond to major cavities. 

1.5.1.2 Inverting data for solving physical parameters 

In this class of data inversion, the earth is divided into a limited number of cells of fixed 
size but of unknown physical parameters such as density or magnetization. Nonunique­
ness of the solution is evident and algorithms have been developed to produce a single 
model by minimizing an objective function. 

A generalized linear inverse (eigenvalue decomposition) approach was employed 
by Braile et at. (1975) to solve the density distribution for a two-dimensional body 
modeled by many horizontal rectangular prisms. Decreasing resolution of densities of 
individual prisms with increasing depth, as is expected for gravity problems, is shown 
by the analysis of the model resolution matrix. This method can not yield a compact or 
localized solution for the anomaly. 

A single density contrast of a two-dimensional model was obtained with 
weighted-distance minimization of density contrast by the Backus-Gilbert approach by 
Green (1975). In this approach the model is made of rectangular prisms with initial den­
sity and fixed coordinates. The gravity data is inverted by successive applications of the 
method until a simple model of one density obtained. During the iterations, a weight is 
given to every prism to keep certain blocks at a known density, and the number of itera­
tions is judged by an acceptable fit between profiles of model and data. In all cases, 
application is directed toward finding a compact body (during the iterations some blocks 
get zero density) with single density. 

Linear programming was used by Safon (1977) in an underdeterrnined inverse 
gravity problem to give bounds on some physical parameters such as partial and total 
mass or position of the center of mass. The set of all solutions of this underdeterrnined 
problem is described by various convex diagrams of moments (a moment is defined as a 
linear functional of density); plots of these moments gives the bounds. Some constraints 
are used to reduce the underdeterrninancy of the problem. 

A constrained inverse gravity problem was posed as a linear least-squares prob­
lem with the variables being densities of two-dimensional prisms by Fisher (1980). 
Upper and lower bounds on the densities are prescribed so that the problem becomes a 
linearly constrained least-squares problem, which is solved using a quadratic 
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programming algorithm designed for upper and lower bound-type constraints. The solu­
tion is smoothed by damping, using singular value decomposition. If the solution is 
required to be monotonically increasing with depth, then this feature can be incorpo­
rated. He pointed out the only inflexibility in the method is the geometry, which should 
be changed in the light of an unsuccessful run. 

The anomalous density distribution of a body was obtained by Last and Kubik 
(1983) by minimizing the volume or equivalently maximizing the compactness of the 
body with an iterative technique. The objective function was defined as a summation of 
the weighted squares of the model parameters and the misfit. Using an iterative method 
the objective function was minimized by adjusting the model parameters and the 
weights. The method was illustrated by the inversion of synthetic and real gravity data 
assuming a two-dimensional model consisting of a regular array of identical rectangular 
blocks whose densities were individually specified. The method was expanded for sin­
gle density models. The advantage of this approach is that desirable geologic character­
istics can be incorporated into the model. 

The density distribution for a two-dimensional model was determined by mini­
mizing the moment of inertia (criteria for homogeneous and more compactness of struc­
tures) with respect to the center of gravity or with respect to a given dip line passing 
through the body by Guillen et ai. (1984). In this method the effect of noise and geo­
logic constraints on the density contrast is also considered. In general the procedure 
which minimizes the volume will be appropriate in the case of a sedimentary basin, 
while the minimization of the moment of inertia with respect to the center of mass will 
be more suitable in the search for massive ore deposits, and the minimization of the 
inertia with respect to an axis will be more appropriate for dike-like structures. 

A 3D gravity inversion was performed for modeling discrete bodies with nonuni­
form density distributions employing seminorm minimization by Hammer (1991). The 
seminorm minimization inversion chooses the simplest or most nearly uniform structure 
which fits the data within a specified misfit and provides a useful bound upon the den­
sity structure. In this method it is assumed that the density function comprises two­
components: a uniform and a nonuniform component. If the uniform component is 
known exactly, then the minimization problem is to find a density function such that the 
absolute norm of the difference between the density function and an uniform component 
or absolute norm of the nonunform component is minimum (seminorm) and the data 
still fit. The inputs required by the inversion are the gravity anomaly field and the body 
shape. Tests using synthetic bodies show that the inversion reconstructs density trends 
but does not define sharp density boundaries. The inversion models lateral density vari­
ation more accurately than vertical inhomogeneities. The method was applied to model 
the density structure of seamounts. 

A method was developed by Murata (1992) to estimate the Bouguer density from 
observed gravity data. The method assumes that a suitable density will lead to a smooth 
surface function fitted to the gravity anomalies calculated from the observations. With 
this assumption, the method fits a two-dimensional cubic B spline function to the 
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gravity data by finding a suitable density that gives the optimum trade-off between 
smoothness and goodness of fit to the gravity anomalies. This trade-off is interpreted by 
an objective Bayesian procedure and determined by minimization of Akaike's Bayesian 
information criterion (ABIC). When the anomalies correlate with topography, this 
method can effectively estimate the Bouguer density, because the Bouguer anomalies 
are estimated by the fitted curved function. This method can also be used to get informa­
tion about the shallow rock type, where results of mapping and/or exposures are miss­
ing. 

A compact 2D gravity inversion technique was extended by Barbosa et at. 
(1994) to allow compactness along several axes using Tikhonov's regularization method 
(1963). A regularizing operator is constructed by minimizing a smoothing functional 
that allows the incorporation of a priori information about maximum compactness of 
anomalous sources along several axes. This method is a generalization of the methodol­
ogy developed by Guillen and Menichetti (1984). Relative weights can be assigned to 
each axis, leading to different mass concentrations around different axes. This method 
is particularly applicable to constant, linear density sources such as mineralizations 
along faults and intruded sills, dikes, and laccoliths in a sedimentary basin. The correct 
source density must be known with a maximum uncertainty of 40 percent; otherwise, 
the inversion produces thicker bodies for densities smaller than the true value and vice­
versa. If information about the direction of the compactness axes is unsufficient the 
inversion can not represent the shape of the anomalous sources. 

1.5.1.3 Inverting data for solving shape parameters 

In this class the physical parameters are assumed to be known and nonlinear operators 
should be designed to determine the geometry of the source. However, geophysical 
inversion methods are most effective when a linear operator is applied, thus the problem 
is usually linearized about some initial model and then the inverse problem solved itera­
tively. 

Two-dimensional gravity anomalies were interpreted by Corbato (1965) in order 
to determine the shape of a disturbing mass with known density contrast using a least­
squares technique. The procedure starts with an initial model and the gravity anomalies 
are evaluated and compared with observed values. Adjustments are then made to the 
model by a least-squares approximation which uses the partial derivatives of the anoma­
lies so that the residuals are reduced to a minimum. This method without any regulariza­
tion was used for the case when the number of data and of model parameters was quite 
small. 

Gravity and magnetic data were interpreted assuming a two-dimensional model 
by Pedersen (1977). The data are inverted for solving depth of the basin using a combi­
nation of singular value decomposition technique and the Marquardt method iteratively. 
The model is comprised of a limited number of rectangular prisms extending infinitely 
in one direction. During the iterations the densities or susceptibilities and the depth to 
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the top are kept fixed. After final solution, the resolution and infonnation density matri­
ces were analized. This method is used for a small number of data and of model param­
eters. 

Stabilized linear inverse theory was applied to the problem of detennining the 
topography of a subsurface density contrast from Bouguer gravity observations when 
the density contrast was kept fixed (Burkhard 1976). In this problem a linear combina­
tion of the Euclidean square norm of the errors and model parameters is minimized with 
considering a linear constraint about the model parameters. The concept of resolving 
power is extended to the problem with fixed linear constraints. The error of removal of 
the regional trend is also considered. 

The generalized linear inverse method in the two and half dimensional case was 
used to invert simultaneously magnetic and gravity profiles by Menichetti et at. (1983). 
The joint inversion was used to reduced the ambiguity of the problem. 

Gravity and magnetic data was inverted to obtain the continuous lower surface of 
a 2.5 dimensional sedimentary basin by Mickus et at. (1991). The problem is solved 
with linearized inversion employing the Backus and Gilbert technique (1967,1968,1970) 
using spectral expansion (Parker 1977). In this work an average model is calculated. A 
resolution analysis for synthetic and real data shows the high frequency oscillations can 
not be resolved and even though the final solution varies, the average models are very 
similar, except along the basin margins. Apart from this the final solution is initial 
model dependent, but the average models are independent of the initial model except at 
the margins. 

1.5.2 Wave number domain 

During the last three decades, spectral analysis of gravity and magnetic anomalies has 
been used in a variety of geological applications, such as the estimation of the depth, 
width, thickness, and physical parameters (density and magnetization) of a source 
responsible for an anomaly on the base of statistical assumptions. Inversion of the data 
in the wavenumber domain has some advantages (e.g. calculations are faster than the 
spatial domain) and disadvantages (e.g. transfonnation of an irregular data set to a regu­
lar one by which some information is lost). In the following some typical examples are 
gIven. 

1.5.2.1 Wave number domain inversion for solving both physical and shape param­
eters 

A method was developed for modeling and inversion of gravity anomalies by prismatic 
bodies by Garcia-Abdeslem (1995). The forward problem is solved in the wavenumber 
domain, while the power spectrum of the gravity anomaly is given by the product of 



11 GENERAL INTRODUCTION 

independent functions that describe depth, thickness, horizontal dimensions, and the 
density of the source body. The inverse problem is iteratively solved by a ridge­
regression algorithm, starting from an initial trial of the geometry and density of the 
source body. A restriction for this method is imposed by the geometry of the prism as a 
representation of the source body. Nevertheless it can provide a first-order insight into 
the geology. Besides in mining geophysics, this method can be useful in archaeology 
for the search of buried artifacts. 

1.5.2.2 Wave number domain inversion for solving physical parameters 

Formulas for the calculation of the physical model parameters (density or magnetization 
distribution) both for gravity and magnetics from a generalized linear inversion scheme 
employing two-dimensional Fourier transformation were developed by Cribb (1976). It 
was also pointed out that the process of finding a distribution in the wavenumber 
domain leads to the familiar upward continuation and to a reduction is the amount of 
computations. 

1.5.2.3 Wave number domain inversion for solving shape parameters 

The formula used for the rapid calculation of the gravitational anomaly caused by a two­
dimensional uneven layer of material (Parker, 1973) was rearranged to an iterative pro­
cedure for calculating the shape of the perturbing body given the anomaly (Oldenburg, 
1974). The advantage of this method is the possibility to handle a large number of 
model points. The convergence of the iteration can be assured by the application of a 
low-pass filter. The nonuniqueness of the inversion is due to two free parameters: the 
assumed density contrast between the two media, and the level at which the inverted 
topography is calculated. To reduce this ambiguity additional geophysical knowledge is 
required. Without additional information constraining these two parameters, the ambi­
guity can not be reduced. The shortcoming of the method can be due to the fact that if 
the assumed density is too small or the reference level is too deep, no topography can be 
found which give rise to the given anomaly and also the convergence of the iteration is 
very sensitive to the bandwidth of the filtering. These limitations are shown both by syn­
thetic and real data. 

The Schmidt-Lichtenstein theory of nonlinear integral equations was applied to 
develop a noniterative inversion scheme of gravity data in terms of a single density con­
trast by Granser (1987). The nonlinear method is based on the formula for the rapid cal­
culation of the gravitational anomaly caused by a two-dimensional uneven layer of 
Parker (1973). The stability of the inversion scheme is restricted to a low-frequency 
domain with a theoretically derived cut off frequency which is dependent upon the 
amplitude of the gravity anomaly, the magnitude of the density contrast, and the mean 
depth of the interface. The method was tested by a synthetic profile-like and a 3-D field 
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example. Shortcoming of the method is a loss of high-frequency information due to the 
low-pass filtering which ensures the convergence of the inverse expansion series. How­
ever, sometimes this limitation may reflect the fact that sufficiently small-wavelength 
disturbances in the shape of the density interface have a vanishingly small effect on the 
gravity anomaly and this can be considered as an ill-posed problem. 

A particular inversion was conducted by Chenot (1990) to take into account inho­
mogeneous density or magnetization distributions reflecting sediment compaction and 
basement heterogeneities: above the interface, the density can be approximated by an 
exponential function, and below it, an intrabasement contrast map can be used. The 
starting model was characterized mainly by the interface mean depth and the mean 
parameter contrast between the two media, which can be obtained from spectral analysis 
of the transformed data (wavenumber domain) and from constraints. The depth adjust­
ment is completed iteratively under constraints using a space-domain formulation 
derived from the Bouguer-slab formula. The interface model effect is computed in the 
wavenumber domain. This technique can only be used in conditions where enough 
information is available about the parameters which define the model. 

1.6 The aim of this work 

The aim of this work is to develop inversion methods for determining the position and 
physical parameters of a body responsible for an anomaly, from potential field data. The 
methods that have been developed have the following advantages : reducing inherent 
nonuniqueness; handling strong nonlinearity; handling ill-conditionality due to the large 
number of data and of model parameters; fast convergence; robustness against noise and 
reducing nonuniqueness due to underdeterminancy. 

In chapter 2 a robust method is developed that can handle the effect of inherent 
nonuniqueness of a highly nonlinear inverse problem when both physical and shape 
parameters are supposed to be estimated from the inversion and when the data repre­
sents more than one anomaly and contains some inaccurate or out-of range points (out­
liers). This method was successfully employed to detect unexploded bombs, left from 
second world at Schiphol airport in The Netherlands, from magnetic data obtained in 
boreholes. 

In chapter 3 a subspace method is introduced to handle the ill-conditionality of 
an inverse problem due to the large number of data and of model parameters and when 
the objective function can be approximated by a quadratic surface. In this case the Hes­
sian matrix (matrix of the second partial derivatives) should be calculated. This method 
is sufficient for the case when the assumed model is two dimensional since for the three 
dimensional case the calculation of the Hessian is rather cumbersome when the number 
of data and of model parameters is rather large. This method finds a solution with mini­
mum variance very quickly. The method was applied to gravity data from the Roervalley 
graben in the southern part of The Netherlands to determine the shape of interfaces 
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separating layers (assuming a two and three- layer model). 

In chapter 4 another subspace method is developed in which the calculation of 
the Hessian is avoided and the inversion converges fast to a solution with minimum vari­
ance. This method is sufficient for the case when the assumed model is three dimen­
sional and when the objective function can be approximated only by the linear terms. 
Since the calculation of the Hessian matrix is avoided, the number of data and of model 
parameters can not be problematic. This method was successfully applied to gravity 
data for an area in The Netherlands where seismic results did not give a decisive answer 
about the continuation of a potential hydrocarbon reservoir. 

In chapter 5 an inversion strategy is introduced which can combat with the prob­
lem of nonuniqueness due to underdeterminancy and is able to handle a large number of 
model parameters. It finds a solution which is localized and reliable. This method was 
used to detect man-made cavities near Maastricht in the south of The Netherlands from 
microgravity data. 

Although the numerical methods introduced here are used for gravity and mag­
netic data interpretation, they can also be employed for other geophysical data interpre­
tation. The work concentrates only on the spatial domain to overcome the difficulties of 
the wavenumber domain transformation. For instance an irregular data set should be 
transformed into a regular form before it can be used in the wavenumber domain, by 
which some information will be lost. Despite the drawbacks, in some cases inversion in 
the wavenumber domain has some advantages, e.g. it is faster. 
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Chapter 2
 

An iterative method for finding small 
magnetic objects in the subsurface by 
linear and nonlinear inversion 

Abstract 

A method to detennine the position and magnetization vector of buried objects produc­
ing a magnetic anomaly is described. The data used were collected in boreholes. Since 
the anomaly is due to a number of objects a "stripping" procedure is employed for find­
ing them. Therefore the process of inversion for finding all objects causing the anomaly 
consists of a few inversion steps. In each inversion step, two dipoles are considered as a 
model which approximates an object. The position and magnetic moment of each dipole 
is the unknown parameters. Initial parameters are optimized by minimization of an 
objective function. The optimization procedure consists of a combination of linear and 
nonlinear inversion. The solution of the linear inversion is obtained by singular value 
decomposition and of the nonlinear one by a six-dimensional simplex method (Polytope 
Algorithm). After finding one object its effect is subtracted ( "stripped" ) from the data 
and with this reduced data set a new inversion step is started with new initial models. 
The inversion steps for finding different objects are continued until the absolute nonn of 
the data becomes less than some adjustable value. The data will also be inverted assum­
ing a three-dipole model to find the effect of using a more complex model in the inver­
sion. The efficiency of the method is demonstrated using synthetic and real borehole 
data. 

17 
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2.1 Introduction 

It is well-known that an infinite number of differing models can provide possible alter­
native interpretations for observed potential field data. The solutions of inversion of 
magnetic anomalies usually involves nonuniform magnetization distributions and no 
particular restrictions regarding the shape of the anomalous body. Under certain con­
straints, this ambiguity can be reduced, so that a given anomaly may be interpreted in 
terms of a reliable solution. 

Inversion of potential field data in terms of the shape of the anomalous body is a 
non-linear and with respect to physical parameters a linear problem. In some cases the 
extent of ambiguity can be reduced by specifying one or more parameters: 
(a) With a fixed susceptibility or density, magnetic or gravity data can be inverted to 
determine the shape parameters of the body. Shown e.g. by Corbato (1965) ; AI-Chalabi 
(1971a) ; Kunaratnam (1972) ; Pedersen (1977) ; Menichetti and Guillen (1983) ; 
Mickus and Peeples (1992). 
(b) Keeping shape parameters fixed, the physical parameters can be calculated for a 
body consisting of many blocks or prisms. This leads to finding approximately the dis­
tribution of the physical parameters. Shown e.g. by Green (1975) ; Braile, Keller, and 
Peeples (1975) ; Safon, Vasseur, and Cuer, (1977) ; Bhattacharyya, (1980) ; Last and 
Kubik (1983) ; Guillen and Menichetti (1984). 

In some cases both physical parameters and shape parameters can be considered 
as unknown parameters. Then linear and nonlinear inversion can be employed for solv­
ing physical and shape parameters. This method was used by Bredewout et ai. (1993) 
for finding unexploded bombs at Schiphol airport. They used a one-dipole model for 
each magnetic object which can only be justified if the distance between the bomb and 
measurement point is large compared to the size of the bomb. In the present paper mod­
els consisting of two or three dipoles will be considered. The reason for this is that a 
bomb, due to differences in thickness and geometry of the different parts, can not be 
considered as a homogeneously magnetized spherical object. Demagnetization effect are 
more important for the middel part of the bomb, where the shell is relatively thin, than 
for the thicker top and bottom. 

The magnetic data inversion aims at calculating the physical parameters (the vec­
tors of the magnetic moments) and the position parameters (the position of the object) 
without specifying any of these parameters. In this case the inverse problem will be 
ambiguous. The ambiguity can be reduced by selecting two strategies: 

1. An appropriate model; one of the factors causing ambiguity is representing the 
anomalous feature by a model which is substantially simpler than the feature (AI­
Chalabi 1971b) . Therefore, choosing a model which is compatible with the object caus­
ing the anomaly can reduce the degree of ambiguity. 

2. Employing a combination of linear and nonlinear inversion offers the possibil­
ity of keeping fixed position parameters while inverting the data for physical parameters 
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and vice versa. 

Moreover, the borehole data provide information about a good starting position, 
close to the object, for the linear and nonlinear inversion. This advantage and employ­
ing the two above strategies yields a solution which is acceptable. 

2.2 Calculation of the model response 

Following Panofsky and Phillips (1962) the anomalous magnetic field at the position r 
caused by a magnetized body is given by: 

(1) 

Where M(s) is the magnetization vector at sand GB(r, s) is Green's function (actual1y 
a matrix) which can be written as (Panofsky and phil1ips 1962; Parker, Shure and Hilde­
brand 1987) 

J.1o V V 1 J.1o [3(r - s) (r - s)T I]
GB ( r, s) = 41r r r Ir _ sl = 41r Ir _ sl5 - Ir _ sl3 (2) 

where J.1o is permeability of free space with value 41r X 10-7 VsA -1 m-1, superscript
 
" T " indicates matrix transpose and I is an identity matrix.
 
The vertical component of the anomalous field has to be calculated using:
 

(3) 

Where ez is a unit vector in the vertical direction. 
The predicted data d/'re at the position ri is the difference of the vertical component of 
the magnetic field at two positions rjl and r; vertically above and blow the position ri 

(middel of positions r't and r;). This can be calculated as fol1ows 

dpre(rj) = Iv e/ .(GB(r't, s) - GB(r;, s» . M(s)d3s (4) 

where superscript" pre" indicates predicted for the data. 

With G(ri' s) =ezT . (GB(r't, s) - GB(rL s» equation (4) becomes 

dpre(ri) = Iv G(ri's), M(s)d 3s· (5) 

Replacing the continuous magnetization, M(s), by p magnetic dipoles with magnetic 
moments m j at positions S j ( j = 1, ... , p) the integral in equation (5) is replaced by a 
summalion: 
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p 
dpre(ri) = ~ G(rj,sj)mj' (6)

j=l 

Each of the vectors r i, ri, r;, S j and m j is three dimensional. 

2.3 Methods for solving linear and nonlinear inversion 

We aim to determine the positions and magnetic moments of the dipoles which approxi­
mate small objects causing the anomalies. A nonlinear inversion is used to find the best 
positions of the dipoles to fit the data. 

In each step of this nonlinear inversion method an objective function must be cal­
culated at a number of fixed positions. For each of these fixed positions the best fitting 
values for the magnetic moments of the dipoles are determined by linear inversion. 
These best values are used for the calculation of the objective function of the non-linear 
inversion (see figure 2.1 ) 

2.3.1 Linear inverse problem 

In the linear inversion n observations (difference of the vertical component of the 

anomalous magnetic field) do = (dol' d o2 " ", don)T , with standard deviations (Jj, 
are inverted to find the magnetic moments of the p dipoles, m j' using the following 
weighted least squares criterion (Menke 1989) : 

n p 2.
L IWj(doj - ~ G(rj, s)mj)1 = Mm (7) 
j=O j=1 

where W j is a weighting factor which will be specified latter. 
The above criterion is used to give an approximate solution to the following linear set of 
equations 

WGM= Wdo . (8) 

In this equation do is the data vector with dimension n, G is a matrix with dimension 
n X 3P whose elements are the components of the Green function (in the x,y and z 
direction) used in equation (6), M is the vector of the magnetic moment components 
with dimension 3p X 1 and W is a n X n diagonal weighting matrix. 
The generic form of the above equation is 

Ax=b (9) 

where A, x and b stand for WG, Mand Wdo respectively. There are some algorithms 
for solving the above linear sets of equations such as Gauss Jordan Elimination, LU 
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LOCATE THE VERTICAL PROALE WITH THE LARGEST ABSOLUTE NORM 
AND DETERMINE ITS ZERO-CROSSING COORDINATES 

SELECT LOCAL DATA SET AROUND THE CHOSEN PROFILE 

CALCULATE WEIGHTING FACTORS FOR LINEAR INVERSION 

CREATE INITIAL POSITIONS FOR DIPOLES AROUND THE ZERO-CROSSING 

NONLINEAR INVERSION: OPTIMIZE THE POSITIONS OF THE DIPOLES USING 
THE SIMPLEX METHOD (EACH TIME WHEN FUNCTION VALUE IS TO BE 
CALCULATED THE MAGNETIC MOMENTS OF THE DIPOLES ARE ALSO 

OPTIMIZED BY LINEAR INVERSION) 

THE EFFECT OF THE OBJECT (APPROXIMATED WITH THE DIPOLES) 
FOUND IS SUBTRACTED FROM THE DATA AND DETERMINE IF THE 

OBJECT FOUND IS A BOMB 

NO -=--=----­

YES 

~ 
Figure 2.1: Block diagram showing the inversion scheme ofmagnetic vertical profiles. 

decomposition, and singular value decomposition. 

In some cases the nonnal equations in the least squares method are singular or 
very close to being singular. In the former case there is no solution at all and in the latter 
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case LU decomposition or Gaussian elimination may give a solution vector, x, whose 
components are large and when multiplying by the matrix A , may give a very poor pre­
diction to b. 

To overcome this deficiency we use the singular value decomposition technique. 
This method determines the solution in such a way that the euclidean norms of both pre­
diction error lAx - biZ and model parameters IxlZ are minimized by zeroing the small 

eigenvalues of the square matrix ATA (see e.g. Store and Bulirsch 1980; Press et al 
1986). Singular value decomposition techniques truncating small eigenvalues have been 
used for inversion of different geophysical data by Jupp and Vozoff (1974) ; Braile, 
Keller and Peeples (1975) ; Pedersen (1977) ; Menichetti and Guillen (1983) ; Ward and 
Young (1980) ; Narasimha Rao etal. (1994). In our case the machine precision was 

10-6 and single precision variables mode was used for all calculations, thus eigenvalues 

less than largest eigenvalue X 10-6 were truncated. 

2.3.2 Nonlinear inverse problem 

To find the position and the approximate size of the buried small objects it can be 
assumed that the effect of the anomalous object is the same as the effect of one dipole or 
a limited number of dipoles when the size of the object causing the anomaly is small 
compared with the distance to the measurement points. 

As mentioned before, the objective function is nonlinear with respect to the posi­
tion parameters (the positions of the dipoles). The solution s is to be found by mini­
mization of the following objective function: 

n p 

F(s) = L 1Wi(doi - L G(ri,sj)m)l· (10) 
i=O j=1 

The objective function, F(s), is the absolute norm of the data misfit (II norm).
 
It has already been discussed in the literature that using II norm criterion has superiority
 
to Iz norm or least-squares criterion when the data represent more than one anomaly and
 
contain some inaccurate or out-of-range points (outlier). Generally speaking the II norm
 
is more robust against the noise than Iz norm criterion. Shown e.g. by Menke (1989) ;
 
Vigneresse (1977) ; Clarebout and Muir (1973) ; Barrodale and Young (1966).
 

In order to obtain a reliable solution, a nonlinear optimization procedure is used 
to find S but for every position where F(s) is to be computed, the components of the 
magnetic moments m j are optimized by solving the weighted linear inversion with 
fixed s. This will reduce the nonuniqueness of the problem. 

To solve the nonlinear part of the problem the simplex method or Polytope Algo­
rithm is used which is suitable for II norm minimization since it only uses function cal­
culation and not partial derivatives for the minimization. 
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Direction set methods such as a combination of the steepest descent method and 
inverse Hessian matrix and the variable metric method were also tested. Both methods 
need calculation of first partial derivatives and use the 12 norm criterion for the mini­
mization of the objective function. None of these methods could converge to a reliable 
solution. 

The following (mentioned by Neider and Mead, 1965) is an additional justifica­
tion for the simplex method: 
- " When the curvature of the landscape, measured by the Hessian matrix of second 
order derivatives, is changing rapidly, the simplex method is more efficient than other 
methods which depend on arguments applicable to quadratic form". When the sources 
responsible for the anomalies are close to the measurement points and the model con­
tains high spatial frequenCies the curvature of the objective function will change very 
rapidly with position. The present inverse problem satisfies this condition thus the sim­
plex method is an efficient method for the minimization of the objective function. 

The simplex method used here is described e.g. by Neider and Mead (1965). This 
method is sufficient where the number of the model parameters is moderate and is suit­
able for the present problem with the number of the model parameters being six or nine. 
It optimizes the initial position of the dipoles iteratively. The iterations are terminated 
when the fractional range from the highest to lowest value of the objective function and 
also the vector distance moved are less than 0.05 and 0.01 m. The maximum number of 
iterations for optimization is set to 200. 

2.4 Efficiency of the method 

2.4.1 Synthetic data 

The efficiency and the limitations of the method will be shown using some synthetic 
borehole data. 

Here, the conditions under which the real data were acquired, are simulated. In 
the real data a borehole is drilled from the surface to a certain depth and a PVC pipe is 
fixed in it. The boreholes (pipes) are arranged in equidistant parallel rows. 

We assume a cartesian coordinate system which x and y directions show rownum­
ber and pipenumber respectively. The position of the pipes is shown in figure 2.2. The 
depth of the boreholes, the distance between rows, and between pipes in a row is 
assumed to be 7, 2.8 and 1.4 m respectively. 

The difference between the vertical components of the magnetic field at two posi­
tions 0.4 m above each other is calculated (using equation 4) and considered as one 
measurement at the point half way between these two positions. The distance between 
measurement points in each pipe is 0.25 m. The total number of measurements is 348. 
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With the above explanations we can now define the weighting factors wi which 
are used in the linear and nonlinear inversion. They are the same for all data corre­
sponding to one pipe (vertical profile) and only change from pipe to pipe. This factor is 
defined for each pipe as follows 

Ji I-atldLldil 
i=! 

Wi= --+13 ( 11) 
ndp 

[ 

13 is a constant and prevents the factor from becoming large when the absolute norm of 
the data of pipes (vertical profiles) are very small. a is also a constant and d i are the 
data (synthetic or real) and ndp is the number of the data in each pipe. After some tests 
the best value found for a was 0.6 and for 13 was 60 nT. If the anomalies are smaller 
and the noise level is lower 13 can be smaller. 

In this way more weight is given to data from a pipe far from the object, where 
the anomaly is small (e.g. 50 nT), while the weight for the data from the pipe close to 
the object (anomaly e.g. 5000 nT) is less (this is true for the cases when looking for 
small magnetic objects in the subsurface). 
In all tests (also for real data) the fit in the tables is defined as follows: 

tl tl 

L Idil - L Iri l 
Fit = i=l i=! X 100 (12)

tl 

Lldil 
i=! 

where n is the number of the local data set and d i are data and ri are residuals (differ­
ences between original and predicted data). 

In all synthetic examples, 5% Gaussian noise (N) was added to the signal (S). 
The signal to noise ratio is defined as (Ward and Young 1980) 

! 

S [~ (d 
re )2]2 (13) 

N - na2 

where n is the number of data, dre 
are synthetic noise-free data, and a 2 is the variance 

of the data error. 

In the following four trials with synthetic data will be explained: 
Trial 1. In the first example the anomalous field is assumed to be due to a narrow long 
object which can be approximated by a two-dipole model. This object is positioned 
between rows 1,2 and pipes 1,2. The coordinates of the two dipoles and the components 
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of the magnetic moments of the two dipoles (true model) are presented in table 2.1 (trial 
1). The effect of this object is calculated for all observation points. In the first example 
the standard deviation (a) of the noise was 3.9 nT. The data was inverted by assuming a 
two-dipole model. 

For a two-dipole model there are six parameters; three coordinates (Xl, YJ, Zl) of 
the first dipole and three coordinates (X2, Y2, Z2) of the second dipole. Therefore, for 
the nonlinear minimization a six dimensional simplex method has to be used, with seven 
initial points which will be constructed at about zero-crossing depth around the pipe 
containing the data with the maximum absolute norm. This is done because the object 
will be the closest to the pipe with the maximum absolute norm of the data and because 
for a vertically magnetized object (which is most likely in The Netherlands where the 
earth magnetic field is nearly vertical) the zero-crossing of the anomalous field is at the 

Six dimensional simplex method (synthetic data) 

Trial Dipole TMlIM x y z m x my mz m t Fit 

1 

1 
TM 3.30 1.80 4.10 -0.69 0.99 1.92 2.26 

95% 
1M 3.30 1.81 4.10 -0.55 0.91 1.94 2.21 

2 
TM 3.60 1.90 3.75 1.24 -0.57 2.12 2.52 

1M 3.59 1.89 3.74 1.14 -0.52 2.05 2.40 

2 

1 
TM 3.40 4.60 3.75 0.49 0.59 2.23 2.35 

97.3% 
1M 3.32 4.72 3.63 0.53 0.54 1.56 1.73 

2 
TM 3.20 4.50 4.10 -0.74 0.57 1.92 2.13 

1M 3.25 4.45 4.06 -0.09 -0.05 2.40 2.40 

3 

1 
TM 2.30 1.10 3.70 0.49 0.39 1.03 1.20 

95.0% 

1M 2.22 1.08 3.74 0.11 0.68 1.36 1.52 

2 
TM 2.40 1.20 4.00 -0.54 -0.27 0.82 1.01 

1M 2.42 1.27 4.02 -0.20 -0.60 0.47 0.97 

3 
TM 3.10 3.20 4.10 0.89 0.59 1.43 1.78 

1M 3.17 3.13 4.10 0.85 0.77 1.50 1.89 

4 
TM 3.20 3.30 3.75 -0.54 -0.97 1.22 1.65 

1M 3.21 3.29 3.78 -0.77 -1.11 1.40 1.95 

4 

1 
TM 4.15 2.10 4.05 -1.00 1.50 2.10 2.76 

95.7% 
1M 4.15 2.13 3.98 -0.77 1.38 3.05 3.43 

2 
TM 4.30 2.10 3.80 0.50 -0.10 1.50 1.58 

1M 4.43 2.08 3.68 0.24 0.04 0.51 0.56 

Table 2.1: The results of the synthetic data inversion. TM and 1M stand for true model 
and inverted model. x, y, z and fix, fir rnz show the position coordinates (in m) and 
magnetic moment components ( in Am ) of the dipoles respectively. The fit indicates 
the total magnetic moment ofone dipole in Am2

. 
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depth of the object. It should be mentioned that measurements on excavated bombs 
showed that the induced magnetization is always much stronger than the remanent mag­
netization (Bredewout, 1989). 

After fixing the positions of the dipoles, the weighted linear inversion is started 
for each initial point. By linear inversion the best magnetic moments for each couple of 
dipoles and the data misfit can be found (for each initial point). These data misfits are 
the first calculated objective functions for the simplex routine. The routine returns 
seven optimized locations of the dipoles with their data misfit. The best point with the 
minimum value is the final position of the dipoles. The results are arranged in table 2.1 ( 
trial 1). 

As can be seen, the position of the dipoles are better resolved than the compo­
nents of the magnetic moments since the least squares criterion was used in the linear 
inversion to solve the magnetic moments of the dipoles and the absolute norm criterion 
for the nonlinear one to sol ve for the position of the dipoles. 

The original and predicted data are plotted in figure 2.2. Because the amplitudes 
of the anomalies have a wide range, we cut them off at ± 200 nT, in order to show the 
small amplitudes better. 
Trial 2. In the second trial the object is placed outside the space where the rows and 
pipes are positioned. In this case the position of the object is near row 1, pipe 3. Only 
the data of nine pipes (figure 2.3) were used for the inversion since the effect of the data 
of other pipes was negligible. The original model and the results of the inversion after 
adding noise to the data (0' = 8.2 nT) can be seen in table 2.1 (trial 2). 

The positions of the dipoles are better resolved than the components of the mag­
netic moments of the dipoles by the data. This effect can be explained by the small 
number of data used in the inversion. When the number of data becomes less, it has less 
influence on the inverted model and causes the condition number to become larger and 
in turn the model to be more affected by noise. The fit between the original and inverted 
data is shown in figure 2.3. This example indicates that this method can also be used for 
the the case where the data is only measured on a plane at the surface (the measurement 
points will be on a horizontal plane instead of a vertical plane) . 
Trial 3. In the third trial the anomalous field is assumed to be due to the existence of 
two small objects while each object is approximated by a two-dipole model. The first 
object is positioned between rows 0, 1 and pipes 0, 1 and the second one between rows 
1, 2 and pipes 2, 3. The standard deviation of the data is 5.9 nT. The first object was 
found in the first inversion step, and after subtracting the effect of this object from the 
data, the second inversion step found the second object. The results of this example are 
shown in table 2.1 (trial 3). 

Again the position of the dipoles was better resolved by the data than the mag­
netic moment components. The error of about ±O.05 m in finding the position and 
about ±20% for the total magnetic moments of the dipoles seems to he reasonable when 
searching for small iron objects that must be dug out. 
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Figure 2.4: Synthetic observations (squares) calculatedfor a model consisting of two objects and predicted 
tvdata due to the inverted model (crosses).	 '-D 



30 CHAPTER 2 

The distance of the dipoles for the first and the second object before and after 
inversion were 0.33 m, 0.39 m and 0.37 m, 0.36 m respectively. The fit between origi­
nal and inverted data is plotted in figure 2.4. 
Trial 4. If the source responsible for an anomaly is close to the measurement points ( 
the distance being smaller than two times the size of the object), the data not only has 
large amplitudes, but also can not be explained by a one-dipole model. For this situation 
choosing a more complex model will better explain the data since the data contains 
more information about the source (size or shape). This will be quantified latter during 
inversion of real data. On the contrary if the source is not close to the measurement 
points the data will contain less information about the source. Then inversion of the data 
can only give rough information about the source. 

Now the effect of using a two-dipole model for the case when the data has small 
amplitude (due to the object being not close to the measurement points compared with 
the size of the object) will be investigated. 

Consider an object between rows 1, 2 and between pipes I, 2 which is rather far 
from most of the pipes. The effect of the object is calculated using a two-dipole model. 
The data were inverted assuming a two-dipole model. The results are shown in table 2.1 
(trial 4). The magnitude of the magnetic moment of the first dipole is large compared 
with the second one thus the effect of the object is almost explained by one dipole since 
the components of the magnetic moment of the second dipole are small. In this case the 
distance between measurements and the object was more than two times the size of the 
object. The original and inverted data are plotted in figure 2.5. The fit of this trial was 
96 percent. 

We have found empirically that if the distance of the measurements (pipes) from 
the object are more than two times the size of the object, then the data will not contain 
much information about the size of the object since most of the effect of the object can 
be explained by a one-dipole model. Using a model with more than one dipole can only 
slightly improve the fit. However, using a two-dipole model (six dimensional simplex 
method) for this case instead of a one-dipole model (three dimensional simplex method) 
makes the results of the inversion more reliable due to acquiring more initial models for 
the inversion (there is more chance that the minimum found is a global one when more 
initial models are used for the inversion). 

2.4.2 Real data 

The borehole data used (measured with a differential vertical flux gate magnetometer) 
were collected at Schiphol airport in the Netherlands where many unexploded bombs 
had been left from the second world war, down to depths of 10m. The three dimen­
sional simplex method, approximating the magnetic object by one dipole, was employed 
earlier by Bredewout, Nolet and Nijdeken (1993) for detecting bombs at Schiphol air­
port. In the present paper the data were inverted by assuming three different models: 
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The first was a two-dipole model with six unknown magnetic moment compo­
nents for the linear inversion and six unknown parameters which define the position of 
the two dipoles for the nonlinear inversion. The simplex method in six dimensions is 
used to improve the initial position of the dipoles. 

The second was a three dipole-model. The nine dimensional simplex method was 
employed for the inversion. 

For comparison, inversion with a one-dipole model (three dimensional simplex 
method) was also performed. 

2.4.2.1 Two-dipole model, six dimensional simplex 

To test the method a few data set were chosen which had been collected in boreholes 
(pipes) in the vicinity of a buried bomb. The locations of rows and pipes are indicated 
in figure 2.6. The distance between pipes and rows is 1.4 m and all distances are mea­
sured with respect to the origin (row: 0 pipe: 0 ). 

The starting positions are chosen around the pipe containing the data with maxi­
mum absolute norm and at a depth where the observed anomaly shows its zero-crossing. 
In each inversion step the data are taken from the pipes (maximum 25) around the pipe 
with maximum absolute nonn of the data. After finding an object its effect is subtracted 
from the data and a new inversion step is started around a new pipe contains the data 
with the highest absolute norm. These steps are repeated until the absolute norm of the 
data of all pipes is below 75 nT, which is the minimum effect to be expected from a 
small bomb at a distance of 1.6 meter from the pipe. The magnetic moment of each 
object found can be compared with that to be expected from a real bomb (Bredewout 
et at. 1993), and it can be decided if the object found is a bomb. 

pipenumbers ~----> 

2 4 

Figure 2.6: The position of the rows and pipes for real data in the x-y plane. The" * " 
shows the position afthe bomb, projected on the x-y plane. 
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Three data sets were used for testing the method: 
I. The first data set contains the data from rows 0, 2 and 4. The first inversion step was 
started around the pipe with the maximum absolute value of the data (row: 2 pipe: 0). 
For this inversion step only the data of 9 pipes were used for the inversion since the 
effect of the data of other pipes was negligible (figure 2.7). The first object found, at 
depth 1.41 m, was very close to pipe: 0 row: 2 (figure 2.7). This object was explained by 
a two-dipole model was not interpreted as a bomb. Latter digging showed it to be a steel 
rod. 

After subtracting the effect of this object the reduced data set is shown in figure 
2.8. The starting positions for the second inversion step was around row :4 pipe: 1. In 
this step the data of 12 pipes was used for the inversion and the object found was a 
bomb (also proved by latter digging). The results of the three and six dimensional sim­
plex method of this step are presented in table 2.2 (data set 1). 

Comparison of the results shows that choosing a two-dipole model does not 
improve the fit very much (only about 5%) compared with the one-dipole model. In this 
model the first dipole has small magnetic moment compared with the second one and 
the coordinates of the position of the second dipole are roughly the same as those of the 
one-dipole model(with accuracy of ±O. 05 m). The fit between measured and predicted 
data for the six dimensional simplex method is plotted in figure 2.8 . From these it is 
concluded that there is no advantage in assuming a two-dipole model for this data set, 
since the pipes containing the data with large absolute value are absent and the data con­
tains no information about the size of the body. 
The unfitted data is due to two sources: 
(a) an unsatisfactory model for the bomb; this misfit is very small since the effect of the 
bomb is sufficiently explained by the dipoles found; 
(b) a thin layer enriched in magnetic minerals (almost in all pipes between 5 and 7 m 
depth). 

After subtracting the effect of the bomb from the data the inversion program con­
tinues and finds other dipoles, close to the pipes, to explain the effect of the thin mag­
netic layer (see figure 2.1). 
2. The second data set contains the data from row 1,3 and 5. 
In this data set the pipe with the highest absolute norm of the data is pipe 1 in row 3 
which is close to the bomb. 
Now the first object found by the inversion was the bomb. The results of this step are 
arranged in table 2.2 (data set 2). The fit between measured and predicted data is shown 
in figure 2.9-a. 
3. The third data set (figure 2.9-b) consists of the rows 2, 3 and 4. Pipe I in row 3 con­
tains the data with the largest absolute norm and the data of other pipes also have large 
amplitudes. The results of this step are arranged in table 2.2 (data set 3). The fit is plot­
ted in figure 2.9-b. 

From the results it can be seen that inversion of the second and third data set 
assuming a two-dipole model improves the data misfit about two times compared with 



36 CHAPTER 2 

Three, six and nine dimensional simplex method (real data) 

Oata set 30/60/90 Dipole x y Z lix liy liz lit Mt Fit 

I 

30 I 4.55 1.79 3.83 0.15 -0.05 4.37 4.37 4.37 27.3% 

60 
I 5.19 1.54 3.90 0.23 0.62 -0.03 0.66 

4.28 32.2% 
2 4.58 1.81 3.87 -0.10 -1.00 4.30 4.41 

2 

30 1 4.74 1.81 4.27 -3.91 0.48 4.78 6.20 6.20 26.7% 

60 
I 4.44 1.79 4.26 -1.35 1.26 2.27 2.93 

4.65 54% 
2 4.59 1.60 3.76 1.68 -2.64 2.21 3.71 

90 
J 4.42 1.50 4.28 0.40 -1.57 -0.36 1.66 

6.55 59.2%2 4.49 1.64 4.21 -0.72 4.65 3.58 5.91 

3 4.54 1.59 3.92 -2.00 -1.14 2.59 3.47 

3 

30 I 4.57 1.89 3.96 1.72 -0.11 3.73 4.10 4.10 25.3% 

60 
I 4.58 1.67 3.81 0.55 -0.86 2.85 3.03 

5.28 53.2% 
2 4.33 1.83 4.22 0.25 0.87 2.37 2.54 

90 
I 4.3J 1.83 4.39 -2.46 0.66 1.13 2.79 

5.58 56.7%2 4.56 1.64 3.91 0.44 -1.85 4.10 4.52 

3 4.24 1.61 4.07 0.08 0.36 -.07 0.37 

Table 2.2 :The results of the real data inversion. 3D, 6D and 9D standfor three, six 
and nine dimensional simplex method and M t shows the total magnetic moment of one 

· . A 2ob'Jeet In m. 

the one-dipole model: from 26.7% to 53.9% and from 25.3% to 53.2% respectively. 
This is due to the fact that the measurement points were rather close to the bomb (since 
the data plots show large amplitudes) , thus the data was more affected by the size of the 
bomb. The fact that the method has not been able to explain hundred percent of the 
local data set in this step proves that there are either still effects of other sources or the 
model should be even more complex to explain the unfitted data (three-dipole model 
will be tested later). 

The distance between the two dipoles (indicative for the length of the bomb) in 
both cases is about 0.5 m. The position of the dipoles in the six dimensions shows the 
bomb stands up about in a vertical position. 

If the effect of the bomb is subtracted from the data, in the next inversion steps the 
inversion program can find other dipoles to explain the residual data set. 

From the tests it is seen that if the measurement points are close to the anomalous 
body (within two times the size of the object) a simple model (one-dipole model) is not 

sufficient to explain the data and a more complex model (for example a two-dipole 
model) can better explain them. 
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Figure 2.9: Observed and predicted data. The largest amplitude of the observations and 
of the predictions from the inversion in row: 3 pipe: 1 were: a. 2448 nT, -2520 nT, and 
2530 nT, -2438 nT (data set 2) b. 2448 nT, -2550 nT, and 2518 nT, -2433 nT (data set 
3). These were again cut offat -200 and +200 nT. 
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The most important point in employing a simplex method is acquiring more dif­
ferent initial models (for three dimensional simplex method 4 and for six dimensional 7) 
than in most gradient methods (only 1) for the inversion. This brings more confidence 
that the minimum found is a global one or very close to it. The only deficiency in 
employing the simplex method with more dimensions seems to be spending more time 
on the calculations in one step but this is compensated by a more reliable solution and 
by a smaller number of steps required. 

2.4.2.2 Nine dimensional simplex method 

As seen in the six dimensional case, selecting a sufficient model for the problem in 
hand, leads to a better explanation of the data. 

It is therefore worth while to test the algorithm assuming a three -dipole model. 

The inversion method is analogous to the two-dipole case, but now the simplex 
method will be employed in nine dimensions. 

The results of this case for the second and third data set is also presented in table 
2.2. From the results it can be seen that the fit is slightly improved compared with the 
six dimensional cases: from 53.9% to 59.2% and from 53.2% to 56.7% respectively. 
The magnetic moment of the third dipole is much smaller than that of the two other ones 
(0.37 nT against 2.79 nT and 4.52 nT); this means the third dipole has had little effect 
on the predicted data. The distance between two dipoles (dipole 1 and 2) is 0.57 m 
while the real length of the bomb found at Schiphol airport was about 0.7 m. 

From the results it is inferred that assuming a three-dipole model for the inversion 
will only slightly improve the fit and thus it is not economic to consider models with 
more than two dipoles for all inversion steps. If we are interested in details of a certain 
object found by the six dimensional simplex method then other inversion strategies 
should be considered. For instance knowing the position of the objects found by the six 
dimensional simplex method some cells can be constructed around this position and a 
linear inversion can be performed. 

2.5 Conclusions 

Although there are many solutions for a magnetic anomaly, this nonuniqueness can be 
reduced to some extent by taking advantage of the problem in hand. In our problem we 
have a lot of borehole data and the information from these data indicate the starting 
positions close to the source, in each inversion step, for the linear and nonlinear inver­
sion. This, and alternative optimization of the position and magnetic moments during 
the process of the inversion, leads to finding a solution which is reliable. 
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Choosing a sufficient model for a problem in hand can improve the fit and yield a 
reliable solution. Selecting two-dipole and three-dipole models in the cases where the 
data were collected close to the object (close compared with the size of the object) 
improves the fit and the solution, but not the calculation time (compared with that for 
the one-dipole model). 

The results of the six or nine dimensional simplex method are more reliable than 
those of the three dimensional one since the former starts inversion with more different 
initial models, around the pipe with maximum absolute norm, than the latter and this 
gives more chance for the inversion to end up in a global minimum or very close to it. 

The results of the tests of synthetic noisy data show that the method can resolve 
the position of an object better than its magnetic moment components due to using II 
and l2 norm criteria in the nonlinear and linear inversion which solve the position and 
magnetic moment components of an object. 

The results for the magnetic moments and the positions of the dipoles are not 
exactly the same for different data sets and different models due to the following rea­
sons: 
a. The different data sets used and observational errors with different magnitude. 
b. The existence of the inherent nonuniqueness in potential field data which could not be 
damped perfectly for this special problem. 
c. The different number of initial models used for three, six and nine dimensional sim­
plex method. 

This routine can also be adapted for the case where the data has been measured in 
one plane, for example the earth's surface. 
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Chapter 3 

Inversion of 2D gravity data for interface 
geometry using the subspace method 

Abstract 

The subspace technique is employed for inversion of gravity data. The basis vectors 
chosen are the normalized eigenvectors of the second derivatives (the Hessian matrix) of 
the objective function calculated for an initial model. The matrix inversion in the sub­
space of the model parameters will be better conditioned due to the smaller dimension­
ality and the limited number of eigenvectors used in the inversion. Since the most signif­
icant eigenvectors corresponding to the largest eigenvalues are used in the inversion, 
those elements of the model which are likely to have less influence in fitting the data or 
lead to local minima are eliminated. The solution of the inversion, in the subspace of the 
model parameter, in this way has small variance. This method was tested by inverting 
gravity data assuming two-and three-layer model. The tests proved fast convergence 
and stability of the inversion against the noise. 

3.1 Introduction 

In most geophysical inverse problems there is a non-linear dependence of the observable 
quantities on the parameters describing the model. The most common way of solving a 
nonlinear inversion is to make a local linear expansion about current model and then to 
conduct a linear inversion for perturbation of the model required to match the observed 
data. The updated model should be used as the basis for a further linear inversion and 
the iterations are continued until convergence is achieved, i.e. the model perturbation or 
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the data misfit lies below a preassigned threshold. This type of inversion depends on the 
direct solution of a set of simultaneous linear equations which lead to a matrix inver­
sion. This approach has been employed by many people to invert gravity or magnetic 
data for solving position parameters, e.g. by Corbato (1965) ; Kunaratnam (1972) ; Ped­
ersen (1977) ; Menichetti (1983) ; Mickus (1992). 

The solution of a set of simultaneous linear equations is computationally very 
intensive when the number of data points and of model parameters become large. Thus 
for large scale problems, linearized techniques involving inversion of a Hessian matrix 
rapidly become difficult to handle. It can therefore be computationally advantageous to 
use techniques which can achieve convergence without the inversion of large matrices. 
To handle this problem, subspace techniques can be applied. Subspace techniques use a 
local minimization of an objective function in a subspace spanned by a limited number 
of vectors in the model space. The spanning vectors are called basis vectors. It is well 
known that the success or failure of a subspace technique depends upon the selection 
and the number of basis vectors chosen for the subspace. 

The subspace technique and its application to large-scale inverse problems are 
discussed by Kennett and Williamson (1988), Oldenburg et al (1993) and Sambridge 
(1990). 

In contrast to other authors we use as basis vectors the eigenvectors of the Hessian 
(second derivative of the objective function) matrix calculated for an initial model. 
Since the variance of the solution is related to the curvature and this in turn to the Hes­
sian of the objective function, the variance of the solution can be controlled by selecting 
those eigenvectors which correspond to the largest eigenvalues. Because the inverse 
problem is non-linear, we consider an iterative procedure for this case in which no large 
matrices need to be inverted since only a limited number of eigenvectors are taken into 
the inversion. This makes inversion fast and stable against the noise. It should also be 
stressed that the basis vectors will be calculated only once for the initial model (refer­
ence model). 

3.2 Methodology 

A solution of most nonlinear inverse problems can be approached by minimization of an 
objective function and the minimization may be stated in terms of an optimization prob­
lem. The choice of the objective function depends on the nature of the problem and the 
error statistics of the data. If it is reasonable to assume Gaussian statistics then we can 
choose to minimize the sum of squares of differences between observed and predicted 
data 

1F(x) = 2:1 
(do - d(x»TCd - ( do - d(x», (1) 

where x, d(x) and do are model parameters, predicted data and observed data vectors 
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respectively and Cd is the data covariance matrix, incorporating errors in the data. If it 
is necessary a, regularization term can be added to the above objective function. The 
aim is to find X in such a way that F (x) is minimum. 
Any solution of the above problem may be expanded in the following form 

p 
ref' ~ VXi = Xi . + £oJ ijaj i = I,' ··,M (2) 

j=! 

where x/e.f' are M parameters describing the reference model, Vij are the i-th compo­
nent of the orthonormal basis vectors (j=l, ... , P), a) are expansion coefficients which 
we seek to estimate. Usually P is less than M. Each set of expansion coefficients, aj, 
defines a point in a P-dimensional model space. The vector form of (2) is 

x = xre.f' + Va. (3) 

Since we will fix the reference model and basis vectors during the process of inversion 
only the expansion coefficient vector a should be estimated. Due to the nonlinearity of 
the inverse problem this can only be achieved after some iterations. 
In each iteration model perturbations are given by 

ox = Voa (4) 

If F(x) is a smooth function of x we can make a locally quadratic approximation about 
some current model x by truncating the Taylor series for F(x): 

TF(x + ox) = F (x) + r ox + "2
] 

oxT H ox (5) 

in terms of the gradient vector r and the Hessian matrix H. The gradient and the Hes­
sian matrix of the objective function, equation (l), can be calculated from: 

(6) 

(7) 

ddi(x)
where Gij = -::.--. The Frechet derivatives Gij can often be found analytically. In 

ox) 
equation (7) the term yoxG = yoxyoxd(x) appears with the data misfit, which describes 
the nonlinear dependency of the data on the model parameters. Since the nonlinearity is 
usually weak, the term is neglected in the computation of the Hessian. 

If we replace ox (in equation 5) by its equivalence from equation (4) we have a 
new objective function in terms of oa. Now minimization of the new objective func­
tion F(oa) with respect to new model parameters can be approached in the subspace of 
the original model parameters. The new model perturbations (oa) can be determined 

.... h b' . f' . dF(oa) 0 . 1 Pby mmlmlzmg teo ~ectlve unctIOn settmg :> = , for J = ,"', . This will 
u(8a) 

result in the following relationship: 
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(8) 

The model perturbation for each iteration can be approached by back projecting through 
equation (4) 

(9) 

If the number of selected basis vectors is P (P < M) matrix inversion of the projected 
Hessian is executed in the subspace of the original model parameters space. The small 
P X P projected Hessian matrix VTHV is usually well conditioned with reasonable 
choices for the basis vectors V. The above equation (9) represents the generalized lin­
ear inversion formula for the subspace method. 
For constructing the projected Hessian matrix we need to evaluate terms like 

i,j=I,···P (10) 

where vii) are column vectors of the matrix V. It is not necessary to construct the 

matrix G T ci G since only the following terms are needed for evaluating H p 

H(iJ) = b(i)T C-l b(j) (11) 
p d' 

where b(i) = G v(i), so only a single vector multiplication is required for each element 
of the Hessian. 

When the model perturbation, bX, is estimated the current model, X can be 
updated and the updated model can be used for further iterations. The iterations will be 
continued until significant reduction in the Root Mean Squared (RMS) error between 
data and model response is no larger observed. 

3.3 Choice of Basis Vectors 

Formula (9) gives the model perturbation in terms of the basis vectors V. Now the 
question is, how should the basis vectors be chosen. If the objective function (original) 
has a very sharp minimum in the vicinity of the estimated solution we would expect that 
the solution is well determined in the sense that it has small variance. Conversely, if the 
objective function F(x) has a broad minimum, the solution would have large variance. 
Since the curvature of a function is a measure of the sharpness of its minimum, we 
expect that the variance of the solution is related to the curvature of the objective func­
tion at its minimum. The curvature of a function can be measured by its second 
derivative (Menke, 1989). If we calculate the second derivative of the objective function 
in the vicinity of its minimum and decompose it into its eigenvalues and eigenvectors, 
the eigenvectors corresponding to large eigenvalues give the best directions of 
movement to a solution which has small variance. 

From the above argument we choose the normalized eigenvectors of second 
derivatives of the objective function (the Hessian matrix) as basis functions. The 
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Hessian matrix is calculated for a reasonably close reference model, as obtained from a 
rough analysis of the data possibly supplemented with information from seismic data, 
and decomposed into eigenvalues and eigenvectors using the singular value decomposi­
tion algorithm. Normalized eigenvectors are the basis vectors of the expanded solution. 

For homogeneous sampling each basis vector represents a different spatial fre­
quency, or wavelength for the model perturbations. In our case the basis vectors are very 
similar to sine and cosine functions and only a relatively small number P is required to 
describe a model. This forces each model parameter a j to be constrained by many data 
and results in an overdetermined problem. The redundancy in the data set may therefore 
be used to provide some statistical reliability in the estimated model parameters. 

If eigenvectors corresponding to small eigenvalues are used in the inversion as 
part of the directions of the movement in the model space, they will make large pertur­
bations in the model without having any significant effect on the predicted data. Since 
these directions of the movement (eigenvectors corresponding to small eigenvalues) are 
omitted by a cut-off in the number of the eigenvectors, matrix inversion executed in the 
subspace of the model parameters will be fast and stable. 

The conjugate gradient or singular value decomposition method can be used for 
solving linear inversion. By iterating the procedure we can approach the optimum value 
of a. Back transformation into full model space will result in an optimum solution for 
x. 

3.4 Uncertainty and Resolution of the Resulting Model 

The uncertainty in the resulting model arises both from the finite number of data and the 
observational errors in the data. In practical situations the observed data are unavoidably 
contaminated by errors. The uncertainty of the estimated model due to the data error 
propagation and resolution has been discussed by many authors (e.g. Wiggins 1972, 
Jackson 1972, Burkhard 1976). If the objective function is a smooth function of the 
model parameters and can be linearized in the neighbourhood of some reference model, 
the relationships of the data error analysis and resolution of the linear inversion can 
approximately be used for the nonlinear one. 

If the data are standardized to zero mean and unit variance we may write a covari­
ance matrix C for propagated data error from linear inversion in the form 

(12) 

where Hsb+ is the generalized inverse of the subspace method. The square roots of the 
diagonal elements of the matrix C give the uncertainty in each individual parameter 
estimate due to data error propagation. 

Model perturbations in each iteration in the least squares sense, say t5x, are given 
by solving the following linear equations system 
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H bXtrue = - r . (13) 

Premultipling both sides of the above equation by H sb+ results in 

Hsb+H bXtrue =- Hsb+r . (14) 

Since the right hand side of the above equation is just the estimated model, bX, the fol­
lowing equation gives the relation between estimated and true model perturbation for 
the linearized inversion 

bX = Hsb+H bXtrue . (15) 

The resolution matrix R can be defined as 

(16) 

If R is the unitary matrix then all model perturbation parameters are resolved perfectly. 
If the ith row of the resolution matrix R is denoted by ri(';) then the parameter Xi can 
be considered as the weighted average of the whole set of parameters with the averaging 
kernel ri(';)' The averaging kernels r;(';) are typically maximum in a range about the 
position parameter';. 

Using the equivalence of the generalized inverse, Hsb+, from equation (12) the 
resolution matrix can be written in the form 

(17) 

The resolution matrix will be the unitary matrix if its rank is M. The more eigenvectors 
are used as basis vector in the inversion, the more the errors of the data will propagate 
into the estimated model parameters and the more the resolution will improve ( Hsb+H 
will approach the unitary matrix). Thus there is a trade off between error propagation 
and model resolution. 

3.5 Forward Calculation 

For the sake of brevity, we restrict the methodology to the case of two-dimensional 
gravity sources. Extensions to three-dimensional modeling are straightforward. 

A finite region in the vertical x - z plane is divided into M rectangular prisms. 
Each prism is infinite in the y-direction. Upper and lower boundary of the prisms 
approximate interfaces between layers. Between two interfaces the density contrast is 
assumed to be constant. 

The vertical component of the gravitational attraction g of one elementary prism 
at a measurement point (xo,Yo) is given by 
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g(xo,yo) == 1 I dx dz (18)Kp f f V z log 
x z Ir - r o 

where K is the gravitational constant, p the density contrast and rand r 0 are the vector
 
distances from the origin to a point of the prism and the observation point respectively.
 
For simplicity we assume the observation point is at the origin, r 0 == O.
 
After integration and some manipulations the gravity effect of one elementary rectangu­

lar prism is given by:
 

XI2 + Z22 -1 x2 -I XI }
-xllog 2 2-2ZI(tan --tan -) (19) 

xI+Z I ZI ZI 

Where xj, x2, ZI and Z2 are the boundaries of the elementary prism. 

In general we assume a model consisting of n layers and n-l interfaces which sep­
arate the layers. The nth layer is also assumed to be extended to infinity. Each layer 
consists of M elementary prisms whose lower boundaries approximate the interface 
between the layers. Each interface and each elementary prism within one layer is 
indexed by i and j respectively. From these conventions the effect of all M elementary 
prisms at one observation point can be calculated by summing up the effect of all ele­
mentary prisms, assuming the density contrast is the same for all prisms within each 
layer, as follows 

(20) 

where Pi+1 == 0 if i == n. 

The first partial derivatives of the predicted data with respect to the model param­
eters (lower boundary of each elementary prism) can be obtained from: 

j = 1, .. ,m i == 1, .. , n(21) 
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3.6 Efficiency of the Method 

We tested the efficiency of the method with synthetic and real data to determine inherent 
limitations. The following examples assume a priori that the density contrast between 
layers are constant and known. 

3.6.1 Example with synthetic data assuming a two-layer model 

We consider an interface separating two layers with a density contrast of -0.5 g/cm3 . 

The interface is approximated by the lower boundaries of 40 rectangular prisms. The 
maximum depth of the interface is about 4.5 km. The width of the model and of the pro­
file are 27 and 30 km respectively (figure 3.2-a lower part, dashed line). The effect of 
the model was calculated at 100 observation points. 5% Gaussian noise was added to 
the data. The standard deviation of the noise was 2.3 mGal. 

Taking a horizontal flat interface at a depth of 2 km as reference model the Hes­
sian was calculated and decomposed into its eigenvalues and eigenvectors. Figure 3.l-b 
shows plots of normalized eigenvectors or basis functions ordered from top to bottom in 
order of decreasing corresponding eigenvalues. These are very similar to Fourier series. 
Each eigenvector plot shows the relative weights that each of the model parameters 
receive in each eigenvector. Eigenvectors corresponding to large eigenvalues show a less 
oscillatory behavior. These eigenvectors give the best constrained search directions in 
model space and have the most significant effect on the predicted data. The more eigen­
vectors used in the inversion the more oscillatory will be the inverted model. 

Now the question is how many eigenvectors should be used in the inversion. 
Therefore, the logarithm of the condition number (the ratio of the largest eigenvalue }q 

to each eigenvalue A.i) is calculated and plotted versus eigenvalue numbers (figure 
3. I-a). This plot does not show any sharp cut-off number above which the eigenvalues 
start to decrease rapidly. Thus from this point we can not decide about the number of 
eigenvectors to be used in the inversion without causing instability. By doing some tests 
we have found empirically that if eigenvalues are chosen with a condition number less 
than one hundred then inversion is stable. This empirical upper limit for the number of 
eigenvectors has been used in the inversion. In this example it corresponds with an 
eigenvalue number 12. 

First we will show the effect of the number of the eigenvectors used in the inver­
sion on the final results. During the process of inversion the reference model is kept 
fixed and only the perturbations to the model are optimized. 

The solid line in the bottom panel of figure 3.2-a shows the obtained model after 4 
iterations, when 5 eigenvectors are used. The resultant model is a smooth model and the 
misfit is greater than the standard deviation (3.96 against 2.30 mGal). Vertical bars 
denoting an uncertainty less than 0.1 km on the estimated model which are quite small. 
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Figure 3.2: In each part the top panel shows the fit between the predicted (bold curve) 
and synthetic data (dashed curve) and the bottom panel shows the agreement between 
the inverted model (bold curve) and true model (dashed curve). The data was inverted 
using a) 5 b) 8 c) 12 d) 8 eigenvectors respectively. In (a), (b), (c) cases the level of 
noise was 5% and in (d) /0%. 
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Using 8 eigenvectors (figure 3.2-b) the misfit after four iterations is slightly less 
than the standard deviation ( 2.24 against 2.30 mGal). Figure 3.2-b shows that the true 
model is almost retrieved and noise is not minimized. 

Figure 3.2-c shows large perturbations generated in the model which indicate 
instability in the inversion. For this case using 12 eigenvectors we obtained a misfit of 
2.15 mGal, which is less than the standard deviation. This indicates that the data are 
being fit excessively, which is an additional indication that too many basis vectors have 
been used. 

These plots show that only a limited number of eigenvectors (in this case 7 or 8) 
may be used in the inversion without degrading the data fit. The number of basis vectors 
to be used depends in general on the number of data, on the distance of measurements 
points from the sources responsible for the anomaly and on the reference model. 

We also increased the level of the noise to ten percent and inverted the data using 
8 eigenvectors. The results are shown in figure 3.2-d. The model is almost retrieved. The 
uncertainties of the model parameters are still small (vertical bars plotted on the inverted 
model). This test shows again stability of the inversion against the noise. 

The results of the inversion for different reference models will be almost the same 
if they are not selected too far from the mean depth of the true interface. The maximum 
number of eigenvectors which can be used in the inversion depends on the selected 
depth for the reference model and the number and configuration of the data. By doing 
some tests we found that the best choice for a reference model is the mean depth. Infor­
mation about the mean depth of single interface can be obtained from the data itself or 
from other sources. 

3.6.2 Example with real data assuming a two-layer model 

In order to test the algorithm with real data a set of gravity measurements taken across 
the Roervalley graben in The Netherlands has been used. The measurements are irregu­
larly spaced and of varying precision. The profile is 70 km long and consists of 234 
measurements. The unfiltered data without any smoothing or interpolation was used for 
the inversion. The density contrast between basement and sedimentary rock is -0.55 
g/cm3

, which was obtained from well information. The model is assumed to be a 2D 
one. 

In the first trial the interface was approximated by the lower boundary of 20 ele­
mentary prisms. We assumed a flat interface at a depth of 0.7 km as reference model and 
inverted these dense data using all 20 eigenvectors. Due to the large number of data 
points each part of the model will be well constrained and the matrix inversion well con­
ditioned. 

While inversion for a small number of model parameters and dense data is usually 
very stable, it can not represent a detailed model. Figure 3.3-a shows the results of the 
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Figure 3.3: In each part the top panel shows the fit between predicted data (bold curve) 
and observed data (dashed curve) and the bottom panel shows the inverted model. The 
results of the inversion were obtained with a) 20 b) 35 eigenvectors. The crosses show 
some information from bore holes and mining activities. 

inversion after 4 iterations. The fit between predicted and observed data is not indeed 
very good because of the inadequate number of model parameters. The misfit for this 
trial was 0.92 mGal. The uncertainty of the model parameters was calculated by assum­
ing a standard deviation (noise level) of 0.3 mGal for the observations. On the inverted 
model the uncertainties, shown by vertical bars, are smaller than 0.02 km and therefore 
hardly visible. The existence of the faults in the model is evident. The crosses in the 
figure are the depth information from bore holes and mining activities. Apart from the 
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Figure 3.4: Resolution matrix plots when 35 eigenvectors are used in the inversion (ver­
tical scale of each model parameter box is -1 to +1). 

margins there is a good agreement with the inverted model. 

In the second trial we modeled the data with 120 parameters. Then, the condition 
number becomes 100 for an eigenvalue number of 35, which therefore can be consid­
ered as the upper limit for the number of eigenvalues to be used. In figure 3.3-b we 
show the results when 35 eigenvectors are used in the inversion. After 4 iterations the 
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misfit was reduced to 0.45 mGal. On the plots a better fit is observable in the middle 
part than at the margins since the edges are less constrained by the data. It can be seen 
that a number of steep faults are detected by using a limited number of eigenvectors and 
in most parts there is agreement between the model and the crosses. Comparing these 
results with those from a model with 20 parameters shows great improvement in the 
data fit and in details of the obtained model. 

The rows of the resolution matrix of the last example are plotted in figure 3.4. The 
plots show how well each model perturbation parameter is estimated independently. As 
can be seen, each model perturbation parameter is estimated as a local average of some 
neighbouring model parameters. The measure of dependency of each model perturba­
tion parameter is proportional to the width of the corresponding peak. This width can 
be seen to be rather small. We can improve the resolution using more eigenvectors but 
it may minimize the noise and also introduce artifacts to the model. 

We also did some tests with other reference models. If the reference model is 
chosen to be close to the mean depth the results are almost the same. The features which 
are close to the reference model will be better resolved. 

3.6.3 Example with synthetic data assuming a three-layer model 

Our model will be a 2-D stratified density structure consisting of variable-thickness 
homogeneous layers and it is well known that inversion for solving the interfaces from 
the gravity data is not unique, i.e, many models will fit the data. If some constraints are 
considered for the inversion the nonuniqueness will be reduced to some extent. For 
example, the solution to the inversion of the gravity data for the interface of a two-layer 
model, as used in the preceding paragraph, is almost unique provided that the density 
contrast and the average depth are known. 

In the cases where the model consists of more than two layers the inversion for 
solving the interfaces from the data will be nonunique. 

We consider a simple model with two interfaces separating three layers of con­
stant density to find the limitations for the inversion of gravity data for more than one 
interface. We assume the first and second layer have density contrasts -0.60 and -0.40 

g/cm3 respectively with the third layer (the basement). Each interface is approximated 
by 40 model parameters (figure 3.6-a lower part, dashed line). The maximum depth is 
about 4.5 km. Observations (all have the same level) were generated and 5% Gaussian 
noise was added to these data. The length of the profile is 30 kilometer. We assumed a 
reference model with two horizontal interfaces at depths 1.5 and 3.5 km. We parameter­
ized the model in such a way that the depth of the first interface and the thickness of the 
second layer were taken as unknown model parameters. 

The eigenvector and eigenvalue plots are shown in figure 3.5. On the plot of 
eigenvalues (figure 3.5-a) a jump in the eigenvalue spectrum is visible around 
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eigenvector 42. This jump can be seen to be associated with eigenvectors with very 
short wavelength perturbations of the second interface. The number of eigenvalue at 
this position can not be considered as an upper limit since the condition number for this 

position is too high (107
). 

The upper limit 100 for the condition number, as before, can be a criterion in 
selecting number of eigenvectors for the inversion. In figure 3.5-b from eigenvector I to 
about 40 the components of eigenvectors, corresponding to the first interface, have 
much larger amplitudes than those corresponding to the thickness of the second layer 
except from I to about 8 whose amplitudes are almost the same for both the interface of 
the first layer and the thickness of the second layer. These eigenvectors are correspond­
ing to the first 8 largest eigenvalues. Each of these 8 eigenvectors gives almost the same 
weight to each model parameter corresponding to the interface and thickness which 
have the same position. These eigenvectors also have the largest effect on the predicted 
data. From about eigenvector number 41 to 80 the situation is quite opposite. The com­
ponents of eigenvectors corresponding to the thickness of the second layer possess 
larger amplitudes but are more oscillatory than those of the first one. This effect is also 
observable in the eigenvalues plots by a sharp jump at eigenvalue number 40 (figure 
3.5-a). The facts suggest that the first interface will be more constrained by the data than 
the second one and can better be resolved by the eigenvectors corresponding to the 
largest eigenvalues. Only the long wavelength perturbations of the second interface are 
constrained by the eigenvectors 1-8. If it is tried to use more eigenvectors in the inver­
sion the second interface will be more oscillatory and less reliable than the first one and 
also cause more instability in the inversion. 

To have a solution with positive depths and thicknesses from the inversion we use 
positivity constraints as follows: We introduce new model parameters by transformation 
x'rw = fXi. With this transformation each element of the new sensitivity matrix has 

" G new 2 G newh ij ijXj't e lorm = 

In the first trial we inverted the data using 6 eigenvectors. The misfit after 4 itera­
tions reduced to 3.50 mGal which is larger than the true one (2.89 mGal). This shows 
the poor convergence due to using less eigenvectors in the inversion. The results of this 
trial, depicted in figure 3.6-a, show that the estimated model is smooth. 

In the second trial we increased the number of eigenvectors to 8. The inversion 
process (without positivity constraint) ended up to a poor convergence due to some neg­
ative results for the depths and thicknesses. This poor convergence is due to the fact 
that the initial model does not lie very close to the true solution. To improve the conver­
gence we combine the Marquardt method in the inversion by adding a constant to each 
diagonal element of the Hessian matrix, calculated at each iteration for the current 
model. After this modification the diagonal elements of the Hessian will have the fol­
lowing form: 

H)) => H)){l + A,) . (22) 

As can be seen, some fractional of a diagonal element is added to the same diagonal 
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element. The constant A is initialized at the first iteration and when convergence makes 
progress it will be reduced. In the final iteration this parameter will be set to zero. 

Tests showed that choosing different values for A will not affect the final results 
of the inversion but may increase the number of iterations. 

The inversion process of the above example converged to a solution using an ini­
tial A = 1 and 8 eigenvectors after 6 iterations. The misfit for this case was 2.84 mgal. 
The results of this inversion (figure 3.6-b) shows the true model is almost retrieved. The 
inversion process also converged to the same solution using positivity constraints and 
without using the Marquardt method (A = 0) after 7 iterations. 

To test the stability of the inversion against noise we added 15% Gaussian noise 
to the data. The results of this inversion after 6 iterations using A = 1 and 8 eigenvectors 
are shown in figure 3.6-c. The error bars for the estimated model are larger than when 
we added 5% noise to the data. The true and estimated standard deviation (misfit) were 
8.67 and 8.53 mgal respectively. 

3.6.4 Example with synthetic data assuming a three-layer model 
using different basis vectors for each set of model parameters 

As mentioned in the literature when the inverse problem depends on multiparameter 
classes, simple gradient methods mix parameters of different character and physical 
dimensionality. This may lead to rather poor convergence. However, using the subspace 
method this problem can be overcome by choosing different basis vectors for different 
parameter types. 

To show how the subspace method, using eigenvectors of the Hessian as basis 
vectors, can be adopted for the cases when parameters have different dimensionality we 
just use the above example although our model parameters have the same dimensional­
ity. 

For this case we consider two classes; model parameters corresponding to the first 
interface as class one and those corresponding to the thickness of the second layer as 
class two. The first and second class both consist of 40 model parameters. Each eigen­
vector associated with each eigenvalue consists of 80 components. The first 40 ones are 
corresponding to the first class and the rest to the second one. Also each basis vector 
corresponding to each class has 80 elements. 

For the first class the first 40 elements of a basis vector are the first forty elements 
of an eigenvector and the rest is filled up by zeros. 

For the second class the first 40 elements are filled up by zeros and the rest are 
elements of an eigenvectors from 41 to 80. 

After constructing basis vectors they should be again normalized. 
The matrix of the basis vectors has the following form 
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v ~ [V~)T V~)T] (23) 

The matrix Y has dimension M X P and the matrices y( I) and y(2) have dimensions 
Ml X PI and M2 X P2 respectively. Where M is the total number of model parameters 
and PI and P2 are the number of basis vectors (corresponding to the largest eigenvalues) 
used for the first and second classes and MI and M2 are the number of model parame­
ters for the two classes. 

To avoid linear dependency between different basis vectors it is helpful to 
orthonormalize the basis vector Y; using the following relationship 

Y·=Y- (y;.yj ) y. for i = 1, ... , P; j=I,· .. ,i-l (24)
I I (yj.yj ) J' 

If the Hessian matrix H is partitioned as follow 

_[Ha (l)T 
(25)H a - 0 

for calculation of the projected Hessian matrix yTHY it is necessary to calculate only 
those elements of this matrix which correspond to the diagonal blocks H Il and H 22 
since the basis vector matrix Y is block diagonal with some zero elements. This will 
reduce calculation time. 

To test this idea we used the same synthetic data, with five percent noise. Model 
parameters are the depth of the first interface and thickness of the second layer (40 and 
40). We chose the same number of basis vectors for both classes (8-8) and also for con­
vergence we chose /l. = 1. The results of the inversion after 7 iterations with misfit 2.88 
(figure 3.6-d) are almost the same as when the same basis vectors were used for both 
classes. 

If different number of eigenvectors (for instance 5-8 8-4,...) are used for each 
class the interface and thickness parameters have different resolution or smoothness as 
we saw in the two-layer case. 

Since the resolving power of the potential field data reduce with the depth it is 
recommended to use less or an equal number of basis vectors for the model parameters 
corresponding to deeper features than the shallow ones since these parameters are less 
constrained by the data. 

It should be mentioned that there is a trade off between the solutions of the two 
interfaces in all above examples due to the nonuniqueness. This trade off depends on 
the initial model chosen for the inversion. 

By doing a number of the tests we have found that choosing different initial mod­
els for the inversion does not have much effect on the rate of convergence and conver­
gence is always fast. 
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For the above examples when we took the depth of the first interface and the 
thickness of the second layer as model parameters it is assumed there is some prior 
information about these parameters; for instance the average depth of the interfaces or 
the thickness of the layer. 

For real data inversion, assuming a three-layer model, the constraints should be 
used in the inversion or at least a good initial model should be selected for the inversion 
(from other sources) to reduce the degree of the nonuniqueness. 

We showed how the eigenvectors of the Hessian can be partioned as basis vectors 
for the subspace method. This was done for the case when it was assumed that model 
parameters were of two classes. This partioning can be extended easily for the cases 
when model parameters are of more then two classes. 

3.6.5 Example with real data assuming a three-layer model 

We will interpret the results of the inversion of another data set from the province of 
Noord-Brabant in The Netherlands, by assuming a three-layer model. The data set con­
sists of 313 measurements. The length of the SW-NE running profile is about 80 km. 
An interpreted seismic section is available. The section consists of a few layers. Within 
each layer the density is assumed to be constant and known. Our aim was to invert the 
data for solving the shape of two interfaces and in turn the thickness of the layer 
between these two interfaces which could not be well resolved by the seismic data. 

Density contrasts of -0.284 and -0.130 g/cm3 were selected, with respect to the base­
ment density (2.67 g/cm3 ) , for the first and second layer respectively. The density 
information was obtained from a well in the area. 

We chose the depths of the first interface and thicknesses of the second layer as 
model parameters. For the depths of the first interface a flat initial model at depth 2.0 
km and for the thicknesses 0.5 km were considered. This information is from the seis­
mic interpretation which indicated the depth of the first interface varies between I and 4 
km and thickness between 0 and I km. For this case the first interface and thickness of 
the second layer are approximated each by 40 model parameters. 

The eigenvalues and eigenvectors of the Hessian are plotted in figure 3.7-a and 
3.7-b. The eigenvalue plot shows a jump at eigenvalue number 41 where the eigenvalues 
corresponding to the second layer start to build up. This position corresponds with con­
dition number of 1000 which is rather large. Thus from this point we can not make a 
decision about the number of eigenvectors which should be taken for the inversion. 
Therefor as before, we chose the number of eigenvectors in a such way that the condi­
tion number is less than 100. For this case the upper limit could be 26 eigenvectors. 
Eigenvector plots again show different weights which each model parameter will get 
from each eigenvector. They also show the fact that eigenvectors corresponding to the 
largest eigenvalues can resolve both model parameter sets, corresponding to the first 
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Figure 3.8: In each part the top panel shows the fit between predicted data (bold curve) 
and observed data (dashed curve) and the bottom panel shows inverted model. The 
results of the inversion were obtained with a) 26 eigenvectors, 80 model parameters b) 
27 eigenvectors, 400 model parameters. The squares and crosses on the plots are some 
parts ofthe inteifacesfrom the seismic interpretation. 

interface and the thickness of the second layer, almost equally well. But, if more eigen­
vectors are taken into account, the resulting model will be more oscillatory and in turn 
less reliable. The results of the inversion using 26 eigenvectors and combining the Mar­
quardt method with an initial A = ] after 7 iterations with misfit 0.15 mgal are plotted 
in figure 3.8-a. For calculation of uncertainties of the estimated model parameters 
(shown by vertical bar on the plots and hardly visible) a standard deviation of 0.2 mgal 
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was used. As can be seen on the plots, a number of faults are detected. The positions of 
the faults are the same as those from the seismic interpretation. The estimated depth of 
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the basement in most places agrees with the seismic results. The thickness of the sec­
ond layer vanishes on the left and also decreases in the right margin which again shows 
agreement with the seismic results. The side effects in the margins are due to absence of 
data and this effect is quite nOffilal for the inversion. 

We also inverted the data without combining the Marqurd method. The number 
of iterations for this case increased to 9 and misfit again was 0.15 mgal. With a number 
of tests we have found that combining the Marquardt method sometimes speeds up the 
rate of the convergence especially when the initial model is too far from the true earth 
model. To investigate the effect of fine parametrization on the results of the inversion 
we approximate the first interface and thickness of the second layer each by 200 model 
parameters. The results of this trial for 400 model parameters using 27 eigenvectors, 
corresponding to condition number 100, and A, = 1 after 9 iterations are shown in figure 
3.8-b. The faults are again detected (between 50 and 60 km) in spite of using a small 
number of eigenvectors. 
Using this limited number of eigenvectors for the inversion will degrade the resolution 
of each model parameter since they will be estimated as an average of all model param­
eters although this averaging is very localized around each estimated model parameter. 

We have plotted the resolution matrix for the first trial with the real data and when 
the model is parameterized by 80 model parameters (figure 3.9). It can be seen on the 
plots that each model perturbation parameter is estimated as a linear combination of all 
model perturbation parameters but this estimation is localized. The trade off between 
model parameters corresponding to the first and second interface can also be seen on the 
plots. The plots also indicate that model parameters associated with the first interface 
are better resolved than those of the thickness. In general most of the model parameters 
have small resolution width except those which correspond to the right margin, on the 
positions where the data are absent (the end of the data profile is at 76 km while the end 
of the model is at 80 km). If more eigenvectors are used in the inversion the resolution 
will be improved but the model will be more uncertain and less reliable due to construc­
tion of artifacts into the model. 

3.7 Conclusion 

We minimized an objective function by making a locally quadratic approximation about 
some current model in the subspace of the model parameters. The procedure of mini­
mization in the subspace of the model parameters led to a fast and stable inversion due 
to removing poor directions and using only those eigenvectors which correspond to the 
largest eigenvalues. We empirically determined an upper limit for the numbers of 
eigenvectors of the Hessian, calculated for a reference model, to be used without caus­
ing instability in the inversion when it can not be found from the eigenvalues plot. The 
plot of eigenvectors gives insight into the model perturbations that will occur when 
using different numbers of eigenvectors in the inversion and also about which set of 
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model parameters can be better resolved by the inversion when a limited number of 
eigenvectors are taken in the inversion. 

We tested the method for solving the shape of the interfaces from the synthetic 
and real gravity data assuming two and three-layer models respectively. The inversion 
results show that the method is stable against the noise. Although this method estimates 
each model parameter as an average of all model parameters, this averaging is very 
localized. The localization depends on the number of eigenvectors used in the inversion. 
The tests showed the capability of the method even in detecting steep faults using a lim­
ited number of eigenvectors. 

Although for the three-layer model case the problem is nonunique, choosing an 
initial model from other sources can result in a reliable solution. 

We employed this method for inversion of gravity data assuming a two dimen­
sional model; it can also be used for three dimensional inversion when the number of 
model parameters is quite large. 
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Chapter 4 

Subspace method for inversion of 3D 
gravity data with seismic constraints 

Abstract 

In exploration for hydrocarbons, the use of gravity data in addition to a seismic survey 
can be advantageous. If the area investigated by both methods is partly overlapping, the 
seismic results can be used as constraints in the gravity interpretation, while the gravity 
data can be used to establish the depth of interfaces that are not well determined by the 
seismics. However, 3-D inversion of gravity data becomes cumbersome if both the num­
ber of model parameters and of data points is large. To overcome this problem a sub­
space method is introduced that yields a reliable solution for the inversion of large scale 
gravity data. The basis vectors for the subspace method are normalized data and model 
eigenvectors of the Jacobian matrix calculated for an initial model. Because of the 
reduced number of parameters used in the subspace method and because the calculation 
of the Hessian matrix is avoided, the method is fast and stable. The method was suc­
cessfully applied to data for an area in The Netherlands where the seismic results did 
not give a decisive answer about the continuation of a potential hydrocarbon reservoir. 

4.1 Introduction 

Interpretation of geophysical data can often be assisted by inversion, which is usually 
formulated as a non-linear data-fitting problem. In other words, the objective of the 
inversion method is to obtain a model which is consistent with all available data. 

67 
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The nonlinear problem can be reduced to a linear one by linearizing the model 
response function or forward problem about a reference or current model using Taylor 
series expansion ignoring second and higher order terms. This will lead to solving a lin­
ear system of equations or matrix inversion for model perturbations. This can be thought 
of as mapping between linear spaces of model vectors (perturbations) and data vectors. 

Because the number of data and of model parameters are usually not the same, the 
solution of the linear system of equations or the matrix inversion can be approximated 
using a least-squares criterion which leads to the inversion of a square matrix. If the 
matrix inversion is well conditioned, the least-squares solution, i.e. the model perturba­
tions, can be used for updating the current model. The process of matrix inversion and 
updating the model can be iterated until some norm of the residual between the observa­
tions and model responses or of the model perturbations is less than some preassigned 
threshold. Due to ill conditioning of the linearized system and to the presence of noise 
in the data, small changes in the data can lead to large changes in both the solution and 
in the number of iterations required. Thus matrix inversion generally requires some 
kind of regularization or damping in order to suppress unwanted oscillations in the 
model and generate physically plausible solutions. 

A common way to damp a solution is using the Marquardt-Levenberg method. 
This method was introduced by Levenberg (1944) and later described in detail by Mar­
quardt (1963). It is sometimes known as the method of damped least-squares; others 
refer to it as "ridge regression" (Inman 1975). This method prevents unbounded oscilla­
tions in the solution. This method has been used by Sain et al. (1994) and Pelton et al. 
(1978). Another approach to regularization is using singular value decomposition tech­
niques which use only those eigenvectors which correspond to the largest eigenvalues 
and have most influence on the predicted data (Menichetti et al. 1983). These two regu­
larization methods can be combined in one inversion procedure as described by Jupp et 
al. (1975), Pedersen (1977), Raiche et al. (1985) and Narasimha et al. (1994). 

These methods work well and converge rapidly to a solution when the number of 
model parameters and the number of data are not large. When the number of data and 
of model parameters are large the matrix inversion is more ill-conditioned due to large 
dimensionality. The inverse process may need many iterations for convergence to a solu­
tion. In other words, for this situation convergence is very slow. To overcome this prob­
lem, the effective way is executing the matrix inversion in a subspace spanned by a lim­
ited number of vectors in the model space. The spanning vectors are called basis vec­
tors. The success or failure of this method depends basically upon the selection and the 
number of basis vectors chosen for the subspace. This technique is well discussed and 
used by Kennett and Williamson (1988), Sambridge (1990), Oldenburg et al. (1993) and 
Unsworth et al. (1995). 

In the present paper a subspace method is introduced that can handle a large scale 
3-D inversion of the gravity data. This subspace technique is developed to solve a linear 
system, resulting from the linearization of the model response, in such a way that the 
calculation of the Hessian matrix (second partial derivatives matrix) is avoided. For this 



69 3D SUBSPACE METHOD INVERSION 

subspace method the selected basis vectors are eigenvectors of the Jacobean matrix cal­
culated only once for a reference or initial model. From these eigenvectors only a lim­
ited number corresponding to the largest singular values are selected as basis vectors. 
This causes the matrix inversion to be well conditioned and the inversion process to 
converge very fast to a solution with minimum variance. 

4.2 Inversion scheme 

Let the n observations of a data set be represented by the vector 

go = (gal, go2, ... ,gonl .
 

The restricted earth model is determined by m parameters, which we write as the vector
 

X = (Xl> x2,"', xm)T .
 

The model response function generates a set of model data for each choice of x. This is 
denoted as a vector function by 

g(x) = (gl (x), g2(X), .. " gn(x)l 

where gi(X) is the value predicted by the model, corresponding with observation goi' 

The aim of the inverse problem is determination of x in such a way that g(x) 
matches go' The Taylor-series expansion of the function g (sufficiently smooth) about a 
reference or initial model x allow us to construct simple approximations to the function 
in the neighbourhood of x. Ignoring all but the linear term of the Taylor series gives 

g(x + ox) = g(x) + A ox . (1) 

The expression g(x) + A oX defines a linear function of the ill-vector ox, the perturba­
tion from x, and will approximate g with an error of the order II oxll2 . If the function g 
is linear with respect to x the error will be zero. 
In the above equation A is the Jacobian or sensitivity or partial derivatives matrix which 
has elements such as 

.. _ agiA IJ i = 1,2,···, n j =1,2,···,m·-
aXj 

Equation (1) can be simplified as 

8g == A 8x (2) 

where 8g = g(x + 8x) - g(x) is the residual data vector (in practice the difference 
between observations and model responses). 

The solution of equation (2) gives the model perturbation ox. This system can not 
be solved directly by inverting the matrix A since this matrix usually is not square. The 
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system can have an approximate solution in the following form 

8x=A-g 8g (3) 

where A-g is some pseudo or generalized inverse of matrix A. 

When the number of data points or the number of model parameters becomes 
large, construction of the pseudo or generalized inversion meets with some difficulties. 
To overcome these difficulties the following expansion is introduced: 
The data residual and model perturbation vectors can be expanded as follows 

8g=U P 8x=Va (4) 

where p, a are expansion coefficients and U, V are matrices whose columns form 
orthonormal basis vectors for the data and model space respectively. The vectors U and 
V have dimensions n X p and ill X P respectively ( p is less than both nand m ). 
After replacing 8g and 8x by their equivalence from equation (4), equation (2) will get 
the following form 

Up=AVa (5) 

After premultiplying both sides of the above equation by UT and knowing that 

UTU = lone finds 

(6) 

Backprojecting into the original data and model space will lead to the final solution to 
the model perturbation 

(7) 

The square matrix UTAV , the projected Jacobian, with dimension p X P can easily be 
inverted. After estimating model perturbation 8x for a current iteration, say i , the cur­
rent model xi should be updated as follows 

(8) 

The updated model should be used as the basis for further iterations. The iterations will 
be continued until significant reduction in the Root Mean Square (RMS) error between 
data and model response is no longer observed. 

4.3 Basis vector selection 

The Jacobian matrix is calculated for an initial or reference model and then the singular 
value decomposition technique is employed for decomposition of this matrix into data 
eigenvectors U, model eigenvector V and singular value A matrices. Subsequently p 
columns of the matrix U and also p columns of the matrix V associated with the largest 
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singular values, after normalization, are selected as basis vectors for the data and model 
space respectively. In this way the best directions which have the largest influence on 
the predicted data are selected for the inversion and in turn instabilities due to ill­
conditioning and to data errors can be avoided. This stability is due to the fact that each 
model parameter in the subspace (p less than m and n) is well constrained by the data. 
Choosing significant eigenvectors as basis vectors will lead to a solution with minimum 
variance very fast. The choice for p (number of basis vectors) depends on the number 
and configuration of the data and the model parameters and also on the selected initial 
model. 

It should be mentioned that the Jacobian matrix only one time and only in the first 
iteration will be decomposed into its eigenvectors and singular values. For the rest of the 
iterations the selected eigenvectors, from the first iteration, are taken as basis vectors for 
the inversion. This means that in equation (7) the matrices U and V are fixed for all iter­
ations by their values obtained in the first iteration. However, the Jacobian A is updated 
during every iteration. 

Selecting eigenvectors of the Jacobian matrix as basis vectors, has the advantage 
that the calculation of the Hessian or second partial derivatives matrix is avoided which 
is usually needed for subspace techniques or for gradient direction methods. This also 
reduces the calculation time. 

4.4 Scaling and positivity constraints to the inversion 

As we will see later, model eigenvector plots of three-layer model show that model 
parameters corresponding to the first layer will be better resolved than those of the sec­
ond one from the inversion. This effect is partly due to the decreasing in resolving 
power of gravity data with depth and partly due to magnitude unbalancing between the 
model parameters associated with the first and second layer. This deficiency can be 
improved by making a balance between parameters corresponding to each layer through 
scaling of the Jacobian. To do so we scale the columns of the Jacobian matrix as sug­
gested by Marquardt (1963) and worked out in detail by Smith and Shanno (1971). The 
scaled Jacobian will have the following form: 

=D-1A (9)Ascal 

where D is a diagonal matrix whose ith element is equal to the root mean sum of 
squares value of the ith column of the unscaled Jacobian matrix A. The resulting model 
perturbation solution from the inversion in each iteration should be rescaled as follows: 

6x =D-16xscal (10) 

Furthermore we introduce new model parameters by the transformation x?ew = ...[;i to 
avoid negative results from the inversion. With this transformation each element of the 

Gnew. h h" 2 0 G new I 11'" .. " Jacob" as t e .orm ij =. ijX j " n a InVerSIOns, pOSItivitynew Ian matnx 
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constraints will be used for the model parameters approximating the model. 

4.5 Forward calculation 

The gravity effect of a structure responsible for an anomaly can be calculated by divid­
ing the volume of the anomaly into a limited number of three dimensional elementary 
rectangular prisms and then summing up the gravity effect of all the elementary prisms. 
The vertical component of the gravitational attraction g due to an arbitrary topographic 
mass of constant density p is give by 

- fff Z dz dy dx (11)
g - rp V r3 

where r =(x
2 + i + Z2) and r is gravitational constant.
 

The simplified expression of the above equation for a vertical rectangular prism is given
 
by Plouff (1976):
 

g =rp ±. ±. ±. S [Zkatan xiYi - Xi In(Rijk + Y) - Y j In(Rijk + Xi)] (12) 
i=! j=! k=! ZkRijk 

where R ijk =~ xT + Y] + Z~ and S = SiS jSk with SI =- 1 and s2 =+ 1 and 
(Xl> X2), (Yb Y2) and (Zl> Z2) are the boundaries of the elementary rectangular prism 
in the x, y and z direction (for simplicity the observation point is taken at the origin) 
The first partial derivative of the predicted data with respect to a lower or upper bound­
ary (each element of the Jacobian matrix) can be calculated analytically in the following 
form 

dg ~~[ xiYj XiYjZk(R~k+Z~) xiZk 
- = r p ~ ~ atan --- - 2 ­
dZk i=1 j=! ZkRijk Rijk(Zk R ijk)2 + (XiYj)) Rijk(Rijk + Yj) 

Y jZk ] (13) 
Rijk(Rijk + Xi) 

where k =1,2. 

4.6 Numerical tests with synthetic data 

Numerical tests for a small data set are presented in thiS section to Illustrate the abilities 
and the limitations of the inversion scheme. The assumed model is a three layer-model 
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which is approximated by several adjacent 3-D finite rectangular prisms whose edges 
are constrained to the north-south and east-west directions and all the prisms have the 
same horizontal dimensions. The third layer is a half-space. The region of the model is 
bounded from I to 21 km in both x (west-east) and y (south-north) direction. Each layer 
is approximated by 49 vertical rectangular prisms. Since in the real case there is an 
effect of the structures outside the measured area, this should also be considered for the 
synthetic case. To do this, outside the area an extra ring of 32 prisms up to a horizontal 
distance of 10 km is added to the prisms associated with each layer. After doing this 
2 X 81 elementary rectangular prisms construct the model. The lower boundary of the 
prisms approximate the shape of each·interface. Now our constructed model has roughly 
the same condition as we had in the real case. We generated the synthetic data from this 
model. In figure 4.l-a a perspective plot of the depth of the first and second interface 
and the thickness of the second layer from top to bottom are represented. The depth of 
the structure decreases from N-E to S-W. The thickness of the second layer varies from 
1 to 0.2 km from N-E to S-W. 

The assumed density contrasts for the first and second layer are -0.22 and -0.13 
g/cm3 respectively. The considered square rectangular grid for synthetic data is 
bounded from 0 to 23 km in both x and y direction. The total number of data in the reg­
ular grid is 49 (7 X 7) with a spacing of 3.83 km. We aim to invert the data (without 
noise and with noise) for solving the depth of the first interface (lower boundary of 81 
prisms) and the thickness of the second layer (thickness of 81 prisms). In each layer the 
model parameters are numbered starting from the S-W in the following way: the first 9 
numbers are in a row going from west to east (in the x direction), then 9 in a second 
row, which is one step further in the northern direction (the y direction) etcetera. 

The number of model parameters (162) is more than the number of data (49), i.e. 
the inverse problem is underdetermined and hence nonunique. This nonuniqueness due 
to underdeterminancy can be overcome by using the subspace technique since the data 
are actually inverted for the new model parameters (which are combinations of the orig­
inal model parameters) in the subspace of the original ones but the inherent nonunique­
ness still exists even by introducing the density contrasts as known model parameters 
and even using the subspace technique. The nonuniqueness of the inverse problem can 
be reduced further by fixing some model parameters as constraints. One of the most 
important factors in all inversion schemes is the selection of a sufficiently accurate ini­
tial model. The more the selected starting model is close to the true one the more the 
chance exists that the minimum found is a global minimum. In some cases, if the 
selected initial model is too far from the true one the inversion process will diverge or 
the convergence will be poor. The considered initial model for this problem consists of 
a simple horizontal interface (bottom of the first layer) and a constant thickness ( of the 
second layer) which have the values 2.0 and 0.5 km respectively. 

After calculating the Jacobian matrix for the initial model we decompose it into 
its data and model eigenvectors and singular values matrices. The singular values and 
normalized model eigenvectors, ordered from top to bottom in order of decreasing cor­
responding singular values are plotted in figures 4.2-a and 4.2-b. Since the problem is 
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underdetermined 113 singular values are zero. In figure 4.2-a , log(A.l/A.i) approaches 
to infinity for i > 49 and because of space limitation from total 162 eigenvectors only 
100 are plotted. Apart from the large jump due to zero singular values, few smaller 
jumps can be seen in the plot. These numbers can be considered as upper limits for the 
number of eigenvectors (basis vectors) to be used in the inversion. This consideration 
depends on the level of the noise in the data. In the model eigenvector plots we see that 
eigenvectors corresponding to the first layer (from 1 to 81) have larger components than 
those of the second one. This means, if these eigenvectors are taken as basis vectors in 
the inversion, the model parameters associated with the first layer will be better resolved 
than those of the second one. Most of the eigenvector plots corresponding to zero sin­
gular values (from 50 to 98) have a spiky shape, i.e. each of these only gives a large 
weight to the certain model parameter. These eigenvectors also show a small trade off 
between model parameters corresponding to the first and second layer in the form of 
positive and negatives spikes. If these are used as basis vectors in the inversion they 
make large model perturbations (especially in the model parameters associated with the 
second layer) without having any effect on the predicted data. These are sometimes 
called eigenvectors associated with irrelevant model parameters. 

To see the effect of the inversion due to scaling of the columns of the Jacobian 
matrix as shown in equation (9) we replot the model eigenvectors of the scaled Jacobian 
matrix (figure 4.3). It can be seen that eigenvectors corresponding to the first and second 
layer (especially associated with the 81 largest eigenvalues) have the same amplitudes 
and those associated with the zero singular values have positive and negative amplitudes 
which have no effect on the data. Comparing figure 4.2-a with 4.3-a shows that the total 
condition number is also reduced by the scaling of the Jacobian matrix. 

4.6.1 Results of the inversion 

The result of the inversion for noise-free data, employing positivity constraints for the 
depth to the top and for the thickness of the second layer, after 3 iterations and using 22 
eigenvectors, is a model that differs so little from the true model depicted in figure 4.1-a, 
that we will not show it in a new figure. Also the root mean square error (RMS) between 
predicted and true data is only 0.01 mGal. 

To see the effect of the scaling, shown in equation (9), in the final results, we 
repeated the inversion process without scaling the Jacobian matrix. In this case we were 
not able to retrieve the true model as perfectly as when the Jacobian matrix was scaled. 
In this case the depth of the fist interface was better resolved than the thickness, while 
the normalized RMS error increased to 0.25 mGal (these results are not shown here). 
These facts show that the scaling can really improve the results of the inversion. 

Next we added five percent Gaussian noise to the data. The RMS error for this 
level of noise was 1.04 mGal. We did an inversion using 22 eigenvectors. By comparing 
the RMS error of this inversion (0.70 mGal) with that ofthe true one (1.04 mGal) we 
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Figure 4.4: a) RMS error versus number of iterations. b) Counter plots of the 49 pre­
dicted (bold-line) and original noisy data (dotted-line). Contour interval is 2 mGal. 

saw that the noise was minimized and that in turn some artifacts were constructed in the 
model (the results are not shown here). Due to these fact, the results of this inversion 
can not be reliable. We also inverted the data using only 10 eigenvectors. The RMS 
error versus the number of iterations, using 10 eigenvectors, is plotted in figure 4.4-a. As 
can be seen the convergence is very fast. In figure 4.4-b the original data (dotted lines) 
together with the predicted data (bold lines) are shown as a contour map. It should be 
mentioned that irregularities in the contours of the original data (dotted-lines) are due to 
the effect of the noise which was added to the data generated from the synthetic model 
(figure 4.1-a). This plot also shows the stability of the inversion against the noise since 
the noise was not fitted. The interface and thickness perspective plots of this trial are 
also depicted in figure 4.1-b. For this case the RMS error (0.96 mGal) was very close to 
the true one (1.04 mGal). The resultant model from this trial (noisy data inversion) is 
almost the same as that of the noise-free one. 

It should be mentioned that in the real case a priori information about the level 
of the noise of the measurements can help us to select the number of eigenvectors in 
such a way that the noise IS not minimized. This number can be less than or equal to the 
upper limit which sometimes can be indicated by the singular values plot. 
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4.7 Numerical test with real data 

In this example the reservoir of interest is a sandstone layer in the Bunter formation in 
an area in the southern part of The Netherlands. The three dimensional inversion 
scheme has been applied to estimate the depth of the top and the base of the Bunter 
which had not been resolved well by the seismic data. The selected area was 15 X 15 
km2 

. Along two SW-NE running lines gravity measurements had been performed ear­
lier (figure 4.5). Of these data about 59 could be used in the present interpretation. In 
1995 we performed an additional 237 gravity measurements. On an average the station 
separation is about 0.9 Ian for a total 296 gravity measurements. The elevations were 
determined by GPS measurements or from elevation maps, with an accuracy which is 
always better than 0.4 m. After applying the Free-air and Bouguer-correction (using a 
density of 2.05 g/cm3

) the final accuracy of the anomalies is 0.15 mGal. Contour lines 
as well as all anomaly values are shown in the map of figure 4.5-a. 

4.7.1 Stripping the data 

On the basis of the available seismic data and well information we will distinguish four 
geological units with increasing depth: 
1. Tertiary and Quaternary (density 2.10 g/cm3). 

2. Upper Mesozoic (density 2.45 g/cm3
). 

3. Bunter formation (density 2.54 g/cm\ 
4. Carboniferous (density 2.67 g/cm 3 

). 

These units are shown in figure (4.6). Apart from a small area in the SW, the depth of 
the base of unit 1 (base Tertiary) is very well known from seismics. After extrapolation 

in the SW and extension beyond the 15 X 15 km2 area at the same depth as at the bor­
ders of the area (to account for the effect of the structure beyond the area), we sub­
tracted (stripped) the effect of the unit 1 from the data, using a density contrast of -0.57 
g/cm3 (with respect to the basement density). The result after stripping is shown as a 
stripped gravity map in figure 4.5-b. These stripped data will be used to locate the base 
of the Bunter and to determine its thickness. 

4.7.2 The models 

To parameterize the models to be used in the inversion, the area within the 15 X 15 km2 

was divided in 225 prisms of 1 km2 
. Outside the area an extra ring of 64 prisms up to a 

horizontal distance of 10 kIn was added to reduce the side effects in the inversion. We 
inverted the data assuming a two-layer and a three-layer model. In the two-layer model 
the first layer is from the base Tertiary to the base of the Bunter and the second layer is 
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Figure 4.5: Contour plots of 296 measurements a) original data b) data after removing 
the Tertiary and Quaternary effects. The bold dots show the position of the stations. 
Contour interval is 1 mGal. 
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Figure 4.6: Geological section of the area on the basis ofseismic and borehole informa­
tion. 

the Carboniferous as an infinite half-space. The average density contrast of the first 

layer with respect to the Carboniferous formation density (2.67 g/cm3
) was taken as 

-0.196 g/cm 3
. In the three-layer model the first layer is from base Tertiary to top 

Bunter and the second layer from top Bunter to top Carboniferous. The first layer and 

the second layer have density contrasts -0.212 and -0.130 g/cm3 (with respect to the 
Carboniferous density) respectively. 

In both cases each layer is approximated by 289 vertical rectangular prisms. In 
the two-layer case the lower boundary depths of the 289 elementary prisms will be 
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Figure 4.7: a) starting model b) base Bunter perspective c) contours of the base Bunter 

from two-layer inversion. The number of the stripped data and the number of eigenvec­
tors used were 296 and 22 respectively. 
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Figure 4.8: a. Singular values of the Jacobian matrix calculated for an initial horizontal 
base Bunter (two-layer model) at a depth of 2.5 km and 296 stripped data. Largest sin­
gular value Al divided by Ai plotted on a logarithmic scale with base 10. b. Reduction 
ofRMS error in each iteration. 

detennined from the inversion. In the three-layer model case the depth of the Bunter 
base and the thickness of the Bunter fonnation will be detennined by the 578 model 
parameters (without constraints). In the three-layer case the inversion can be conducted 
in two ways: 
a. Without using any constraints for the parameters 
b. Using available seismic infonnation to constrain some of the model parameters defin­
ing the top Bunter. 

4.7.3 Results of two-layer model inversion 

The initial model used for the inversion is shown in figure 4.7-a. The first layer consists 
of the Bunter and the Upper Mesozoic, whose top is the base Tertiary (known from the 
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seismic results). The base of this layer is initialized at a constant depth of 2.5 km which 
is optimized by the inversion. The second layer is the Carboniferous basement. 
The Jacobian matrix was calculated for this initial model and decomposed into its eigen­
vectors and singular values. The singular values are shown in figure 4.8-a. In the plot 
many small jumps are observable. The first small jump is associated with the singular 
value number 22. We took this number as an upper limit for the number of eigenvectors 
to be used in the inversion. Using this number of eigenvectors the inversion converged 
after only two iterations. The RMS error for this case was 0.21 mGal. Figure 4.8-b 
shows the speed of the convergence. After one iteration the RMS error is reduced about 
90%. 

The perspective and contour plots of the base Bunter are depicted in figures 4.7-b 
and 4.7-c. These plots show that the depth of the base Bunter decreases from N-E to S­
W. We tried to reduce the RMS error by using 30 eigenvectors in the inversion. The 
RMS error was slightly reduced (to 0.196 mGal), but some artifacts were constructed 
into the model (the results of this trial are not shown here). This showed that the choice 
22 for the number of eigenvectors from the singular values plot was reasonable. 

Although the accuracy of the data is 0.15 mGal, we should also take into account 
the reduction error (reduction of the effect of the Tertiary from the data) and the effect 
of the structures outside this area which are not accurately considered by adding addi­
tional large blocks at the margins. Thus the RMS error of the data obtained from the 
inversion may be more than the true error of 0.15 mGal. 

4.7.4 Results of three-layer model inversion 

In the three layer-model the base and the thickness of the Bunter formation are deter­
mined from the inversion. We performed the inversion for two cases: 

4.7.4.1 Inversion without constraints 

The initial model for this case is shown in figure 4.9. The first layer is the Upper Meso­
zoic whose top layer is the base Tertiary (know from seismic) and its bottom is the top 
of the Bunter (initialized at a constant depth of 2.5 km), which will be adjusted by the 
inversion. The second layer is the Bunter whose thickness is initialized as 0.5 km and 
will be adjusted by the inversion. The Jacobian matrix was calculated for this initial 
model and then decomposed into its singular values and eigenvectors. The singular val­
ues are plotted in figure 4.10-a. The small jumps or oscillations start at the singular 
value number 22. This number can be considered as an upper limit for the number of 
eigenvectors which can be used in the inversion. To avoid negative results for the depths 
and thicknesses, positivity constraints are considered for the inversion as introduced 

before. 
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Figure 4.9: Starting model for three-layer inversion. 

The inversion process after 4 iterations, using 22 eigenvectors as basis vectors, 
converged to a solution with RMS error 0.21 mGal. The RMS error versus number of 
iterations shows the rate of convergence for each iteration (figure 4.1O-b). The perspec­
tive results for the top and base Bunter and also its thickness are shown in figures 
4.11-a, b, c respectively. These interface depths are also contoured in figure 4.12-a, b,c. 
As we can see from the plots, the depth of the top and base Bunter and also its thickness 
decrease from N-E to S-W. If we compare the results of this inversion for the base 
Bunter (figures 4.11-b and 4.12-b) with those from the two-layer model (figure 4.7), the 
close agreement between these two results is observable. This demonstrates that the 
results of the inversion assuming a three-layer model can be reliable if an initial model 
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Figure 4.10: a. Largest singular value Al ofthe Jacobian matrix (calculated for a three­
layer model initialized by a horizontal top Bunter at a depth of 2.5 km and a constant 
thickness ofthe Bunter of0.5 km and 296 measurements) divided by Ai plotted on a log­
arithmic scale with base 10. b. Reduction of the RMS error in each iteration from inver­
sion of296 reduced measurements assuming a three-layer model. 

is chosen based on seismic information or other sources. 

4.7.4.2 Inversion with constraints 

To reduce the effect of the nonuniqueness of the inversion we fixed 68 model parameters 
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(a) 

(b) 

(c) 

Figure 4.11: Perspective plot from inversion of 296 measurements assuming a three­
layer model a) top Bunter b) base Bunter c) thickness ofBunterformation 
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Figure 4.12: Contour map of depths from inversion of 296 measurements assuming a 

three-layer model a) top Bunter b) base Bunter c) thickness ofBunter. 



89 3D SUBSPACE METHOD INVERSION 

I I I I I I I I I 1 I Iii 'I 

,... 

o Ll-L...L.J.---LJ-J----'---'---L.J...--L-.L.J.---'--.L.J.---L...L.J 

o 30 60 90120150180210240270 
eigenvalue number 

(a) 

ocD ,-------,----,---,----------,-----, 

If)
 

If)
 

o 

.......
 

eJ 

(I) 

II: 

Lei 

o 
.j 

«ilf)
. 

gC'> 

O~
tC'> 

(f)1f) 

~N 

o 
C\l 

If) 

o 

o '-----_-'--__---l-._-----"-I__---'1__1 

°0 2 3 4 5 
Number of iterations 

(b) 

Figure 4.13: a. Largest singular value A1 of the Jacobian matrix (calculated for a three­
layer model initialized by a horizontal top Bunter at a depth of 2.5 km and a constant 
Bunter thickness of 0.5 km and 296 measurements) divided by Ai plotted on a logarith­
mic scale with base 10. b. Reduction of RMS error in each iteration from the inversion 
of 296 measurements (assuming a three-layer model) constrained by seismic informa­
tion. 

of the first layer, top Bunter, in the northern parts which are known from the seismic 
data. The initial Bunter top and its thickness are taken as 2.5 and 0.5 km respectively, 
the same as in the unconstrained inversion (figure 4.9). The singular values of the Jaco­
bian matrix calculated for this initial model are plotted in figure 4.13-a. The small 
jumps or oscillations start again at singular value number 22. We inverted the data using 
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(a) 

(b) 

(c) 

Figure 4.14: Perspective results of the constrained inversion using 296 measurements 
and assuming a three-layer model. a) top Bunter (whites are the depths which are 
known from the seismic) b) base Bunter c) thickness ofBunter formation. 
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Figure 4.15: Contour map of depths from constrained inversion of 296 observations 
assuming a three-layer model a) top Bunter b) base Bunter c) thickness of Bunter for­
mation 
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Figure 4.16: Contour map of misfit between 296 observed and predicted gravity data 
from constrained inversion assuming a three-layer model. The station positions are 
shown by bold dots. 

22 eigenvectors to compare the results with those from the unconstrained case. The 
reduction of the RMS error in each iteration is again shown in figure 4.13-b. The plot 
shows that after 3 iterations the reduction in RMS error is negligible. The RMS error for 
this case was 0.21 mGal as before. 

In figures 4.14-a,b,c and 4.15-a,b,c the perspective plot and the contoured depths 
of the top and base Bunter and its thickness are plotted. In the perspective figure of the 
top Bunter the depth of the white prisms are from the seismic information and were 
fixed in the inversion. The depth of top and base and also the thickness of the Bunter 
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again decrease from N-E to S-W, the same as in the unconstrained case. Comparing the 
results of the two inversions, unconstrained (figure 4.11 and 4.12) and constrained (fig­
ure 4.14 and 4.15), shows that the two models almost have the same configuration. The 
smaller details which are observable in the model of the constrained inversion are 
depths obtained from the seismics, which were fixed during the inversion. The residuals 
between the measured and predicted data from the model are also contoured in figure 
4.16. In some stations this error is more than 0.3 mGal which is probably due to mea­
surement errors. The thickness map of the Bunter (figures 4.12-c and 4.15-c) can be 
used for planning of future exploration activities in this area. 

4.8 Conclusion 

Although the introduced subspace method was used for a moderate scale 3D inversion, 
it can handle larger scale. In this subspace method calculation of the Hessian matrix 
(second partial derivatives matrix) is avoided which usually needs to be calculated for 
most subspace and gradient methods. Since the most important eigenvectors were 
selected as basis vectors, the inversion converged very fast to a solution with minimum 
variance. The scaling of the Jacobian matrix improved the results and the positivity 
constraint reduced the nonuniqueness of the inversion by confining the space of the 
search for the solution. 

Comparison of the results of two and three-layer model inversions shows that the 
results of the three layer-model can also be reliable if a an initial model is selected using 
information from seismics or from other sources. The results of the three-layer model 
constrained inversion were, in general, the same as those of the unconstrained case. The 
thickness map of the Bunter can be used for planning future exploration activities. 
Because the potential hydrocarbon reservoir in this area is a sandstone layer in the 
Bunter formation. 
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Chapter 5 

3D microgravity inversion for 
detecting cavities 

Abstract 

3D inversion of microgravity data was carried out to detect man made cavities which 
were expected to have a maximum width and height of 4 m and a depth of 6-10 m. The 
data is corrected for the topography by a triangular-element method. After applying all 
corrections, the regional trend is eliminated by fitting orthonormal polynomials to the 
data. Since it is expected that the cavities have small width (less than 4 m) the data 
region is parameterized by rectangular blocks with width 2 m. This leads to an underde­
termined inverse problem. The residual data is inverted for the depth to the top of the 
cavities and for their height, with fixed density contrast between the cavities and the sur­
rounding medium. The inversion is executed in the subspace of the data space to con­
trol the effect of the ill-conditionality and noise. In this way inversion is fast and stable 
against the noise. After one nonlinear inversion step (consisting of a linearized inver­
sion) the results are not reliable (the cavities are scattered over the whole area) due to 
underdeterminancy. The inversion steps are then repeated a few times in such a way 
that the result of a previous inversion step is used as initial model for a next inversion 
step and model parameters corresponding to cavities with heights smaller than some 
threshold are fixed and their values set to a height equal to zero. This causes, in a current 
step, the number of model parameters to become smaller than that of the previous one 
and in turn the underdeterminancy of the problem is reduced. The inversion steps are 
continued until the minimum height of the cavities is equal to a preassigned value. This 
strategy is chosen since it is expected that the man made cavities are localized, con­
nected and hav\;; a minimum height. The inversion results for synthetic data are excellent 
and those for real data from Sint Pietersberg near Maastricht are satisfactory. 

95 
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5.1 Introduction 

The modernization of buildings, the construction of new roads, railways and airports 
and other facilities create the necessity of detecting natural or man made cavities such as 
mines occurring at shallow depth. Microgravity is one of the most efficient geophysical 
methods which has been employed in engineering studies for detecting cavities. For 
instance, Arzi (1975) shows an example for verifying bedrock soundness at the founda­
tion of a nuclear power plant and for delineating a zone of small cavities and tracing 
grout emplacement at the foundation of a large cooling tower. 

A cave may be filled with air or water so that a density contrast exists between the 
cave and the surrounding material. This difference in density will give rise to lower 
gravity values which can be detected by a microgravity survey. The detection of caves 
from the surface by a microgravity survey depends on the volume of the caves in rela­
tion to their depth. This effect was discussed and illustrated for simple shapes by Colley 
(1962). As he has shown, small caves lying at large depths can not be detected from the 
surface since their gravity effect is negligible. 

Microgravity surveys can also be employed for detecting buried gorges, shallow 
faults, contacts and other irregularities within bedrock of cavities or its buried surface, 
tracing of scour under structures, mapping the relative density of irregular formations 
such as coral reefs, certain volcanics, differentially weathered residues and glacial tills 
for excavation, planning of foundation design, locating underground workings, subsur­
face movements of fluids, interesting archaeological features, fine prospecting for min­
erals and various applications within mines. 

A quantitative way of interpreting microgravity data is finding a model whose 
response fits the data best. This can be approached automatically by inverting the data to 
the parameters defining the model, employing a method which is able to handle the 
problem of nonuniqueness and ill-conditionality of the inverse problem. 
In general the microgravity data can be inverted in three ways: 
J- For both the position and the physical parameters if the density contrasts and position 
of the cavities are both unknown. Since for this case the inverse problem is strongly 
nonunique, a special strategy should be followed to reduce the effect of nonuniqueness. 
11- For physical parameters (densities) while the position parameters are kept fixed dur­
ing the inversion. This strategy has the advantage of linear inversion and the drawback 
of requiring many parameters to approximate the position of the cavities in 3D. 
III- For position parameters only, while the density contrast is kept fixed. This strategy 
has the advantage that the position of the cavities can be quite well determined by a 
smaller number of model parameters if the density contrast is well known and if a suffi­
ciently accurate initial model is selected. 

For earlier interpretation of microgravity data inversion we can refer to the work 
of Neumann (1967) and Fajklewicz (1976). They determined the depth and height of 
isolated cavities by fitting simple models such as cylinders and prisms with the high pre­
cision gravity data. 
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A more complicated structure of cavities was studied using an inversion method 
by Camacho et al. (1994). Microgravity data collected in the flat bottom of the Lozoya 
Valley, about 500 m from the Lozoya Dam, 70 km to the north of Madrid (Spain) after 
corrections and removing the regional trend were modeled by least-squares predictions 
to separate several correlated signals. In this way the noise was also predicted and fil­
tered from the data (by Camacho, 1994). The least-squares inversion led to the detection 
of a system of cavities and galleries. 

We carried out a microgravity survey to locate man made cavities laying at a 
depth of 6 to 10 m from the surface. Knowledge of the location of these cavities is 
important in view of the danger of collapsing at places where new roads are planned. 
Since the cavities are filled with air, a considerable density contrast exists between the 
cavities and the surrounding rock. The magnitude of the gravity effect due to the cavi­
ties is a few tens of ,uGal. After all corrections, the irregular data were detrended using 
the orthonormal polynomial. In contrast to the work done by Camacho el al. (1994), we 
did not transform the data in a regular grid nor remove the effect of the noise from the 
data by the least-squares prediction method of Moritz (1980) since this technique did 
not lead to a reliable prediction in our case due to the limited number of data. Since the 
density contrast between the cavities and the surrounding medium is quite well known, 
we inverted the data for position parameters. We used a subspace technique for the 
inversion to control the effect of the noise and to have a fast convergence. The model 
was parameterized finely since it was expected that the cavities have dimensions 
between 2-4 metres. Due to this fine parameterization, the number of data points was 
much smaller than the number of model parameters, i.e. the inversion was underdeter­
mined. To suppress the effect of underdeterminancy of the problem and to make the 
results of the inversion more localized several inversion steps were taken instead of one. 

5.2 Inversion scheme 

The model of the cavities consists of square rectangular prisms whose horizontal dimen­
sions are the same and kept fixed in the inversion. Only the depth to their top and their 
height (vertical size) are allowed to be adjusted by the inversion. Since in our case the 
number of model parameters (depth to the top and the height of the elementary prisms) 
is much more than the number of data points, we used a minimum length criterion in the 
subspace technique as follows: 

The inverse problem is nonlinear since the gravity model response function has a 
nonlinear dependency on the parameters describing the model. To take advantage of 
linear inversion methods the nonlinear model response function gem) is expanded about 
some current model using Taylor series expansion ignoring terms of order two and 
higher 

gem + 8m) = gem) + G8m . (1) 

The vectors m and 8m are current model and model perturbation with dimension M, 
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and G is the first partial derivative or Jacobian matrix of the function gem) with dimen­
sion N X M where Nand M are the number of data points and of model parameters 
used in the inversion. In practice the effect of the model perturbation, 
gem + e5m) - gem), is taken to be equal to the data residual, e5d = d - gem). With 
this assumption equation (1) can be reduced to 

e5d =Ge5m (2) 

Since the data does usually not have independent information we introduce a new data 
perturbation e5dn in terms of the old one e5d and the matrix of the basis vectors Y with 
dimension N X P (usually P is less than N) in the following form 

(3) 

In this way each new data point is defined as a linear combination of all original data.
 
This new definition for the data reduces the dimension of the data space. Using a judi­

cious choice of the basis vectors defining the matrix Y we want to allow only variations
 
in the data that are due to significant model perturbations and to suppress variations in
 
the data that are due to random noise and are not associated with significant model per­

turbations. In this way one can suppress the error propagation in the inversion. The suc­

cess of this method depends of course on the choice of Y. We will return to this issue
 
later.
 
The linear equation (2) for the new data perturbation e5dn has the form
 

odn =y T e5d =V T Gom (4) 

Since our linear inverse problem is underdetermined we used a minimum length crite­
rion (e5mT om = Min) in the following objective function 

F(om) =e5mT om + A.(yT e5d - yTGe5m) (5) 

where A. is the Lagrange multipliers vector. 
We minimize the above objective function in such a way that the equation 
yT od =yTGe5m is satisfied. To do this we set its partial derivatives with respect to 
the model perturbation e5m and the Lagrange multipliers A. to zero as 

dF(om) P N
 
d =om} - L L GijYikA.k =0 (6)
 

(om}) k=l i=l 

dF(e5m) _ ~ d ~ ~ 
---::--- - ~ VikO i - ~ ~ VikGijom j =0 . (7) 

dA.k i=l i=l j=l 

The vector form of the above equations is 

yTod = y T Ge5m· (8) 

The two above equations can be solved for om and .:t. Doing this will result in the fol­
lowing equation for the model perturbation 
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(9) 

The square matrix (yTGGTy)-l with small dimension P X P can easily be inverted. 

To prevent negative results in the inversion we introduce positivity constraints by 
the transformation mjew = -{iiij. With this transformation each element of the new 
Jacobian matrix has the form G i/ew = 2. 0 G ij m j. Notice that this constraint will 
reduce the effect of the nonuniqueness of the inverse problem because negative model 
parameters are not allowed anyway. To suppress instability in the inversion we combine 
the Marquardt method (Marquardt 1963) with our method by adding a constant value to 
each diagonal element of the matrix GGT 

, calculated at each iteration for the current 
model. The diagonal elements of the matrix GGT will be modified as 

[GGT]jj => [GGT]j/l + a) . 

The constant a is initialized at the first iteration and is reduced during the iterative 
inversion. In the final iteration this parameter will be set to zero. In all the inversions 
which will be discussed in the following, we set a equal to 0.01. After calculating the 
model perturbation om the current model will be updated and the updated model is 
used as the basis for further linear inversion. The iterations will be continued until con­
vergence is achieved. 

5.3 Choice of basis vectors 

We choose basis vectors in such a way that they can easily be calculated and that they 
contain information of both the model and data space. Since the inverse problem is 
underdetermined, we take advantage of the smaller dimensionality of the data space for 
the basis vector calculations. We choose eigenvectors of the square and symmetric 
matrix GGT , calculated by the singular value decomposition routine for an initial 
model, as basis vectors. These eigenvectors can easily be calculated since the square 
matrix GGT has dimension N X N (the square of the data space dimension). This 
matrix has properties of both the data and the model parameters since it is constructed 
from the Jacobian matrix. From these data space eigenvectors, only those are chosen as 
basis vectors which have the largest effect on the predicted data. In this way we only 
allow for those variations in the data that are strongly influenced by changes in the 
model parameters. It should be stressed that the basis vectors Y are calculated only one 
time for the first initial model and kept fixed for all iterations. 

5.4 Forward calculation 

The gravity anomaly due to cavities can be calculated by dividing the volume of the 
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cavities into a limited number of three dimensional elementary rectangular prisms and 
then summing up the gravity effect of all the elementary prisms. The vertical compo­
nent of the gravitational attraction g due to an arbitrary topographic mass of constant 
density p is given by 

- JJJ (10)Z dz dy dx g-rp V 3 r-

where r = (x2 + y2 + Z2) and r is gravitational constant. The simplified expression of 
the above equation for a vertical rectangular prism is given by Plouff (1976) as follows 

g = S[Zkatan xiYi - Xi In(Rijk + Yj) - Y j In(Rijk + Xi)] (11)r p ±±±
i=1 j=1 k=1 ZkRijk 

where R ijk =~xr + Y] + Z~ and S = SiS jSk with SI =- I and s2 =+ I and 
(Xl> X2), (Yl> Y2) and (Zl> Z2) are the boundaries of the elementary rectangular prism 
in the x, y and z direction (for simplicity the observation point is taken in the origin). 
The first partial derivatives of the predicted data with respect to a lower or upper bound­
ary of each prism (each element of the Jacobian matrix) can be calculated analytically in 
the following form 

og ~ ~ [ xiY j xiYjZk(R~k + Z~) xiZk- =r p LJ LJ alan -- - 2 2 ­
OZk i=1 j=1 ZkRijk Rijk(ZkRijk) + (XiY j» Rijk(Rijk + Y) 

YjZk ] (12) 
Rijk(Rijk + Xi) 

where k = 1,2. 

5.5 Example with synthetic data 

We tested the inversion scheme with synthetic data to find out the limitations of the 
inversion scheme. The true model consists of five isolated cavities represented by five 
rectangular prisms whose top boundaries are at depths 3, 7, 8, 9 and 12 m and all have 
the same height of 3 m. The perspective plot of the position and height of the cavities is 
shown in figure 5.1-a. We assumed a density contrast of 2.2 g/cm3 for the model and 
calculated its effect for 64 measurement points in a regular grid form with a spacing of 
14.29 m. The locations of the data points shown in figure 5.2 by the bold dots. The 
response of the model is also contoured in this figure. The maximum anomaly, 80 
pGal, can be seen roughly at position (55,45), where the shallowest cavity (at 3 m 
depth) is lying. 
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The chosen starting model consists of 100 prisms whose top boundaries are taken 
at a depth of 5 m and all have a height of 1 m and a width of 10 m (figure 5.l-b). The 
eigenvectors calculated for this initial model are taken as basis vectors for all the itera­
tions. The condition number for the starting model was rather small (28) which indicates 
that the problem is well conditioned. 

We inverted the noise free data taking all the basis vectors or eigenvectors in the 
inversion. The results of the inversion after 7 iterations with a root mean square error 
between the original and predicted data (RMS error) of 7. 8 X 1O-9,uGal are shown in 
figure 5.l-c. Although the fit was very good (with a fast convergence) the localized cav­
ities are not reconstructed well due to the underdeterrninancy of the problem. Also, the 
minimum length solution discourages this type of solution. In fact, each model parame­
ter (depth to the top boundary and the height of each prism) is as a linear combination of 
neighbouring model parameters. The reconstructed model therefore does not reflect the 
localized nature of the true distribution of the cavities. In order to obtain a model that 
reflects the localized character of the cavities, we set to zero the values of model param­
eters (depths and heights) corresponding to prisms whose height were less than 0.1 m 
(current minimum height criterion) and used these modified results as initial model for 
the next inversion (next step). The rational for this step is that, in many applications, one 
knows a priori that the cavities have a certain minimum height, for example because 
they are tunnels made by man. In the next step we also froze those model parameters at 
zero whose values were less than 0.1 m. After doing this the total number of model 
parameters for the next inversion was reduced from 200 to 78. The eigenvectors were 
again calculated for this new initial model and used as basis vectors for the second 
inversion step. 
After doing the second inversion step to make the results more localized, the values of 
the model parameters corresponding to the prisms whose height were less than 0.2 m 
(current minimum height criterion) were set to zero and the modified results used as ini­
tial model for the third inversion step. In the third step model parameters with zero val­
ues were kept fixed in the inversion as before. In the third step the data inverted for an 
even smaller number of model parameters (56). 

The inversion steps were continued in such a way that in each step 0.1 m was 
added to the previous minimum height criterion (taken as new minimum height crite­
rion) and also the values of the model parameters (estimated from previous inversion 
step) corresponding to the prisms whose height were less than the new minimum crite­
rion height were set to zero. Then the inversion step was executed with the previous 
modified results as initial model and some fixed model parameters (those whose values 
were zero). 

We stopped the inversion steps when the minimum height criterion was 0.8 m. 
The result of the last inversion step (depth to the top boundary and the height of the cav­
ities) was almost the same as the true model (figure 5.l-a). Since it is indistinguishable 
from the model shown in figure S.l-a, the reconstructed model is not shown. These 

results were obtained after 8 inversion steps. 
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Figure 5.2: Contour plot of the 64 data, generated from the synthetic model with 5% 
noise. 

In all nonlinear inversion steps the number of eigenvectors or basis vectors was 
chosen in such a way that the condition number for the first iteration of all nonlinear 
inversion steps was less than 500 (upper limit for the condition number). In the first non­
linear inversion step all eigenvectors were used in the inversion since the condition num­
ber of the first iteration was 28 (less than 500). In the next nonlinear inversion and fur­
ther the condition number of the first iteration was increased since some of the model 
parameters were fixed and their values set to zero Because of this fact an upper limit of 

500 was considered to handle potential instabilities in the second and further nonlinear 
inversion steps. 
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(a) 

(b) 

Figure 5.3: Height perspective a/the cavities after a) one inversion step b) eight inver­

sion steps using synthetic data with 5% noise. 
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We also tried inversion without any regularization by using all eigenvectors in the 
inversion and by setting a = O. The results were not reliable (they are not shown here) 
due to the construction of the artifacts in the model. The RMS error of this trial was 
about 10 J..LGal which indicates that the fit was also poor. 

To test the efficiency of the method against noise we added five percent Gaussian 
noise to the data (RMS error of 0.79 J..LGal) and run the algorithm for 8 inversion steps 
as before. For this case the upper limit for the condition number was reduced to 100 in 
order to take into account the effect of the noise in the data and avoid constructing arti­
facts into the model. The RMS error after the final inversion step was the same as the 
true one (0.74 against 0.79 J..LGal). This proves that the noise was not minimized. 

A perspective plot of the position and height of the cavities after the first and the 
last inversion step are shown in figure 5.3-a and 5.3-b. We can see that the cavities after 
the first inversion step are not localized (is almost the same as that of the noise-free data 
case shown in figure 5.1-c), while after the last step they are quite localized and detected 
in the right positions. The height and the depth to the top boundary of all the cavities are 
estimated very well (the discrepancy between estimated values and true ones is less than 
0.5 m).
 
From the synthetic tests we can conclude that taking several inversion steps (instead of
 
one step) and freezing some model parameters in each step leads to a localized solution.
 
This scheme can handle quite well the problem of nonuniqueness due to underdetermi­

nancy and can be used for detecting isolated structures such as cavities.
 

5.6 Example with real data 

In 1995 a microgravity survey was carried out on the Sint Pietersberg near Maastricht in 
the south of The Netherlands. The cavities in this area are the remainder of ancient min­
ing of marl as building material. These cavities have a height of 1-4 m and are con­
nected. A gravimeter with an precision better than 3 J..LGal was used. The total number 
of measurements in this area was 99. The microgravimetry survey covered an area of 
about 100 X 20 m2

. The measurements were performed on an irregular grid. The data 
spacing is variable from about 4 to 10m. The height and the position of the measure­
ments are determined by levelling and GPS surveys with an accuracy of few millime­
ters. In total the accuracy of the data was about 5 J..LGal. 

Corrections were made for instrument height and for tidal effects using the 
Cartwright et al. (1971 and 1973) harmonic development and assuming an elastic earth. 
The tidal waves were scaled using the synthetic data set of Timmen et al. (1994). 

For terrain correction the height of about 20000 points to a horizontal distance of 
about 1000 m from the area under investigation were determined by digitization of a 
map on the scale I : 10000, with a contour interval of 2.5 m. This map was digitized 
roughly every 4 m. The heights of the digitized points are contoured in figure 5.4. The 
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Figure 5.4: Contour plot of the topography surrounding the area under investigation. 
Contour interval is 3 m. The flat square on the plot shows the area where the micrograv­
ity survey was peiformed. 

area under investigation is shown by a square on the contour map. From the contour 
map it can be seen that the topography of the terrain, surrounding the area under investi­
gation, is variable, especially in the N-W where there is a steep slope. We could not 
remove the effect of this slope from the data perfectly since the resolution of the con­
tours of the topographic map used for the digitization was not high. The digitized points 
(nodes) were triangulated by the optimum triangulation routine (Wessel et al. 1995). 
The terrain correction for each gravity station was automatically computed using the tri­
angular-element method (Okaba 1979, Zhou 1990) for about 40000 triangles con­
structed from the nodes. 

The anomaly map after these corrections, together with the positions of the mea­
surements (bold dots), is shown in figure 5.5. It shows a distinct NE-SW regional 
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Figure 5.5: Contours of the Bouguer anomaly. Bold dots show the position of the mea­
surements. Contour interval is 0.008 mGal. 
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Figure 5.6: Model data as a result offitting 3rd-degree orthonormal polynomials to the 
data. Contour interval: 0.008 mGal. 
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trend which is probably due to the deeper geological structure of the region. To enhance 
the local anomaly (short wavelength), the long-wave effect or the regional trend was 
removed from the data. For eliminating this the data were modelled by two­
dimensional orthonormal trend surfaces as follows: 

k 

di = L Pj!J(Xi, Yi) i = 1,"', n (13) 
j=o 

where f/Xi' Yi) are orthonormal polynomials in two dimensions, which can be 
obtained using the Gram-Schmidt method (Thomas 1996), k is the number of polyno­
mials, n the number of data points. Xi and Yi are the data coordinates and P j are coeffi­
cients of the orthonormal polynomials. The above linear system of equations can be 
solved for the coefficients P j using a least-squares criterion. When the coefficients P j 

are computed the regional trend can be predicted by equation (13) and eliminated from 
the data. 

The advantages of using orthonormal polynomials over conventional polynomials 
is that the equations for evaluating trend coefficients are not ill-conditioned, since the 
basis functions are uncorrelated, and the convergence power of this method is greater 
than when the conventional polynomials are used (Sarma et al. 1990). 

We fitted a 3rd-order orthonormal polynomial trend surface to the data. We also 
tested higher order orthonormal polynomial trend surfaces for the data fitting but 
improvement in the fit was not significant. The predicted trend and the residual 
(detrended) anomaly are contoured in figure 5.6 and 5.7. Negative anomalies observ­
able in the residual plots are mainly due to the cavities. The most negative anomaly 
(about -17 flGal) can be seen in the middle part. 

5.6.1 Inversion results of the real microgravity data 

For the inversion we only used that part of the data with spacing 4 m, which shows the 
most negative anomalies. These data, after 45 degree rotation in the clockwise direction 
and after shifting, are contoured in figure 5.8. The data are rotated to facilitate model 
parameterization for the inversion. Here it can be seen that these data cover an area of 

256 X 20 m . The number of data used for the inversion was 66 whose positions are 
shown with the bold circles in figure 5.8. In the plot some negative anomalies are 
observable. The most negative anomaly can be seen at about 46 m in the x direction and 
is elongated in the y direction. This anomaly is most likely due to the major cavities. 

The area within 56 X 20 m2 was modeled by 26 X 8 prisms. To account for the 
effect of the structure beyond the area and to reduce the side effects in the inversion an 
extra ring of 68 prisms up to a horizontal distance of 20 m was added. 
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Figure 5.8: Contour plot of 66 measurements used for the inversion. Contour interval: 
4 f-lGal. 

In this way the total number of model parameters used for the inversion was 
2 X (28 X 10), half of these corresponding to the depth to the top of the cavities and the 
rest to the height. 

The inversion was started with the model shown in figure 5.9-a. The eigenvectors 
were calculated for this initial model and used as basis vectors for all iterations of the 
first inversion step. An upper limit of 100 was chosen for the condition number as a cri­
terion for selecting the number of eigenvectors for the inversion. This upper limit was 
the same for all inversion steps. We also used positivity constraints for both the depth to 
the top and the height of the prisms. 

The results of the first inversion step are presented in figure 5.9-b. It can be seen 
that the model parameters approximating the height of the cavities are not estimated in a 
localized way due to underdeterminancy of the inverse problem. To have a localized 
model we repeated nonlinear steps several times as we did in the synthetic case. We 
stopped the inversion process when detected cavities had a minimum height of 0.8 m. 
This criterion was chosen to stop the inversion process since it is expected that the real 
man made cavities have a minimum height of about 1 m. 

The inversion results of the last step are shown in figure 5.10. The RMS error of 
the final inversion step was 4.86 f-lGal which seems to be reasonable given the accuracy 
of of about 5 f-lGal. The height of the detected cavities varies from 1 to about 4 m. A 
gallery is detected between position 44-48 in the x direction which is elongated along 
the y direction (figure 5.10). 

A perspective plot of the depth to the top of the cavities is represented in figure 
S.10-b (notice that the positive direction is upward). It can be seen that the estimated 

depths of the gallery varies from 6 to 10 m. 
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The position and depth of most of the cavities in this area are known and indi­
cated on a map from 1977, prepared by Provinciale Waterstaat Limburg. The position of 
the gallery detected by the inversion, between position 44-48 m in the x direction, is in 
good agreement with that from the map. The true height and depth of the gallery, indi­
cated in the map, varies between 1.8-3 and 6-10 m (below the datum 75.508 m) respec­
tively. Although the height and the depths in some parts of the gallery are underesti­
mated (due to underdeterminancy) they are in an acceptable range and almost at the 
right positions. The existence of the cavities depicted in the upper right corner (figure 
5.1O-a) are also proven by the map except that they are slightly shifted. 

For the cavities shown in the lower left corner (figure 5.1O-a) there are no indica­
tion on the map. However this does not mean that the result of the inversion is wrong. It 
is very well possible that not all cavities in this area are known and that therefore they 
are not indicated on the map. 

5.7 Conclusion 

3D inversion of micro gravity data with a finely parameterized model and an inadequate 
number of data led to an underdetermined inverse problem. The solution of the inver­
sion was not localized and reliable since each model parameter was estimated as a linear 
combination of all model parameters due to underdeterminancy. 

The results of the inversion were improved by doing a few inversion steps rather 
than one step, in such a way that the results of a previous inversion step were taken as 
the initial model for a new inversion step. After each step, model parameters corre­
sponding to the cavities with height less than some threshold value were fixed and their 
values set to zero and the remaining free parameters were optimized by the new inver­
sion step. The inversion steps were continued until the minimum height of the cavities, 
whose parameters were free to be adjusted, was equal to a preassigned value. In this 
way the underdeterminallcy of the problem was reduced by reducing the number of 
model parameters in each step. The capability of this strategy was shown with synthetic 
and real microgravity data. The results of the inversion for both cases were localized 
and reliable after several inversion steps contrary to the results of only one step. 

Inversion of real microgravity data led to detecting cavities whose positions, 
depths and heights were almost estimated the same as those of the true ones. Each 
inversion step was fast and stable due to using only those eigenvectors as basis vectors, 
which have the largest effect on the predicted data. In this way the effect of the noise in 
the inversion was minimized. 

The disadvantage of using several inversion steps rather than one step is the 
increasing calculation time, which will be paid off by a more reliable solution. 
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Summary 

This thesis deals with the inversion of potential field data. Theoretical aspects and 
applications in gravimetry and magnetometry are treated. Inverse theory provides math­
ematical techniques to obtain useful infonnation about the earth based on measurements 
(data). These techniques estimate numerically parameters which have some properties 
of the earth. These properties are called model parameters and are related to data by a 
theory or model. The object of all inversion methods is to obtain a model which is con­
sistent with all available data and is physically plausible. 

Perfonning this task a number of problems occur, such as: 
- Inherent nonuniqueness of the inverse problem; for the inversion of potential field data 
there are many solutions or models which all equally fit the data. 
- Nonuniqueness due to underdetenninancy; when the number of data is smaller than 
the number of model parameters the solution of the inversion is not unique. 
- Ill-conditionality of the inverse problem; this effect is due to uncertainty in the data, 
insufficient parameterization and large dimensionality of the data and model parameters 
which cause unwanted oscillations in the solution or instability in the inversion. 
These problems lead to finding a solution which is unreliable and/or also increase the 
time and memory of the computer required for the calculations. 

The purpose of this work was to reduce these problems which are involved in an 
inversion. In this thesis the chapters are constructed in such a way that they can be stud­
ied independently. In the following a summary of each chapter is given: 

In chapter 1, a general introduction about the theoretical and practical aspects of 
the geophysical inversion is given and literature about gravity and magnetic data inver­
sion is reviewed. 

In chapter 2 a combination of linear and non-linear 3-D inversion is developed to 
detennine the position and magnetization vector of buried iron objects producing a mag­
netic anomaly. The borehole data are inverted by assuming a two and a three-dipole 
model. Since the anomaly is due to a number of small objects, a stripping procedure is 
employed for finding them. Thus the inversion process for detecting all the objects is 
executed in several steps. In each step of the non-linear inversion process, an objective 
function is calculated at a number of fixed positions. For each of these fixed positions, 
the best fitting values for the magnetic moments of the dipoles are detennined by linear 
inversion. These best values are used for the calculation of the objective function of the 
non-linear inversion. The solution of the linear inversion is obtained by the weighted 
least-squares criterion. To take into account the effect of all data in the inversion, more 
weight is given to data far from the object and less to data close to it. The resultant 
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linear system of equations is solved using the singular value decomposition technique 
which can handle potential singularity in the inversion by filtering small eigenvalues. 
The nonlinear objective function is the absolute norm of the data misfit (iI-norm ). An 
iI-norm criterion is used rather than an lz-norm or least-squares criterion since the for­
mer can handle data which represent more than one anomaly and contain some inaccu­
rate or out-of range points (outliers). The objective function is minimized using the 
simplex (polytope) algorithm. This algorithm is used for optimization of the initial posi­
tion of the dipoles. Since the problem is highly nonlinear, the objective function is not 
smooth, and the model contains high spatial frequencies. The reliability of the results 
from synthetic and real tests prove that the method can reduce the effect of nonunique­
ness of the inverse problem when both physical and shape parameters are unknown. 
This method was successfully applied to detect unexploded bombs left from the second 
world war at Schiphol Airport in The Netherlands. 

In chapter 3, a subspace technique is introduced to solve an ill-conditioned 
inverse problem due to the rather large number of data and model parameters. In order 
to realize a fast convergence of the inverse process to a solution with minimum variance, 
the basis vectors chosen for the subspace method are a limited number of eigenvectors 
of the Hessian matrix (second partial derivatives), namely those which have the largest 
influence on the predicted data. The eigenvectors of the Hessian are calculated only 
once in the first iteration and a limited number of them is used for all iterations. An 
upper limit for the numbers of eigenvectors of the Hessian to be used without causing 
instability in the inversion is found empirically when it can not be found from the eigen­
value plot. This method was employed to solve the shape of interfaces, separating geo­
logical units, using gravity data from the Roervalley graben in the southern part of the 
Netherlands, assuming a two-dimensional model. The inversion results show that the 
method is stable against noise and also the steep faults can be delineated properly. The 
reliability of the depth of the interfaces found by the inversion in most of locations are 
proven by other sources. 

In chapter 4, a 3D inversion is developed which minimizes an objective function 
in the subspace of the data and model space. The spanning vectors of the subspace are 
the data and model eigenvectors of the Jacobian or first partial derivatives matrix calcu­
lated for an initial model. From these eigenvectors a limited number which have the 
largest effect in the predicted data are chosen as basis vectors. This selection avoids the 
calculation of the Hessian which is needed for most of the gradient or subspace meth­
ods. Since the matrix inversion is executed in the subspace of the data and model space 
the matrix inversion will be fast and stable against the noise. This subspace can handle 
ill-conditionality of an inverse problem which is due to the large number of data and of 
model parameters. It should be mentioned that this inversion scheme is sufficient for the 
case when the objective function is a smooth function of model parameters. The data are 
inverted for parameters defining a two or three-layer model in three dimensions, con­
structed by a limited number of square rectangular prisms. Only the depth to the top and 
the thickness of the prisms (vertical dimensions) are optimized by the inversion and the 
horizontal dimensions and density contrast are kept fixed. 
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This method was first tested with synthetic gravity data assuming a three-layer 
model to show the limitations. The method was also successfully applied for the inver­
sion of gravity data assuming a two and three-layer model for an area in The Nether­
lands where the seismic results did not give a decisive answer about the continuation of 
a potential hydrocarbon reservoir. To reduce the effect of nonuniqueness of the inver­
sion some parts of the model in the three-layer case are constrained using seismic 
results. Comparison of the results of two and three-layer model inversion shows that the 
results of a three layer-model can also be reliable if an adequate initial model is selected 
using seismic information or other sources of information. The results of the three-layer 
model constrained inversion, in general, were the same as those of the unconstrained 
case. 

In chapter 5, a strategy is introduced to handle a 3-D microgravity data inversion 
for detecting cavities with a maximum dimension of 4 m and a depth to the top of 6-10 
m. To detect these cavities with small dimensions , from the surface, most of the mea­
surements are performed with a spacing of 4 m. The data used were from a survey at 
Sint Pietersberg near Maastricht. Since a considerable density contrast exists between 
the cavities and the surrounding rock and the density contrast is well known, the resid­
ual data is inverted only for position parameters. To outline the shape of the cavities 
rather accurately by the inversion a model is constructed of a large number of square 
rectangular prisms. In the inversion, horizontal dimensions of the prisms (all are 2 m) 
are kept fixed and only the depth to their top and their thickness are adjusted by the 
inversion. With this parameterization the number of data points is much smaller than the 
number of model parameters, i.e the inverse problem is highly underdetermined. The 
nonlinear inversion is linearized and solved by a subspace method iteratively. To mini­
mize the effect of the noise in the inversion a limited number of data eigenvectors of the 
square and symmetric matrix GGT (G is the Jacobian matrix calculated for an initial 
model) is used as basis vectors for all iterations. After one nonlinear inversion step (con­
sisting of a few iterations of linear inversion) the results are not reliable (the cavities are 
scattered over the whole area). Therefore the inversion steps are repeated a few times in 
such a way that the result of a previous inversion step is used as an initial model for a 
next inversion step and model parameters corresponding to cavities with thicknesses 
smaller than some threshold are fixed and their values set to zero. The inversion steps 
are continued until the minimum thickness of the cavities is equal to a preassigned 
value. The results both the synthetic data and the real data show the capability of this 
method in handling an underdetermined inverse problem with a reliable and localized 
solution consisting of isolated structures. 

Summarizing it can be said that the methods described in this thesis are able to 
reduce some of the problems that occur in the inversion of potential field data. 



Samenvatting 

Dit proefschrift gaat over de inversie van potentiaalveld gegevens.Theoretische aspecten 
en toepassingen in de gravimetrie en de magnetometrie worden behandeld. De inversie 
theorie verschaft wiskundige technieken om uit meetgegevens nuttige informatie over 
de opbouw van de aarde af te leiden. De aarde wordt beschreven met een model, dat 
wordt vastgelegd door middel van de getalswaarde van een aantal variabele modelpa­
rameters die het model karakteriseren. Voor zo'n model waarvan de parameters bekend 
zijn kan theoretisch berekend worden watvoor meetgegevens dit model zou opleveren. 
Het doe! van elke inversie methode is om een model (dat wil zeggen de getalswaarde 
van de modelparameters) te vinden dat consistent is met aIle beschikbare meetgegevens 
en dat fysisch acceptabel is. 

Bij het uitvoeren van die taak stuit men op een aantal problemen, zoals: 
- Inherente meerduidigheid van het inversie probleem: bij de inversie van potentiaalveld 

gegevens bestaan er vele verschillende oplossingen (modellen) welke aIle even goed 
met de meetgegevens overeenstemmen. 

- meerduidigheid als gevolg van onderbepaaldheid: wanneer het aantal modelparameters 
kleiner is dan het aantal meetgegevens bestaat er geen unieke oplossing. 

- slechte gedefinieerdheid van het inverse probleem: dit effect treedt op in het geval van 
onnauwkeurige meetgegevens, ontoereikende parameterisatie en bij zeer grote aan­
tallen parameters en/of meetgegevens; het gevolg is dat er ongewenste oscillaties in 
de oplossing en instabiliteiten in de inversie ontstaan. 

Al deze problemen leiden ertoe dat een onbetrouwbare oplossing wordt gevonden of dat 
de benodigde rekentijd of geheugenruimte van de computer ongewenst groot wordt. 

Het doel van het in dit proefscrift beschreven onderzoek is om deze problemen 
die zich bij de inversie kunnen voordoen te overwinnen. De verschillende hoofd­
stukken, die elk voor zich afzonderlijk gelezen kunnen worden, zijn als voIgt samen te 
vatten: 

Hoofdstuk 1 geeft een algemene inleiding in de theoretische en practische 
aspecten van de geofysische inversie. 

In hoofdstuk 2 wordt een combinatie van lineaire en niet-lineaire 3-dimensionale 
inversie ontwikkeld voor het localiseren van ijzeren objecten op basis van magnetische 
metingen. Magnetische metingen in boorgaten worden geinverteerd, waarbij het 
gemagnetiseerde ijzeren object benaderd wordt door een model bestaande uit twee of 
drie magnetische dipolen. Aangezien het anomale magneetveld veroorzaakt wordt door 
een groot aantal kleine objecten, wordt een "afstrip" methode gebruikt urn elk afzonder­
lijk object te vinden. 
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De inversie wordt uitgevoerd in een aantal stappen. In iedere stap wordt voor een set 
van 2 of 3 dipolen op een aantal posities door middel van lineaire inversie bepaa1d 
welke grootte en richting de magnetische dipoolmomenten moeten hebben om de beste 
overeenstemming met de meetgegevens op te leveren. Vervolgens wordt in de volgende 
stap hetzelfde gedaan met de dipolen op andere posities. Het vinden van die posities 
die uiteindelijk de beste overeenstemming met de meetresultaten geven is een niet­
lineair inversie praces. 
De oplossing van de lineaire inversie in elke stap (om de best passende magnetische 
momenten te vinden) wordt verkregen met een kleinste-kwadraten criterium. Teneinde 
aile meetgegevens even sterk in de inversie te betrekken wordt meer gewicht gegeven 
aan de meetresultaten in veraf gelegen boorgaten en minder aan die in dichtbij gelegen 
boorgaten. Het verkregen systeem van lineaire vergelijkingen wordt opgelost met de 
"singular value decomposition" techniek, die door het uitfilteren van kleine eigen­
waardes niet gevoelig is voor mogelijke singulariteiten in de inversie. 
Ais objectfunctie, die in de achtereenvolgende stappen van de niet-lineaire inversie 
wordt geminimaliseerd, wordt de absolute norm van de data misfit (ll-norm) genomen. 
De objectfunctie wordt geminimaliseerd door het simplex (of wei polytope) algoritme te 
gebruiken. De resultaten verkregen bij testen met synthetische zowel als echte meet­
gegevens tonen aan dat het effect van de meerduidigheid van de inversie onderdrukt kan 
worden. Deze methode is op Schiphol met succes toegepast bij de opsporing van onont­
plofte bommen uit de tweede wereldoorlog. 

In hoofdstuk 3 wordt een zogenaamde "subspace techniek" gei'ntraduceerdd voor 
het oplossen van een slecht gedefinieerd inversieprobleem, als gevolg van het tamelijk 
grate aantal meetgegevens en modelparameters. Teneinde een snelle convergentie van 
het inversieproces te realiseren worden de basisvectoren die gekozen worden voor de 
subspace methode beperkt tot een gering aantal van de eigenvectoren van de Hessian­
matrix, namelijk diegene die de grootste invloed op de voorspelde meetgegevens 
hebben. 
Deze methode is toegepast op zwaartekrachtsgegevens uit Limburg. Uitgaande van een 
twee-dimensionaal model konden de posities worden bepaald van enke1e grensv1akken 
tussen geo10gische formaties. De inversie b1eek stabiel te zijn ondanks het hoge ruis­
niveau van de meetgegevens. Steile breuken konden zeer precies geloca1iseerd worden. 
De resultaten van de inversie stemmen overeen met geo10gische gegevens uit andere 
brannen. 

In hoofdstuk 4 wordt een 3-dimensiona1e inversie techniek ontwikkeld die een 
objectfunctie minimaliseert in een subspace van meetgegevens en mode1parameters. 
Ais basisvectoren voor de subspace worden de eigenvectoren van de Jacobian genomen, 
berekend voor een startmodel. Weer wordt een beperkt aantal van deze eigenvectoren 
gebruikt in de inversie. De anders noodzakelijke berekening van de Hessian-matrix 
wordt hiermee vermeden. 
De inversie in deze subspace van data en modelparameters is snel en zeer stabiel tegen­

over ruis, ondanks het grate aantal meetgegevens en modelparameters. Deze inversie 
methode is bruikbaar als de objectfunctie een glad verloop heeft als functie van de 
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modelparameters.
 
De methode is toegepast op synthetische en echte zwaartekrachtsgegevens, waarbij het
 
model bestond uit drie lagen in drie dimensies. De echte data waren afkomstig van een
 
gebied in Nederland, waar seismische gegevens geen duidelijkheid gaven over het ver­

loop van een potentiele gashoudende formatie. De beschikbare seismische informatie
 
werd gebruikt als een beperkende randvoorwaarde in de inversie van de zwaartekrachts­

gegevens. De resultaten waren veelbelovend.
 

In hoofdstuk 5 wordt een strategie ontwikkeld om micro-gravimetrische metin­
gen te inverteren voor het detecteren van holtes in de ondergrond met afmetingen van 
ongeveer 4 m en op een diepte vana 6-10 m. De gebruikte meetgegevens waren afkom­
stig van een locatie op de St. Pietersberg nabij Maastricht. Het model ter beschrijving 
van de ondergrond bestaat uit een groot aantal rechthoekige prisma's van verschillende 
hoogte. De posities van de onder- en bovenkanten van de prisma's vormen de vrije 
modelparameters. Het aantal meetgegevens is in dit geval veeI kleiner dan het aantal 
parameters, hetgeen betekent dat het inverse probleem in hoge mate onderbepaald is. 
Weer wordt het in principe niet-lineaire probleem gelinealiseerd en iteratief opgelost 
met een subspace methode. Teneinde het effect van de ruis te minimaliseren wordt een 
beperkt aantal van de eigenvectoren van de matrix GGT (G is de Jacobian matrix 
berekend voor een startmodel) gebruikt als basisvectoren in aBe iteraties. Na een niet­
lineaire inversie stap ( bestaande uit een aantal lineaire iteraties) blijken de resultaten 
niet acceptabel te zijn (de holtes liggen verspreid over de hele ruimte). Daarom wordt 
een nieuwe inversie stap ondernomen, waarin het resultaat van de vorige stap als start­
model gebruikt wordt, waarbij echter de modelparameters van die holtes (prisma's) met 
een hoogte kleiner dan een bepaalde drempelwaarde op een hoogte nul worden gefix­
eerd. Vervolgens wordt in iedere nieuwe inversie stap deze drempelwaarde verhoogd 
totdat de minimaal te verwachten hoogte bereikt is. Deze procedure werkt goed wan­
neer bekend is dat de holtes altijd een minimale hoogte hebben, zoals in dit geval op de 
St. Pietersberg waar we met door de mens uitgehakte holtes te maken hebben. 

Samenvattend kan worden gesteld dat de methodes die in dit proefschrift worden 
beschreven een groot aanta! van de problemen die zich voordoen bij de inversie van 
potentiaa!veld gegevens kan overwinnen. 



I.J...:.. ,.l:u. 

~~ U'~ ut.. ub ~jL.., UJ,)'J
 

~li.i.. J ~,~ ~lI:t~ ej'-»' ,)~ L.~..>I,)LS J 4S,)~
 

,J ~ .J,)."... ~~ UO U •.JI.J uojL.., 0,J),J 4.Ab 0'-:f4 ~I ,).J 

O,J.},J ,).J "~ • .J....t • .JI.J ~ uo,)~ UO U ~ . .J~~ JI~ IS""'J.H 

cSJ~ • .:......1 • .J....t ~~ J~ ~~ ,J ~I~ uo~~ .jl..ul cSjL... 

~I":;~ ~,JJ ~I U .JjL...~ f"'--'I,.>-i IJ ~'-:fJ UO~,JJ cSjL... u,JJI,J 

.~w c.IJI V:!-aj o.J4J.J uo~ ulc.:')U.1 (u • .JI.J) ~~ .jl..ul vuL...1.H 

~I~ jl ~ U ~~ .JJi>:' IJ ~u~IJ4 uo.J..LL J~ ~,JJ ~I 

J........,.,:; ,J ..u",...t~ • ..l.t--l:. J..L.. uou~IJ4 vol~ ~I . ~4,.,.. IJI.J IJ ~j 

u,J),J cS~,JJ ,.L....u~..u •~~~ J..~JA U • .JI.J ~ J.J.A '-:f lSJ~ ~ 

J\!jL... .J~."... UOU • .JI.J ,.L....u 4 U ,u,~ J..L.. ~ o.JJi .:.-~ cSjL... 

-~ La LS • I wi I .'u'la J - ., < ....• ~'-'I ~lat..r' . J ~,.. uo >:' .",.-... ~ ~~ ~ J,J . 

:.J~c.r- •.}.~I 4=o1~ ~j J.J U ~",...t~ ~I."... 

cSjL.. 0,J)" :cSjL..... 0"),, ill....... ~I,j O.J~ v-:"~ ~ -~I 

u ,J.j,4~ J..L.. '-:f ~ .1,) uo.J~j .J1..t.a::A J...u ~~ ol~ cSU • .JI.J 

. ~~ '.1.H ~jl>:, U • .JI.J 4 o~ J~~ 

/'" - ;J 

:~,J.j,~ ,J~ jl ~l:. uojL.., u,J.J',J ili....... U.J~ v-:"~ ~ -~ 

123 



124 

~ul.b..=.. jl ~t:. ~I O:!I :~jL.... 0"')'" UL...... ~I~ ~ -~ 

'" U • .JI.J .J~j .JI..1.Li '" J.J..a ~u~IJ4 0.J~ ~lS:t:. .~~ .jl~1 

~)..l..:l4t:. '" J~ J.J ~I~t:. ~4:aL..,:. ~ U ..L.tl.;a~ J~ ~u~IJ~ 

.yl~ ~ ~~ 4 ~ .:.~ O:!I . .J~~ ~jLu 0"')'" ......."'~ 

tJ ~~~ U;.j~ '" ~~ oL.j O,,:"i 54 '" ..L.t O~I ~U~• 

• .4..A.J~ ~I>il 

~. I . ~~~ '-at:. '-' _ '1 J .J • ..L.t J'" i.J ~ _ 'I..,.-- . t..4 ~ ~ ~ .:.~ J ....a...L..6 

.~l.;a~ 4:ai 4 ~I.,... ~jLu O"'JI", ili....... ~ H'J",........ u ..L.tl.;aU"'':'~ 

•
..s',L. ,\, ,I ,ili....... • It.. ,.J w='S ~4 cl. !' i r'...1 ,.J -, 1,1 ,! i
n n 

'" u=al~ ~lA • .JI.J ~jL... o"'JI", ".Jl.;aJ.J • ..L.t ~,,:. .:.'Jl&.. '" ..::......\ .~ • .JI.J 

~l:..i.. J"'~ '" ~.,... ~u).J..H ~ ~I..H u ..:......1 • ..L.t • .11.1 ~ 

• .s...:. ~~ .jl~1 ~l:..i.. ~).~.:.....-:»t. ~I..H J~ .0",J.J...e ~i t~1 

~L.ji ~4-A~ J.J .~ ~~ t~I ~~~ .jl.J.:al . ..:......I • .s...:. • .J.,H J~ 

•.s...:. ~jL. 0"')'" ~-",.J ....... '" ~-",.J ",.J jl ~jA ~4J.J..a vO~ Y
 
.1 ~L .•L.~ ~1.JI.u:; cl.·1 ~t:.I .. I.·. t:. u wi 'I .~I....., .<..r" ~..P ,.. _ J c.r'" ~J~ ~. J 

~ O:!I..Hl:...:- ,..::......I.~ ~~ J~ 4:af 0.J~ I~ ~I..H ~jL... "':"""'..H ,.y."'J 



·~
 
t 

c~:
~ 

~ 
~.
~

 
t 

1:. 
r. 

~. 
~. 

~.
~

~.
 

~.
 

f 
~

 
t 

1
It

 
~ 

~.
 
r 

\. 
(;

, 
t

f
r 

.g 
1.0

 
<.

 
~ 

f~
~

 
\. 

~. 
<.

 
r 

i.. 
~. 

G
' 

'~
 

\..
 

c. 
r 

\. 
-~ 

-
.
 

-
~

 
1.0

 
,
.
.
 

C
 

I.
. 

~
~

 
r

f
-

C
 

~ 
-

t.
 

(1
) 

, 
.
.
.
.
.
.
.
 

t·
 

I 
•

•
•


 

&-
c· 

S:-
1

~
 

t 
~

 
. 

1. 
~

 
i:"

 
.v-

~
~ 

t 
t 

!C.
"

. 
!C' 

• 
,r-

I~
 

t 
!to 

t
f

.r;; 
I 

&. 
t 
f ~

~ 
\. 'i:~

 
~

 
t

f 
1 

r:
 

l'
 

\.. 
'tI

 
t 

~
~

 
r:

. 
r. 

. 
1

"
 

l' 
F

 ':
-

.. 
~

 
.~ 

\. 
~

 
r 

t 
!
t
"

1.0
 

.c' 
t.

. 
t

r 
<r­

~ 
1 

t. 
~ 

,I' 
r 

1. 
~ 

r
, 

l' '
::. ~

 
c·

 
[ 
~ 

'i:
' 

I
Io

 
<.

 
r 

C
; 

~
"

 
f
"

, 
.. 

e 
<.

 
~ 

<to
 

't 
[.' 

c 
c. 

(;; 
I-

~ 
c 

c. 
't

..
 

"ll
: 

<:
-

t 
t 

.-
: 

C
 

&. 
'L

 
1.0

 
~..

 
\.

 
;l

, 
\
L

 
~.

 
. 

1
· 

l 
C

. 
't 

1.0
 

~ 
1.0

 
-

1.0
 

1.0
 

~
 

1.0
 

II>
 

C
· 

f 
l' ~

 
( 

~
 t

 
t· 

~ 
of

 
~. 

~ 
f 

't-
~ 

.r
 
~

 f
 '..

f 
0( 

'L 
l • 

1.0
 

[
, 

t 
.r

 
~

 
r:

 
~
·
.
r

 
t
-
~
,
,
.

 
L.

\:
 

-
r: 
~
.

 
t. 

L. 
".

 
.r:

' 
-

<.
 

-
~

 
't.-

t 
t 

.. 
t 

't 
v· 

t 
'.

. 
t 

...
" 

't.
 

. 
'" 

. 
'\..

 
t 

S:-
F"

" 
\. 

t. 
L:

' 
~
"

 
• 

~ 
!:

..
t 

-
1. 

r 
'"

 
~

~
 

1.0
 

~. 
~ 

r;
;'

"
 

..
..

 
-

~ 
'E 

1.0
 

~ 
l 

'\. 
' 

~
 

t 
~ .

 
\.

 
.to

 
1. 

lr 
. 

~
~

 
t-

\.-
t' 

~ 
.t

 
.r 

r 
~.

 
( 

l~
 

f 
(;. 

-
...­

t
-

"
c
 

(;.
...

 
\. 
~
"
"

 
c· 

-
"
"
~
.

 
! 

r
C

 
'
:
-
L

 
't':

' 
~

 
'" 
~

 
<t 

-~ 
f 

!.
. 

f 
~

 
r 

'~
 

c.:.
. 

t· 
'L

 
<.

. 
r

. !
t 

.t
;'

 
~

 
1:.

1.0

"
r 

~. 
2-

,r. 
1, 

.~
~ 

~ 
t 

t. 
.t

 
~. 

~ 
C

 \
.' 

~r' 
~ 

r"
 1

 ~.
;r

 
c·

 
V\

 
... 

.~ 
~ 

E
 

... 
'~

 
L

' 
'\

..
 

<.
 

~ 
1

. <
:-

1.0
 

c 
-
.r

 
r 

~.
 

,.
 

'r..
 
r 

~ 
~
,
~
.
t

 
f: 

v, 
C

 ~
. 

~
 

,; 
,t.

. 
~ 

(1
.0

 
,
.
 

~' 
'L

 
E

 .
~ 

~ 
r 

'" 
~.

 
~

 
c;

 
'"

 
L

' 
(;

 
I
e
\
.

1.0
 

•
• 

t
.
­

r:
 
r 

~.
 

C
 

~
 

• 
~
!
:
:
.

 
~.

 
'L.

c. 
" 

1.0
 

-L
 

C
, 

C
 ,'

t. 
;t.

, 
1.0

 
~ 

!t 
c· 

\.. 
r. 

r 
';S

 
r. 
1

't.
 

~
 

<r 
c' 

. 
't,

 
1 

't 
"

I)
. 

"
1

.
0

t 
r-

· 
'r..

 
0 

.~
 

;
, 

\.t-
11

.0 
11

.0 
~ 

..
 

~. 
~ 

t· 
~

 
~.

 
t 

~. 
E'

\ 
\.. 

I 
c-

c·
 

,. 
"0

 
, 

, 
. 

1.0
 

.f:
 

<to
 

,.
..

. 
r, 

~'
 

r 
..

 
<.

 
'I:

-
~
.

 
.

'" 
-

~.
 

...
 

"" 
c. 

~.
 

r 
t-

':.. 
~

 
'-' 

,~
. 

r 
~

 
..

' 
.f

 
1

. 
£~ 

~ 
'\. 

.f 
.r

 
'co

 
,f'

 
~ 

'L 
~.

 
t 

~ 
<.

 
<.

" 
~

 
':

:.
 

[.
' 

=
 .r-

~
~

 
r 

.t
 
~

 
~.

. 
r"

 
co 

E
 
~ 

':..
 

£. 
r: 

.~ 
&-

f 
~

 ~
 

r~
· 

t. 
~ 

t 
~ 

£. 
r 

c 
~ 

f 
t 

f 
of' 
~

 
t.. 

~ 
-

<t 
t 

't 
r-

. 
[,

.r
 

't.
 

s 
~,

 
c· 

\. 
'L

 
'

1, 
~, 

!r 
.r

 
t.. 

_
t; 

1.0
 

Co
. 

t 
t· 

~
 

<t 
,r

 
<.

 
C

 
_ 

'\. 
~ 

'\. 
r 

~
 

'L. 
t· 

.f
 ~

 
<t 

<t 
<t 

'....
 

'\. 
~

~ 



of 
:S

 
1'c

. 
't

 
~.

 
Ii.

 
t 

:;. 
it

 t
-

or-
.t

 
1: 

~
 
r'i.. 

IV
 

~
.

 
. 

z 
~

 
r

t 
~.
I:
' 

~
 

....-
[:'

 
to 

•
" 

t 
t-
f 1

 
t. 

· 
f

r 
c·

 
!t. 

\ 
~..

 
~ 

'h 
~ 

'i:-
Z

 
r-

.
If 

t 
<.

 
-

I
'
 

..
..

..
. 

'"' 
I 

=-
"ii

i' 
l'

 c
 

0
­

I 
..

..
 

• 
l 

c·
 
~

 
. 

~.
 

e. 
~ 

.... 
r 

to 
t

[ 
t 

I:
c;

-
<.

 

1.0
 

..:
. 

.. 
<.

 
<.

 
'"' 

: 
It

"
L

.
 

.
'
 I

• 
I 

of 
~ 

t 
~ 

-.
 

't 
e. 

.... 
r

1 
I 

c·
 

\ 
. 

e.
~

~
 

.
.
.
.
.
 
~
.

 
..

 
I 

L.
 

...
. 

t 
e. 

~
 

.....
 

• 
t.

 
~

 
1.0

 
~

 
" 

~ 
'.

 
it

''!
.. 

~ 
1~

 
f 

'h
\' 

C
:' 

'<:
t

'i 
3-

~
~

 
. 

t:t 
~~
. 

~ 
: 

.... 
: 

tl 
~

~
 

.~
 

r· 
i" 

~
~

 
c-

~
~

 
-

t 
'£.

 
i 

~.
f 

'~
 

t 
t 

t. 
~ 

• 
.... 

'i:-
~ 

f 
e. 

~ 
CI 

~ 
f, 

[
C

=
..

..
. 

•
I

• 
-

It''I 
r ~

 
<.

 
•I 

~ 
" 

F
' 

·
. 

... 
'L

"
fl

{"
 1

. 
f 

<
.
.
 
"
t
·
·
·
 
•
•
 

.t
 

t 
~ 

't
 

~
 

~I
;
.
 

't.
 

I
t
,
 

f 
... 

It..
 

t. 
=-

r 
L:

 
....

. 
~

 
.r

 
c·

 
c-

c: 
'"' 

". 
I 
~

 
e. 

1 
... 
l
'
 

l 
~

 
­

". 
~.

 
~

 
f.

 r
• f

t
f 

,
" 

~
 

't,
 

t'
. 

-. 
~

'c. 
r 

'i.
. 

it 
V

 t
f 

[" 
e.

f 
t~
· 

[, •
1" 

:;. 
~ 

of 
f 

~ 
\ 

'.
"-

\. 
.£'-

t 
...

l' 
t 

r;
-

~
 

·;
;-

.r
 

f
" 

'h
 
~ 

~.
 

<-
. 

.r 
t 

:r
 

.. 
..

" 
t.. 

C=
. 

~ 
• 

~ 
£ 

!t 
e. 

t 
~.

 
t.. 

~. 
l I

\ t: 
.
.
 
"
,
 

...
 

I
,
 

c;.
'
e

 
1

<.
r 

<.
 
-
~
l
l
t

 
r
'
 

t 
-.

..
. 

r 
..

..
 

..
. 

~I
 

e.
-,

~.
 

.. 
~.

 
e. 

IE
'-

• 
\:

 
. 

I
·
 

..
. 

'
"

 
!to 

L.
 

~ 
~
~

 
-

~ 
• 

t.. 
"

. 
f 

'E 
c,

-
~ 

t. 
r 

t 
.-

e. 
I 

rb
. 

t 
...

. 
I
e
.
"

 
.... 

c..
c·

 
"
,
.
 

~
 

"
r

• 
~ 

t. 
Ei 

f 
<

t"
. 

1. 
t.

.t
 

".
.-

.;
-"

 
.F 

"". 
~" 

t
t
'
 

'
.
.
 

1'
'' 

.r
'!

..
r
.r

s
:
£

.r
-

. 
I
"

"
\
 

\ 
~

~
 

-
e
.
 

. rl 
f 

·r
 

!t. 
1;;

\
;. 

i-
{" 

~
~ 

r: 
~ 

f. 
.E' 

:t 
... 

.: 
~.~

. 
• 

.
­

~
~ 

...
r 

~
~:

~
~ 

~ 
£.

c 
r. 

c-
'h 

~
~

 
-

~ 
,r-

. 
~
~

 
. 

~
 .c­

~
 

t· 
....· 

. 
t·

 
. b 

~
~

 
'" 

b-t
o I.

.
.
.
 "
t
£

 
" 

t·
 
1~

 L.
 

L.
t7

 
I 

l C
o"

,e
. 

.
.
 

•
" 

I
'

-
"

 
-

e. 
L

.
.
 

'0
l 
~ 

1. 
f 

.r' 
~ 

r 
e.

r 
~ 

r 
~. 

t· 
·

t
f 

t.. 
!

: ~
~ 



127 

.!.Y u ($~ I.,..., ($)\..., u"),, ~".) .!.y J.-..j 0:11 .)':; -,. ,I.') 1\',0,' 

•.:......1 • ..1..t .,:;1,:; ~ ,:;)\...,y-a ~ LA .,:;1,:; c.s~ .>4) .).1 ,.) ,:;",...-:a.. &~ 

u~ ~~L. J.L. " U .,:;1,:; .~" c.sLA),:;.H'~ .>4".J ~Ji ($U),:;.H
" .... 

,:; I..L.JU ~ .~" .>4':; lA.... ($LA) ':;.H 0:11 jI ...1.:....:.L"y-a ,:;."......,..:a. & ~ J"1 ~ jA 

Ul",:...c. ~ .:;;..)1,:; • ..1..t ~ ~ c.sLA • ..11..1 .)..1 1.) ~I 0:1~ U ..I,,~ 

~~ u~ ~~L. ~ ~".) 0:11 .)..1 . .u""':'y-a yL.:...:;.:.1 ~4 ($LA),:;.H 

l.;t ~l..A.j .>4) ($~".) ~ c.s1.H U ~L.. .)..1 .1..J.l,,~ )~ ("".I .~jA 

.>4".J .).J c.s)\"" u"),, .s.:.i ~~ . .J""':' ~t...:...... ~~L. ~I ~4 u=-al.;t.JI~ 

.ul~ U"':" .H1.H .)':; )~4 " &>- ui ,:;~y-a ("4:- J..L.e " LA .,:;1,:; ($l....AJ
' 

), ~t:.) I~ .J..,A ~I~ l" c.s".JL... u"),, UL....... ~ .~l....AJ .>4".J ~".) ~I.,:;-,""
 

0:11 . ~W ~ .:;;.l y y-a ~I.H (J..1.A c.sLA~I).~ " LA • ..11,:; ':;~".J .JI~ 

)"...u .J~ &~ u ..1..tl"y-a '-:-'-"~ ~L.. c.s1.H c.s)\..., u"),, ~".) 

I.) c.sl ~'J I.,..., L" ",:; J..L.e ~ U ~u~I)"i ~ c.s1.H LA .,:;1.1 . ..1..tl" 

J~ ($,:;I..L.JU )1 ySjA ~'J jA . .:;;.."..:,~ c.s".JL... u")" ..L....:..S~ ~~ 

•~~ (,.:aL:i .J ~I) LA.)~ .:.....~ " J..a.c. 4.:u ..1..J.l"y-a u.~ ..:.......1.)
 

.~ ..:...,.t l,)b~ ("~ " ~I ,:;la..,,1 " .u""':'y-a ~ ($)\..., u"),, 
l" ~".) ~I I~I .:;;.."....:, 0,0,; ,;,. ~,:;"..I...:l...A ~, c.s1.H . ':;;'''''''':'y-a ~I,:; 

. .:......1 • ..1..t ~L.)i c.s l ~'J I.,..., J..1.A ~ vA~ l" .uL.,..:....- u=-al~ ($LA .,:;1,:; 

",:; J..L...a ~ vA..;il" .u=-a'~ c.s LA • .JI,:; ($".JL...... u"),, ($I.H U! ~? ... ~".) ~I 

.:;;.1 ~Iy..:, ($1 .)..;1 ~t;.:. u ~4- ..t.:...1.A jI c.st ~t..:. .)':; '($1 ~'J I.,..., " 

• .J.H .)t.S.." ~.J..,A o.,.~".).l.:!A ".JI ~jA ($1 4y'J ~ ~I) ($IJ-:I ~ y'"Ho­

.J""':' • .J I.J ~ lS LA • oJ I,:; ($".J\..., u"),, lS'" J-=!"' ~ ~I u:ai ($'.H • .:......I • ..1..t 

0J.A, LuJ># ~ J.J (~I .,:,.,j ~LA .,:;1,:; jl • .Jl...~....,Il,,) J..L... jl ~ 

" c.sI ~'J "..I J..L.e j I J....:.L.. ~ \.;.:. '--:!u... .. ,:;."..:,~ ~1.1 .l!:. ..:...,.t ($ jL... 



J 
-?' 

~
 

J' 
-

..J' 
j 

~
~

 J
j 

.,.. 
~ 

j 
.1' 

,] 
~ 

~
~ 

',3 
" 

~ 
{ 

~ J
i 11 

J~8 
.~ 

J' 
-

)-
....j 

'-J 
~ 

.j 
'1; 

~
~ 3' 

. '1 
J 

,J
1

1
1 

~J 
6' 

1
-~
~
~

 
~

 
:~ 

-?
:;

,. 
,~ 

'l
 

.~ 
~ 

" 
~ 

olJ 
J
.
 

~ '1 
'~ · 

.
.
~ 

· 
~ 

"
.
 

1
"

J
J

.:J 
~ 

. 
~

 
,
.
,
 

-~ 
-1 

.,~ 
j 

-" 
~

 
'~ 

':-~
 

1
_

"
 

:-"
"
 

.~ 
'~ 

.
.
,
.
.
 

., 
/1

..J
 

•.J 
_" 

j
" 

'J 
..J' 

~
.
~

 
~,

.J 
::> 

~
~

 
., 

:
:
J
"
 ':1 

.J 
~

 
"'J 

1
-
j
 

01 
1 

.... 
~
J

 
~ ~j 

" ,] 1
:] 

':J 
3

J -:;
. 

Q
 

;
j

; 
1

'\ 
~ 

:~ 
"J 

.~ 
] 

~
~
J

 
.
,
.
y
 

...... 
_
.
,
:
"
~

 
-

j 
~ 

J
,:lJ

 
1J 

"1
-:.. 

.... 
, 

•
~ 

J 
~

 
,~ 

~ 
; 

.3
-~ 

.~ 
:j 

," 
.\ 

"J 
t ~ 

,,:-\ 
~

~ 
.j 

,) 
1 

~
 

1
E

 
•

J 
,1 

.~
~ 

~ 
-
; 

J 
~.:l.

13 
Jo 

~
 

~
~ :

1 .~ 
~ 

1 
,~ 

j 
:j 

.j 
'.:J 

~
-~

.~ 
.~

;~ 
J'

~
~
'

 
~ 

., 
~

 
-

....., 
~
"

 , 
.J

 
~

 
•

, 
~ 

-.3' 
~

 
,., 

'
~
J

 
~,

~ 
-" 

, 1 
,]' 

..J' 
.:!.> 

J 
.~ 

'~ 
," 

:..~
.; J., J 

~ 
:-~ 

'\ '1; 
,~ 

~ 
-?' 

.j
J'
.
 

-1
' 

1 
,"

 
. ~ 

., 
J' 

.J
 

t 
-

'3 
':J 

, 
~

 J 
~
.

 
li

• 
.,.. 

-~ 
-" 

., 
J
.(, 

~ 
J

J
-," 

'" " 
~~ 

" -" 
,.-.,~; J 

'~ 
:~ 

,~
~ 

] 
.~ 

.~ 
" 

~ 
=3 

~ 
~

 
" 

.
,
 

.
.
 

.
.
.
 
,
~
.

 
J

.,.. -
­

-
~

 
-
:
)
.
c
 

'1
J' 

;'. 
~ 

., 
·1 

),
\ 
~

 
Ii 

~ "j
-~ 

J
'\ 

'5 
.~

~ 
.~ 

"
'J

 
. 

~
"
.
.
J
'

 
~

 
-~ 

.,j 
3'~ 

.
,
 
~

 
.
"

_ 
r/l

• 
•

_ 
" 
~
.
y

 
-:-" 

.:J'
,) 

~' 
of 

.J
 

,j 
~ 

~J
~ 

j 
j 

'.:J 
. 

-~ 
~ _.... J d' 

"
" 

~ 
~
~

 
.~ 

t
.J

 
-1

'\
 

• J ~
 ., 

~ 
''I 

,"
 

-i
.

. 
~" 

.~ 
"
J
 

6
" 

·1 
J

.~ 
J 

!
:
;
 

-.... 
" 

J
'") 

... ,-)-
~
-

J' 

~
 

-
~

~
 

J 
• 

~
 

., 
~

 
.~ 

." 
q

," 
-~ 

., 
.
.
,
j
 

-
~ 

~
 

..J' 
.c:!, 

-
j

.-
~

 
" 

.~ 
::j 

~
~

~ 
"

• 
" 

~
~ 

J 
~

 
-
"
 

,
~

 
li 

j 
~
~

 
,
,
~
:
t
J

 
, 

~
 

J 
'J 

'J
 

..... 
-

~
-
.
3 

.., 
., 

01 
~
.
"

 
... 

_
J 

~,~ 
)-

," 
1.' 

-4 
.~ 

~ 
, 

-::. 
. 

..., 
J 

j' 
J
'
.
'
~

 
~

 
~

 
.~ 

• 
.J 

,"
j 

; 
.,

," 
-' 

-:l 
.... 

0
0

 J 
~' .~' 

, 
.
.
.
,
~
,

 
'
-
-

....
1 ~i 

.~ J J ~
.~ 

~ 
J
' 

· ~.,
~
?

 
~ 

~ 
j

~ 
.J

 "1: 
J; 

• 
~

 
• 

. 
...

j 
• 

:
;
.
,
 
~
j

 
~
,
,
~

~
J

 
~ 



129 

lS,jL.. oJ}J .u:"'jA .!y ,jI ..La..:a •.Ll~~ Q~ ~ J.J lS,jL.. OJ}J 

. ~I I.\.j ~ ( L.:. I. _0 L..' I '1 .J1.u.:l..!L '-U) L.:. • .1.U _ ~ ~ ~ lS~J uJJ J J - ~ -..s---~ 

~ljA ~IJ-:'~ (.u,rtu---~ ~b fW J.J LA .~) .J..H ..L..AI~ 

U:...jA ~~ U ~~ .u~~ JI~ ~jA ~~ ~~ ($jL.. 0")" 

~ J.J lS~ lS,jL.. OJ)J lSlJ-:' y,,1 J.L-. ol..,.:....c. ~ ~ lSjL.. OJ)J 

~ ($u ..:.....~ L,. LA .~ ~ ..b..HjA J.L-. lSLA~I).~ " .J.,...tu--- ~~ 

),;i ~ ($"L........ oU~JlA.. " • .w. ~'J .~ ~~ ($1 4.:.~i )~ .!y jl 

.:.....~ U ..L...:..S~ I~ ,--I.JI u-:!4- ~ ($jL.. OJ)J J.:..IJ-A . J,rtU-- 6JIJ 

($LA • .JIJ ($jL... 0".;1" ~~ . .La~ lSI ..:.~i )~ .!y jI ~ LA 6~ 
r' 

".;i ($jL... 0")" ill....... .!Y J..:... J.J IJ ~ ~I u-:!t.:.ly ~I" " ...r~
 
..... 

• ..l.A Ju--- ow...:. lsb--) •.w. 1..1,,~ I ($LA J~ L... ~ ($1 J-:' ~ 



Acknowledgnlent 

First of all I would like to thank my promoter Prof. Dr. R. K. Sneider for his excellent 
supervision and guidance of this study especially in the part of inverse theory. His valu­
able comments together with his hospitality facilitated my scientific achievements. 

My special gratitude must also be expressed to my co-promoters Dr. J.W. Brede­
wout for his helpful advice, useful comments, valuable discussions and critical reading 
of the manuscripts, for publication , and the thesis. The acquisition and processing of 
the data would not have been possible without his assistance. Me and my family never 
forget the kindness of him and his wife. They are excellent examples of kindness and 
cooperation. 

I extend my appreciation to Prof. Dr. l. Mondt for his comments and making the 
departmental facilities available to me. 

Many thanks to Dr. K. Roy-Chowdhury for his fruitful discussions, helpful 
advices to overcome my computer-related problems and being so kind to me. 

I am sincerely grateful to Prof. Dr. C. Reeves for his critical review of this thesis, 
and for providing helpful comments and suggestions. 

I would like to thank Dr. A. Curtis for discussions and reading parts of this thesis. 
The computer manager loop Hoofd and his colleague Theo Van Zessen are gratefully 
acknowledged for providing computer facilities. Thanks also to I. Rosier for collecting 
and processing some part of the data used for this research. The assistance of Dick Ver­
weij in acquiring data is also acknowledged. I also wish to appreciate Dee Pattynama 
and Bernadine Vet for their significant roles in administrative affairs. During the course 
of this study I have benefitted from the faculty staff, graduate and undergraduate stu­
dents I wish to thank them individually but there are too many to be listed. 

The presentation of the summary in persian would not have been possible for me 
without the help of Iranian Bureau of International Legal Services and Iranian school in 
The Netherlands, and I am thankful to them. 

I am very grateful to Iranian Ministry of Higher Education and Training Teacher 
University of Arak for awarding me a scholarship to do my study. The Faculty of Earth 
Sciences of Utrecht University also acknowledged for supporting me financially during 
the last years of my study. 

My great appreciation is also to my parents and my relatives and my friends who 
always have supported and encouraged me through my entire study life. Last but not 
least acknowledgments are to my wife and my daughter who patiently endured my fre­
quent absence from home and inspired and supported me in my scientific achievements. 

131 



Curriculum vitae
 

Mahmoud Mirzaei was born on April 1st, 1957 in Komein a town located in the central 
province of Iran. After receiving the High School Diploma in mathematics, he entered 
the Training Teacher University of Arak in Iran in 1975 to study physics. In September 
1978, he obtained his bachleror's degree in this field. Soon after, he was employed by 
the Ministrey of Education and Training as a physics teacher of High School. After a 
few months, he was accepted in the Institute of Geophysics of the University of Tehran 
as a graduate student in the field of geophysics. After one year study the university was 
closed due to the cultural revolution. Then he continued his job as a teacher for another 
five years. In 1985 after the re-opening of the Institute he continued his study. He 
obtained his M.S degree in 1988. Soon after, he was employed as a junior lecturer, first 
in the Institute of Geophysics of Tehran university and then in the Training Teacher Uni­
versity of Arak. In 1989, through an examination he was awarded a scholarship from 
the Ministrey of Culture and Higher Education of Iran to complete his study in geo­
physics with a PhD. He started his PhD study in April 1991 at the Geophysics Depart­
ment of Utrecht University. 

132 




