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Piaget: What makes the wind? 

Julia: The trees. 

Piaget: How do you know? 

Julia: I saw them waving their arms. 

Piaget: How does that make the wind? 

Julia (waiving her hands): Like this. Only they are bigger. And there are lots of trees. 

Piaget: What makes the wind on the ocean? 

Julia: It blows there from the land. No. It's the waves ... 

Dialogue attributed to Jean Piaget (1896-1980) 
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Summary 

SUMMARY 

Within the last decades, there have been spectacular developments in experimental and 
analytical techniques that allow geochemists and biologists to acquire ever more detailed data 
sets on aquatic sediments. These data sets often combine high-resolution chemical 
distributions with rate determinations, and information on resident biological communities 
and their activities. This wealth of data, in tum, creates a need for new diagnostic models 
that account for the complex interactions documented by field and experimental studies. 
Models of early diagenesis must therefore integrate knowledge from a wide variety of 
scientific fields, from transport theory and chemistry, to molecular biology and benthic 
ecology. Only by incorporating meaningful representations of the dominant processes, are 
these models able to scale reactive transport interactions from the local to the regional and, 
ultimately, global scale. 

This thesis focuses on the quantitative description of (1) biologically-induced transport 
processes, and (2) the coupling of reaction and transport processes. It presents three 
innovative approaches to quantify pore water transport other than molecular diffusion. Two 
of the approaches compute site-specific depth distributions of solute mixing intensities, but 
they differ fundamentally in the type of input data. One approach is based on chemical 
concentration and rate measurements, the other uses ecological data on the infaunal 
community. Despite their differences, both approaches yield comparable bioirrigation 
intensities. 

In the third approach, measured benthic oxygen uptake fluxes across a wide variety of 
oceanic environments are used to derive global relationships for enhanced solute transport 
rates in sediments. This last approach bridges the gap between site-specific studies of pore 
water irrigation and regional to global assessments of the role of benthic-pelagic coupling in 
ocean biogeochemistry. The estimates of enhanced solute transport intensities clearly 
demonstrate that bioirrigation has a major global impact on solute exchanges between the 
water column and sediments. 

Next, the fate of particulate matter in bioturbated sediments is modeled using a stochastic 
Lagrangian approach. Individual particle histories are explicitly computed from probability 
density functions that embody the nature of particle transport by bioturbation. The analysis of 
the results provides insight into the emergence and variability of particle properties relevant 
for the interpretation of the sedimentary record. In particular, the effect of bioturbation on 
the oxygen exposure time (OET) of unreactive and reactive particles is investigated. 

Finally, two advanced modeling environments for early diagenesis are presented.
 
In the first one, a flexible reaction network simulator is coupled to one-dimensional (lD)
 
transport descriptions. As the reaction network is easily modified and adapted by the user, it
 
is ideally suited to explore biogeochemical reaction systems of increasing complexity. The
 
ID forward reaction-transport model is further combined with local and global optimization 
algorithms to enhance model parameterization based on observational data. The second 
model environment is a preliminary version of a multidimensional reactive transport code for 
early diagenetic applications. 
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SAMENVATTING 
De laatste decennia zijn er spectaculaire ontwikkelingen geweest in experirnentele en 
analytische technieken op het gebied van de biogeochemie. Deze stellen geochemici en 
biologen in staat steeds meer gedetailleerde gegevens te verkrijgen over aquatische 
sedimenten. De gegevens zijn meestal een combinatie van chemische metingen in hoge 
resolutie, inclusief de bepaling van reactiesnelheden, en informatie over de aanwezige 
biologische gemeenschappen en hun activiteit. Deze rijkdom aan gegevens heeft geleid tot de 
vraag naar nieuwe diagnostische modellen die rekening houden met de complexe interacties 
die in veld- en laboratoriummetingen worden vastgesteld. Vroeg diagenetische modellen zijn 
noodzakelijk om de kennis te integreren van een breed scala aan wetenschapsgebieden, van 
transporttheorie en chemie, tot moleculaire biologie en benthische ecologie. AIleen door een 
zinvolle implementatie van de dominante processen, kan met deze modellen de 
wisselwerking van reactieve transportprocessen van lokaal tot regionaal en uiteindelijk 
mondiaal niveau worden opgeschaald. 

Dit proefschrift richt zich op de kwantitatieve beschrijving van (l) biologisch-geYnduceerde 
transportprocessen en (2) de koppeling van reactie en transportprocessen. Het presenteert 3 
innovatieve methoden om poriewatertransport, anders dan door moleculaire diffusie, te 
kwantificeren. Twee van de methoden berekenen locatie-specifieke diepteverdelingen van de 
intensiteit van vloeistofmenging, maar verschillen fundamenteel in de wijze van invoer van 
gegevens. De eerste aanpak is gebaseerd op chemische concentraties en metingen van 
snelheid, de tweede gebruikt ecologische gegevens van de faunagemeenschap. Ondanks de 
verschillen, leveren beide methoden vergelijkbare bio-irrigatieintensiteiten. 

In de derde methode worden gemeten benthische zuurstofopnamefluxen van verschillende 
oceaanbodems gebruikt om mondiale relaties af te leiden voor transportsnelheden van 
opgeloste stoffen. Deze laatste aanpak slaat een brug tussen de locatie-specifieke studie van 
poriewaterirrigatie en de regionale tot mondiale rol van benthisch-pelagische koppelingen in 
de biogeochemie van de oceaan. De schatting van de verhoogde transportintensiteit laat 
duidelijk zien dat bio-irrigatie een belangrijke mondiale invloed heeft op de uitwisseling van 
opgeloste stoffen tussen de waterkolom en het sediment. 

Vervolgens is het lot van vaste stof deeltjes in gebioturbeerde sedimenten gemodelleerd door 
middel van een stochastische Lagrangian methode. De geschiedenis van individuele deeltjes 
is expliciet berekend aan de hand van dichtheidsfuncties om het deeltjes-transport door 
bioturbatie vorm te geven. De analyse van de resultaten biedt inzicht in het voorkomen en de 
variabiliteit van sedirnentkarakteristieken die relevant zijn voor de interpretatie van de 
geschiedenis van het sediment. In het bijzonder is het effect onderzocht van bioturbatie op de 
tijd van blootstelling aan zuurstof van niet-reactieve en reactieve deeltjes. 

Tenslotte worden twee geavanceerde modelsystemen voor vroege diagenese gepresenteerd. 
In de eerste wordt een flexibel reactienetwerk gekoppeld aan een-dimensionale (lD) 
transportbeschrijvingen. Het reactienetwerk kan eenvoudig door de gebruiker gemodificeerd 
en aangepast worden en is daarom uitermate geschikt om biogeochemische reactiesystemen 
met een toenemende complexiteit te onderzoeken. Het ID-voorwaarts reactief­
transportmodel is verder gecombineerd met lokale en globale optimalisatie-algoritmes om 
modelparameterisatie op basis van gemeten gegevens mogelijk te maken. Het tweede 
modelsysteem IS een voorloplge versie van een multi-dlmenSlOnaal reactieve transportcode 
voor vroege diagenese. 
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Introduction 

CHAPTER 1: Introduction 
Elemental cycling in aquatic sediments results from the interplay of transport and reaction 
processes. Both types of processes can be purely abiotic or directly driven by the activities of 
biological organisms. Hence, models of early diagenesis, the sum of processes acting upon 
sedimentary matter after deposition (literally "stone formation"), have to integrate knowledge 
from different scientific fields, from physics and chemistry to molecular biology and ecology. 
Relevant spatial scales extend from molecular (chemical reactions) via micrometer (bacteria), 
centimeter (benthic fauna) to kilometer and larger scales (global biogeochemical cycles). 
Similarly, reactive timescales ranging from less than one second (acid-base reactions) to, say, 
glacial-interglacial variations of organic matter rain rate may have to be considered. 

Quantitative assessment of early diagenetic processes at different scales is the topic of this 
thesis. Theoretical and observational aspects of different scientific disciplines are 
incorporated in modeling approaches designed to span spatial dimensions ranging from the 
micro-scale to the entire globe. In particular, the effects of transport induced by benthic fauna 
on early diagenesis are investigated, with the aim of incorporating ecological information and 
knowledge into model representations of early diagenesis. 

Mathematical models are abstract, scale- and context-dependent approximations of our 
perception of the world, meant to reflect the determining factors and relevant processes. 
Because of the implementation of simplifying assumptions, which do not fully reflect the 
complex nature of aquatic sediments. and also because of inherent analytical uncertainty, 
there will never be a perfect match between model results and measurements. Hence, model 
results are supposed to identify patterns and trends, rather than being exact mirrors of reality. 
However, model validation is typically linked to field data. This thesis incorporates 
approaches that either explicitly take into account measurement uncertainty, provide 
probabilistic estimates of natural variability. or statistically compare competing model 
structures. As such, it aims at a fundamental and quantitative integration of modeling efforts 
with experimental work and field observations. 

In this introduction, first a brief description of aquatic sediments and their importance in 
biogeochemical cycling are given. In section "Models of early diagenesis" the modeling 
framework is discussed and. finally, in the section "Overview and organization of the thesis", 
the topics treated in the individual chapters are introduced and the connections between them 
are highlighted. 

Marine sediments 
Marine sediments cover about 75% of the Earth's surface and are arguably one of the world's 
most prominent bioreactors. They constitute an environment where a dense aggregation of 
life inhabits a rich diversity of (geo-)ecological niches. Because of a continuous supply of 
chemical energy, mostly under the form of organic matter, sharp compositional gradients 
exist below the sediment-water interface (SWI). Deposited particulate matter and pore 
waters are maintained in a state of non-equilibrium, which creates the opportunity for a 
multitude of transformation processes, some purely abiotic while others are carried out 
directly by organisms. 

Marine sediments vary significantly in composition, depending on the sources of particulate 
matter accumulating at the seafloor. They may be dominated by biogenic constituents, such 
as siliceous and calcareous oozes, or by lithogenic matter as, for instance, deltaic deposits. 
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However, organic matter deposition and bottom water oxygen concentration are by far the 
dominant controls on benthic biological activity and early diagenetic transformations. In the 
modern oceans, with the exception of oxygen minimum zones and stratified basins, bottom 
waters are well-oxygenated. Hence, differences in early diagenetic environments are 
primarily the result of differences in the supply flux and reactivity of organic matter reaching 
the SWI (e.g., (J0RGENSEN, 1983; TROMPet aI., 1995)). 

Physical transport processes are typically orders of magnitude slower in sediments compared 
to the overlying turbulent water column. This results in longer residence times of chemical 
constituents in the sediments and accumulation of energy rich substrates such as settling 
particulate organic matter, fueling biochemical activity. Thus, a reaction process, which plays 
a minor role in the water column, may have a large effect on the distribution of a given 
chemical constituent in the sediment. In general, the representation of chemical 
transformations in models of early diagenesis depends on the relative time scales of reaction 
and transport processes. For example, proton exchange reactions are often sufficiently fast, 
relative to solute and particulate transport rates, that they can be implemented assuming local 
equilibrium between the acid and base species. However, many reactions in aquatic 
sediments exhibit longer characteristic time scales and, therefore, require kinetic expressions 
(Figure 1). For a complete description of chemical cycles in sediments, the equilibrium or 
kinetic representations of chemical transformations must be coupled to transport equations 
for all independent constituents (STEEFEL and MACQUARRIE, 1996). 

6 

3 

log x(m) 0 

-3 

-6 

-7 
hydrolysis 
acid/base reactions 

second hour day year millenium 
ocean 
circulation 

su rface water petroleum 
formation 

particle 
settling seafloor 

spreading 

. sediment
 
accumulation 
(early diagenesis)
 

biofilms
 
cell division
 

log t(s) 
-2 3 8 13 

adsorption redox rxns 14e-decay amino acid 
gas exchange mineral-water reactions racemization 

Figure 1. Characteristic time and length scales occurring aquatic environments. Diffusive time and length 

scales are calculated as t = x 
2 /2D, with a molecular diffusion coefficient of 10.5 cm2s·1 and an eddy diffusion 

coefficient of1 cm2
S·l, respectively. 

Early diagenetic sequences have been studied extensively in the deep-sea (e.g. (FROELICH et 
aI., 1979)). Because only a small fraction of net primary in the surface ocean 

reaches the seafloor (e.g. (SCHLESINGER, 1997)), sediment respiration rates and benthic solute 
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Introduction 

exchange fluxes are low. As these sediments exhibit a predictable vertical succession of well­
separated redox zones, they are often viewed as stable, near-steady state systems. More 
detailed studies over the past few decades have revealed quite the contrary, however. Rapid 
transfer of biogenic material from the surface ocean to the seafloor results in a strong benthic­
pelagic coupling than previously recognized and even at water depths exceeding several 
kilometers, benthic biological activity and early diagenetic sequences are found to record 
seasonal and interannual variations in surface primary production (e.g., (RABOUILLE et aI., 
2001; SOETAERT et aI., 1996a)). 

When considering coastal sediments, spatial and temporal heterogeneity experiences a 
quantum leap compared to deep-sea sediments. This presents formidable challenges, both in 
terms of data acquisition and modeling. Nonetheless, a quantitative understanding of early 
diagenesis in near shore sediments is crucial, in order to predict the impact on the coastal 
ocean of the rapidly growing human populations along the coastlines (NOAA, 1999; VER et 
aI., 1999). Of particular concern is the role of sediments in coastal eutrophication (ROWE et 
aI., 1975). 

Increased input of biodegradable organic matter modifies the benthic regeneration of 
nutrients (N and P) and may lead to enhanced release of gaseous constituents, such as CH4 

and N20. Eutrophication also affects benthic infauna, which are especially abundant in 
coastal sediments. Increased primary production may initially stimulate growth of the benthic 
faunal community, because of a higher food supply (JOSEFSON, 1990). With advancing 
eutrophication, however, hypoxia may eliminate species and cause shifts in the benthic 
community structure (ROSENBERG, 2001), which in tum affects the coupling between 
sediment and water column processes (THOMPSON and SCHAFFNER, 2001). 

Activities of benthic fauna, including particle ingestion, excretion, grazing, burrowing and 
t1ushing, have major impact on geochemical conditions and gradients in sediments «HElP et 
aI., 2001) and references therein). They also affect sediment stability (DE DECKERE et al., 
2001), particle size distributions (GIANGRANDE et aI., 2002), microbial community structure 
(MARINELLI et aI., 2002), chemical heterogeneity and organic matter preservation (JAHNKE, 
1985; MAYER et aI., 1995), and benthic exchange t1uxes (ALLER et aI., 1998; GRAF and 
ROSENBERG, 1997). Burrowing macrofauna in particular int1uence pore water distributions 
(BULL and TAILLEFERT, 2001) and solute tluxes across the SWI (ARCHER and DEVOL, 1992). 
Flushing intensities of 10-100 ml hr-! have been reported for burrowing organisms 
(KRISTENSEN, 2001). For a typical density of, say, 100 organisms m-2 in a coastal setting, this 
corresponds to l-W liters of water exchanged per hour and per m2 between the upper 
sediment layer and the overlying water column. Yet, despite the obvious importance of 
burrowing activity for sediment biogeochemistry and elemental mass balances, existing 
models of early diagenesis do not include explicit representations of the abundance, 
morphology and flushing intensity of or they do so only in a highly simplified 
manner. 

Models of early diagenesis 
A quantitative description of biogeochemical cycles in sediments requires identification and 
measurement of the relevant transformation and transport processes. Given the relatively 
large number of processes, a fundamental understanding of early diagenesis requires the 
integration of diverse data sets and information. This is most efficiently done through the 
formulation of quantitative models, which combine reasoning (common sense) with 
observational constraints. 
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The selection of processes and their representation in a model depend on data availability and 
modeling objectives. The latter may diverge from one model application to another and may 
include, for instance, data interpretation, hypothesis building and testing, identification of 
dominant external forcings and system properties, or design of field experiments. Model 
complexity also depends on the spatio-temporal scale of interest. For example, rapid 
transport of solutes through individual burrows (KRISTENSEN et a!., 1991) does not need to 
be resolved explicitly if the effects of seasonal changes in organic matter rain rate on benthic 
fluxes are investigated across an entire ocean basin (RABOUILLE et a!., 2001). On the other 
hand, such a level of detail is necessary if the goal is to explain the coexistence of 
physiologically distinct groups of microorganisms within the upper few centimeters of a 
sediment (KORETSKY et al., 2003). In general, with increasing spatial and temporal scales, 
early diagenetic models tend to become increasingly simplified, with mechanistic process 
formulations progressively giving way to empirical parameterizations. 

Mathematical model 
In the natural sciences, a conceptual model is often translated into a mathematical 
description. Doing so increases the clarity of formulation and gives access to a very powerful 
formalism with which the implications of the model can be investigated. The most common 
modeling approach for early diagenesis is based on conservation of mass and discretization of 
the resulting equations for numerical solution. However, other model types such as learning 
approaches (neural networks, e.g., (BARCIELA et aI., 1999) or rule-based cellular approaches 
(GUINOT, 2002) can be used. The focus on mass conservation also reflects the paucity of 
measurements related to momentum and energy transformation in sediments. On the 
contrary, chemical mass related properties (concentrations) are routinely determined in early 
diagenetic studies. 

The change in mass in a given volume of sediment results from in- and outflows, together 
with local sources and sinks. Mathematically, this can be represented as 

r CdV = FdS + r HdV (1)
dt Jv s Jv 
where C is concentration of a given constituent in units of mass per unit volume, S and V are 
the surface area and volume of the domain, respectively, F is the flux of the constituent 
across the volume's surface, and H is the sink/source term. Choosing a representative 
elementary volume in which C is approximately constant and assuming continuous fields 
(differentiability), Eq. I can be reformulated into a system of coupled partial differential 
equations (PDEs), one for each chemical constituent of interest: 

+H (2)" 
In sediments, molecular diffusion has long been recognized as an important solute transport 
process. Additionally, imposed pore fluid flow or the moving reference frame (due to 
accumulation or erosion of sediment at the SWI, Berner 1980) give rise to advective transport 
of pore water. For solutes in a saturated porous medium with constant fluid density, Eq. 2 can 
hence be rewritten as 

(3)= C, - + R + Tb,o' 

where D; is the ve in situ diffusion coefficient, is porosity. C is in mass per fluid 

volume, is an advection velocity, represents all the reactions acting upon species i, and 
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Introduction 

Tbio is related to the activity of organisms in the sediment (see below). Eq. 3 highlights that 
transport and reaction processes are inherently coupled. It has been used extensively in the 
last 3 decades in studies of coupled elemental cycles in aquatic sediments (e.g., (BERNER, 
1980; BOULDIN, 1968; WANG and VAN CAPPELLEN, 1996». 

The mass conservation equations for the chemical constituents are not independent from each 
other, but coupled through both transport and reaction terms. Taking into account both 
chemical and electrical forces, and maintaining macroscopic electroneutrality, the diffusive 
flux is given by (VAN CAPPELLEN and GAILLARD, 1996): 

diff _ o[ ZiCi o( (4)F; --Di ZkDk CkVlnak+VCkJ 
2CDO k 

ZJ J J 

where DO, a and z are tracer diffusion coefficient, activity coefficient and charge, n is the 
number of constituents and i, j and k are species indices. Hence, in a Fickian diffusion 
description, where = -DiVCi , the diffusion coefficient is not constant but depends on 

the composition of the fluid. However, Eq. 4 reduces to a simple Fickian form for small 
concentration Ci or constant background electrolyte (VAN CAPPELLEN and GAILLARD, 1996). 
Therefore, the coupling through multi-component diffusion is typically of minor importance 
in marine sediments. 

Strong coupling between the individual mass conservation equations arises through the 
interaction of chemical species undergoing reaction. For example, the rate of homogeneous 

oxygenation of dissolved Fe2
+, Fe2 

+ Fe(OH)3(S) + 2H+ , 
4 2 

can be described as R = k ·lFe 2 
+ 1- [02 ], where k is an apparent, pH dependent, rate constant 

(STUMM and MORGAN, 1996). The reaction term, R, appears in the conservation equations of 
Oz, Fez

+, protons and iron oxide. Multicomponent reaction coupling requires the 
simultaneous solution of the set of partial differential equations (PDEs) describing mass 
conservation of the various constituents. 

As most reactions involve different chemical constituents and due to the large number of 
reactions relevant in early diagenesis, the coupling between constituents through the reaction 
term tends to be quite strong, and requires simultaneous solution of the set of PDEs. 

Including benthic fauna 
Early diagenetic modeling has historically recognized benthic fauna mainly as transport 
agents of solid and dissolved constituents. Therefore, T bio (Eq. 3) was identified as a transport 
process, represented by diffusive, advective or non-local descriptions. Focusing on the 
primarily vertical changes in chemical composition and reaction rates in the top centimeters, 
the corresponding expressions for biologically induced solute transport are:

a( -- ·D .- (5a)
- bio ' 

where Dbio is a biological diffusion coefficient (GOLDHABER et aI., 1977) 

= - Vbio ' c), (5b) 

where Vbio is a biological advection velocity (HAMMOND et aI., 1977), and 
Tbio (5c) 
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where ais a non-local exchange coefficient, Co is the concentration at the SWI and x is depth 
below the SWI (EMERSON et aI., 1984; MARTIN and BANTA, 1992). 

It has long been recognized that the simplified representations (Eqs. 5a-c) have several, 
potentially significant, drawbacks (for a review and theoretical improvements see 
(MEYSMAN, 2001)). For example, the validity of a diffusive description strongly depends on 
the length scale and frequency of matter displacement (BOUDREAU, 1986; BOUDREAU and 
IMBODEN, 1987; MEYSMAN et aI., 2003, accepted-a), as it results from a statistical 
aggregation of small random movements in analogy to Brownian motion. Effective diffusive 
patterns can still be approached in the presence of a diverse benthic faunal population 
(MEYSMAN et aI., 2003, accepted-b), even if individual displacement distances exceeds the 
characteristic tracer scale (BOUDREAU and IMBODEN, 1987). However, such a description 
provides no insight into the mechanism of the disturbance caused by organisms. It is also 
likely to fail to describe time-dependent episodic events which may have a greater impact on 
early diagenesis than average faunal activities. Furthermore, in Eqs. 5a-c, the organisms 
causing the transport are not represented at all. By only considering their effect, they are 
treated as a "hidden phase", even though benthic fauna can contribute up to 50% to total 
sediment respiration (HElP et al., 2001). 

The use of the non-local exchange formulation for solute transport (Eq. 5c) owes its 
popularity to its simplicity, its theoretical similarity to the general exchange function 
approach (BOUDREAU and IMBODEN, 1987), and its equivalence to Aller's tube model 
(BOUDREAU, 1984). In the tube model, cylindrically shaped, equidistant burrows are 
continuously flushed with overlying water (ALLER, 1980). As irrigation activity of bmTOwing 
organisms is not continuous and burrow structures may be much more complex, Aller's tube 
model has been extended to include non-continuous flushing (MARINELLI and BOUDREAU, 
1996) and changing burrow surface areas with depth (fuRUKAWA et aI., 2001). Similarly, the 
direct effect of burrowing organisms on sedimentary respiration has recently been 
incorporated (fuRUKAWA, 2001). 

However, feeding strategies may not be reflected by any of the descriptions given by Eq. 5. 
For example, the resident fauna's response to the arrival of freshly deposited organic matter 
may be rapid sequestration and translocation below the SWI (LEVIN et aI., 1997). Therefore, 
solid phase displacement has also been modeled as a non-local process involving transition 
probabilities (JUMARS et aI., 1981; SHULL, 2001; TRAUTH, 1998), taking into account 
selective feeding and YASUDA, 2001). In addition, the presence, motility and 
selective feeding of benthic organisms have been represented in the cellular automata 
description of benthic organisms (CHOI et aI., 2002). As this approach is rule- and individual­
based, and hence strongly linked to the ecology of the organisms, it may also become 
possible to include the effect of benthic life cycles and shifts in communities (RHOADS et aI., 
1978). 

Overview and organization of the thesis 
This thesis covers two main topics: (1) the quantitative description of biologically-induced 
transport processes and (2) the interplay between transport and reaction processes. In the first 
part of the thesis, three novel approaches are presented to quantify pore water transport other 
than molecular diffusion. Two of the approaches yield site specific distributions of mixing 
intensities, but they differ fundamentally in the type of input data. One approach is based on 
chemical concentration and rate data, while the other uses ecologIcal data about the mfaunal 
community. The third approach aims at estimating enhanced solute transport rates at a global 
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scale. As such it fills the gap between site-specific studies of irrigation and regional to global 
assessments of the role of benthic-pelagic coupling in ocean biogeochemistry. 

Next, the fate of particulate matter in bioturbated sediments is examined using a stochastic 
Lagrangian approach. In this approach, individual particle histories are explicitly computed 
from probability density functions that embody the statistical nature of particle transport by 
bioturbation. The analysis of the results provides insight into the emergence of the average 
transport properties, which are typically implemented in early diagenetic continuum models. 

Two advanced modeling environments for early diagenesis are then presented. In the first 
one, a flexible reaction network simulator is coupled to one-dimensional (I D) transport 
equations. The reaction network is easily modified and adapted by the user, allowing her to 
explore progressively more complex biogeochemical systems. The I D forward reaction­
transport model has also been combined with optimization algorithms to enhance the 
integration of available measurements in the modeling effort. Finally, a preliminary version 
of a multidimensional (2 D and 3 D) representation of early diagenetic environments is 
described. As an application, chemical concentration fields around a flushed burrow are 
calculated. With the rapid increase in high resolution, multidimensional data sets, the 
demand for the type of multidimensional modeling tools developed here will undoubtedly 
continue to rise. 

Transport processes 
Direct measurement of transport rates induced by benthic fauna is difficult. In order to 
determine the effect on benthic fluxes, core incubations have been performed with and 
without elimination of macrofauna by sieving, freezing, poisoning or asphyxiation. All these 
treatments impact sediment structure and metabolism, however (HAESE, 2002). As an 
alternative, modeling approaches have been used to interpret tracer profiles and to detangle 
the contribution of macrofauna to solid phase and solute transport. 

The approaches presented here for the determination of transport intensities of solutes in 
aquatic sediments differ in their scope. complexity, and applicability. As a complete 
mechanistic understanding of the resident benthic fauna is currently not available, the 
organisms are treated as a hidden phase. i.e. only their functional effect is assessed. Hence, 
the various approaches are all, in part, of empirical nature and based on simplified 
descriptions of the driving forces. 

Solute mixing is quantified at different scales, ranging from the global scale to that of 
individual burrows. This huge span is associated with mathematical formulations that differ 
in their sophistication, and are based on different types of data sets. The dimensionality of the 
data used decreases with increasing spatial scale. Global estimates of enhanced solute mixing 
are based on an analysis of 02-fluxes across the SWI (Chapter 2), measured with benthic 
chambers and obtained from microelectrode profiles. These flux measurements are combined 
with a simple reactive transport model in order to deduce mixing intensities. Combining 
global estimates of exchange fluxes and an empirical analysis of diffusive vs. total sediment 
O2uptake, global relationships for enhanced solute transport intensities are derived. 

Site specific depth distributions of enhanced transport intensities are obtained using measured 
concentration and rate profiles of chemical constituents (Chapter 3). The method involves 
the optimization mixing profiles together with a statistical comparison of mixing profiles of 
different complexity. It explicitly accounts for the uncertainty of the measurements and leads 
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to the simplest parameterization of biologically induced mixing consistent with the available 
concentration and rate data. 
In Chapter 4, solute transport coefficients are derived from ecological data, which ineludes 
information on the composition of the resident benthic faunal community and their respective 
burrowing behavior. Mixing intensities are deduced from the morphometry of burrowing 
networks by recognizing the central role of burrow walls as areas of exchange between 
domains associated with distinct transport timescales. Rather than calculating a unique value 
of transport intensity, this method takes into account the natural variability of infaunal 
ecology, leading to a quantification of the expected range of solute transport in a given 
environment. 

The inverse approach based on chemical data and the stochastic model based on ecological 
information focus on the same spatial scale. Despite the fundamental differences between the 
global, inverse, and stochastic models in terms of complexity and type of input data, results 
for sites with sufficient data to obtain estimates of biologically induced transport intensities 
using all three approaches are of amazingly similar (Fig. 2). This implies that some of the 
fundamental characteristics of bioirrigation have been captured when translating benthic 
ecological data into transport intensities. 

a (O,-uptake) 

- Reactive-Transport (Im'erse) 

- Ecological Burrow Network (Stochastic) 
0.2 

o 

0.1 

o 
mixing coefficient a (S·l) 

Figure 2. Comparison of enhanced solute transport coefficient (a) from inverse, stochastic and global 
approaches for a study site in a creek bank sediment ofa salt marsh on Sapelo Island, Georgia, USA. The origin 
of the depth axis corresponds to the sediment su!face. Similar a -profiles are obtained by inverse and stochastic 
modeling (Koretsky et aI., 2002). The model-derived a·values at the sediment su!face agree closely with flux­
based estimates in the oxygenated zone « 0.5 cm) near the sediment·water inte!face (Melle and Van Cappel/en, 
2003). 

Bioturbation is often the dominant transport process for solids in surface sediments. This can 
be illustrated by comparing sediment accumulation to diffusional transport, Pe = W· Db ' 

where Pe is the Peelet number, w is the sedimentation velocity, Db the bioturbation 
coefficient and Xmix the average mixing depth of 10 em (BOUDREAU, 1994). Estimating wand 
Db from global relationships (MIDDELBURG et aI., 1997), this results in Peelet numbers « 1 
under nearly all "average" marine conditions. 
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Therefore, the analysis of solute transport is complemented by an investigation of time scales 
relevant for solid phase particles (Chapter 6). As the residence time of organic matter in the 
surficial oxic layer of sediments has been proposed to govern organic matter preservation, 
particle residence times, ages and their variabilities are determined for settings representative 
of the coastal ocean, shelf, and deep-sea. The effect of bioturbation on solid phase cycling is 
evaluated using a stochastic Lagrangian description of particle displacement, which leads to 
improved estimates of the exposure time of particles to specific environmental conditions 
such as the oxic zone. 

Coupling transport and reaction 
Not only biologically induced transport, but also the biogeochemical reaction network as a 
whole, and the implementation of the chemically or microbially driven processes are 
associated with large uncertainties. These uncertainties stem from both a non-unique 
selection and description of the relevant processes, and their parameterization. The most 
commonly used reactive transport models of early diagenesis (BOUDREAU, 1996; HENSEN et 
aI., 1997; SOETAERT et aI., 1996b; WANG and VAN CAPPELLEN, 1996) do not address the 
uncertainty of model parameterization explicitly and/or lack the flexibility to change process 
descriptions in an intuitive way. In Chapter 7, such a flexible modeling environment that 
includes parameter estimation from measurements is presented. 

Burrowing organisms also cause significant lateral heterogeneity in surface sediments (Fig. 
3), which cannot be captured by ID models. Therefore, a high resolution 3D model of early 
diagenesis (Chapter 5) has been developed with which the effect of heterogeneous features 
on early diagenetic processes can be evaluated. As such, it is to my knowledge the first early 
diagenetic model incorporating simulation of both fluid flow and reaction networks in a 
heterogeneous, non-symmetrical environment. Future work will include a description of solid 
phase displacement, extension of the governing equation for flow in the burrow, and relating 
driving forces for burrow flushing to ecological parameters. Implementation of random 
heterogeneous features together with the study of scaling influences on average properties 
may ultimately lead to a better understanding of the link between both laboratory and field 
data and provides a sound basis for upscaling from the mm to dm scale. 

Figure 3. Infaunal burrows as heterogeneous 
structures in surface sedimem, seen through the plexi­
glass lining of a sediment core liner. Oxidized burrow 
structures (light grayish areas) extend from the 
sediment-water interface downwards. The vertical 
white bar represents 1 em; picture courtesy S. loye. 
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Global estimates 

CHAPTER 2: Global estimates of enhanced solute transport in 
marine sediments 1 

Abstract 
Pore water solute transport processes acting in addition to molecular diffusion affect sediment 
biogeochemistry and benthic exchange fluxes. Given the relatively few direct measurements 
of enhanced transport intensities, there is a need for predictive relationships to calculate 
enhanced transport parameters from more readily available information. Here, enhanced 
diffusion coefficients and nonlocal mass transfer coefficients are obtained by comparing total 
and molecular diffusion fluxes of oxygen across the sediment-water interface. Semi-empirical 
relationships for these coefficients are derived as functions of benthic oxygen uptake. 
According to these relationships, enhanced solute transport significantly impacts sediment ­
water column exchanges in regions with large benthic oxygen fluxes, typically on the 
continental shelves. On a global scale, enhanced transport contributes approximately one 
third of the total benthic flux of oxygen and more than half of that of phosphate. 

Introduction 
The sediment-water interface (SWI) constitutes a natural boundary in the oceans across 
which the transport regimes of both solids and solutes change dramatically (Boudreau and 
Jl'lrgensen, 2001). For solutes, open water turbulence gives way to molecular diffusion 
through the porous medium of the sediment. In the uppermost layers of marine sediments, 
however, biologically-induced solute transport (bioirrigation) may exceed transport due to 
molecular diffusion (Archer and Devol, 1992; Meile et aI., 2001). Pore water advection 
driven by pressure changes as a result of wave or tide action, may also contribute 
significantly to solute transport fluxes in permeable sandy sediments in nearshore 
environments (Ziebis et aI., 1996; Boudreau et aI., 2001). Quantitative estimates of enhanced 
transport intensities are thus important in order to constrain benthic fluxes of dissolved 
nutrients or oxygen uptake at the seafloor. 

Pore water concentrations change significantly over depth scales of mm to dm and 
give rise to a typical vertical zonation of porewater chemistry. The concentration gradients 
are the result of a multitude of different reaction and transport processes acting 
simultaneously, which complicates identification of the individual processes. Concentration 
profiles are therefore complemented by direct measurements of reaction and transport rates. 
Mathematical models that explicitly couple the reaction network to the transport processes 
further help with the interpretation of the observational data. From model simulations it is 
then possible to estimate reaction rates and fluxes which may be difficult to measure directly 
(Soetaert et aI., 1996b; Van Cappellen and Wang, 1996). However, because detailed 
information is generally required as input, such models tend to be applied only at sites where 
extensive data sets have been collected, although the underlying mathematical description is 
generally valid. 

I Meile, C. and Van CappeIIen. P. (2003). limnology and Oceanography 48(2); 777-786.
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To overcome the scarcity of comprehensive, site specific data sets, global 
relationships for various reaction and transport parameters have been developed. Such 
relationships estimate crucial model parameters from easily obtainable site characteristics. 
Although of an empirical nature, these relationships provide simple parameterizations that 
capture the combined effects of multiple factors and processes. Examples are global 
expressions relating particle mixing intensities plus depths of the bioturbated layer 
(Boudreau, 1994, 1997), organic carbon degradation rates (Tromp et aI., 1995) or fluxes of 
organic carbon and oxidants at the SWI (Middelburg et aI., 1997) to water depth or 
sedimentation rate. Global relationships are particularly useful when averaging over 
relatively large spatial scales, as it is the case in ocean models of coupled sediment and water 
colunm biogeochemistry (Soetaert et aI., 2000; Archer et aI., 2002) 

While enhanced solute exchange fluxes and associated transport intensities have been 
estimated at individual study sites (e.g., (Smethie et aI., 1981; Martin and Banta, 1992; Meile 
et aI., 2001», little has been presented in terms of a global synthesis. Jahnke (2001), however, 
reported a systematic trend in the relative importance of enhanced solute transport and 
molecular diffusion, as a function of the total 02 uptake by sediments. At low 02 uptake 
fluxes, typical for the deep-sea, total and diffusive O2 fluxes across the SWI are of the same 
order of magnitude. At high O2 uptake fluxes, such as encountered in coastal environments, a 
large fraction of the total uptake of O2 cannot be accounted for by molecular diffusion. 

In this paper, we use measured O2 fluxes across the SWI and pore water O2 gradients 
to derive global relationships for enhanced solute transport (i.e. transport not due to 
molecular diffusion) in marine surface sediments. Parameterizations are proposed for both 
diffusional and nonlocal transport descriptions. To illustrate the impact of enhanced solute 
transport, the global effects of enhanced transport on oxygen and phosphate fluxes at the 
seafloor are estimated. 

Data and Methods 
To separate the contributions of molecular diffusion and enhanced transport to total 

solute fluxes across the SWI, we compare benthic fluxes obtained with different experimental 
approaches. Benthic fluxes due to molecular diffusion are estimated from vertical high­
resolution pore water concentration profiles (microprofiles) and molecular diffusion 
coefficients under in situ conditions (Reimers et aI., 2001). Total solute fluxes (Ftot ), i.e. 
combining the contributions of molecular diffusion and enhanced transport, are estimated 
from in situ benthic chamber experiments. From the difference between Fdiff and Frot, 

enhanced transport parameters are deduced. Because of the relatively large available 
database, the analysis presented is based on O2 microprofiles and O2 benthic flux 
measurements. 

Data set 
Data sources for Fdiff and F tot are summarized in Table 1. Total exchange fluxes calculated 
from concentration changes measured in benthic chambers currently provide the most direct 
measurements of total solute fluxes across the SWI (Martin and Sayles, 1994). To minimize 
the effect of spatial heterogeneity, only fluxes from the same station are compared. To avoid 
sampling artifacts, e.g., due to changing temperature and pressure during sample recovery 
(Glud et aI., 1994), only benthic fluxes measured in situ are used here (Table 1). Solute fluxes 
may also vary significantly as a function of time: sediment O2 uptake, for example, depends 
strongly on the delivery of organic matter and thence may exhibit seasonal variability (Sayles 
et aI., 1994; Soetaert et aI., 1996a). Therefore, we only compare Ftot and Fdiff values 
determined at the same time. 
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The effect of small-scale topography on diffusive exchange fluxes calculated from 
one-dimensional concentration profiles (Jlilrgensen and Revsbech, 1985; R¢y et aI. 2002) is 
expected to be negligible in the selected data set, because gradients (where specified) were 
mainly measured across the ditfusive boundary layer, just above the sediment surface. Thus, 
diffusive fluxes are used directly as reported in the studies listed in Table 1. 

Table 1: Data descriptio/!, sources and references 

02 flux across the SWI 
• Coastal (Skagerrak and German Bight)	 (Forster et aI., 1999) 
• Continental shelf (Washington)	 (Archer and Devol, 1992) 

(Devol and Christensen, 1993) 
• Arctic (Svalbard)	 (Glud et aI., 1998) 
• Continental slope and rise (off Central California)	 (Reimers et al., 1992) 
• Deep sea (South Atlantic)	 (Glud et al., 1994) 
• Deep Sea (South Atlantic)	 (WenzhOfer and Glud, 2002) 
• Deep sea (Northeast Pacific)	 (Cai and Reimers, 1995) 

• Bottom water O2, temperature and saUnity (Levitus and Boyer, 1994), available 
Values from the water depth closest to the sea floor. via http://ingrid.ldgo.columbia.edu 
Depth resolution ranges from 10 m near the sea 
surface to 500 m below 2000 m, with a resolution of 
I by I degree between 600 N and 600 S 
• Topography ETOP05 5x5 minutes U.S. Navy (National Geophysical Data Center, 
database sampled on a I by I degree grid between 1988), available via 
60 0 N and 60°5 to match the Levitus data set or taken http://ingrid.ldgo.columbia.edu 
for the entire globe to determine ocean floor area per 
water depth interval 
• P04-gradients Compilation of pore water (Colman and Holland, 2000), 
phosphate gradients at the SWI. See original available via 
references for details. http://www.ngdc.noaa.gov/mgg/sepml 

archive/ 

Empirical relationships 
Comparison of measured total and diffusive benthic exchange fluxes directly quantifies the 
flux caused by processes other than molecular diffusion (Fxs F tor - However, often 
only an estimate of the total 02 sediment uptake is available. We therefore estimate molecular 
diffusion fluxes from total fluxes using an empirical fitting function. As constraints we 
impose that F FI.ot when F tot 0, while at all values of the O2 uptake, F Ftot ' 

Here, we use the following relationship: 
F _ 500· Ftot (1) 

- 646 + 
where the numerical values are obtained from the best fit to the data set (Fig. 1; r2 0.79), 
with both and Frat in units of cm-2 

yr.l. Other functions that give more weight to 
low 02 fluxes were also tested. They result in similar predicted values of Fdiff (Fig. 1). 

In order to quantify the contribution of enhanced transport to O2 exchange across the 
SWI on a global scale, total benthic O2 exchange must also be estimated at sites without 
direct nux measurements. To this end we use a relationship proposed by Wijsman (2000), 
which relates benthic O2 uptake to water depth: 

27 



O,017'z

-­

dijf

to )(562.28
mw,

F =23.22, + 3.78· e-O.OO047z (2)
tot 

where z is water depth (m) and F tot the benthic O2 flux in units of mmol O2 m'Z d,l. Equation 
2 is based on 528 flux estimates using a variety of measurement techniques (rz=0.7l) and 

Oz fluxes for water depths between 9000 and 20 m range from 10 to 1000 em' 
yr'!, For a detailed discussion of the data and their analysis, see Chapter 2 in (Wijsman, 

2000). 
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Figure 1. Diffusive benthic fluxes derived from microprojiles vs. total sediment-water O2 exchange 
measured with benthic chambers. Circles represent the measured values and curved lines are three empirical 
fitting equations. all explaining about 80% of the measured values of The thick line is Eq. 1 (squares in 
inset). the dashed line is a fit after log transformation of the fluxes, 

10g(F diff+ 1) = (17.969 .10g(Ftot + 1))/(17.969 + 10g(Ftot + I)) (circles in inset), and the dashed-dotted 

line (crosses in inset) is log(F / Frot ) = - 0.839· + Ftot ). The inset shows the relative 

'd I d d (F eolc 'd' . hi' h ' dreSl ua errors, as diff - diff I diff • leatmg tnat t ere atlve error on w en estzmate 

from Ftot, is about 30%. 

Representations of enhanced transport 
Enhanced transport has been described as a diffusive (e.g., (Goldhaber et aI., 1977; Matisoff 

and Wang, 1998)), advective (e.g., (Hammond et aI., 1977; McCaffrey et aI., 1980)) or 
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nonlocal process (e.g., (Emerson et a!., 1984; Meile et aI., 2001». Here, we consider two 
commonly used representations of enhanced transport, based on diffusive and nonlocal 
parameterizations, whose applicability depend on the physical processes causing mixing as 
well as frequency and length scale of mixing events (Boudreau, 1986a, 1986b, Boudreau and 
Imboden 1987). The following equations relate the transport coefficients to the enhanced 
transport flux: 

Diffusive: F xs = - (3) 
oX swr 

Nonlocal: Fxs = f - (4) 
swr 

where De/lh is the enhanced diffusion coefficient, athe nonlocal transport coefficient (in units 
of inverse time), porosity, Co the solute concentration at the SWI, and x depth below the 
SWI. 

Model assumptions 
Equations 3 and 4 show that to detennine the diffusive and nonlocal enhanced solute 
exchange coefficients, the concentration profile of the solute in the sediment must be known. 
Because we aim at a global coverage of the seafloor, i.e. also including sites where no 
measured profiles are available, pore water O2 concentrations must be calculated. In order 
to do so, we assume that porosity gradients and the effects of sedimentation and compaction 
are negligible. Additionally, the following assumptions underlie the model approach. 
I. The O2 concentration profile is at steady state. This is an appropriate assumption for the 
derivation of global ocean relationships, which do not account for transient, site-specific 
effects. 
2. Benthic primary production is negligible, which excludes shallow clear water sites from 
our analysis, The total benthic flux of oxygen is therefore related to the rate of O2 

consumption in the sediment, R, by 

F tot = fRdx.	 (5) 
swr 

3. The rate of O2 consumption is constant over the depth interval of O2 penetration. Thus, R 
equals the input flux of 02 into the oxic zone, divided by and the O2 penetration depth, L. 
Quasi-Oth order rate profiles of net 02 consumption have been reported in a number of studies 
(Berg et aI., 1998; Glud et aI., 1998), and are attributed to significant oxygenation of reduced 
inorganic species at the bottom of the aerobic surface layer. Nonetheless, other rate 
distributions have been reported and the impact of assuming a constant O2 consumption rate 
with depth on enhanced solute transport parameters is therefore evaluated below. 

Enhanced transport parameters 
For a diffusive description of enhanced solute transport, the governing mass balance equation 
is 

0= (Dsed + Denh ) - R	 (6) 

= F totwith R , where the enhanced diffusion coefficient is, for the sake of simplicity, 

assumed constant within the depth interval of O2 penetration, The effective molecular 

d'ff f'f" D' ed "D D so1 (7,sal) 1 cae lClent, sed, IS correct tortuosIty usmg s d = 2' where D sol 
e 1- ) 
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is the molecular diffusion coefficient in solution, at in situ temperature (n and salinity (sal) 
(Boudreau, 1997). The conditions to be fulfilled by Eq. 6 are: 

clx=o = CO, CIX=L = = 0 (7)0, 
oX x=L 

Equation 6 is solved for two endmember cases. In the first case, the 02 penetration 
depth is assumed to be unaffected by enhanced 02 delivery across the SWI, i.e. L = L diff, 

where Ldijf is the 02 penetration depth when molecular diffusion is the only transport process 
(Denh = 0). In this case, enhanced transport results in an increase in the O2 consumption rate, 
R, and Eq. 6 yields 

L = L = (8)
diff
 Fdiff
 

In the second endmember case, R is assumed to only reflect the reactivity and abundance of 
reduced substances. Therefore, enhanced influx of 02 into the sediment does not affect the 
magnitude ofR, but only increases the depth of O2penetration, so that 

L = L Ftat = sed (9) 
diff F F 2 tot
 

diff diff
 

The two endmember estimates of L, Eq. 8 and Eq. 9, are compared to measured 
values in Fig. 2. Not unexpectedly, Eq. 8 tends to systematically underestimate the measured 
values, while Eq. 921sually overestimates the depth of 02 penetration. The arithmetic average 
of both equations, L, however, provides a remarkably robust predictor of the O2 penetration 
depth (Fig. 2). Equation 6 is therefore solved for Denh with as lower boundary depth. The 
following relationship is obtained: 

r ([ J2 J1
FtotD enh = Dsedl -lj + D sed - 1 (10) 

2 l Fdiff Fdiff J 
where the first term on the right hand side results from L =Ldiff (Eq. 8), whereas the second 

Ftatterm originates from assuming L (Eq.9).=L diff Fdiff 

In contrast to the diffusive description, under nonlocal transport, 02 can be delivered 
below the aerobic surface layer (Eq. 4), with O2 being reduced along burrow walls in the 
otherwise anoxic sediment. Based on an analysis of a-profiles from a variety of sites, Meile 
et al. (2001) concluded that only about 10-20% of the total benthic O2 flux is delivered to the 
aerobic zone. Thus, for a quantification of enhanced solute mixing intensities the entire a­
profile below the 02 penetration depth must be known. 

The driving force for enhanced transport is inherently connected to the sediment­
water interface, e.g. through wave action or burrowing organisms. Hence, decreasing 
transport coefficients with depth are often assumed (e.g. Martin and Banta 1992). Here, we 
consider a simple linear decrease of a from the SWI to Xmix, the solute mixing depth. The 
latter is assumed to coincide with the solid phase mixing depth, which, based mainly on an 
analysis of 2IOPb profiles, has been proposed to be on the order of 10 cm across a wide range 
of marine sediments (Boudreau, 1994). Together with a parabolic approximation of the O2 

X 
2 

- 2xL + 
profile between the SWI and L, C(x) = Co - Co ( L2 )' the average value of a 

in the oxic zone. a. is then obtained from Eq. 4: 
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a== (11) 

6L Fxs lor L > X mix 
X mix ) 

where Xmix is set to 10 em. The assumption of a linear a depth-distribution is evaluated below. 

6 1:1 

•

4 

•
 
-- 2 

Eq.8 
Eq.9 

-average 

2 4 6 

measured (em) 
Figure 2. Calculated and measured O2 penetration depths. The thick line is the regression through the 
penetration depths obtained by averaging Eqs. 8 and 9 = 0.64). The calculated O2 penetration depths are 
based on measured values of and See text for discussion. 
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Uncertainty analysis 
Several assumptions in the mathematical framework outlined above may impact the 
magnitude of the derived enhanced solute transport coefficients. Furthermore, uncertainties 
associated with the oxygen fluxes F tot and Fdijf also propagate into the estimated enhanced 
transport coefficients. 

Rate profile. The rate of 02 consumption may deviate from the proposed Olh order 
kinetics. However, with the condition that the depth-integrated rate of consumption must 
match the delivery of 02 to the oxic layer, the 02 profile and the 02 penetration depth depend 
only weakly on the shape of the net rate profile. Relative to the constant rate scenario, a 
linearly increasing rate with depth (R = k . x for and R=O for results in an 

xapproximately 25% smaller L, while an exponentially decreasing rate profIle (R = k . e- / 

for and R=O for increases the O2 penetration depth by about 20%. Thus, rate 
profiles deviating significantly from the proposed Olh order kinetics produce 02 penetration 
depths that lie within the range of the two endmembers used to estimate the O2 penetration 
depth (Eqs. 8 and 9). Furthermore, L and the concentration gradients at the SWI differ 
between the different rate descriptions in such a way that Denh is unaffected by the selection 
of the rate profile, when the conditions given by Eqs:.? and 7 are fulfilled. 

02 penetration depth. While the estimate of is only weakly dependent on L, which 
is easily seen by substituting various values of L in Eq. 11, an erroneous estimate of L 

impacts Denh. Comparison of Denh values calculated using L=Ldijf (Eq. 8) and L F tot= L diff Fdiff 

(Eq. 9) as lower and upper limits for L, and using Eq. I to predict Fdijf, shows a ±50% 
variation of Denh-values around the best estimates obtained with Eq. 10. 

Nonlocal mixing profile. In order to evaluate the effect of the shape of the a-profile 
on the estimated average a-value in the aerobic layer, Eq. II is compared to (I) an a-profile 
constant down to Xmix and 0 below, (2) a constant down to L and linearly decreasing below 
L to reach 0 at Xmix, and (3) an exponentially decreasing a-profile with 95% of the mixing 
intensity taking place above Xmix' All -cases based on a parabolic concentration profile 
and conservation of mass for O2• The resulting -values in the oxic zone are given by: 

3L2 F .2+ + - 3L x lim 

. F xs 
a= 2 2 2 (12)

-4L - - -BLxmix + 9xmix 3xlim + 12Lxlim 6Xmix Xllm
 
p2L(ePL/Xmlx -1) F
 

.
P(e PL 

/ -1)- 2xmixPL - p2L2e 

for the three respective a-profile shapes, with x lim = min(xmix,L) and p = In(l- 0.95)). 

Although the calculated -values differ significantly among the various scenarios, the 
relative difference in between the and the other profile shapes is less than 60%, and 
the linearly decreasing a-profile gives -values intermediate between the other scenarios. 

Mixing depth. The mixing depth, Xmix, may vary from site to site, and mixing depths 
are not necessarily equal for solids and solutes, as transport processes may differ. Thus, the 
sensitivity of the average value of in the oxic layer towards Xmix is evaluated. Ignoring 
covariances, the uncertainty associated with a parameter P can be expressed as 

= (13)2 

32 



Xmix

mix

m
"'.

mix

diff

Global estimates 

where is the uncertainty associated with the parameter X. Identifying P as 
(Eq. 11) and X as Xmix, the relative error in for L < is equal to 

2(L
2 

6Lxmix + 
( 2 2 ) ' which yields a relative error in between 0.65 

- 4Lxmix + 2xmix - L
 

and 1.1 times the relative error in This may be significant at any individual study 

site, but is rather small when considering global relationships. 
02 fluxes. While the general trend of Fdiff vs. F tot is captured by Eq. 1, the considerable 

uncertainties on predicted Fdijf values (Fig. 1, inset) lead to significant uncertainties in the 
calculated transport parameters. Because some of the independent variables (X, Eq. 13), such 
as the molecular diffusion coefficient, Co or are experimentally accessible and/or 
remain fairly constant, the uncertainty in Denh or Eq. 13) reflects mostly the 
uncertainty on the fluxes Fdiff). Expressing Fdif.! as a function of F tat (Eq. 1), an 
approximate measure for the uncertainties associated with the predicted enhanced transport 
parameters is obtained when substituting P in Eq. 13 by Eq. 10 and n, respectively. This 
analysis indicates that, within the conceptual framework above, estimates of Denh 
are more sensitive to errors in F tot and Fdif.!' than estimates of (Fig. 3). 

Figure 3 also shows that for both diffusive and nonlocal description, the uncertainties 
of the predicted transport coefficients are in a reasonable range when the total sediment 02 

uptake is known (the relative error in the prediction of F diff from F tot, II, is on the order 

of 30%, Fig. 1, inset). However, when F tot is estimated from, say, water depth, the relative 
error in Ftot may easily be 50%, which increases the uncertainty of transport parameter 
estimates considerably. The predicted transport coefficients are more error prone at low total 
02 uptake (Fig. 3), which typically corresponds to greater water depths and lower enhanced 
transport intensities. 

Figure 3. Relative error on the enhanced transport coefficients as a function ofFtot in units of cm,2 yr'} and 
the relative uncertainty on Ftot' The upper and lower surfaces correspond to enhanced diffusion and nonlocal 

transport. respectively. For the calculations, Fdijf is estimated from FlOt by Eq. 1, Fd,jf / is set to 30%Fdiff 
2 J(Fig. 1). porosity is U,8, is 20U cm yr- , and the 02 concemratiun in the overlying water is assumed to be 

100 
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Results and Discussion 

Enhanced O2 uptake at the seafloor 
The global contribution of enhanced solute transport to benthic O2 exchange fluxes is 
estimated using the relationship between Fdiff and F tot (Eq. 1). Benthic 02 fluxes are 
calculated as a function of water depth (Eq. 2, water depths> 20 m, the depth cutoff is chosen 
to exclude areas with a major contribution of benthic primary production). Total sediment 02 
uptake is then obtained through multiplication with the corresponding ocean floor surface 
areas, calculated from the ETOP bathymetric map on a 1 by 1 degree grid (Table 1). This 
analysis suggests that more than 40% of the total mass of O2 is taken up by sediments located 
at water depths shallower than 300 m. A significant portion, about a third of the total 02 
uptake at the entire seafloor, is estimated to be due to enhanced transport. This fraction drops 
by about 10% when considering only water depths greater than 100 m rather than 20 m. 

Such a significant contribution of enhanced benthic O2 uptake in continental margin 
environments implies a pronounced impact on the early diagenetic pathways of organic 
matter degradation. For example, enhanced supply of O2 may substantially promote the 
reoxidation of reduced inorganic species, such as sulfide, thereby sustaining sulfate 
availability and high sulfate reduction rates (Ferdelman et aI., 1999; Fossing et aI., 2000; 
Koretsky et aI., in prep.), and preventing methanogenesis. 

Patterns in enhanced transport 
To assess enhanced transport on a global scale, transport coefficients are calculated for the 
ocean between 600 N and 60

0 

S on a 1 by 1 degree grid. This resolution is dictated by the 
availability of O2, temperature and salinity data (Levitus data set, Table 1), which are used to 
obtain Co and for each grid point. Porosity near the SWI is typically between 0.75 
and I, and for the global simulations is assumed to be 0.8. Enhanced transport coefficients are 
calculated from estimates of total O2 solute exchange fluxes (Eq. 2, with water depth based 
on the ETOP map), estimating Fdifffrom F tot (Fig. 1), and using Eqs. 10 and 11, respectively. 

In addition to the transport coefficients obtained on the 1 by 1 degree grid, results 
from the individual study sites listed in Table I, based on measured values of L, F tot, 

Co, are shown in Figure 4. The two enhanced solute transport representations, Denh and a, 
derived from the global ocean grid show similar patterns with depth or total benthic O2 flux. 
As expected, enhanced transport coefficients are high relative to diffusive exchange at high 
total benthic O2 fluxes, where Fxs becomes significant (Fig. 1). Model results suggest that at 
total O2 fluxes smaller than about 100 to 150 cm'2 yr'l, which according to Eq. 2 
roughly correspond to water depths greater than 250-400 m, molecular diffusion is the 
dominant transport mechanism (Fig. 4A). Results from site-specific calculations show a 
somewhat larger range of Ftot where coefficients of molecular diffusion and enhanced 
diffusion are of similar magnitude (about 50-250 cm-2 yr'l, Fig. 4A). The solid phase 
mixing coefficient Db, estimated from water depth (Midde1burg et al. 1997), is systematically 
smaller than either the molecular or the enhanced diffusion coefficient (by an order of 
magnitude or more, not shown), indicating that solid phase mixing has, globally, a minor 
effect on solute transport in marine sediments. 

Generally, poorer agreement exists between the global grid and the site-specific 
estimates of enhanced transport coefficients at low benthic O2 uptake fluxes (Fig. 4). This 
reflects the large (relative) uncertainties associated with estimates of enhanced transport 
coefficients at low Flnt (Fig. 3) and thus low However. under these conditions. 
characteristic for the deep-sea, enhanced transport tends to playa minor role in benthic solute 
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fluxes. At benthic uptake fluxes Ftot > 100 cm 2 site-specific enhanced transport 
parameters show increasing trends with F tot , similar to those observed for the global grid 
results. 

Global relationships 
When the benthic O2 flux, Ftot' is known at a given site, enhanced transport coefficients can 
be calculated by combining an estimate of Fdiffderived from F tot (Fig. 1) with Eq. 10 (Denh) or 
Eq. 11 For sites where the benthic O2 flux has not been measured, we recommend to 
estimate F tot' for example, from the total organic carbon mineralization rate. In both cases, 

site-specific values of the other input parameters, L and Co, should be used 
preferably. 

When not all the necessary site-specific information is available, or when simple 
parameterizations are needed for use in biogeochemical models of the whole ocean, the 
following empirical equations can be used. These equations are derived by fitting the entire 
set of transport coefficients calculated for the global ocean grid (Fig. 4): 

D 
enh 

= (7.6375 - 7.4465· D 
sed 

(02) (r2 = 0.99) (14) 

= (-73.071 + 71.912· = 0.99) (15) 
= 48133 - 48089. =0.94) (16) 

= -1591.7 + 1580.8. (r2 = 0.21) (17) 

where the units are cm2 for Den" and Dsed(02), for yrl for mM 
for the 02 bottom water concentration, Co, and the r2 values refer to the fit to the global grid 
rather than the site-specific results. 

Comparison of the r2 values reveals that cannot be predicted accurately from Ftot 

alone (Eq. 17); Co, however, strongly correlates with Ftot (Eq. 15). The globally-predicted 

a· Co values also agree well with the site-specific values (Fig. 4B). Use of the nonlocal 
transport description therefore requires knowledge of the 02 bottom water concentration. For 
Denh , only a moderate increase in r2 is observed when variations in Dsed are taken into 
account. However, the good fit of Eq. 16 to the global grid parameter values partially reflects 
the correlation between bottom water temperature and water depth (see analysis of the 
Levitus data set in (Tromp et aI., 1995», together with the fact that F tol is estimated from 
water depth (Eq. 2). Therefore, we recommend use of Eq. 14 when salinity and temperature 
(and, possibly, porosity) values are available to estimate Dsed. 

Equations 15 and 14 or 16 allow one to predict enhanced transport coefficients form 
the benthic O uptake flux. Alternatively, the parameters can be obtained from water depth, z, 
by substituting Eq. 2 into Eqs. 14-16. This increases the uncertainty on the parameter values, 
however, because of the propagation of errors associated with estimating F tot from z (Fig. 3). 
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Figure 4. Enhanced solute transport coefficients (Panel A: diffusional, Panel B: nonlocal) as a function of the 
total benthic 02 uptake flux. Circles denote site-specific estimates (Table 1), dots are the coefficients estimated 
for the global grid. The thin lines in panels A and B correspond to the predicted parameter values using the 
three different empirical equations to estimate Fdifffrom F (Fig. 1). The line patterns are the same as in Fig. 1. 
The thick lines in panels A and B correspond to the predicted parameter values using the arithmetic mean of the 
three empirical equations to estimate Fdijf The thick dashed lines represent the functions obtained by curve 
fitting the global grid estimates (panel A: Eq. 14. inset: Eq. 16: panel B: Eq. IS. inset: Eq. For plotting 
purposes, when the measured Fdiff exceeds F transport coefficients are set to the arbitrarily chosen minimum 
value of the y-axis. 

36 



6

Global 

Comparison to other studies 
The finding that enhanced transport is significant in near shore and continental shelf 
environments, is supported by studies at individual sites, e.g. (Archer and Devol, 1992), and 
enhanced diffusion coefficients in shallow North Sea sediments are several times higher than 
molecular diffusion coefficients (Vanderborght et aI., 1977). The model prediction that 
enhanced solute mixing tends to be less important in deep-sea sediments also agrees with 
experimental studies (Reimers and Smith, 1986). Our estimates of enhanced diffusion 
coefficients fall in the range reported in (Berg et aI. 2001), where it was shown that solute 
mixing coefficients exceed solid phase Db-values by a factor of 15-20 at a near-shore site. 
Our results thus support that enhanced solute diffusion coefficients cannot be adequately 
approximated by solid phase mixing parameters. 

Nonlocal transport coefficients agree well with results from independent modeling 
approaches. In shallow-water carbonate sediments of Dry Tortugas, Florida, both early 
diagenetic and stochastic modeling approaches give a-values near the SWI between 3.10-6 

(Furukawa et aI., 2000) and 4-6.10-6 sol (Koretsky et aI., 2002). The -value calculated here, 
2.7.10-6 S-l, is excellent agreement with these studies (FlOP 96 cm-2 yrl, Fdijf = 61 

yr-I, L =0.26 cm, Co = 141 =0.58; data from (Furukawa et al., 2000)). Predicted 
a -coefficients in the oxic zone of three sediments of the Skagerrak agree with the values in 
(Wang Van Cappellen, 1996) to within 7-25%, if their modeled O2 fluxes are used to 
calculate a. If 1 is applied to estimate Fdijf, the values are still within 7 - 35% of each 
other (4.1-9.4·10- S-I calculated here vs. S-I used in (Wang and Van Cappellen, 
1996), respectively). On the Washington shelf, a-values obtained based on total O2 fluxes 
from (Christensen et aI., 1984) at two sites are 5.1.10-6 S-I and S-I, respectively. This 
compares favorably to inverse modeling results based on radon and sulfate profiles, which 
lead to values of 3.7.10-6 sl and 6.2.10-6 Sl, respectively (Meile et aI., 2001). 

Benthic phosphate fluxes 
Colman and Holland (2000) have recently assessed the efflux of nutrient phosphate from 
marine sediments on a global scale. Based on 193 measured pore water phosphate gradients 
(Table 1), they calculated benthic phosphate fluxes taking into account molecular diffusion 
but assuming a negligible contribution from enhanced solute transport. Here, we examine the 
potential impact of enhanced transport on benthic regeneration of phosphate using the 
enhanced diffusion approach. The latter can be directly applied to the pore water gradients 
compiled by Colman and Holland. 

For many of their sites, Colman and Holland provide organic carbon deposition and 
burial fluxes. We use the difference between these fluxes as a measure of the total organic 
carbon oxidation rate and hence of the total benthic O2 uptake flux, F to,(02)' For each site, 
the diffusion flux, is obtained from Fto ,(02) by taking the average of the three fitting 
functions shown in Fig. 1. A value of Dell" can then be calculated with Eq. (10). This value, 
together with the measured phosphate gradient, porosity and molecular diffusion coefficient 
of phosphate given in Colman and Holland (2000), allows us to estimate the benthic flux of 
phosphate at the site. 

In their global budget, Colman and Holland divided the ocean in two provinces, the 
Shelf-Slope and the Rise-Deep Sea, each characterized by an average sedimentation rate, 

Following the same approach, we estimate the average benthic phosphate flux in each 
province from the empirical relationship between the benthic phosphate flux and obtained 
for the entire set of sites. The total flux of phosphate from the seafloor in each province is 
then estimated by multiplying the average flux by the corresponding surface area of the 
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province (Fig. 5). A more detailed calculation, based on a greater number of water depth 
intervals derived from the ETOP map (Table 1) and using a global relationship between 
and water depth (Middelburg et ai., 1997), results in essentially the same global benthic flux 
of phosphate (less than 5% difference). 

The results in Fig. 5 indicate a large effect of enhanced transport on the flux of 
phosphate from the seafloor. This effect is particularly pronounced along the ocean margins, 
where enhanced transport dominates the benthic exchange of phosphate. While the diffusion 
model may not be the most appropriate representation of enhanced transport of pore water 
phosphate on a global scale, a preliminary analysis of pore water profiles using the non-local 
model shows a similarly large contribution of enhanced transport on the benthic efflux of 
phosphate (results not shown). Thus, ignoring enhanced pore water transport may introduce 
significant errors when estimating benthic fluxes of phosphate and, most likely, of other 
dissolved nutrients. 

5 

' 

- 4 

3 
0 enhanced transport 

molecular diffusion 2 • 
1 

0 
shelf and slope rise and deep sea 

Figure 5. Global benthic phosphate fluxes. The figure illustrates the large relative contribution of enhanced 
transport in continental margin sediments. Error bars give standard deviations originating from the different 
estimates of O2) from F (Fig. 1). Actual uncertainties on the absolute fluxes are significantly larger 
(see in particular Fig. 2A in (Colman and Holland, 2000)). 
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Synthesis and perspectives 
The proposed global relationships for enhanced transport parameters are derived by 
combining an empirical relationship between the diffusive and total exchange flux of 02 
across the sediment-water interface (SWI) with physical models of diffusive and non-local 
solute transport in sediments. The choice of 02 as enhanced transport tracer is dictated by the 
rapidly growing body of 02 microprofile data and benthic chamber flux measurements. An 
added advantage is the high reactivity of 02' which causes the benthic flux and profile of 02 
to rapidly adjust to changes in external forcings, for example the deposition flux of organic 
matter. Thus, the proposed approach may also be suited to quantify seasonal variations in 
enhanced transport intensity. 

The impact of enhanced transport on sediment-water column exchanges is most 
pronounced in coastal marine environments, where the oxic zone tends to be very thin. 
Oxygen pore water profiles therefore mainly contain information on enhanced transport 
properties close to the SWI, although irrigation may affect pore water chemistry well below 
the oxic surface layer (e.g., Furukawa et al., 2000). In addition, the enhanced transport 
parameters of different chemical species may differ, because of differences in diffusive 
properties and reactive length scales around macrofaunaI burrows (e.g., Aller, 2001; Koretsky 
et a!., 2002). 

In shallow-water permeable sediments, wave-induced pressure fluctuations cause 
advective solute transport (e.g., Huettel and Webster, 2001), a mechanism not explicitly 
considered here. Frequently, these sediments are also inhabited by active populations of 
macrofauna, hence, several mechanisms can contribute simultaneously to enhanced pore 
water transport (D'Andrea et al., 2002). In nearshore environments, the end-member 
transport models used here may thus no longer offer reliable ways to estimate benthic 
exchange fluxes. Furthermore, the simple interpretation of 02 pore water profiles, which 
assumes O2 is only consumed (Eq. 5), is not valid when benthic photosynthesis becomes 
significant (e.g., Jahnke et aI., 2000). 

The above points to the need for further work on enhanced transport in coastal 
sediments. In particular, efforts should focus on better constraining the uncertainties 
associated with the transfer of enhanced transport properties determined for 02 to other 
chemical species, and developing more advanced models for the complex solute transport 
dynamics in nearshore sediments. Future studies could also integrate the predictive 
relationships of enhanced pore water transport presented here in regional ocean studies, e.g., 
using GIS modeling tools (e.g. Schliiter et aI., 2000). Such studies could then account for 
region-specific effects on sediment-water column exchanges related to, for instance. the 
bottom water oxygen distribution and organic matter deposition flux. 
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Inverse approach 

CHAPTER 3: Quantifying bioirrigation in aquatic sediments: An 
inverse modeling approach 2 

Abstract 
An inverse model was developed to quantify the depth distributions of bioirrigation 
intensities in sediments based on measured solute concentration and reaction rate profiles. 
The model computes statistically-optimal bioirrigation coefficient profiles, that is, profiles 
which best represent measured data with the least number of adjustable parameters. A 
parameter reduction routine weighs the goodness-of-fit of calculated concentration profiles 
against the number of adjustable parameters by performing statistical F-tests, while Monte 
Carlo simulations reduce the effects of spatial correlation and help avoid local minima 
encountered by the downhill simplex optimization algorithm. A quality function allows 
identification of depth intervals where bioirrigation coefficients are not well constrained. The 
inverse model was applied to four different depositional environments (Sapelo Island, 
Georgia; Buzzards Bay, Massachusetts; Washington Shelf; Svalbard, Norway) using total 
C02 production, sulfate reduction and 222RnJ226Ra disequilibrium data. Calculated 
bioirrigation coefficients generally decreased rapidly as a function of depth, but distinct 
subsurface maxima were observed for sites in Buzzards Bay and along the Washington Shelf. 
Irrigation fluxes of 02 computed with the model-derived bioirrigation coefficients were in 
good agreement with those obtained by difference between total benthic O2 fluxes measured 
with benthic chambers and diffusive fluxes calculated from 02 microprofiles. 

Introduction 
Biogeochemical cycles in aquatic sediments depend on coupled reaction and transport 
processes. The latter include diffusion, advection and biologically induced transport. Benthic 
macrofaunal activity may enhance solute transport through the passive or active flushing of 
infaunal burrow networks with water originating from the sediment-water interface 
(bioirrigation). In sediments with dense macrofaunal populations, bioirrigation may increase 
solute exchange fluxes across the sediment-water interface to such an extent that measured 
benthic fluxes are due primarily to bioirrigation, rather than diffusion (e.g. Hammond and 
Fuller 1979; Archer and Devol 1992). In heavily bioturbated sediments, enhanced biological 
transport may increase the return of nutrients to the overlying water. Such benthic nutrient 
release promotes benthic-pelagic coupling and contributes to the high primary productivity of 
nearshore marine environments (Rowe et al. 1975). 
Bioirrigation also has a significant impact on the spatial distribution of early diagenetic 
processes in aquatic sediments. Flushing of burrow networks removes metabolites and 
reduced species from the bulk pore waters. At the same time, the introduction of oxidants via 
burrows to depths at which bulk conditions are highly reducing promotes reoxidation 
reactions near burrow walls (Aller and Aller 1998). Zonation in sediment redox conditions 
near burrow walls may significantly affect the microbial ecology at depth by increasing the 
variety of potential microbial niches (Aller et al. 1983; Mayer et al. 1995; Lowe et al. 2000). 
In addition, if solute transport rates are rapid relative to reaction rates, as is often the case in 
sediments with intense bioirrigation, it may become difficult to infer dominant microbial 

2 Meile, c., Koretsky, C.M., and Van Cappellen, P. (2002). Limnology and Oceanography 46(l): 164-177. 
Acknowledgments. We thank 1. Kostka for providing sulfate reduction rate measurements from the Sapelo 
Island salt marsh site in advance of publication. E. Viollier. K Hunter and S. Joye are thanked for valuable 
discussions. This work was supported financially by the Office of Naval Research (Grant no. NOOOI4-98-1­
0203). 

43 



organic carbon degradation pathways directly from pore water concentration gradients (e.g. 
Berner 1985; Fossing et al. 2000; Furukawa et aI. 2000). 
In this study, an inverse model is used to estimate the magnitude and the depth dependence of 
bioirrigation in aquatic sediments from measured concentration and reaction rate profiles. 
Bioirrigation has been represented previously in early diagenetic models as a non-local 
transport process, in which the bioirrigation intensity with depth is quantified by a mass 
transfer, or bioirrigation, coefficient (Boudreau 1984; Emerson et al. 1984). In contrast to 
previous studies (e.g. Martin and Sayles 1987), the inverse approach presented here does not 
require an a priori, and hence subjective, assignment of the functional depth-dependence of 
the bioirrigation coefficient profile. The inverse approach is also advantageous because 
measurement uncertainties can be accounted for explicitly in the model calculations, thus 
limiting the overinterpretation of measured data. Furthermore, constraints may be applied to 
parameter values, allowing knowledge regarding the system to be incorporated into the 
model. 
The procedure presented in this study is similar to that of Berg et al. (1998), who used an 
inverse approach to identify reaction rate profiles in sediments with known transport rates. In 
particular, our model shares a similar (but not identical) approach with respect to the 
reduction of adjustable parameters, which leads to a statistically-optimal description of 
bioirrigation as a function of depth. However, the work presented here differs significantly 
from that of Berg et al. (1998) in a number of ways. First, Berg et al. (1998) used the inverse 
approach to solve for reaction rate profiles, whereas in this study the focus is on quantifying 
biologically induced solute transport. Second, the procedure presented here explicitly 
accounts for measurement uncertainties, and it allows model results to be constrained using a 
priori information about bioirrigation intensities in a given environment. Third, our model 
includes Monte Carlo simulations, in order to address shortcomings of the optimization and 
parameter reduction algorithms. In particular, a quality function is developed which identifies 
depth regions where the procedure does not lead to meaningful results. Finally, with the 
model presented, bioirrigation coefficient profiles can be determined from simultaneous 
analysis of multiple chemical constituents. 

Model Development 

Early diagenetic equation and boundary conditions 
Biologically induced solute exchange, or bioirrigation, can be incorporated in the general 
early diagenetic equation of a solute species by combining it with terms representing 
diffusion, advection, and reaction: 

-C)+R (1)
' " )) flush 

where D is the diffusion coefficient of the solute species corrected for tortuosity, temperature, 
salinity and pressure (Ullman and Aller 1982), v is the advection velocity relative to the 

sediment-water interface (neglecting 'where is the burial velocity), R is the net rate 

of production of the solute at depth z, the bioirrigation coefficient (in units of inverse time), 
the porosity, C the solute concentration in the bulk sediment, and Cflush the flushing 

concentration of the solute, generally approximated as the concentration in the bottom water. 
Use of the relatively simple, non-local formulation of bioirrigation given in Equation (1) is 
justified by its structural similarity to a general exchange function approach (Boudreau 1987), 
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and its mathematical equivalence to a 3-D description of continuously flushed vertical tube­
shaped burrows (Aller 1980; Boudreau 1984). 
Equation (I) is solved numerically at steady state using a blended finite difference scheme 
(Fiadeiro and Veronis 1977; Boudreau 1997). In advection-dominated systems this blended 
scheme becomes a backward difference formula, whereas in diffusion-dominated systems it 
becomes a central difference scheme, thus balancing stability and accuracy of the numerical 
scheme. Discretization transforms the bioirrigation coefficient profile a(z) into a stepfunction 
a(i), and therefore a-values for each depth segment are required. 
Several options for defining upper and lower boundary conditions are included in the model. 
Fixed concentration or constant flux boundaries may be assigned, or mass balance 
considerations may be used to determine the solute concentration at either the upper or lower 
boundary. In the mass balance approach, the consumption or production of the solute species 
is integrated between the upper and lower boundary and combined with the calculated fluxes 
of the species into or out of the sediment via diffusion and bioirrigation. The solute 
concentration in either the top or bottom depth segment is then adjusted until mass balance is 
satisfied. In all of the simulations described below, the option of fixed concentrations is used 
for both the upper and lower boundary conditions. 

Inverse optimization routine 
Using measured concentration and reaction rate profiles at steady state, it is possible to solve 
the discretized form of Equation (I) directly for the bioirrigation coefficient profile. 
However, this type of approach often yields oscillating values of as described for 
reaction rate profiles by Berg et al. (1998). In addition, the direct method does not allow 
bioirrigation coefficients to be constrained to physically meaningful values. For example, 
negative values of the mass transfer coefficient a are not physically reasonable, but often 
result from a simple forward application of Equation (1). In addition to eliminating physically 
unreasonable solutions, the inverse approach also allows uncertainties and constraints to be 
incorporated directly into the model, and it does not require an arbitrary choice for the depth­
dependence of the bioirrigation coefficients. 
In the algorithm developed in this study (Figure 1), an initial guess of the bioirrigation 
coefficient depth profile is systematically altered using a modified downhill simplex method 
(Press et al. 1989) to find a profile that reproduces measured concentration profiles within 
specified limits of uncertainty. The downhill simplex algorithm is an iterative procedure to 
minimize an objective function which reflects the quality of a calculated solution. The 
iterative optimization of the objective function is repeated until convergence between the 
calculated and measured concentration profiles, within a given uncertainty, is achieved at all 
depths, or until a specified number of iterations (typically> 1000) are completed. 
The objective function (OF) accounts for the fit to the data, via the sum of the weighted least 
square differences between the measured and calculated concentrations at each depth in the 
profile, modified by penalty functions. The latter increase the value of the objective function 
when values of either violate the parameter constraints or result in calculated 
concentrations that are less than a defined limiting value (typically 0). Mathematically,2 2 
OF = - Cca1c';J,2 + C( alim)calc,; - C cale,;J + C CUm,; - C cale,;J (2) 

C,i i=1 l CFC,i 1=1 

where is the uncertainty of the measured concentration, n is the number of depth 
segments, chosen to reflect the resolution of the measurements. The weighting parameters, t 
and c, are set to 0 if no violations of the constraints on parameters or concentrations occur; 
otherwise they are assigned values O. In the simulations shown here, t and c are both set to 
10 when violations occur, but other values can be assigned by the user if necessary. Crne,s, 
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Ceale and Clim are the measured, calculated and limit concentrations (e.g., Clim = 0; forcing 
modeled concentrations to values:::: 0), respectively; is the concentration calculated 
using the constraining value of (e.g., = 0) at the depths where violates the 
constraints. 

Initial guess of a(z) 

Subject to constraints: e.g., a 0 

Optimization 
Minimize objective function, 

accounting for constraints. 
> specified # iterations? 

YES 

NO YES 

Boxsqueezing 
Combine the 2 most 

similar adjacent boxes 

Calculate: Ceale-Cmea., 
Greater than specified uncertainty? 

Evaluation of best profile of MC simulation 
> specified # Me simulations? 

Evaluation of best New Monte Carlo 
overall and simulation 

best group of solutions New random initial guess 

Figure 1. Flow-chart of the inverse modeling approach. 

Reduction of independent parameters and statistical quality of fit 
The optimization procedure described above leads to a solution that is consistent with both 
the measured data and the applied constraints. However, adjacent depth segments may have 
very similar bioirrigation coefficient values, so that the profile could be simplified (i.e., the 
number of fitting parameters reduced) without a significant loss in the quality of the fit 
between the measured and calculated concentration profiles. Therefore, a 'boxsqueezing' 
algorithm was developed to systematically reduce the number of fitting parameters. In this 
algorithm, the depth discretization of the profile is changed by combining the two adjacent 
depth segments with the most similar parameter values into a single segment. After the two 
segments are 'squeezed' together, the optimization routine is repeated using the new 
discretization. This process is continued until a pre-specified minimum number of parameters 
is reached. 
The statistically-optimal depth discretization is determined using two criteria. The primary 
criterion is that the calculated concentration at each depth in the initial discretization must lie 
within the uncertainty of the measured data (i.e., convergence is required at each depth). If 
more than one discretization of the parameter profile meets this criterion, then the quality of 
the fit associated with each discretization is weighted against the simplicity of the 
bioirrigation coefficient profile by performing a series of F-tests at a 95% confidence level 
(for details on the test statistics see Kleinbaum et al. 1988, and Berg et al. 1998). In this way, 
the 'boxsqueezing' routine allows the objective determination of the simplest parameter 
profile which describes the measured data. 
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Monte Carlo simulations 
The most severe limitation of the downhill simplex algorithm used to optimize the parameter 
profile is that it may yield solutions associated with a local, rather than global, minimum of 
the objective function. Therefore, in the presence of local minima, the optimized parameter 
value depends on the initial guess of that value. This limitation of the downhill simplex 
optimization method is overcome by performing a series of Monte Carlo simulations with 
initial guesses of the parameter profile chosen at random from a specified range of values. In 
the model presented here, the range of initial parameter values at each depth may either be 
specified explicitly or may be constrained by calculating, at each depth, the maximum and 
minimum parameter value (subject to specified constraints) which yields a calculated 
concentration consistent with the measured concentration and its associated uncertainty. Each 
Monte Carlo simulation yields a single, statistically-optimal parameter profile, based on the 
criteria described in the previous section. 
Optimized profiles resulting from the individual Monte Carlo simulations are compared and 
ranked according to the same criteria used to determine the best discretization of the 
parameter profile. Ranks are first assigned to profiles based on convergence. That is, profiles 
with greater numbers of converged depths (using the original depth discretization) are ranked 
above profiles with fewer converged depths. Within a group of profiles with the same number 
of converged segments, each profile is rated as better or worse than each of the other profiles. 
For two profiles with different numbers of adjustable parameters, this rating is based on an F­
test, which determines whether the additional adjustable parameters significantly improve the 
fit of the calculated concentration profiles to the measured ones. For two profIles with the 
same number of adjustable parameters, the profile with the lower objective function value 
receives the higher ranking. The overall rank of a given profile is then based on the number 
of times it ranked better than other profiles in the pool. This procedure leads to the selection 
of the "best" individual bioirrigation coefficient profile. 
In the parameter reduction scheme used in this study, the combination of depth segments is 
non-reversible. Thus, if depth segments are combined in a way that does not correctly reflect 
the underlying process, subsequent optimization of the profile will be biased. However, 
inappropriate combination of two depth segments as an artifact of the optimization routine 
will likely result in a profile ranked lower than others produced by the Monte Carlo 
simulations. This is because it will either result in a worse fit or it will prevent the further 
reduction of the numbers of adjustable parameters because the convergence criterion cannot 
be met. 
The variability of the bioirrigation coefficient profiles produced by the Monte Carlo 
simulations serves as a qualitative indicator of how well the a-values can be constrained at 
any given depth. Part of the variability, however, results from spatial correlation, that is, 
coupling between adjacent spatial nodes. Because diffusion tends to smooth concentration 
profiles, an overprediction of the 'true' (unknown) irrigation coefficient coupled to an 
underpredicted value in an adjacent depth segment may yield a good fit to the measured data. 
Decreasing the number of adjustable parameters generally lessens spatial coupling by 
broadening the depth segments with constant parameter values. However, if a changes 
significantly over a small depth interval, the parameter reduction may instead induce spatial 
coupling. The effects of spatial coupling are greatly reduced by averaging results from 
multiple Monte Carlo simulations. Thus, the average irrigation coefficient profile calculated 
from the individual parameter profiles of the Monte Carlo simulations may lead to a solution 
closer to the true value of (see section Model performance). However, care must be taken 
to include in the averaging only those solutions which belong to the global minimum. Based 
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on test runs with model scenarios (see below), it was found that between 100 to 500 Monte 
Carlo simulations were sufficient to obtain reproducible results. 

Quality function 
To assess the quality of the model results, a quantitative quality measure (Q) was developed, 
which reflects the sensitivity of the concentration profile to changes in the parameter profile 
(i.e., the irrigation coefficient), as well as on the goodness of the fit between the measured 
and calculated concentration profiles. It is defined, at any given depth z, as 

Q = (3)Is. 
where the difference between measured and calculated concentrations at depth z, 
accounts for the goodness of fit. The sensitivity (8) is evaluated by perturbing the optimized 
a-profile at depth z while leaving the rest of the profile unchanged. The value of 8 is then 
equal to the difference in concentration between the optimized and perturbed a-profile at 
depth z, divided by the difference in the optimized and perturbed value of at this depth. 
Multiplication by a scaling factor the average value of the bioirrigation coefficient over 
the entire core depth, results in a dimensionless value of Q. This allows comparison of the 
quality of model results for environments with different bioirrigation intensities. 
The limit value of Q, below which model results become meaningless, was established 
empirically by applying the model to a number of synthetic scenarios with known 
bioirrigation coefficient profiles (see section Model performance). In Figure 2, deviations 
between calculated and imposed irrigation coefficients from a variety of model scenarios are 
plotted against Qrnin, the lowest value of Q(z) over the whole depth profile. The absolute 
deviation of at the depth where Q equals Qrnin and the relative error at this depth both 
increase significantly below a value of Qrnin 0.4. The largest absolute error in was 
generally found at the depth where Q equals Qrnin. In what follows, the bioirrigation 
coefficient is deemed well-constrained for depth intervals where Q 0.4. 
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Figure 2. (A) Relative and (B) absolute deviations between calculated and 'true' irrigation coefficients plotted 
against the minimum value of the quality function for the entire depth profile. Data are from a variety of 
synthetic model simulations (see text). Open squares represent the absolute error at the depth at which Q 
reaches its minimum value; crosses depict the maximum absolute error in the entire profile. See text for detailed 
discussion. 
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To increase computational efficiency, the quality function is only evaluated for the 
statistically-best Monte Carlo simulation profile and for a limited number of averaged 
profiles. To select the profiles to be averaged, the statistically-best profiles from the 
individual Monte Carlo simulations are ranked as described in the previous section. Averaged 
profiles are then calculated from these profiles, using those with a rank better than 1,2,5, 10, 
25,50 and 100% of the total number of Monte Carlo simulations. Of these averaged profiles, 
that which produced the highest value of Qrnin is taken as the best representation of The 
selected individual profiles are used to calculate standard deviations about the best estimate 
of 

Non-unique nature of solutions 
It is sometimes assumed (erroneously) that models which provide a good fit to measured data 
are 'correct'. In fact, for natural systems, the available quality or quantity of data often cannot 
provide unique solutions to modeled problems. In other words, model solutions may yield an 
excellent fit to measured data without correctly representing the underlying process(es). For 
example, it may not be possible to determine unique values of with Equation (1), 
particularly when the flushing concentration lies within the uncertainty of the measured pore 
water concentrations. In such a case, high values of simply shift the calculated 
concentration closer towards the value of the flushing concentration. Thus, an irrigation 
coefficient profile might be found which reproduces measured concentrations, but which does 
not accurately represent the in situ exchange intensity. 
To minimize such problems, is extrapolated from adjacent depth segments if (1) the 
flushing concentration lies within the uncertainty of the measured value and the calculated 
concentration is closer to the flushing concentration than to the measured one (indicating a 
likely overestimate of or (2) the flushing concentration is very close to the calculated 
concentration (difference smaller than 10% of the uncertainty at that depth) and the 
corresponding irrigation coefficient is very large (e.g. > 10-3 sol). In the top and bottom depth 
segments, where fixed concentration boundary conditions apply, is undefined and is 
therefore set equal to the value in the adjacent depth segment. 

Multicomponent optimization 
A more robust quantification of solute exchange may be obtained by using independent data 
sets for multiple chemical constituents. Such an approach assumes that the same irrigation 
coefficient applies to the different constituents. This is likely to hold true if the solute species 
have similar physico-chemical properties or if the frequency of burrow flushing is slow 
enough to allow equilibration of the chemical composition of pore waters and burrow 
solution (Hammond et al. 1985). In the case of continuous flushing of burrows, however, is 
related both to the diffusion coefficient and the diffusive pathlength (Boudreau 1984). The 
latter is influenced by the reactivity of a chemical (Marinelli and Boudreau 1996) and, hence, 
differences in irrigation coefficients may be expected for different chemical species. 
In a multicomponent calculation, the objective function (OF) should reflect all the 
constituents involved in the calculation of Thus, it is defined as the sum of the 
contributions from the different chemical constituents. In the multicomponent simulations 
shown below, the objective function was modified slightly, so that only depth segments 
lacking convergence contributed to the value of OF. This leads to stronger dependence on 
convergence than for the standard definition of OF given by Equation 2. Irrigation coefficient 
profiles are ranked according to the same criteria as in the one component case. However, the 
quality of fit determined fur profile of 

from this evaluation is used as the decision variable for the overall quality of an irrigation 
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coefficient profile. Q(z) is assigned the average value of all profiles at a given depth. Hence, 
high values of Q(z) indicate that the irrigation coefficient is well defined by all of the 
chemical species used in the calculation. Values of Q are likely to be lower in the 
multicomponent approach, however, because the resulting bioirrigation coefficient profile 
must provide a good fit to all species involved in the optimization. 

Model Performance 
Before the model was applied to data from natural systems, it was first tested using a series of 
simulations designed to analyze the performance of the three primary model components: the 
downhill simplex optimization, the reduction of adjustable parameters ('boxsqueezing') and 
the Monte Carlo simulations. The finite difference scheme has been thoroughly tested 
previously (Meile 1999). 
A set of synthetic rate and irrigation coefficient profiles was used with specified fixed 
concentration boundary conditions, in order to calculate corresponding concentration proftles. 
From these rate and concentration profiles, with uncertainties specified for each 
concentration. the irrigation coefficient profiles were back-calculated with the inverse model. 
In this way, model performance was assessed for a variety of hypothetical environmental 
scenarios. 

Model scenarios 
Model performance is illustrated in Figure 3. The 'baseline scenario' is representative of a 
highly productive coastal-estuarine environment, with the rate and concentration profile 
corresponding to, for example, profiles of the net rate of sulfate reduction and the sulfate 
concentration. 
The calculated profiles shown in Figure 3A demonstrate that both the single, statistically-best 
profile and the average profile reproduce the true bioirrigation coefficient profile very well at 
most depths. The single best proftle, however, fails to reproduce some of the fine-structure of 
the true bioirrigation coefficient profile. In particular, the high value of is underestimated at 
I cm depth. Simplification of the modeled profiles through 'boxsqueezing' (from 19 initial to 
5 final depth segments) of the statistically-best profile prevents the steep decrease of the true 
bioirrigation coefficients at the top of the profile from being simulated exactly (Figure 3A). 
The lower values of the quality function near the top of the profile (Figure 3E) reflect the 
lower sensitivity just below the water-sediment interface, which is due to the small value of 
the bioirrigation driving force (CfluSh-C(Z». 
Simulation results shown in Figure 3B and F were calculated using the same reaction rate and 
bioirrigation profiles as in the baseline scenario, but the uncertainty associated with the 
measured concentration profile was increased from I to 5%. Due to the larger uncertainties, 
the number of depth segments with distinct values of is reduced to just three in the 
statistically-best irrigation coefficient profile. Although the calculated bioirrigation 
coefficient profile matches the imposed solution quite well, the range of possible a.-profiles 
leading to converged concentration profiles is considerably larger than for the case above. 
The maximum value increases to as much as 10-4 S·1 near the sediment-water interface. Thus, 
as expected, the quality of the model results is directly influenced by the quality of the data. 
Results shown in Figure 3C were calculated using the baseline scenario, but with an imposed 
solute consumption rate equal to zero, as would be the case for an unreactive species. The 
main difference to the previous scenarios is a lower sensitivity of the concentration values to 
the calculated irrigation coefficient profile, and hence lower values of Q. Nonetheless, good 
fits to the true concentration and irrigation coefficient profiles are still obtained (Figure 3C 
and G). The lower sensitivity, particularly in the upper cm of sediment, reflects the fact that 
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non-zero rates increase the difference between the flushing concentration and the pore water 
concentration, which, in tum, facilitates identification of the true bioirrigation coefficient 
profile. 
For the simulation results shown in Figure 3D and H, a bioirrigation profile with a step 
function depth-dependence was imposed. This corresponds qualitatively to the irrigation 
regime resulting from the activity of certain polychaetes (e.g. Craig and Lopez 1996). The 
model results fit the imposed profile extremely well, giving rise to values of Q that are 
generally much higher than in simulations for which a steeply decreasing bioirrigation 
coefficient profile was used. Thus, the inverse approach appears to be capable of identifying 
regions of markedly different irrigation intensities within the sediment column. 
To illustrate spatial correlation, a-values were interpolated linearly from the values at the 
center of the depth segments to the depths of the interface of two adjacent boxes. The 
oscillating values in the enveloping minimum and maximum of a-values (Figs 3A-3D) 
reflect spatial coupling in the underlying individual profiles. These profiles, which are also 
consistent with the data available and their uncertainties, are ranked low in the statistical 
comparison due to the larger number of fitting parameters. 
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Figure 3, Model results using imposed depth profiles of rate and bioirrigation coefficient. (A) Si/lgle best and 
averaged irrigation coefficient prOfiles, and minimum and maximum values of afor all converged simulations, 
in the 'baseline scenario' which is defined by an exponentially decreasing solute consumption rate (R (mM S·l) 

= /0.5 exp(·15*z(cm)), a steeply decreasing bioirrigation coefficient profile, a 1% uncertainty in the 
concentrations, and fixed concentration boundary conditions. (B) Symbols and simulations are identical to (A) 
except that the uncertai/lties on concentrations are assigned a value of 5% (C) same as (A), except that the 
reaction rate is set to 0 at all depth. (D) same as (A), except that the bioirrigation depth·dependency is defined 
by a function. (E)-(H) Concentration and quality profiles for the simulations described in panels 
(A)-(D), respectively. 77ze vertical dashed line shows the limit value of Q = 0.4, below which model results are 
no longer well-constrained. 
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Model Application 
The inverse model was used to quantify bioirrigation coefficient values with depth in a 
variety of marine environments using measured data for three different chemical constituents 
(Table 1). Diffusion coefficients were either calculated as a function of temperature, salinity 
and pressure and corrected for tortuosity (Ullman and Aller 1982), or they were taken directly 
from the studies to which our model results are compared. Pore water advection through the 
bulk sediment was neglected, while rapid, preferential flow through burrows was accounted 
for by the bioirrigation coefficient. The advective transport due to sedimentation was also 
neglected, because at all study sites sedimentation rates are less than 10 mm yr.1 (Howarth 
and Giblin 1983; Christensen et al. 1984; Tromp et al. 1995, Glud et al. 1998), which is 
insignificant compared to diffusion and bioirrigation rates. Measured porosity, concentration 
and rate profiles were interpolated to the depths of the gridpoints using a weighted distance 
relationship. Input data resolution was set to 1 cm. For the RnlRa disequilibrium data, the 
reaction term included a fIrst order term accounting for the decay of pore water Rn, while the 
production of Rn through decay of Ra was accounted for using a zero order rate based on the 
measured Rn secular equilibrium activity and respectively, 
with being the 222Rn decay constant of 3.824 dol). Constraints were applied to exclude 
negative values of the irrigation coefficients and calculated concentrations. 

Table 1. Study sites, input data and summary ofmodel results. The irrigation transfer velocity 
(V) is calculated by integrating the bioirrigation coefficient over the whole core depth; Z90 is 
the depth at which the depth-integrated bioirrigation coefficient reaches 90% of the total 
transfer velocity. 

site water depth data used V Z90 (em)
(em yr") 

Malangen (Sv-l: 69° 29.4'N 18° 07.5'W) 329m DIC, pH, Rem 982 14.5 
Storefjorden (Sv-5: 77° 33.0'N 19° 05.0'W) 175 m DIC, pH, Rem 300 14.5 
Sapelo Is. (June, 31° 22'N 81° 14'W) intertidal SRR 1841 349 4 
Sapelo Is. (August, 31° 22'N 81° 14'W) intertidal 28479 4 
Buzzards Bay (near Weepeeket Is.) 15m RnlRa 138 18 
Washington Shelf. core 2A (MSSD-l. Aug) 86m SRR 341 28.5 

Rn/Ra 88 23.5 
RnlRa and SO.". SRR 446 23.5 

Washington Shelf, core 3A (MSSD-2. Aug) 86m 828 24.5 
RnlRa 200 21.5 

RnlRa and SRR 172 24.5 

Subtidal estuary, Buzzards Bay, Massachusetts 
222RnJ226Ra disequilibrium has been used to study mixing processes in sediments (e.g. 
Hammond et al. 1977; Key et al. 1979; Gruebel and Martens 1984). Due to the large 
difference in the half lives of parent and daughter isotope, any deviation of the measured Rn 
activity at a given depth in the sediment from its value at secular equilibrium may be 
attributed to transport processes. Martin and Banta (1992) used RnlRa disequilibrium data to 
quantify bioirrigation at a subtidal estuarine site at Buzzards Bay (Table 1). Bioirrigation 
coefficients calculated using the inverse model developed in this study could be directly 
compared to those of Martin and Banta (1992). 
To apply the inverse model, Rn activities, porosity and diffusivity data were taken directly 
from Figure 2 and Table 2 in Martin and Banta (1992). As in the latter study, it assumed 
that the activity of Rn in the overlying water equals 0, and that the Rn profile represents 
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steady state conditions. However, unlike in Martin and Banta's study, the lower boundary 
condition was set to a fixed Rn value, instead of applying an open system condition. 
In agreement with Martin and Banta (1992), inverse model results indicate that solute 
transport in the top 5 cm of the sediment is diffusion-dominated, whereas below 5 cm depth 
both studies suggest that transport via bioirrigation is substantial compared to transport via 
diffusion. In addition, the depth-integrated value of obtained with the inverse model (Table 
1), which can be interpreted as a transfer velocity across the sediment-water interface and 
gives a measure for the overall intensity of bioirrigation at a given site, differs by less than a 
factor of 2 from Martin and Banta (1992). However, in the upper diffusion-dominated portion 
of the sediment, values of Q are quite low (Figure 4B), indicating that bioirrigation 
coefficients in this portion of the profile are not well constrained. 
Although the depth-integrated irrigation coefficients found in the two studies are similar, the 
depth-dependence of the irrigation coefficient obtained by the inverse method is quite 
different from that presented by Martin and Banta (1992). This is because Martin and Banta 
(1992) imposed an exponential shape of the irrigation coefficient profile in order to fit the 
measured Rn profile. With the inverse model, no a priori shape of the irrigation coefficient is 
assumed. According to the results of the inverse model, the irrigation coefficient exhibits a 
distinct subsurface maximum between 10 and 14 cm sediment depth, rather than a monotonic 
change with depth (Figure 4A). Such a subsurface maximum in the bioirrigation coefficient 
profile could reflect the activity of deposit feeders such as Nephtys, which have been reported 
by Martin and Banta (1992) at the study site. The same authors also observed a subsurface 
maximum in an excess bromide profile in one of the cores collected at the site. 

Buzzards Bay 
o

O single 

•
average 

min&max 

Figure 4. Bioirrigation at Buzzards Bay. (A) The single, statistically-best irrigation coefficient profile, and the 
averaged irrigation coefficient profile, together with maximum and minimum values of the profiles with the least 
number of non-converged boxes. (B) Quality function profile for the single, statistically-best solution and the 
averaged solution. The dashed line shows the limit value of Q= 0.4. (C) Measured, interpolated and calculated 
Rn pore water activities as well as measured and interpolated secular equilibrium activity ofRn. 
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Washington continental shelf 
Bioirrigation has been quantified previously on the Washington Shelf using forward 
calculations based on RnlRa disequilibrium data and sulfate concentration plus reduction rate 
data (Smethie et al. 1981; Christensen et al. 1984). Bioirrigation coefficient profiles were 
calculated in this study by applying the inverse model to two sites on the Washington Shelf 
(Table l) based on sulfate and Rn data alone, as well as from simultaneous optimization of 
both data sets. 
Inverse model results obtained using either Rn or S042

- profiles alone, or both species 
simultaneously, indicate significant bioirrigation to a depth of approximately 30 cm at both 
sites and high irrigation coefficients in core 3A near the sediment-water interface (Figures 5A 
and 6A). The main difference in the bioirrigation profiles for the individual species occurs 
near the sediment-water interface in core 2A, where results obtained using the sulfate profiles 
alone give no indication of the intense irrigation suggested by the Rn profile (Figure 5A). The 
results obtained for cores 2A and 3A using Rn, sulfate or both suggest a subsurface maximum 
in irrigation at approximately 11 and 19 cm depth, respectively (Figure 5A and 6A). 
From the difference in Rn and diffusion coefficients, it might be expected that the 
bioirrigation coefficient values obtained from Rn data should be higher than those obtained 
using S042

- data, possibly by as much as a factor of 2. Such a difference in the magnitude of 
the irrigation coefficients is observed for the lower portion of core 2A, but not for core 3A. 
The lack of a systematic difference in bioirrigation coefficients between the two species 
justifies the simultaneous optimization of Rn and profiles. In core 3A, simultaneous 
optimization of sulfate and Rn profiles shows high values of a near the sediment-water 
interface and significant irrigation down to 30 cm depth, as found from the sulfate and Rn 
profiles alone (Figure 6A). The multicomponent optimization in core 2A leads, not 
surprisingly, to intermediate values of a near the water-sediment interface, compared to the 
two single-species analyses, but the visually poor fit to the sulfate concentration as well as the 
low values of Q indicate the relatively low reliability of the model results in the upper few 
centimeters (Figure 5B and C). It is difficult to determine the coefficients precisely over a 
large portion of the profile as indicated by the large error bars associated with the irrigation 
coefficient profile. Nonetheless, it appears that the irrigation coefficients are relatively high 
near the top and bottom of the cores at both sites. Overall, the results obtained for both sites 
diverge significantly from the exponential decrease of a which is often assumed in early 
diagenetic models (Martin and Sayles 1987; Schluter et al. 2000; Wang and Van Cappellen 
1996). 

The inverse model results compare favorably to the findings of Christensen et al. (1984), who 
also found significant irrigation to a depth of 30 cm. However, Christensen et al. (1984) 
suggested the presence of a subsurface maximum in the bioirrigation coefficient at about 5 
cm based on the profiles. Such a subsurface maximum was not observed in any of the 
profiles calculated here using the inverse model. 
Independent evidence supports the validity of the bioirrigation proftles calculated by the 
inverse model, at least with respect to depth-dependence. The subsurface maximum in the 
irrigation coefficients found in core 2A between 10 and 11 cm using the inverse method 
matches the depth of a worm burrow reported in core 2A by Smethie et al. (1981). This 
subsurface peak is apparent in profiles calculated with the inverse model using the sulfate or 
Rn data alone, or using a combination of the two (Figures 5), but is not apparent in any of the 
calculated profiles reported by Christensen et al. (1984). 
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Figure Bioirrigation on the Washington Shelf. core 2A. (A) Average bioirrigation coefficient profile and (B) 
quality function obtained from simulations using Rn and sulfate data alone, as well as simultaneous 
optimization, respectively. (C) Calculated and measured sulfate concentrations and pore water radon activities, 
respectively. Sulfate reduction rates and Rn equilibrium activities used in these simulations (not shown) are 
from Christensen et 1984, their Figure 2, and Smethie et al. 1981, their Table 
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The deep, rapid solute transport implied by the high bioirrigation coefficients found near the 
bottom of the cores also helps to explain the observed departure of measured pore water Rn 
activities from secular equilibrium values. Smethie et al. (1981) attributed this difference to 
analytical overestimation of the equilibrium Rn activity. However, model simulations using 
corrected equilibrium activities proposed by Smethie et al. (1981) fail to produce enhanced 
bioirrigation coefficients at the depth of the reported burrow. This suggests that the difference 
in Rn activities may not be due to analytical artifacts, but rather to solute transport induced by 
deep intense bioirrigation. 
To further evaluate the bioirrigation coefficients predicted by the inverse model, Oz irrigation 
fluxes across the sediment-water interface at the Washington Shelf sites were estimated, 
assuming that the bioirrigation coefficients derived from the sulfate and Rn data apply to Oz. 
If this assumption is violated, the calculated Oz irrigation fluxes will tend to be 
underestimates, because the high reactivity of Oz would give rise to steep concentration 
gradients which would accelerate diffusional transport of Oz across burrow walls (Marinelli 
and Boudreau 1996). To calculate the Oz irrigation fluxes, the sediment O concentration was 
assumed to be negligible, and the Oz flushing concentration was set to 130 ItM, as cited by 
Christensen et al. (1984). This leads to calculated irrigation fluxes of 2±1.0 and 1.6±O.4 
mmol O2 m'z d'! at sites MSSD-l and -2, respectively, which is similar to the values of 1.2 
and 2.5 mmol m'z d,l, respectively, calculated by Christensen et al. (1984). Archer and 
Devol (1992) determined O2 irrigation fluxes on the Washington Shelf from the difference 
between total solute fluxes measured with benthic chambers and diffusive fluxes calculated 
from high resolution pore water O2 profiles. The irrigation fluxes reported by these 
authors near the study area range from 1.4-6.3 mmo1 d'!, which is of the same order of 
magnitude as the fluxes calculated using the inverse model results. 

Arctic environment, Svalbard, Norway 
Bioirrigation coefficient profiles were calculated for two sites near Svalbard, Norway, one at 
Malangen Fjord and the other at Storefjorden (Sv-l and Sv-5, respectively, Table 1). The 
bioirrigation profiles were optimized using profiles of dissolved inorganic carbon 
concentration (DIC), DIC production rate (Reoz) and pH for the two sites described in Kostka 
et al. (1999). The diffusion coefficient for DIC was calculated from the diffusivities of the 
different carbonate species, weighted according to their relative contribution to DIC based on 
the measured pH values. 
Calculated bioirrigation coefficient profiles at both sites show very high depth-integrated 
values of (Table 1) and a distinct decrease of with depth (Figure 7A and C). The quality 
function has high values over the entire profile (Figure 7B and D), and the calculated 
concentrations are within the uncertainties of the interpolated measurements (not shown). 
This provides a high level of confidence that the calculated bioirrigation coefficient profiles 
are meaningful and implies a very active benthic macroinfauna in these Arctic environments. 
To assess the inverse model results, calculated Oz irrigation fluxes were compared to the 
difference between measured benthic oxygen fluxes and diffusive fluxes calculated from O2 
microelectrode profiles measured at the Storefjorden site (Glud et al. 1998). Irrigation fluxes 
were calculated using the measured bottom water Oz concentration of 328 ItM as the flushing 
concentration and, because the Oz penetration depth is approximately I cm and the 
concentration decreases approximately linearly with depth (Glud et al. 1998), the Oz 
concentration was assumed to be half the flushing concentration in the top centimeter of 
sediment and 0 below. This results in an estimated irrigation nux of 
approximately 10 mmol Oz d,l, which is 2.5 times greater than the difference between the 
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measured benthic and diffusive fluxes of 3.9±1.5 mmol Oz m'z dol. The irrigation flux of DIC 
calculated from the irrigation coefficient profile also exceeds the difference between 
measured benthic and diffusive fluxes (Glud et a1. 1998) by about a factor of 2.5. At present, 
the reason for the discrepancy between calculated and measured irrigation fluxes is unclear. 
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Figure 7. Bioirrigation ill the Svalbard region. based on DIC. pH profiles. Symbols and panels in 
panels (A) and (C). and (B) and (D) are the same as in Figure 4, panels (A) and (B), respectively. DIC 
concentrations and DIC production rates used in these simulations (not shown) are from Kostka et al. 1999, 
their Figures 2 and 6. 

Salt marsh environment, Sapelo Island, Georgia 
Salt marsh sediments are densely populated by macrofauna including fiddler crabs, mud 
crabs, polychaete worms and shrimp, all of which may build extensive burrow networks (e.g. 
Teal 1958; Basan and Frey 1977). Therefore, bioirrigation is likely to be an important solute 
transport process in salt marsh sediments. Nonetheless, few attempts have been made to 
quantify bioirrigation in these environments. Here, the inverse model was applied to data 
collected at an unvegetated creek bank site at Sapelo Island, a barrier island km off the 
coast of Georgia, USA (Table 1). 
Sulfate concentrations were measured on pore waters collected using diffusion equilibrators 
(Koretsky et aI., in prep), and sulfate reduction rates were determined by adding trace 
quantities of to sediments (J0rgensen 1978) and incubating them for 2 hours (Kostka 
et aI., submitted). To derive irrigation coefficients using the inverse model, net rates of sulfate 
consumption are required. Thus, if in situ reoxidation of reduced sulfur is significantly higher 
than during the 2 hour laboratory incubation, then this would lead to an overestimation of the 
calculated irrigation coefficients. This might occur, for example, because Oz is entirely 
excluded in the laboratory experiment, whereas in the field O2 may be introduced into the 
sediment via bioirrigation. 
Calculated irrigation profiles might also be biased because sulfate concentration profiles 
measured using diffusion equilibrators represent pore water concentrations averaged over 
several days to weeks, whereas the sulfate reduction rates represent instantaneous rates. This 
diUerence in timescales may infiuence model if sulfate pore water 
concentrations, sulfate flushing concentrations or the sulfate reduction rates fluctuated greatly 
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during the three week deployment period of the diffusion equilibrators. Furthermore, the time 
resolution of the concentration and reduction rate data does not allow potential non-steady 
state effects on the measured profiles to be addressed. Thus, the data were assumed to 
represent seasonal quasi-steady states, in spite of the fact that salt marshes are clear!y 
dynamic ecosystems. 
The bioirrigation coefficients calculated from the sulfate concentration and reduction rate 
profiles are high in the uppermost 5 cm of the sediment column, both for June and August 
(Figure 8A). However, low values of Q in August near the sediment-water interface, indicate 
that the bioirrigation coefficients are not well constrained (Figure 8B). This is because the 
sulfate flushing concentration lies within the uncertainty interval of the measured sulfate 
concentrations near the sediment-water interface (Figure 8C). Thus, the irrigation coefficient 
is likely to be overpredicted in the uppermost 4 cm. 
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8. Bioirrigation at Sapelo Island in JUlle I998 and August /997. based on sulfate profiles alld sulfate 
reduction rates (Koretsky et aI., in prep). 

As for the Svalbard and Washington Shelf sites, the O2 irrigation flux across the sediment­
water interface was calculated using the bioirrigation coefficient profiles. To calculate the 02 
flux due to irrigation, the bulk sediment was assumed to have negligible 02 concentrations at 
all depths. O2 flushing concentrations of 211 in June and 193 in August were set by 
assuming saturation with respect to atmospheric O2 (at 25 and 30°C, Kostka et al., submitted). 
These assumptions, combined with the calculated bioirrigation coefficient profIles, yield 
estimated bioirrigation O2 fluxes of 8.1±1.1 and 117±115 mmol 02 m,2 d,l in June and 
August, respectively. 
Oxygen uptake by a salt marsh sediment at Sapelo Island was estimated by Teal and 
Kanwisher (1961) to be approximately 17 mmol m,2 d,l, but their data do not allow the 
relative contribution of diffusion to the total flux to be calculated. The overall 02 benthic flux 
reported by Teal and Kanwisher (1961) and the calculated O2 irrigation flux for June from 
this study are at least qualitatively consistent, but the measured 02 benthic flux suggests that 
the irrigation flux calculated here for August is too high. The implication that the August 
irrigation coefficients are overestimated is perhaps not surprising, given the low values of Q 
and the large error bars associated with the extremely high irrigation coefficients calculated 

near the sediment-water interface. 
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Results of this study support previous findings that sulfate reduction rates cannot always be 
inferred directly from sulfate concentration gradients in heavily bioturbated sediments (e.g. 
Berner 1985; Fossing et al. 2000; Furukawa et al. 2000). In addition, the high irrigation 
intensities found for the Sapelo Island sediment imply that biologically induced transport 
efficiently counters sulfate depletion and thereby helps sustain high sulfate reduction rates. 
Thus, intense macrofaunal activity, by supporting high fluxes of sulfate and 02, helps explain 
low emissions of methane from highly productive salt marshes (Howarth and Giblin 1983). 

Conclusions 
In many natural sediments, the quality and quantity of available data are such that many 
different bioirrigation coefficient profiles can fit measured data within the limits of 
uncertainty. Therefore, it may not be possible to uniquely determine the true irrigation 
coefficient profiles. Nonetheless, as shown here, it is possible to rank potential solutions 
according to objective criteria, and to judge the meaningfulness of results using algorithms 
such as the quality function developed in this study. The proposed quality function reflects 
both the sensitivity of concentration profiles to changes in the bioirrigation coefficient and 
the goodness of the fit between calculated and measured concentration profiles. 
The inverse model was used in this study to calculate bioirrigation coefficient profiles in four 
different marine sedimentary environments. The model results indicate the existence of 
subsurface maxima in bioirrigation intensity at sites in Buzzards Bay and on the Washington 
Shelf. Previous studies failed to reveal these features at these sites. The model results 
highlight one of the primary advantages of using the inverse approach, namely, that it does 
not require an a priori, and therefore biased, definition of the depth-dependence of the 
irrigation coefficient. 
Bioirrigation coefficient profiles obtained with the inverse model were used to estimate 
irrigation O2 fluxes across the sediment-water interface. These estimates were compared to 
irrigation fluxes derived from the difference between measured benthic and calculated 
diffusive fluxes at sites with available data. In most cases, the O2 fluxes estimated from the 
calculated irrigation coefficient profiles were of the same order of magnitude as measured 
fluxes. The worst agreement was found between measured and calculated irrigation fluxes for 
the August data from the Sapelo Island salt marsh site. However, the calculated irrigation 
coefficient profile was also characterized by very low values of the quality function. Thus, 
the poor reliability of the calculated irrigation coefficients would have been established even 
without comparison to an independent data set. 
The inclusion of non-local solute transport in early diagenetic reactive transport models (e.g. 
Boudreau 1996; Wang and Van Cappellen 1996) creates the need for an objective 
parameterization of bioirrigation coefficients. The model presented provides a new tool for 
the unbiased interpretation of data collected in a variety of aquatic sediments. The model is 
available compiled for Macintosh PowerPCs by contacting the first author 
(meile@geo.uu.nl). It can be used not only to determine bioirrigation coefficient profiles, but 
also to determine reaction rate profiles (i.e., zones of consumption or production) for 
environments in which transport processes are known. 
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CHAPTER 4: Quantifyinp bioirrigation using ecological parameters: 
A stochastic approach 

Abstract 
Irrigation by benthic macrofauna has a major influence on the biogeochemistry and microbial 
community structure of sediments. Existing quantitative models of bioirrigation rely 
primarily on chemical, rather than ecological, information and the depth-dependence of 
bioirrigation intensity is either imposed or constrained through a data fitting procedure. In 
this study, stochastic simulations of 3D burrow networks are used to calculate mean densities, 
volumes and wall surface areas of burrows, as well as their variabilities, as a function of 
sediment depth. Burrow networks of the following model organisms are considered: the 
polychaete worms Nereis diversicolor and Schizocardium sp., the shrimp Callianassa 
subterranea, the echiuran worm Maxmuelleria lankesteri, the fiddler crabs Uca minax, U. 
pugnax and U. pugilator, and the mud crabs Sesarma reticulatulll and Eurytiulll limosum. 
Consortia of these model organisms are then used to predict burrow networks in a shallow 
water carbonate sediment at Dry Tortugas, FL, and in two intertidal saltmarsh sites at Sapelo 
Island, GA. Solute-specific nonlocal bioirrigation coefficients are calculated from the depth­
dependent burrow surface areas and the radial diffusive length scale around the burrows. 
Bioirrigation coefficients for sulfate obtained from network simulations, with the diffusive 
length scales constrained by sulfate reduction rate profiles, agree with independent estimates 
of bioirrigation coefficients based on pore water chemistry. Bioirrigation coefficients for O2 

derived from the stochastic model, with the diffusion length scales constrained by O2 

microprofiles measured at the sediment-water interface, are larger than irrigation coefficients 
based on vertical pore water chemical profiles. This reflects, in part, the rapid attenuation 
with depth of the O2 concentration within the burrows, which reduces the driving force for 
chemical transfer across the burrow walls. Correction for the depletion of 02 in the burrows 
results in closer agreement between stochastically-derived and chemically-derived irrigation 
coefficient profiles. 

Introduction 
Nearshore sediments support large populations of burrowing macroinfauna, such as 
polychaete worms, shrimps and crabs. These organisms build extensive burrow networks 
within the upper 10 to 100 em of the sediment column, which are either passively or actively 
flushed with water from the overlying sediment-water interface (SWI). Differences in solute 
concentrations between water flushed through burrows and pore water in the surrounding 
bulk sediment provide the driving force for enhanced solute mass transfer, called 

3 5bioirrigationl 
- . Bioirrigation not only enhances solute fluxes4

• , but also influences the 
microbial community structure6

-
9

, as well as sediment and pore water compositionlO-15
. 

Mathematical one-dimensional (lD) models of bioirrigation have been developed that treat 
bioirrigation variously as a diffusive, advective or nonlocal process. Diffusive models of 

3 Koretsky, C.M., Meile, C. and Van Cappellen, P. (2002) Geochemical Transactions 3(3): 17-30. DOl: 
1O.1039/blI0459d 
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bioirrigation use increased diffusion coefficients to account for enhanced solute transport due 
to macrofaunal activity within a defined mixing zone16

.
20

. A diffusive representation implies 
that biological solute mixing is rapid and occurs on a spatial scale much smaller than the 
characteristic length scale of chemical pore water gradients21 

• Less common are advective 
models of bioirrigation, in which an enhanced advection velocity accounts for increased 
vertical pore water transportl1

,22,23. Boudreau24 and Boudreau and Imboden25 have argued that 
a more appropriate description of bioirrigation is based on a nonlocal transport description. 
The most common approach employs a mass transfer coefficient or bioirrigation coefficient, 

to describe the rate of exchange between overlying water and pore waters at depthJ2
• ,27. 

None of the ID bioirrigation models, however, include an explicit representation of the 
burrow networks constructed by the resident macrofaunal populations. 
An important step in bridging the gap between chemical transport modeling of bioirrigation 
and benthic ecology was the development of the 3-dimensional (3D) radial diffusion model 
by Aller l

. In this approach, burrows are represented as continuously flushed, evenly spaced 
cylindrical burrows of constant diameter and depth. Solutes are transported diffusively across 
the burrow walls in response to concentration gradients between bulk pore waters and waters 
flushed into burrows from the overlying SWI. Boudreau and Marinelli extended the 3D 
burrow model to describe discontinuous flushing of burrows, as well as variations in animal 
population (distance between burrows) and organism sizes (burrow Boudreau further 
showed that the ID nonlocal description of inigation is equivalent to the 3D model of 
continuously flushed vertical cylinders; the ID nonlocal equation is simply the radially 
integrated form of the 3D model28 

• The equivalence between the 3D burrow model and the 
ID nonlocal model implies that the magnitude of bioirrigation at a given depth depends 
critically on the burrow wall surface area at that depth. 
In all of the above models (diffusive, advective, nonlocal and cylindrical burrow) 
assumptions are made regarding the depth dependence of the intensity of bioirrigation. 
Bioirrigation intensity is either assumed to be constant over a discrete interval, or a functional 
depth-dependence is assigned to enhanced diffusion coefficients or nonlocal exchange 
coefficients12.13,29.30. Values of irrigation coefficients are generally derived by fitting chemical 
promes, rather than by relying on ecological information. However, in principle, the latter 
could be used to determine the depth dependence of bioirrigation intensity directly. In 
addition, the models discussed so far are strictly deterministic and provide no information 
concerning the spatial or temporal variability of irrigation. 
In this study, a stochastic model of bioirrigation based on benthic ecological data is 
presented. Information on burrow sizes and shapes for a variety of representative 
macrofaunal organisms is used to calculate stochastic realizations of 3D burrow networks. By 
generating a large number of burrow networks it then becomes possible to determine both 
average burrow surface areas and their variability as a function of depth. Benthic ecologists 
have characterized the structures of burrows using methods such as resin casting and X­
radiography; these detailed measurements can be used to calculate the depth-dependence of 
burrow surface areas without implementing a stochastic approach. However, the stochastic 
model presented here is advantageous because it can also be used to provide estimates of 
surface area variability. Surface areas from the stochastic model provide an independent 
method for constraining the depth dependence of irrigation coefficients used in ID nonlocal 
models of bioirrigation. The stochastic model also provides a method to assess the 
uncertainty associated with irrigation coefficients in sediments. 
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Model 

The Stochastic Burrow Network 
[n the stochastic model, the sediment is represented as a 3D grid over which burrows are 
distributed. Burrows are modeled using ten endmember shapes commonly observed in 
macrofaunal burrow networks (Figure I). The following input parameters, with 
corresponding standard deviations and probability distributions where appropriate, are user­
specified: (I) total burrow density (burrows per m2

), (2) probability of occurrence for each of 
the LO possible burrow shapes, and (3) radius and lengths of segments associated with each 
burrow shape. For example, V-shaped burrows require specifications for vertical and 
horizontal segment lengths; Y-shaped burrows require specifications for lengths of inclined 
upper branches and for the horizontal stem. 

Vertical Vertical + Inclined (45°) 

V-shaped Inclined L-shaped J-shaped Inclined J-shaped Y-shaped 

Figure I. Endmember shapes used in stochastic burrow network simulation. 

With the specified input parameters, burrows are distributed over the grid as follows. For 
each realization of the network a total burrow density is chosen randomly from the user­
specified probability distribution of the total burrow density. The total burrow density is 
partitioned among the different burrow shapes based on the user-specified probabilities of 
occurrence of the ten possible burrow shapes. For each burrow, the lengths of the burrow 
segments and the radius of the burrow are selected similarly using the corresponding 
probability distributions. For nonvertical burrow orientations, the direction of the horizontal 
or inclined burrow section is selected randomly as north, south, east or west, with equal 
probability for each direction. 
After all of the burrow parameters have been calculated, the burrow is placed into the 3D 
network of grid blocks. Each block either contains bulk sediment or is part of a burrow. The 
location of the burrow is determined by generating random coordinates for the burrow exit at 
the top surface of the grid (i.e., at the SWI). For each burrow type, the user specifies whether 
the burrow is allowed to intersect with other burrows. [f the calculated exit coordinates cause 
the burrow to intersect with another burrow, and no intersection is allowed, the exit 
coordinates are recalculated until the burrow can be located in the grid, or until a large 
number of attempts (specified by the user) is exceeded. ending the simulation. To eliminate 
edge effects, burrows that exit the grid sides are continued at the opposite edge (i.e., a 
periodic boundary condition is imposed). For all stochastically generated parameters, either a 
Rayleigh or Gaussian probability function may be selected. or the parameter may 
be specified deterministically for use in all simulations. 
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For each stochastic realization of the burrow network (Fig. 2), the burrow volume, density 
and burrow wall surface area are calculated within each depth interval of the 3D grid. To 
calculate surface areas, all burrows are treated as cylindrical tubes. The surface area (Sh) per 
unit sediment depth of vertical or horizontal burrows is therefore equal to 

< 45 0
: 

s - (1) 
h - : 

where r1 is the burrow radius, is the angle of the burrow with respect to the vertical, and the 
subscript h indicates that the surface area within the depth interval is normalized to the 
uniform grid spacing, h. The total burrow surface area per unit sediment depth, Sh, at any 
given depth is then obtained by: 

where summation is carried out over all the burrows in the given depth interval. For 
simplicity, in the case of intersecting burrows, the surface area at the grid point of 
intersection is that calculated for the last burrow placed in the grid block. Because burrows 
are placed into the grid randomly and many networks are simulated, this results in an 
averaging of intersecting large and small surface area burrows. The mean values and standard 
deviations of the burrow density and burrow surface area are calculated as a function of depth 
by performing a large number of successive burrow network simulations (default 10,000 
simulations). 

o 

(em) 

100 

Figure 2. Sample 3D stochastic network simulation of burrows and corresponding burrow surface area per 
volume (line infront plane) as afunction ofdepth. 
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Burrow Networks and Nonlocal Exchange Coefficients 

Derivation ofnonlocal exchange coefficients from burrow surface areas 
Bioirrigation occurs because burrows provide conduits for solute mass transport that is rapid 
relative to diffusion through the bulk sediment. The burrow network therefore significantly 
influences biogeochemical cycling in the sediment. This is especially true in nearshore 
environments, where biologically mediated transport is often the dominant solute transport 
mechanism in surface sediments3l 

• Studies that attempt to link observed pore water profiles 
with the underlying process dynamics thus require a mathematical description of solute 
exchange due to bioirrigation. One such model is the nonlocal exchange coefficient 
description of bioirrigation26

, where the rate at which a solute is added or removed by 
bioirrigation (lnl) at a given depth in the sediment is given by 

Inl (xl = - Cavg (3) 

where is the sediment porosity, and the bioirrigation coefficient, in units of inverse time, 
denotes the nonlocal exchange coefficient describing mass transfer of a given solute, i, 
between the overlying water and the bulk sediment; Co and Cavg are the solute concentrations 
in the overlying water and in the bulk sediment, respectively. 

Boudreau has demonstrated that the nonlocal exchange coefficient description of 
bioirrigation is equivalent to the continuously flushed radial tube model of bioirrigation 
developed by Aller),28, He proposes the following equation: 

Jill =- ' (4) 
r2 -r\ r 

where Di is the molecular diffusion coefficient of the i-th species corrected for tortuosity, rl 
the radius of the vertical, cylindrical burrows, r2 the half-distance between burrows, and 

the concentration gradient of solute i extending from the burrow wall into the bulk 
sediment, In the idealized radial tube model, the term 2r)/(rl-r)2) corresponds to the burrow 
surface area per volume of sediment surrounding an individual burrow (sv)' The main 
difficulty in applying Eqn, (4) resides in estimating , If we approximate the 
concentration gradient by a truncated Taylor series expansion, then 

= Cavg - Cb (5) 

- rj 

where is the (time averaged) distance from the burrow wall at which the solute 
concentration reaches the radially averaged concentration, Cavg, for the bulk sediment at a 
given depth and Cb is the (time averaged) concentration in the burrow. 

If the total burrow volume is relatively small (i.e" r\«r2), the volume of bulk 
sediment surrounding an individual burrow at a given depth is approximately equal to the 
total sediment volume divided by the number of burrows at that depth. Therefore, Sv 

where Sv is the burrow surface area summed over all burrows divided by the total volume of 
sediment modeled within a given depth interval. At the sites assessed in this study (Dry 
Tortugas, Fl and Sapelo Island, GA), the contribution of burrows to total sediment porosity is 
small «5%), justifying this simplification, If we assume that the solute concentrations within 
burrows are similar to the concentrations in the overlying water then, using Eqns. (3­
5), it follows that 
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2 j avg 

(6) 
DiSv D _Sv 

(co - Cavg ) I - 'i 

Equation (6) is derived for the idealized model of evenly spaced, identical vertical 
burrows. In this study, we assume that, within each horizontal slice of the 3D sediment grid, 
Eqn. (6) provides a good approximation for the relationship between the bioirrigation 
intensity and the size and density of burrows. The stochastic burrow network can then be 
used to calculate mean values of burrow surface areas and radii, which can be implemented in 
Eqn. (6). While the assumption underlying the equivalence between ID nonlocal irrigation 
coefficients and idealized 3D cylindrical burrows is not strictly met for complex burrow 
geometries, the approach provides a means to estimate the depth-dependence of a, which is 
otherwise poorly constrained. 

The equivalent burrow radius rl(x) is calculated from the total burrow surface area per 
unit sediment depth according to 

- Sh(X) (7)r\ (x ) = ,
ntot(x) 

where ntot(x) is the total number of burrows encountered in the depth interval over which Sh is 
determined. Both ntol and Sh are calculated from the stochastic realizations of the 3D burrow 
network. Equation (7) accounts for the fact that inclination of the burrows with respect to the 
vertical increases the surface area available for exchange between burrows and bulk 

The average half-distance between burrows may be required for estimation of 
(see below). It is obtained by analogy with an ideal closest packing arrangement of vertical 

burrows, i.e. burrows (and the cylindrical packet of sediment surrounding each burrow) are 
assumed to be distributed evenly over the grid. The average half-distance between burrows at 
a given depth x, is then given by 

1 A or2 (x) = --.-- (8) 
ntot(x) 

where ntot(x) is the mean total number of burrows encountered in the sediment slab, and is 
the horizontal surface area ofthe 3D grid. 

Diffusion length scales 
From Eqn. (6) it is evident that the irrigation coefficient may depend on the chemical species, 
not only through the species-specific diffusion coefficient, but also through a characteristic 
radial diffusion length scale, L, - In theory, the latter can be obtained by direct 
measurements of chemical microprofiles across at the burrow-sediment interface (BSI). Such 
data, however, are rarely available. Alternatively, vertical microprofiles recorded at the 
sediment-water interface (SWI) may be used as analogs for the gradients at the BSI, or the 
radial diffusion length scales may be estimated from simplified reaction-transport models. 

If vertical diffusion at the SWI is considered analogous to radial diffusion at the BSI, 
the measured vertical length scale of the concentration change at the SWI must be 
corrected to convert from the planar geometry of the SWI to the radial geometry of the BSI. 
If we assume that the net rate of consumption (production) of the solute of interest is similar 
in the vicinity of the SWI and the BSI, then we can equate the planar and cylindrical volumes 
in which the solute is consumed (produced). Specifically, at the SWI, the ratio of a volume of 
a unit area of surface extending to depth divided by the surface area of the sediment is 
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Li'. This must be equal to the ratio of sediment volume associated with an individual burrow 
to the Eurrow's surface area, 

Li (9) 

which yields, 

= (x) +2rj (x)L, (10) 

The radial diffusion length scale predicted by Eqn. (10) is strictly speaking only valid near 
the SWI, where Li ' reflects the local production or consumption of the solute. As the 
production (consumption) rate changes with depth, so will the value of 

When measurements of rates of consumption or production of the solute in the bulk 
sediment are known, it is possible to estimate values of Li by assuming that in close 
proximity of burrows solute transport is dominated by irrigation (Le., vertical diffusion can be 
ignored). From the vertical profiles of solute concentration and net rate of 
production/consumption can be determined by balancing the flux across the burrow walls 
with the reaction taking place in the surrounding sediment,

r, 
= f (11) 

rt rl 

Using the approximation ofEqn. (5), and assuming C Co, the corresponding length scale at 
the BSI for r2»r1 is then 

(C -C )
L. = 2D. I 0 aug (12) 

where Ri is the net rate of production/consumption in the bulk sediment expressed per unit 
pore water volume. 

Estimates of length scales and bioirrigation coefficients can also be obtained if the 
reaction kinetics are known and the governing mass balance equation is solved at steady 
state, with the average concentration defined as 

(13)= rC(r)dr + rCodrJ rCodrJ 

Subsequently, can be determined using the condition C( )=Cavg• For example, for zeroth 
order kinetics, 

0= D, r - R. (14) 
r 

With the boundary conditions C(rl)=CO and at r2=0, the radial concentration profile is 
given by 

2C(r) = C
b 
+ (r

1 
- r 2 )+ (15)

4Di 2D, lrl 

Solving for leads to 
2 4 

- j(x) 3 rj r l Jr = exp -- - - + In(,; )+ - z -­2 4 2 2r2 

x =-rz-
z exp(y) , (l6a) 

y = (-rz-4 (lo5r; - In(rz)- +a.5rI
4 

)) 
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where f(x) fulfills f(x)·ef(X)=x. For Ixl < 0.3, f(x), the Lambert W function, can be expressed 
with a relative error < 1% in a series expansion, 

2 3x 3 8x 4 125x 5 154x6 

+-----+----­
2 3 24 5 (16b)
 

16807x7 16384x 8 l531441x 9 

+ 
720 315 4480 

From Eqn. (16) it is apparent that for zeroth order kinetics, depends only on the burrow size 
and spacing, not on the reaction rate or diffusion coefficient. Thus, the expected species 
specificity of only results from the species dependence of the effective diffusion 
coefficient. For other reaction kinetics! ,33, numerical methods are required to 

Burrow flushing efficiency 
Nonlocal transport models of lITIgation generally assume perfectly efficient flushing of 
burrows, that is Cb = Co (Eqns. 3, 6). If perfect flushing does not occur, then depletion (or 
accumulation) of the solute within the burrow will cause the nonlocal irrigation coefficient, 

to deviate from the apparent irrigation coefficient, defined by Eqn. (3). The 
relationship between the true irrigation coefficient and the apparent coefficient is 

DiSv 

ai,b (Co - )Cavg 
Sv (Cb - CaY, ) (Cb - ) (17)Cavg 

Di (Co -Cay,) Ij) = (Co 

For highly reactive species, or small burrows, this effect may significantly affect bioirrigation 
coefficient profiles. From Eqn. (17), it can be seen that the bioirrigation intensity is species­
specific, because Cb and C, and therefore the ratio of (Cb-C)/(CO-C), depend on the reactivity 
and diffusion coefficient of the individual solute species. 

To assess the significance of concentration changes in burrows, the steady state 
concentration profile within a burrow can be estimated. Balancing the net delivery of the 
solute to a given depth, by flushing of a vertical burrow with radial exchange across the 
burrow wall gives 

I= (18) 

where Q is the volumetric flux of water flushing through the burrow. Q is obtained either by 
direct measurement or is estimated iteratively using the depth-integrated irrigation coefficient 
profile. Advective water velocity in the burrow is related to the mass flux of water by 
u=Qhtrl. If the average concentration of the solute in the bulk sediment remains 
approximately constant (e.g., in the case of 02 which is rapidly depleted near the SWI, so that 

0 over most of the depth range of interest), then the radial derivative in Eqn. (18) can 
be expressed according to Eqn. (5), or 

= _ 2D, (C - Cavg) (19) 
rjuLi 

b 

Solving Eqn. (17) for the boundary condition Cb(O)=CO gives 

C (x) = (Co - C +C (20)
b avg avg 

which shows, as expected, that deviation from perfectly flushed burrows is favored by narrow 
burrows (small rl), slow water exchange (small u) and high solute reactivity (small 
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The flushing efficiency is related to the residence time of water in the burrows, 
where Vb is the burrow volume. If we assume, for simplicity, that is constant 

with depth then 
nOVb f j

2 

= (21) 

f f2
A o 

o 
Therefore, it is possible to obtain estimates of irrigation coefficients based on flushing 
frequencies burrow thickness (rl) and abundance (r2). Although the specific form of 
Eqn. (21) is only valid in the limited case of constant with depth, nonetheless, this equation 
highlights the potential use of data on burrow flushing frequencies of benthic organisms to 
constrain bioirrigation intensities. 

Results and Discussion 

Model Organisms 
The burrows of a variety of macrofauna, especially those inhabiting intertidal and shallow 
subtidal environments, have been characterized by resin casting34. Resin casts are obtained by 
pouring a dense epoxy directly into sediments or mesocosms; after hardening, casts are 
removed and cleaned. This technique is widely used to study burrow morphology and to 
obtain estimates of burrow surface areas and volumes. However, it can be difficult to obtain 
casts of deep-burrowing macrofauna35 and to distinguish burrows of different types of 
macrofauna. For example, initial resin cast studies of the echiuran worm Maxmuelleria

37lankesteri suggested that burrows have a single entrance at the surface36. . However, 
subsequent studies of sediment intake and ejection have demonstrated the presence of a 
second connection to the surface. The second entrance was likely not found in initial resin 
cast studies because the presence of the large echiuran worms within inhabited burrows 
blocked the flow of resin35 and because second openings are often occluded by sediment38. 

X-radiography of sediment slabs from box cores has also been used to estimate burrow 
shapes and burrow wall surface areas32,39.40

. Burrows of organisms in deeper environments 
have been studied using underwater television and remote photography6.41-43, and through 
mescocosm experiments conducted with organisms collected from sediments44,45, 

It should be noted that portions of the burrow structure of some organisms may not be 
irrigated. Therefore, relying solely on resin casting or X-radiography to determine burrow 
surface areas of exchange may lead to overestimates of irrigation intensity, particularly for 
deep burrows, This highlights the importance of obtaining detailed information concerning 
the burrowing and irrigating activies of individual organisms in constructing more 
representative, ecology-based bioirrigation models. 
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Table 1 Parameterization oj burrows. Cumulative distribution junctions are Gaussian. Ve = vertical burrow 
parameter; VY = upper branches oj Y-shaped burrow parameter; SY = stem oj V-shaped burrow parameter; I 
= 45° inclined burrow parameter; V= V-shaped burrow parameter; Y= Y-shaped burrow parameter, L = L-
shaped burrow parameter 

J-shape 
Density Depth/rn Length/m Up·llOOk Radius/m 

Organism distribution/m" Shape (minImax) length/m Refs 

150.0 ± 15 U-shape 0.103 ± 0.037 0.21 ± 0.076 N/A 0.00425 ± 0.0005 45,47 
North (0.0810.23) (0.0110.60) (0.000110.10) 
150.0 ± 15 50% V-shape 0.103 ± 0.037 (UY) 0.21 + 0.076 N/A 0.00425 ± 0.0005 45.49
 
Scottish Loch U-shape 050 ± 0.05 (SY) (0.0110.601 (0.0001/0.10)
 
& Davies Reef o103 ± 0.37 (ll)
 

(0.0810.90) 
3.0 ± 2 50% l-shape 0045 ± 0.17 0.60 ± 0.02 N/A 0.006 ± 0.0002 46,47, 
Scottish Loch 50% vert + ± 0.17 (Ve) (0.0110.90) (0.000110.10) 

0.10 ± 0.05 (I) 
(008/0.80) 

2 ± 0.5 50% U-shape 0.42 0,13 0.77 ± 2.4 N/A 0.015 + 0.005 36,37, 
lankesteri ScoHish Loch i2.5% 4je 0.166 ± 0.085 (Vel (0.10/1.5) (0.00110.10) 38 

\'ert + 0.254 ± 0.045 (I) 
12.5% L-shape 
12.5% inclined 

L-shape 

Nereis Y-shape 0.08 ± 0.01 (UY) N/A N/A 0.001 ± 0.0003 40.53. 
0.08 ± (SY) (0.00001/0.01) 70.71 
(0.0110.30) 

52 ± 10 0.15 ± 0.10 0.04 ± 0.01 0.02 ± 0.005 O.(}(175 ± 0.0025 55,56, 
25% inclined (0.10/0.30) (0.01/1.5) (0000110.01) 60.61. 

L-shape 
25% J-shape 65 
25% inclined 

Ucapugnax 13 ± 4 25% L-shape 0.20 ± 0.025 0,(14 ± 0.01 0.02 ± 0.0075 ± 0.0025 55,56. 
inclined (0.10/0040) (0,(11/1.5) (0.000110.01) 57 

25% 
25% inclined 

J-shape 

Decapoda: Thalassinidae: Callianassa subterranea 
Thalassinid shrimp are extremely common, inhabiting intertidal, shallow subtidal and 
possibly deep-sea sedimentary environments46.47. Their burrows, which are used by the 
organisms for shelter, feeding and reproduction, are deep (sometimes exceeding 2m depth) 
and typically have quite complex morphologies. Burrow morphologies may vary for a single 
species, depending on the sedimentary environment. For example, Callianassa subterranea 
burrow morphologies are much more complex in sandy44,45 than in muddy sediments46,48. 
Mesocosm studies of C. subterranea collected from sandy North Sea sediments suggest that 
these shrimp construct burrows with 5.9±1.6 openings at the sediment-water interface 
connecting to a lattice of nearly horizontal chambers45. This complex morphology is 
approximated in this study by treating each burrow as a combination of three intersecting U­
shaped burrows (Table l). This results in a distinct subsurface maximum in burrow wall 
surface area at approximately lOcm depth (Fig. 3A). 
However, C. subterranea burrows do not always resemble intersecting U-shapes. Nickell and 
Atkinson report several C. subterranea burrow casts from muddy Scottish Loch sediments 
with single, nearly vertical shafts extending downward from a lattice of horizontal tunnels48. 
Tudhope and Scoffin found even more complex C. subterranea burrow networks that 
typical1l, had 5 or more downward-inclined chambers radiating from a central V-shaped 
burrow 9. To account for the presence of the deep shafts found in these studies, C. 
subterranea burrows are modeled using a combination of 50% V-shaped and 50% Y-shaped 
burrows (Fig. 3B). The addition of Y-shaped burrows representing deeply penetrating shafts 
results in the persistence of significant burrow surface area to depths of greater than 80cm, 
compared to less than 25cm in simulations usmg only V-shaped burrows (Figs. 3A,B). 
However, the deeper portions of Y-shaped Callianassa burrows may be irrigated only 

72 



2/m3)

6
,37.43,

Stochastic approach 

infrequently, so that without consideration of flushing frequency the model may lead to 
overestimates of the bioirrigation intensity at depth. 
In muddy subtidal sediments from the west coast of Scotland, Atkinson and Nash found only 
one C. subterranea burrow, out of 17 casts, that had more than a single inhalent shaft opening 
to the surface46 

. However, Nickell and Atkinson found that most burrows from this 
environment had an additional, much smaller exhalent shaft that opened or partially opened at 
the sediment surface, perhaps facilitating flow of water through the burrows48 

. Reported 
organism densities in these sediments are much lower than estimates from North Sea sites, 
and burrow depths are considerably greater. To examine the potential differences in surface 
area resulting from the extremes of reported burrow morphologies, these Scottish Loch 
burrows are modeled here assuming only a single connection to the surface, by using 50% L­
shaped and 50% vertical/45° inclined burrow shapes. This results in a distinct increase in 
burrow wall surface area at approximately 10cm, which is not dissimilar from the subsurface 
maxima resulting from simulations using V- and Y-shaped burrows (Fig. 3C). Thus, C. 
subterranea is likely to promote deep bioirrigation in all of these settings, with a subsurface 
maximum in burrow surface area at depths of 1Ocm or greater. 

Callianassa subterranea o 

0.2 

0.6 

0.8 

1 

II 

B. Scottish and 
Davies Reef parameters If C. Scottish 

o	 10 20 30 40 0 10 30 0 0.5 1.5 
Sv 

Figure 3. Burrow wall area per unit sediment volume, Sv, as a function of depth for burrow network 
simulations of the Thalanassid shrimp Callianassa subterranea using (A) U-shaped burrows (North Sea site 
parameters), (B) U- and Y-shaped burrows (North Sea & Davies Reef site parameters) or (C) L-shaped and 
vertical+45°inclined shapes (Scottish Loch site parameters). See Table I for data usedfor all calculations. 

Echiura: Bonellidae: Maxmuelleria lankesteri 
The echiuran worm Maxmuelleria lankesteri has been recognized as an important bioturbator 
because, unlike many other burrowing macrofauna, it builds extremely deep, temporally 
persistent burrows. Single burrows have been observed to remain in place for at least 15 

38months and are suspected to persist in a single location for years37
. . Although M. lankesteri 

is found from the west coast of Scotland to the Skagerrak, its burrows have been studied 
particularly in Irish Sea sediments, where the organism is thought to promote deep, rapid 
mixing of radionuclide contaminants into the sedimene 
There has been some controversy surrounding the morphology of M. lankesteri burrows35

,38. 

In this study, simulations of M. lankesteri burrows were made using V-shaped burrows, 
single shaft (L-shaped, inclined L-shaped, 45° inclined, vertical/45° inclined), or mixtures of 
V-shaped and single shaft burrows. Surface areas as a function of depth are similar for all 
morphologies; results for mixtures of V-shaped and single shaft burrows are shown in Fig. 4. 
The simulated burrow surface area profile suggests that M. lankesteri promotes bioirrigation 
to depths of up to 1m. However, as seen in Fig. 4, a very high variability in irrigation 
intensity can be expected below 30cm. 
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Nereididacea: Nereididae: Nereis diversicolor 

The polychaete worm Nereis diversicolor inhabits estuarine, intertidal sediments throughout 
Europe40,50,51,52. Very high population densities (2000-4000 individuals·m,2) are common, 
suggesting that in many estuaries these polychaetes contribute significant bioirrigation 
intensity. Burrow morphologies have been studied in laboratory mesocosms and field settings 
using resin casting and X_radiography4o,53. Although burrows have frequently been described 
as having a simple V-shape, Davey has shown that in mesocosms N. diversicolor burrows 
initiate in a V-shape, but soon exhibit more complex morphologies4o. After several hours, 
burrows are extended to form a Y-shape, and after several days have complex morphologies 
including multiple openings at the sediment-water interface. The morphology of N. 
diversicolor burrows in natural sediments may depend on animal population densities; U­
shaped burrows ofN. virens are constructed at low animal densities, but in dense populations 
burrows may be 1-, L- or Y_shaped54. Although Gerino and Stora describe N. diversicolor 
burrows in their study as V-shaped53, X-radiographs of these burrows shown in their Figure I 
suggest that they are Y-shaped. X-radiographs of burrows shown in Davey and Gerino and 
Stora are used to estimate the depths and horizontal extent of burrows (Table 1)40,53. The 
resulting surface area depth proftle agrees closely with burrow wall surface areas measured 
by Gerino and Stora53 using resin casts of 4 individual N. diversicolor burrows from a 
mesocosm study (Fig. 5). 

Maxmuelleria lankesteri divers/color 

o 

0.2 

0.4 

0.6
 

0.8 

0.12 

1 0 Sv2 4 6 8 
Figure 5. Comparison of for four individual 

Sv (cm2/m3) Nereis diversicolor from Gerino and Stora53 

Figure 4. Sv as a function of depth for burrow (solid thick line) and from this study (dotted 

network simulations of the Echiuran worm thill line). Error bars show one standard 

Maxmuelleria lankesteri. Parameters are given in deviation calculated from stochastic network 

Table I. simulations. 

Decapoda: Ocypodidae: Uca minax, Uca pugnax, and Uca pugilator 
Fiddler crabs, including the sand fiddler (Uca pugilator), the mud fiddler (Uca pugnax) and 
the brackish water fiddler (Uca minax) are among the most numerous and conspicuous of 
burrowing macrofauna in intertidal mangrove and saltmarsh sediments55,56,57.58, Estimates of 
fiddler crab densities in a saltmarsh at Sapelo Island, GA are as high as 205±46m,2 and 

57 59bUtTOwS have been reported to penetrate to depths of up to 65cm . . However, unlike other 
burrowing macrofauna, fiddler crabs do not permanently inhabit or actively irrigate their 
burrows. In fact, some fiddler crabs plug their burrow entrances to prevent tlooding during 
tidal innundation55.6o,61. Fiddler crab burrows are nonetheless likely to contribute to solute 

74 



Stochastic approach 

transport, because of the abundance of abandoned burrows that are passively flushed by tidal 
innundation. However, most studies of fiddler crabs report only aperture or organism 
densities, making an assessment of flushed burrow density difficult. 
Burrow network simulations suggest that U. minax burrows, because of their large size 
(Table 1), will contribute most to irrigation, especially at depths greater than 30cm (Fig. 6C). 
Simulated burrow wall surface area profiles for U. pugilator and U. pugnax both exhibit a 
subsurface maximum at approximately lOcm depth (Fig. 6A,B), with few burrows extending 
deeper than 20-25cm into the sediment. 

Uca pugilator Ucapugnax Ucaminax 
o 

0.4 

0.8 
c.B.A. 

t 0 2 4 8 

Figure 6. Svas afunctioll of depth for fiddler crabs including (A) Uca pugilator, (B) Uca and (C) Uca 
min=. Parameters are given in Table I. 

Decapoda: Grapsidae: Sesarma reticulatum and Eurytium limosum 
The marsh crab Sesarma reticulatum occurs in a variety of intertidal marsh environments55' 
57,62. Reported population densities range from 30m,2 in levee marshes with tall-form 
Spartina alterniflora to just Im,2 in unvegetated creek banks55 . Burrows are extensive and, 
especially near the sediment surface, have complex morphologies. Typical bUlTOws have 
several entrances attaching a shallowly sloping initial tunnel several em long to the surface. 
This initial tunnel network is connected to a single vertical shaft of 2-5cm diameter that 
descends into the sediment to depths averaging 13-30cm, although depths of up to 75cm have 
been reported56,62. S. reticulatum burrow networks were simulated in greatly simplified form 
as single vertical shafts (Table 1). This results in a burrow surface area profile that decays 
gradually with depth (Fig. 7A). 
Another crab species found frequently in both vegetated and unvegetated intertidal 
saltmarshes is Eurytium limosum55

,57. E. limosum burrows are typically composed of two or 
more shallow tunnels that extend laterally for 60-70cm; a single inclined shaft joins the long, 
shallow tunnels and descends to 20-30cm depth to create a broadly Y-shaped burrow57. E. 
limosum burrows were simulated in this study by treating each burrow as a combination of 
two shallow, intersecting L-shaped and one deep 45°-inclined burrows. The presence of just a 
few E. limosum burrows greatly enhances burrow surface areas in the upper few centimeters 
of the sediment column (Fig. 7B). 

10 0 2 4 8 10 0 2 4 8 10 12 

Sv (cm2/m3) 
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Figure 7. Sv as a function of depth for the mud crabs (A) Sesarma reticulatum and (B) Eurytium limosum. 
Parameters are given in Table 1. 

Enteropreusta: Spengelidae: Schizocardium sp. 
Laboratory mesocosms have been used to assess the role of the funnel-feeding acorn worm 
Schizocardium sp. in promoting bioirrigation of shallow, near-shore sediments in St. Louis 
Bay, Mississippi Sound32

• X-radiographs of mesocosm sediment slabs suggest that 
Schizocadium sp. build approximately U- or V-shaped burrows penetrating to a maximum of 
9cm depth. Burrow networks were simulated in this study assuming that all burrows are 
approximately V-shaped. The resulting surface area profiles decrease continuously with 
depth (Fig. 8A). 

0.1 

A. 

Sv Burrow density 
Figure 8. (AJ Svas a function of depth for the acorn worm Schizocardium sp. with mean animal density of 
50am,2. (B) Burrow densities for populations of100m,2, 311m,2, 356m,2 and Lines are burrow densities 
from this study; symbols represent number ofactive burrows reported from X·radiography ofmesocosm slabs32

• 

bars standard in burrow 

2000 
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X-radiography of sediment slabs has been used to directly determine Schizocardium burrow 
densities as a function of depth in four mesocosms3Z 

• The expected depth-dependence of 
Schizocardium burrow density, given the animal densities in the various mesocosms (100, 
311,356, 800 m is calculated with the stochastic model with parameters given in Table I 
(Fig. 8B). Because total animal densities are known and therefore are kept invariant in the 
stochastic model, standard deviations shown in Fig. 8B are relatively small. In all four cases, 
burrow density profiles calculated using the stochastic model are in very good agreement 
with reported densities from X-radiography of sediment slabs. 

Dry Tortugas, Florida, USA 

The consortium of bioturbating macrofauna present in shallow-water carbonate reef 
sediments at Dry Tortugas, FL has been described by D'Andrea and Lopez63

• Of the deeply 
(>4cm) bioturbating organisms, D'Andrea and Lopez suggest that the polychaete worm

OzNotomastus sp. (density=113.2m ) and the burrowing shrimp Callianassa sp. 
(density=40.8m

Oz
) are dominant63

. Notomastus, a deep deposit feeding capitellid polychaete, 
was commonly found at depths greater than 15cm, most often occurring at 25-30cm depth63 

. 

To simulate burrow networks at Dry Tortugas, only the dominant deep bioturbators 
Notomastus and Callianassa are considered here. Notomnstus burrows are assumed to be 
similar in morphology to those of the polychaete Nereis diversicolor, with penetration depths 
of 20±2.5cm for Notomastus. In fact, this is a great simplification; Notomastus burrows have 
been reported to resemble complex spirals (D' Andrea and Lopez, personal communication), 
thus, Notomastus burrows may contribute a greater surface area of exchange than is 
considered here. Callianassa sp. are assumed to build burrows with morphology similar to 
those reported for Great Barrier Reef Sediments49 and are therefore modeled using the U- and 
Y-shaped Callianassa burrow parameters given in Table 1. The presence of these two 
organisms alone leads to a burrow surface area profile with three distinct regions; in the 
upper 6cm surface areas are high and essentially constant with depth, from 6-12cm they 
decrease rapidly and then more gradually in the depth interval 12 to 90cm (Fig.9A). 

Bioirrigation coefficients 
From the surface area profiles shown in Fig. 9A, bioirrigation coefficients are calculated 
using Eqns. (6) and (10). Di is calculated using porosity and molecular diffusion coefficient 
data given in Furukawa et al. 15 and rl is calculated using Eqn. (7) with surface areas and 
burrow densities obtained from the stochastic network simulations. The Oz penetration depth 
at the SWI (Loz) is set to 2.6mm, based on vertical microelectrode profiles measured by 
Furukawa et al. 15, and is used to calculate according to Eqn. (10); values vary from 4.8 to 

6.4mm. At the SWI, this results in predicted irrigation coefficients that are approximately 
twice as high as the values estimated by Furukawa et al. from diagenetic modeling of 
chemical datal5 (Fig. 9B), perhaps reflecting the use of Loz measured at the SWI, rather than 
at the BSI. The predicted irrigation coefficients also exhibit a less pronounced decrease with 
depth than the coefficients obtained by Furukawa et The higher irrigation coefficients 
estimated in this study may be due, at least in part, to imperfect burrow flushing. Eqns. (17) 
and (20) are used to assess this possibility. This correction leads to lower irrigation 
coefficients, with mean values within a factor of 2 of estimates from Furukawa et al. 15 . 
Nonethless, the results suggest that O2 gradients measured at the SWI may not yield accurate 
estimates of radial diffusion length scales at the BSI at depths greater than a few mm. 
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Figure 9. (A) Sv as a function of depth in shallow carbonate sediment at Dry Tortugas, FL, USA. from 
simulations using a consortium of the polychaete worm Notomastus sp. and the shrimp Callianassa sp. (B) 
Bioirrigation coefficients (S-I) as a function of depth for Dry Tortugas, FL derived by fitting an early diagenetic 
model to measured pore water profiles (Furukawa et a132

; the 2 curves exponentially decreasing with depth), 
and estimated from the burrow network in this model. was calculated using L = 2.6mmfrom Furukawa et 
a1. 15, with Eqn. (5), assuming was corrected for Cb using Eqns. (17) and (20). (C) Bioirrigation 
coefficients as a function ofdepth from Furukawa et al. 32 (2 exponentially decreasing curves) and estimated 
from the burrow network in this model. The dark line with highest a-values at the SWl indicates aS04.2 
calculated using sulfate concentration and reduction rate profiles from Furukawa et al. the light gray line 
almost coinciding with it indicates aS04-2 corrected for Cb using Eqns. (17) and (20). The solid line with low a­
values at the SWl indicates bioirrigation coefficient profile calculated using Eqn. (16), assuming zero order 
kinetics for sulfate reduction. Dotted lines indicate irrigation coefficient profiles calculated using ±l standard 
deviation of the stochastic model burrow densities and surface areas. 

Bioirrigation coefficients are also calculated by combining the stochastic burrow network 
simulations with sulfate concentration and reduction rate profiles taken from Furukawa et 
al. 15 

• The resulting irrigation coefficients predicted using Eqns. (6) and (12) are only slightly 
larger than those predicted by Furukawa et al. 15 and exhibit a similar depth-dependence (Fig. 
9C). Because sulfate is a less reactive solute than 02, correction of this profile for inefficient 
flushing using Eqns. (17) and (20) has negligible effect (Fig. 9C). Both the corrected and 
uncorrected sulfate bioirrigation coefficient values are significantly smaller than those 
calculated for 02. This is primarily because of the much larger radial diffusion length scales 
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calculated for S04,2. Sulfate reactive length scales are also large relative to those obtained 
from O2 microprofiles, because they are calculated from bulk sulfate reduction rates that 
decrease rapidly with depth, reflecting changing reactivity with depth. 
Bioirrigation coefficient profiles are also calculated here completely independently from data 
in Furukawa et al. 15, by assuming zero order kinetics for sulfate reduction and using Eqn. 
(16). In this case, the irrigation coefficients, which depend only on the burrow sizes and 
spacings, are approximately a factor of 3 lower than those calculated by Furukawa et al. 15 

right at the SWI (Fig. 9C). Below a few mm, however, good agreement between the two 
independent approaches is observed. 

Sapelo Island, GA, USA: Unvegetated Creek Bank 

Intertidal saltmarshes at Sapelo Island, GA are populated by diverse, abundant burrowing 
macrofauna55 ,57,59,64,66. Basan and Frey report 1040 burrow apertures·m,2 in an unvegetated 
creek bank at Sapelo Island57, and suggest that the majority of these apertures are due to 
polychaete wonns including Nereis succinea and Heteromastus filiformus. Other burrows are 
attributed to fiddler crabs, especially Uca pugilator, burrowing shrimp including Upogebia 
affinis and predatory mud crabs such as Panopeus herbsti, which share the burrows of 
Sesarma reticulatum56

. Teal also inventoried burrowing macrofauna at an unvegetated creek 
bank on Sapelo Island, GA and found Uca pugilator (52m'2), Uca pugnax (l3m,2), Sesarma 
reticulatum (lm,2) and Eurytium limsosum (6m,2)55. 

A simulated burrow network for an unvegetated creek bank at Sapelo Island, GA was 
completed using U. pugilator, U. pugnax and E. limosum densities taken directly from Teal55, 
while for S. reticulatum and P. herbsti of data given for S. reticulatum by Teal and 
for P. herbsti by Basan and Frey are used55,5 . Upogebia affinis shrimp burrows are assumed 
to be similar in morphology to Callianassa shrimp. A polychaete density of 450±50m,2 is 
derived by assuming a total aperture density of of which -IOOm,2 are due to 
organisms other than polychaetes. 

Burrow wall surface areas for polychaetes, shrimp and fiddler crabs only are highest 
near the sediment-water interface and decay gradually to a depth of approximately 30cm (Fig. 
lOA). The addition of E. limosul/llP. herbsti burrows results in much higher burrow wall 
surface areas in the upper few cm of sediment and a more rapid decay of the burrow surface 
areas with depth (Fig. lOB). 

Bioirrigation coefficients 
As for the Dry Tortugas site, the stochastic model-derived surface areas shown in Fig. lOB 
are used with Eqns. (6) and (10) to derive a bioirrigation coefficient profile. A porosity of 
76%67 is used to obtain D02, and rl is calculated using Eqn. (7). Using a measured O2flux of 
68-89 mmol O2 m,2 d,l yields 02 penetration depth (L02) values between approximately 
0.2mm and 1.0mm72

• Given that the marsh sediments are periodically exposed to the 
atmosphere, an L02 value of 1.0mm is used in this study, which results in values that vary 

from 4.1 to 17.Omm. The bioirrigation coefficient profile, shown in Fig. 1DC, is 
compared to that of Meile et al. 8 who used an inverse modeling approach to obtain a 
bioirrigation coefficient profiles from sulfate concentration and reduction rate measurements. 
In the upper 5 cm of sediment, bioirrigation coefficients from this study are approximately a 
factor of 2 greater than those of Meile et al 68

, and the bioirrigation coefficient profile from 
this study does not decay as rapidly with depth. Eqns. (17) and (20) are used to correct the 
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profile for the effects of imperfect burrow flushing. The resulting profile still suggests more 
intense irrigation throughout the sediment than the profJIe of Meile et a1.68

• 

Island, USA 
Bank 

A A. 

0,$ II 

o S 104 I.S 2 10-' 

Figure 10. (A) Svas a function of depth in an unvegetated saltmarsh creekbank at Sapelo Island. GA, USA 
including polychaete worms, fiddler crabs and the mudcrabs Sesarma reticulatum and Panopeus herbsterii. (B) 
Sv (cm2/m3

) with all of the orgallisms included in (A) as well as Eurytium Iimosum. (C) Bioirrigation coefficients 
(s·l) as afullction of depth calculated using inverse modeling of chemical data (dark solid line, left)"8 and 
estimated from the burrow network in this model using L=1.0mm with Eqn. (6), assuming Cb=Co (dark solid 
line, right) and with correction for depletion ofO2 within burrows (light gray solid line). (D) aS04.2 bioirrigation 
coefficients calculated using the stochastic network model with measured sulfate reduction rates, without 
correction for Cb(smooth dark solid line) and with correction for Cb (smooth light gray line). The light gray line 
with low values near the SWI indicates bioirrigatioll coefficient profile calculated with the stochastic network, 
assuming zero order kinetics for sulfate reduction (Eqn. 16). Dotted lines indicate irrigation coefficients 
calculated using ±l standard deviation of the burrow density and sUlface area profiles. 

The lower irrigation values given by Meile et al. 68 may reflect differences in 
solute-specific irrigation coefficients. Therefore, irrigation coefficients for sulfate are 
calculated here using sulfate concentration and reduction rate profiles67

.
68 and Eqns. (6) and 

(12). The resulting irrigation coefficient profile (Fig. lOD) is in excellent agreement with the 
profile given by Meile et a1.68

. Correction of the stochastically-derived bioirrigation 
coefficients for the effects of imperfect fiushing using Eqns. (17) and (20) does not 
significantly change the profile. 

-
... 

c 

-

-
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Bioirrigation coefficients are also calculated assuming zero order kinetics for sulfate 
reduction_ The resulting profile, which depends only on the burrow sizes and spacings, and 
which is completely independent from the sulfate concentration and reduction rate profiles 
used by Meile et a1.68, is also shown in Fig. lOD. The resulting bioirrigation coefficients are 
somewhat smaller than those of Meile et a1. 68. Overall, the results for the creek bank sites 
indicate that it is possible to obtain meaningful irrigation coefficients from the stochastically 
simulated burrow network. 

Sapelo Island, GA, USA: Vegetated Ponded Mash 

The abundance and composition of macrofaunal commumtles present in saltmarsh 
environments shows significant spatial zonation, with community composition depending on 
length of tidal innundation, presence or absence of vegetation and sediment composition57. 
Thus, areas of the marsh with dense. diverse macrofaunal populations, such as the 
unvegetated creek bank discussed above, are likely to have deeper, more intense bioirrigation 
than regions of the marsh with fewer organisms. For example, ponded marsh regions are 
much more sparsely populated with macrofauna than creek bank sites. At Sapelo Island, GA. 
Basan and Frey report -415 burrow apertures m-2 in the ponded marsh57, compared to 1040m­
2 at the unvegetated creek bank. Teal found only two types of crab in the ponded marsh, the 
fiddler crab Uca pugnax (27±7m'2) and the mud crab Eurytium limosum (4±lm'2)55. All other 
burrow apertures (-280 m,2) are likely due to the polychaete worm Nereis succinea. Basan 
and Frey report that burrow depths are typically shorter in the densely vegetated ponded 
marsh57, and that burrow shapes are typically less complex. In simulations, Uca pugnax 
burrows at the ponded marsh were assumed to reach a mean depth of only 15 em, compared 
to 20 em at the creek bank. The lower density of organisms inhabiting the ponded marsh 
leads to lower surface areas as a function of depth compared to the creek bank site (Fig. 
lIA). 

Bioirrigation coefficients 
Bioirrigation profiles at the ponded marsh are calculated for both dissolved 02 and S04,2. O2 
irrigation coefficient profiles are calculated using a vertical diffusion length scale of I.Omm, 
as for the creek bank site. Diffusion coefficients were corrected using the porosity of 85% 
reported by Kostka et a1.67 . Dissolved S04,2 irrigation coefficient profiles are calculated using 
measured sulfate concentration and reduction rate profiles67,69. Correction for inefficient 
burrow flushin¥ results in slightly lower 02 irrigation coefficients, but has no significant 
impact on S04' irrigation coefficients (Fig. lIB, C). The intensity of irrigation, especially as 
indicated by the 02 irrigation coefficient profiles is somewhat less than at the creek bank site. 
The depth of irrigation is also somewhat shallower at the ponded marsh, because of the lower 
density of deep-burrowing infauna and because infauna in ponded marsh areas tend to build 
shallower burrows than in creek bank sediments57. Because of shallower irrigation, the 
ponded marsh sediments have a more compressed redox stratification, with more reducing 
conditions closer to the sediment surface, compared to the more intensely irrigated creek 
bank sediments69. 
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Comparison of Diagenetic and Stochastic Irrigation Models 
Model results obtained at Dry Tortugas, FL and Sapelo Island, GA demonstrate that the 
ecologically-based stochastic model yields bioirrigation coefficients that are comparable to 
those obtained independently via inverse modeling or by use of multicomponent early 
diagenetic reactive transport models. The latter do not require information concerning the 
benthic organisms responsible for irrigation, rather, bioirrigation coefficients are inferred 
from model simulations fitting measured chemical and/or reaction rate profiles (Meile et aI., 
2001). In contrast, the stochastic model presented here explicitly uses ecological data to 
calculate irrigation intensities. Pore water profiles are not per se required, although the radial 
diffusive length scale (L) across the burrow-sediment interface must be specified. As few 
direct measurements of L are currently available, L values are constrained here using other 
available chemical data. 

Sllpelo Island, GA, USA
 
Pondsd Marsh
 

: 

A 

Figure 11. (A) Svas afunction ofdepth for the ponded (solid line) sires at Sapelo Island. GA with doffed 
lines indicating ±I standard deviation of the surface area. (B) Bioirrigation coefficients (S'l) as a function of 
depth at Sapelo Island calculated for dissolved O2 at the creek bank (dark gray, rightmost curve) or ponded 

2ndmarsh (medium gray, from the left) with correction for solute depletion within burrows and without 
correction for solute depletion at the creek bank (light gray) and ponded marsh (black). (C) Bioirrigation 
coefficients (s·/) as a function ofdepth at Sapelo Island calculated for dissolved with correction for solute 
depletion within burrows at the creek bank (light gray) or ponded (black) and without correction for 
solute depletion at the creek bank (dark gray) and ponded marsh (medium gray). Corrected a-values are 
similar to the uncorrected ones. 

An important strength of the stochastic model is that uncertainties associated with 
calculated bioirrigation intensities can be evaluated. The uncertainties derive from the 
probability density functions describing the burrow network, which in tum are based on 
statistical information about the ecological variables (animal density, burrow size and 
geometry). Thus, the model-calculated uncertainties on the bioirrigation coefficients reflect 
the natural variation in abundance and burrowing activity of the benthic macrofauna. 
The stochastic model is not intended to replace early reactive transport models of early 
diagenesis. Rather, it is an additional tool to constrain irrigation coefficients, which can then 
be used in early diagenetic modeling. Independent estimates of transport parameters 
significantly enhance the reliability of reactive transport calculations applied to the complex 
biogeochemical dynamics of sediments. 

-

B - C 
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Conclusions 
Aquatic sediments are typically redox stratified, with increasingly reducing conditions 
encountered at depth. However, burrow networks built by macroinfauna create a complex 3­
dimensional patchwork of relatively more oxidized or reduced sediment compartments. The 
resulting increase in interfacial area separating zones with disparate redox characteristics 
enhances diffusive exchange and creates ecological and geochemical microzones that affect 
sediment biogeochemical dynamics. 
In this study, the spatial distribution of distinct sediment zones due to burrowing 
macroinfauna are quantified by simulating 3D burrow networks for a variety of model 
organisms and for consortia of organisms in shallow carbonate and intertidal saltmarsh 
sediments. The conceptual approach provides a link between the ecological characteristics of 
burrowing macroinfauna and the resulting biogeochemical consequence on solute transport 
and biogeochemical cycling. The impact on diffusional exchange of solutes between burrow 
water and bulk sediment is addressed, and quantitative estimates for nonlocal transport 
parameters are proposed. This is of particular importance, because a quantitative description 
of biogeochemical dynamics in sediments, for example based on the interpretation of 
chemical profiles, requires the quantification of transport intensities. 
The approach outlined here allows an independent, ecologically-based, assessment of the 
depth-dependence of bioirrigation coefficient profiles. Burrow network simulations of even 
relatively simple model organisms are found to result in depth-dependent burrow wall surface 
areas that are neither constant nor exponentially decreasing over a given interval, as is 
commonly assumed in bioirrigation models. Network simulations of the burrowing shrimp 
Callianassa subterranea, the echiuran worm Maxmuelleria lankesteri, and the fiddler crab 
Uca pugilator all result in burrow wall surface areas characterized by a subsurface maximum. 
These maxima are similar to subsurface maxima in bioirrigation intensity reported in 
chemically-based studies that have not imposed a priori restrictions on the depth-dependence 
of bioirrigation intensit;?7,68. Furthermore, model simulations demonstrate that relatively rare 
organisms may have a disproportionate influence on solute transport in sediments. For 
example, burrow wall surface area profiles calculated for an unvegetated saltmarsh creek 
bank site at Sapelo Island, GA with and without the mud crab E. limosum are quite distinct 
(Fig. llA,B), in spite of the fact that E. limosum, is responsible for only 6 out of 
apertures·m·2 

, 

Burrow network simulations provide estimates of burrow surface areas as a function of depth, 
which are used to derive nonlocal bioirrigation coefficients. In carbonate reef sediments at 
Dry Tortugas, O2 based bioirrigation coefficients calculated using the stochastic model are 
somewhat larger than values found through diagenetic modeling 15

• However, if the irrigation 
coefficients are corrected for inefficient flushing, using an estimate of the time-averaged 
value of Cb , the agreement is better. 
Sulfate bioirrigation coefficient profiles calculated using the stochastic model for an unve­
getated intertidal saltmarsh creek bank site are in good agreement with nonlocal bioirrigation 
coefficient profiles determined by Meile et al.68 using an inverse modeling approach. 
Calculated irrigation coefficients for an adjacent ponded marsh site are somewhat lower. This 
lower mixing intensity may contribute to the more compressed vertical redox zonation 
observed in chemical pore water profiles at the ponded marsh compared to the creek bank69, 
To go beyond the model presented here, further information is required regarding the depth­
dependence of solute concentrations within burrows, as well as the temporal variation of 
solute concentrations within burrows. Nonetheless, the current model provides an extremely 

link between benthic macrofaunal ecology and a quantitative description of chemical 
tranSpOt1 by bioirrigation. 
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CHAPTER 5: Explicit representation of spatial heterogeneity in 
reactive transport models: Application to bioirrigated sediments 4 

Abstract 
Existing reactive transport models represent aquatic sediments as one-dimensional systems. 
These models account for the predominantly vertical chemical gradients recorded by 
traditional pore water and solid sediment sampling techniques (e.g., cores, dialysis samplers). 
However, advances in sampling techniques, including the rapid development of in situ 
microprofilers, are providing increasingly detailed data sets, which highlight the laterally 
heterogeneous nature of the water - sediment interface. In particular, coastal sediments 
inhabited by macrofauna exhibit large horizontal gradients in chemical composition and 
microbial communities. The availability of comprehensive and multidimensional data sets, 
along with our growing conceptual understanding of the complex biogeochemical dynamics 
in sediments, require more sophisticated reactive transport models that explicitly account for 
the heterogeneity of aquatic sediments. Here, we present a model that explicitly calculates the 
effect of flushing of macrofaunal bUlTows on dissolved chemical species distributions. 

Introduction 
The sediment-water interface separates the transport regime of the water column, dominated 
by turbulent mixing and fast particle settling, from that of the sediments, dominated by 
molecular diffusion and sediment accumulation. The resulting increase in residence times of 
reactive chemical species allows early diagenetic processes to significantly alter both the 
amount and composition of solid material being buried in the sedimentary record. 

Because the input of organic matter is the main energy source for the resident 
heterotrophic microbial populations, microbial activity tends to be highest near the sediment­
water interface. However, the top few centimeters of sediment are also influenced by the 
presence of macrofauna. The flushing activity of burrowing macrofauna, which maintains O2 

levels and avoids the accumulation of toxins such as free sulfide results in enhanced solute 
transport, whereas feeding and burrow excavation induces solid phase transport. 

Particularly in coastal ocean sediments, enhanced solute transport by macrofauna can 
exceed transport via molecular diffusion (Archer and Devol, 1992; Meile and Van Cappellen, 
in press). Enhanced transport increases recycling of dissolved nutrients to the water column 
and hence contributes to sustain high primary productivity in nearshore environments. To 
resolve the impact on both early diagenesis and water column processes, enhanced solute 
transport has to be accounted for in the model formulation. Coupling of reaction and transport 
processes in heterogeneous, burrowed surface sediments requires a numerical approach. 

Here, we address the effect of flushed burrow networks on the distribution of 
dissolved chemical constituents. Burrows act as conduits for preferential solute transport, 
leading to spatially heterogeneous distributions of chemicals. By rapidly redistributing 
solutes, oxidants can be delivered to depths where the bulk sediment is anoxic. As a result, 
the chemical redox structure of the sediment deviates from the simple I-D vertical redox 
zonation, typical for deep sea sediments (Froelich et a!., 1979), where molecular diffusion 
represents the major transport process replenishing electron acceptors (02, N03', 

4 C. Meile, K Tuncay and P. Van Cappellen (2003). Journal of Geochernical Exploration 78-79:231-234. 
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Method 
The interplay of reaction and transport is simulated with a 3-dimensional finite element code, 
solving for both flow and chemical species distribution. The flow equation for an 
incompressible fluid is 

= V . _ 

where p, k, p, 9 and t are density, porosity, viscosity, permeability, pressure, 
gravitational acceleration and time, respectively. The fluid velocity (q) is related to the 
pressure field by 

q = = - pg) 

The distribution of a dissolved chemical species obeys 

= V . (D'VCml + 

where Cmis the mass of species m per unit volume porewater, D' the diffusion tensor and Rm 
the sum of all reaction rates acting upon Cm. The elements (i,j) of the diffusion tensor are 
given by 

, ( qiqj I I q 

D mwhere , aT are the molecular diffusion coefficient, Kronecker delta, and 

longitudinal and transverse dispersivities, respectively. 
We have developed a Galerkin finite element program that can simulate coupled fluid 

flow and solute transport for I-D, 2-D (both plane and cylindrical symmetry) and 3-D 
problems. We adopted an explicit time stepping scheme to ease addition and/or elimination of 
solute species in the reaction network. During each timestep, advection velocities are 
calculated first, followed by the concentration fields with explicit formulation of the reaction 
rates. The program allows users to choose from a substantial set of variations of conjugate 
gradient and preconditioner techniques and direct solvers. 

Application to a coastal ocean site 
Simulations representative for a coastal ocean site are performed based on a study by 
(Furukawa et aI., 2001). The following chemical species are considered: 02, N03', 

total sulfide (TS = H2S + HS' + S2,) and sulfate. The reactions taken into account are 
degradation of organic matter by aerobic respiration, denitrification and dissimilatory sulfate 
reduction, as well as oxidation of sulfide and nitrification (Table 1). 

Within the modeling framework used here, this minimum set of early diagenetic reactions can 
easily be expanded if desired (Furukawa et aI., 2000; Wang and Van Cappellen, 1996). 
Because the present study focuses on the impact of burrowing macrofauna on solute transport 
(bioirrigation), only dissolved species are modeled explicitly. The formulation of the rate of 
organic matter degradation does not contain an explicit dependency on organic carbon (Corg), 

but assumes that within the zone of bioturbation Corg is well mixed. Hence, the maximum 
rates of respiration, Roc and are assumed to be constant. To reflect more efficient 
aerobic degradation, respiration rates under oxic conditions exceed those under anoxic 
conditions (Roc> RocAn). 
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Table 1: Reaction rate and rate laws. represents organic matter, of the form Using Redfield 
ratio gives x=106 y=16 Rate laws and constants are taken from (Furukawa et al., 2001) Y' 

Reaction Rate expression 
aerobic respiration: R - Roc. O2 

1 ­Corg + (x + 2y)· O2 + y. 
X + O2 

y. + (x + y)C02 + (x + 
denitrification: ROCAnR2C 4x + 3y NO- 2x + 4y x j + NO­org + --5-- 3 --5-- N2 m 3 

+ X - 3y CO + 4x + 3y HCO- + 3x + 6y H 0 
5 2 5 3 5 2 

+02 
sulfate reduction: = ROCAn .R3X 2­ X + S02­Corg +y·C02 m 4 

jobX 
H 2S + + (x + 

+ +02 

nitrification: R 4 . .°2 
+ 202 + + 2H+ 

sulfide oxidation: R = k • TS . O25 sox 

HS- + 202 + H+ 

Rate parameters: 
3Roc 6.9*10.5 mol m·3 S·I, R

OCAn 
2.5*10.6 mol m· S·l 

=20llM =511M = 1 6mM m . 

KG,
inh m 

l 3 l 3k = 1.6*10.3 mor m S·l, k sox = 5.07*10.6 mor m S·I
nitri 

Simulations are carried out for a planar 10 by 10 cm domain, i.e. the model extends 
only 1 element into the third, horizontal, dimension to speed up the computations. A U­

lshaped burrow with a side-gallery (Fig. 1) is considered and a continuous flow of O.lg m· S·I 

is imposed at the inlet of the burrow. The latter value is comparable to time integrated 
flushing intensities estimated by Mayer et aI. (1995) for burrows in coastal sediments. The 
porosity of the unburrowed sediment is taken as 0.5, and lateral and longitudinal 
dispersivities are set to zero. Initial solute concentrations throughout the computational 
domain are set to the values at the upper boundary (02 N03' = 
13mM, = TS = Furukawa et aI., 2001). A periodic boundary condition is 
imposed at the sides and no flow at the bottom of the domain. Shown here are results after 7 
days, when steady state conditions are reached (Fig. 1). 
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Figure 1. Comparison of model simulations ,,,ith and without burrow flushing. The upper panels show the O2, 

the lower the NOJ ' concentration fields (in mM). The left pallels depict the non-flushing scenario, with the 
imposed burrow geometry indicated in gray. The right panels show the results when the burrow is flushed 
continuously. 

Figure I illustrates the large impact flushed burrow structures have on the distribution 
of chemical species within the upper sediment. Without a burrow, the observed pattern 
follows the traditional vertical redox stratification of sediments, with O2 rapidly depleted 
within the upper 5mm, followed by N03-. The flushed burrow, however, leads to a locally 
much deeper penetration of 02 and N03'. This may help explain the presence of aerobic 
bacteria at depth in highly anoxic nearshore sediments (e.g., Lowe et aI., 2000). Due to 
nitrification, the nitrate concentration in and near the burrow may exceed the concentration in 
the overlying water. Bioirrigation may therefore be a major control on the intensity of 
coupled nitrification - denitrification in sediments. The limited impact of the side gallery on 
the O2 and N03' distributions illustrates that active flushing of burrows by macrofauna is 
needed to create significant chemical heterogeneity. 
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Conclusions 
Enhanced transport is typically described as a rapid exchange between overlying water and 
(average) porewater concentration at depth in the sediment. Our results indicate that this is 
likely a poor description for reactive solutes, which may exhibit more complex interactions 
between transport and reaction processes. Traditional models of early diagenesis based on an 
average representation of the system cannot account for these interactions. Consequently, any 
quantitative description of early diagenesis based on average properties should be used with 
caution as they may fail to predict certain critical features of the spatial distribution and 
temporal dynamics of the microbial populations that drive the transformation of organic 
matter. 

Future work will include the study of the transient nature of burrow flushing, and include 
formulations of enhanced solid transport. Due to the flexibility of our approach, and the use 
of a graphical mesh generator interface, the model is also suited for implementation of other 
types of heterogeneous features, e.g., patchy distribution of reactive solids, such as organic 
matter or ferric oxyhydroxides. 
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CHAPTER 6: Particle age distributions and O2 exposure times: 
Time scales in bioturbated sediments 5 

Abstract 
A stochastic particle tracking approach is used to compute particulate age distributions and 
oxygen exposure times in bioturbated marine sediments. Simulations representative of 
abyssal plain, continental slope and continental shelf sediments indicate that, within the 
mixed zone, the variability in particle age is of the same order of magnitude as the average 
age itself. The spreading of particle age induced by bioturbation is preserved when sediment 
layers are buried below the mixed layer. Particle reactivity has a major impact on age 
distributions. Average ages of particle-bound constituents that undergo decay during early 
diagenesis are smaller than those of inert tracers. The oxygen exposure time (OEn of 
sedimentary organic matter depends on the particle mixing intensity and degradation kinetics. 
Particularly in bioturbated, deep-sea sediments, where oxygen penetrates deep below the 
sediment-water interface, OETs of deposited organic matter may diverge significantly from 
simple estimates obtained by dividing the O2 penetration depth by the linear sedimentation 
rate. 

Introduction 
Transport time scales, for example transit or residence times, are fundamental properties of 
environmental systems. They allow one to compare different environments, and to gauge the 
relative importance of transport and reaction processes affecting the structure and evolution 
of ecosystems (CARLETON, 2002; NIXON et al., 1996). In complex transport systems, 
however, transit times and tracer-age distributions may no longer be related in a simple 
manner (HOLZER and 2000). Furthermore, because of dispersive transport processes, 
particles or solute parcels of different ages are mixed together in a given sample volume 
(SCHIFFELBEIN, 1985). For reactive substances, for example particulate and dissolved organic 
matter, this complicates the relationship between average age and apparent reactivity. 

Particulate matter arriving at the seafloor experiences a dramatic change in transport 
regime. Below the sediment-water interface (SWI), a particle moves because of the 
accumulation of new sediment at the SWI, or it is redistributed through the activity of benthic 
organisms (BERNER, 1980; VAN CAPPELLEN and GAILLARD, 1996). The latter process, 
bioturbation, is often the dominant particulate transport process in the uppermost portion of 
marine sediments (BOUDREAU, 1997; TROMP et al., 1995), and is reflected in rather 
homogeneous vertical distributions of particle-associated tracers (e.g., (BERGER and 
JOHNSON, 1978). In contrast to sedimentation, bioturbation may selectively transport particles 
depending on their composition and age (SMITH et al., 1993). 

An important aim of early diagenetic research is to constrain the evolution of the 
reactivities of organic matter and mineral phases prior to their preservation in the sedimentary 
record. This evolution depends not only on the initial reactivity of deposited particulates and 
the transport regime within the sediment, but also on chemical conditions in the pore water 
medium. It has been proposed, for instance, that the extent of degradation of organic matter 
is dependent on the amount of time it spends in contact with pore water 02 (HARTNETI et al., 

Christof Meile and Philippe Van Cappellen 
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1998). The residence time within the oxygenated zone is determined by the particulate 
transport rates plus the degradation kinetics of the deposited organic matter. 

To simulate diffusive spreading of particle age distributions by bioturbation, we use a 
random walk model to track individual particle histories in depositional settings 
representative of shelf, continental slope and abyssal plain environments. We explicitly 
account for the influence of reaction processes on particle age and residence times in the 
bioturbated sediment. With this approach it becomes possible to calculate both the mean and 
variance of particle age distributions, as a function of the biogeochemical reactivity of 
organic or mineral constituents of the sediment. As an application, we examine the influence 
of bioturbation on the oxygen exposure time (OET) and the burial efficiency of organic 
matter. 

Method 

Governing Equation 
In the approach developed here, solid phase transport caused by benthic macrofauna is 
represented as a diffusion process (BERNER, 1980). Although random diffusion does not 
capture all the details of the behavior of benthic organisms (MEYSMAN et al., 2003, accepted­
a), it has, in many cases, been successful in reproducing the depth distributions of inert 
tracers and radioisotopes. On a theoretical level, the diffusion representation of bioturbation 
requires frequent particle displacements over fairly short distances. The diffusion 
approximation becomes questionable when the mixing length scale is larger than the distance 
over which the concentration of the tracer is changing significantly, e.g. in the presence of 
Zoophycos (LEUSCHNER et al., 2002; LOEWEMARK and WERNER, 2001), or when the mixing 
events are relatively rare (BOUDREAU, 1986; MEYSMAN et aI., 2003, accepted-a). For certain 
types of bioturbation, such as food caching (JUMARS et aI., 1990) or conveyor belt feeding 
(JAHNKE et aI., 1986), a non-local transport description may be more appropriate (SHULL, 
2001). Furthermore, because of selective mixing (SHULL and YASUDA, 2001), transport 
intensities may differ from one particle type to another. 

Depending on the effect of bioturbation on sediment porosity two diffusive 
endmember formulations can be distinguished (BOUDREAU, 1997). Mixing without effect on 
porosity is termed intraphase mixing, while mixing of the whole sediment, or interphase 
mixing, tends to average out porosity gradients. Current available datasets often do not allow 
one to distinguish conclusively between these endmembers (MuLsowet aI., 1998). Here, we 
circumvent this issue by performing simulations where porosity is assumed constant with 
depth. The governing equation for mass conservation of a solid constituent, including 
advection, diffusion and reaction, is then 

= .. D +R (1) 
b 

where Db is the bioturbation coefficient, the linear sedimentation velocity, R the reaction 
rate, x depth below the SWI, and B the activity or concentration of the constituent per unit 
volume solid sediment. 
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Bioturbation coefficients 
Estimates of the magnitude of the bioturbation coefficient, Db, in marine sediments have been 
derived from fitting tracer distributions, in particular 210Pb depth profiles (BOUDREAU, 1994; 
SOETAERT et aI., 1996). Based on the analysis of various tracer profiles, empirical 
correlations have been derived, which relate Db, the sedimentation rate and water depth 
(z) (BOUDREAU, 1994; MIDDELBURG et aI., 1997; TROMP et al., 1995). Here, we use the 
empirical relationships of Middelburg et al. (1997): 
a>(cm yr =3.3 

(2)
Db(O) (cm2 yrl) = 5.2 .10(0 76241122-O.00039724·z) 

where z is water depth in meters and Db (0) is the bioturbation coefficient at the SWI. 

The thickness of the bioturbated layer is relatively constant over a wide variety of 
depositional settings in the oceans, with an average mixing depth of approximately 10 cm 
(BOUDREAU, 1994). A number of mathematical functions describing the depth dependence of 
Db in the mixing zone have been proposed. The following expression is used in this study: it 
offers a flexible description of the commonly reported decrease of Db with increasing 
distance from the SWI (NIE et aI., 2001): 

Db(X)=DbiO)erfcl J (3) 

where Xmix is the depth at which Db(x) drops to half its value at the SWI. The value of s 

controls the steepness with which Db approaches zero at depth. Based on the relatively 
limited number of Db(x) profiles that have been constrained directly by field observations 
(VAN CAPPELLEN and GAILLARD, 1996), we have selected the values Xmix =8 cm and s = I 
cm. 

Transport by random walk 
Diffusional transport is implemented as a random, one-dimensional movement of particles. 
In contrast to the deterministic and macroscopic Equation (1), the stochastic approach tracks 
individual particles whose movements obey a Markovian chain (LABoLLE et aI., 1998). The 
governing equation for the temporal and spatial evolution of the corresponding probability 
density is the Fokker-P1anck or forward Kolmogrov equation (LABOLLE et aI., 1998; RISKEN, 
1989), on which the random walk procedure is based: 

= (Kp)- (Ap) (4) 

where p is the probability density function, and A and K describe the mean particle 
displacement and the increase of the variance per unit time, respectively. 

Without the reaction term, R, Equations (1) and (4) are of similar but not identical 
form. Assuming that for large numbers of particles, the probability density provides a direct 
measure of the observed concentration, B, it follows from Equations (1) and (4) that 

K = Db and A = __b +

Thus, for spatially varying diffusion coefficients, the mean particle displacement rate 
equals the linear sedimentation rate corrected by a drift term, which corresponds to the 
gradient in Db. The drift term points particles towards regions of intense mixing. Its 
omission leads to an accumulation of particles in regions of low diffusivity, which is 
inconsistent with Equation (l) (UFFINK, 1990). 
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Taking into account the drift term in A, stochastic particle transport can now be 
described as the sum of a random displacement due to diffusion, plus the directional 
movement imposed by sedimentation. In a given time step a given particle will move over 
a distance 

= + + Q. (5) 

where Q is a normal distributed random variable with mean 0 and variance 1, and is the 
diffusional step distance. The next step is to calculate the magnitude of for any given 
values of x and t. 

The diffusional stepsize IS found by considering the moments of the probability 
density function: 

M Jx" pdx
N =-"=-- (6) 
"Mo Jpdx 

Relating the time derivative of the nth moment and Equation 4, and stipulating a spatially 
limited particle concentration, mathematical transformation using integration by part 
(HUNTER et al., 1993; VISSER, 1997) yields 

dM" = 
dt 

= n(n -1) Db (x)· px,,-2dx+ n + px,,-ldx (7) 

If at the beginning of a given time step the particle is at position x" then, using a linear 
approximation of Db around x" 

Db(x) = Db + (x - x,) (8) 

the time evolution of the nth moment of the particle is given by 

dM" Db(x,)+ (x-x,)]Px,,-2 dx + n (9) 
dt Jl Jl x=x,x=x, 

At the start of each time step, the density function associated with the particle is 
described by a Dirac delta function. Hence, the first and higher order moments are initially 
equal to O. Following the approach of Visser (1997), but taking into account the advection 
term, results in 

-- ()dN" = n n-1 DbN,,_2 +n n--+m N"_l (10) 
dt 

where Xt is set equal to zero. The first and second normalized moments are related to the 
movement of the center of mass and the variance, or spreading, around the center of mass, 
respectively. They are evaluated with Equation (10), together with the following linear 
approximation, taking into account that the particle is described by a Dirac function at the 
beginning of the timestep, such that N,,(O)=0 for n>O: 

dN
N = -"dt -" (11) 

0 dt dt 

which yields 
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(aDb + 

( 2 

(12) 

Nz 2Db + 2 + )NI = + + + 

where is the position of the center of mass after half of the time step has elapsed. The 
diffusional step size can then be obtained directly from the variance around the center of 
mass, = N2 N I

2 
: 

((aD J 
= (13) 

If the diffusion coefficient is constant with space, Equation (13) reduces to the well-known 
diffusional steplength in homogeneous media, . Equation (13) neglects 3rd and 

higher order moments and, therefore, ignores errors of magnitude which only become 
relevant at large time steps (ERMAK and NASSTROM, 2(00). 

Reaction 
The stochastic representation of reaction is similar to that described by (KINZELBACH and 
UFFINK, 1987). It involves calculating the probability that the particle-bound constituent 
undergoes reaction in a given time interval to to to + 

fR(t)dt 

= _'0 _ (14) 

fR(t)dt 

'0 
Normalization by the integral of the rate, R, from the current time to to infinity avoids 
probabilities >1. Note that such a description implies no memory and evaluates the 
probability of a particle to react within the next time interval. Reaction takes place if a 
random variable U, selected from a uniform distribution in (0;1), is smaller than Prxn• 

Consider, for example, first-order radioactive decay: 
dB 

R(t) = =-k· B(t) (15) 

where k is the decay (rate) constant. The reaction probability is then 
= (16) 

Rate equation (15) is also used to represent the degradation kinetics of organic matter 
(BERNER, 1980). However, in contrast to radioactive decay, k is not a true kinetic constant 
but depends, among others, on the age and composition of the organic matter, as well as the 
availability of electron acceptors. In this case the functional relationship between the rate 
coefficient k(t) and time must be known explicitly. However, over a small time interval 
k(t) may be approximated as a constant, and Equation (16) can still be used during each time 
step. 

Implementation 
Particles are injected at the sediment-water interface (SWI) and followed as they travel 
through the sediment. The simulation continues until all particles move below a prescribed 
depth of interest, L. In the applications described below, 100 particles are tracked and the 
lower boundary of the model domain is set at L =20 em. As a result of random movement, a 
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particle may return to the SWI; it is, however, prevented from crossing the SWI. That is, 
apart from the initial injection of particles. the SWI acts as an impermeable boundary. An 
impermeable upper boundary is not fully consistent with the moment analysis used to derive 
the diffusional step distance. For the small time steps and jump distances in the applications 
below, this inconsistency only affects particle behavior just below the SWI. A particle can 
thus only leave the zone of early diagenesis via the lower boundary. It is assumed that when 
the particle crosses the lower boundary it enters the sedimentary record. 

As particles move within the model domain, reactive constituents associated with 
them undergo reaction. Here, we restrict ourselves to constituents supplied from the water 
column, which decay during early diagenesis. for example, radioactive isotopes, organic 
matter or biogenic silica. At the moment a new particle is injected at the SWI, the constituent 
under consideration is assigned a weight factor, pw, equal to one. During a time step when 
reaction takes place (U < Prxn)' the corresponding weight of the particle is decreased by a 
factor UlPrxn' In this manner, it is not the particle as such which decays, but rather the 
reactive constituent associated with it. Each individual particle thus represents one transport 
path or history, integrating a multitude of (random) reaction histories. 

The spatial step is chosen so that. within the mixed zone, the linear approximation 
of the Db depth profile (Equation 8) is valid. The error associated with neglecting second and 
higher order terms in the Taylor series expansion for Db(x) is small when 

2 
(17) 

where is arbitrarily set to 0.1, which restricts the relative error to less than 10%. A 
maximum value for!J.t is then estimated with Equations (5) and (13), imposing a value Q = 3, 
thereby encompassing 99% of the expected random step lengths. In the lower part of the 
model domain, biodiffusion becomes negligible. In the advection-dominated region, defined 

by (Db + . < 0.001· the time step is adjusted so that the particle advects less 

than the ensemble averaging depth interval (1 cm, see below). In the computational 
scheme, the time step is thus a function of the particle position. 

The depth distributions of particle ages and transit times are obtained by tracking each 
particle as a function of time, and recording the time spent in each depth interval 
The model domain is divided in equally spaced depth intervals of = I cm. Based on a 
periodic sampling every ts = estimators of location and variability within each depth 
interval are calculated at the end of the simulation. The weighted arithmetic mean (average) 
age of a particle-bound constituent in a given depth interval is computed as 
_ (age: . pw: 

~ '. ') (18)
 
Wi 

where and age: are the weight and age of the ith particle at time t, respectively. The 

Kronecker delta equals I if the particle resides in depth interval [x, x+.:i] at time t; 
otherwise it equals O. The median age within an interval is identified by first sorting all 

recorded events (age:, pw:) according to age. Then, the (sorted) particle weights are summed, 
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progressing from young to old ages, until half the sum of all particle weights is reached. The 
corresponding age is the median age. 

To characterize the variability of particle ages within a given depth interval, the 
standard deviation skewness (degree of asymmetry; Y3) and kurtosis (flatness compared to 
normal distribution; Y4) are calculated as follows. 

, ( 

.
11 

' ',') j 
(19) 

((age: - .( ,.
pw, 

The transit time of a particle is defined as the duration since last contact with the SWI. 
This concept is frequently used in physical oceanography when tracing water parcels (e.g. 
(DELHEZ et aI., 2003». The average transit time and its variance in a given depth interval are 
calculated using expressions similar to Equations (18) and (19), in which the age of a particle 
is replaced by its transit time. The transit time distributions can be compared to that of the 
ideal tracer age, which is given by 

= D + I (20) 
b ) 

(KHATIWALA et aI., 2001). Equation (20) is solved numerically at steady state, with a fixed 

transit time boundary condition of 0 at the SWl, and a gradient condition, at the 

lower boundary, x = L. Hence, represents the ensemble average of the transit time of an 
inert substance. 

The oxygen exposure time, or OET, has been defined as the ratio of the O2 penetration 
depth (£02) and sedimentation rate (OJ) (HARTNETT et ai., 1998). Strictly speaking this 
definition only applies to a nonreactive species in the absence of diffusive particle transport. 
Here, OETs are computed taking explicitly into account biodiffusion and reaction, by keeping 
track of the total time each particle spends in the oxic zone. The definition of the OET 
follows Equation (18), where OET replaces age, and is 0 or 1 depending on whether the 

particle is below or above the oxygen penetration depth L02 at a given time t. 

With the above approach it is possible to calculate OETs in each depth interval. Of 
particular interest, however, is the OET of particles leaving the early diagenetic domain at 
depth L. In the applications discussed below, OETs at x = L are calculated for a range of O2 

penetration depths, Lo2• Because the 02 pore water distribution readjusts rapidly after a 
mixing event, relative to the particle transport time scales (MEllE and VAN CAPPELLEN, 

2003), L02 is kept constant when simulating a set of particle trajectories and fluctuations in 
O2 penetration depth are not explicitly accounted for. Note that L 02 can be shallower or 
deeper than the average mixing depth of 10 em. The magnitude of £02 depends primarily on 
the supply of reactive organic matter at the SWI, the intensity of pore water irrigation and the 
bottom water oxygen concentration. 
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Applications 
The effects of bioturbation on age-related properties of sediments are evaluated for conditions 
representative of continental shelf, continental rise and abyssal plain environments. 
Sedimentation rates and biodiffusion intensities are estimated at the selected water depths of 
200, 1000 and 4000 m, using the empirical expressions of Middelburg et al. (1997) (Equation 
2). For the conditions considered, bioturbation dominates particle transport in the upper 10 
cm of the sediments (Db> xmix ). 

Particle ages and transit times 
Particle ages for nonreactive constituents are shown in Figure I for the continental rise 
environment (1000 m water depth). Within the upper 8 to 10 cm, average and median particle 
ages are fairly uniform, illustrating the efficient mixing of particles by benthic infauna. 
Below 10 cm, the average and median ages increase with a slope parallel to that of the 
sedimentation-only age. The general shapes of the average and median particle age 
distributions at the other water depths (200 and 4000 m) are similar to those in Figure 1. 

In all cases tested, the age distributions exhibit large variations. Within the upper 
mixed zone, standard deviations are of the same order of magnitude as the absolute ages 
themselves (Figure 1). Skewness and kurtosis are typically around 1.5 and 5, respectively, 
compared to 0 and 3 for a normal distribution, indicating asymmetric and peaked 
distributions. This can be seen in the histograms on Figure 1, which present the age frequency 
distributions in two depth intervals. The distributions are skewed to older ages, resulting in 
median ages that are systematically younger than the average values. Because the median is 
less affected by uncharacteristically old particles, it is considered a more meaningful measure 
of the particle age as a function of depth in the sediment. 

The spreading of particle ages induced by bioturbation is preserved when a sediment 
layer is buried below the mixed layer. The results in Figure I thus imply that bioturbation 
interferes with paleoenvironmental reconstructions in two distinct ways. First, it limits the 
stratigraphic resolution of the sedimentary record by vertically homogenizing average and 
median particle ages. Temporal resolution of the sedimentary record is therefore on the order 
of Second, it mixes together particles with very different early diagenetic trajectories 
in the same sedimentary horizon. For reactive constituents, this creates a source of 
uncertainty when interpreting compositional and isotopic records. 

In bioturbated sediments, the transit time of an inert constituent is systematically 
lower than its average or median particle age (compare Figures I and 2). This indicates that 
most particles return repeatedly to the SWI before being buried below the mixed surface 
layer. The transit times of an inert constituent computed with the stochastic particle model 
agree well with the ideal tracer transit times, obtained from Equation (20) (Figure 2). As the 
transit time is reset to 0 each time the particle reaches the SWI, there is only little spreading, 
and the arithmetic mean and median transit time distributions almost coincide. 
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Figure 1. Age distribution of a nonreactive species, plotted versus depth, in the model slope sediment (1000 m 
water depth). The thick solid line is the average age, the thin lines correspond to +/- one standard deviation. 
The dashed line is the median age and the thin dashed-dotted line is the sedimentation-only age (x1llJ). The 
histograms on the right show relative distribution frequencies ofparticles ages in two depth intervals. 

The average and median ages of reactive particle-bound constituents are lower than 
the corresponding values for nonreactive constituents (Figure 3). This reflects the greater 
weight, for reactive constituents, of younger particles that have undergone less decay 
(Equation 18). The extent to which the age distribution of a reactive constituent deviates 
from that of a nonreactive tracer varies from one depositional environment to another, as 
shown by the particle age distributions of 210Pb (half-life: 22.4 years) in the three model 
sediments. 
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Figure 2. Transit times in the model slope sediment (lOOO m water depth), plotted versus depth below the 
sediment-water inteiface. The thick solid line is the solution of Equation (20). Almost coinciding with it, and 
hence barely visible, are the median values for an inert tracer and 210Pb (dashed and dashed-dotted thin lines). 
The surrounding dotted lines indicate the one standard deviation confidence interval around the average. The 
thin solid line is the transit time for 234Th. 

For the shelf sediment (Figure 3A), the median particle ages of 210Pb are fairly close 
to the median ages of nonreactive particles. In the abyssal plain sediment (Figure 3C), 
however, they approach the transit times of nonreactive particles. This reflects contrasting 
reaction-transport regimes. For the shelf sediment, Db> k· ' hence, radioactive decay 

plays a secondary role, relative to biodiffusion, in the age distribution of 21OPb. In the pelagic 
sediment, however, Db < k· so that only those particles with a near-unidirectional 

downward trajectory have a reasonable probability of surviving passage through the mixed 
zone. Therefore, the particle age distribution resembles the transit time distribution. For 
highly reactive 234Th, with a half-life of only 24 days, Db is smaller than under all 

conditions simulated. Consequently, the particle age distribution of 234Th approaches the 
transit time distribution in all three environments. 
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Figure 3. Median ages of reactive and nonreactive substances in different depositional settings, plotted against 
depth below the sediment-water inteiface. The dashed-dotted line corresponds to the nonreactive substance, the 
thin solid line to 21OPb, the dotted line to 234Th, and the thick solid line to the sedimentation-only age. Panels A, 
Band C correspond to the sites at 200 m, 1000 m and 4000 m water depth, respectively. Values of Db in A, B 
and Care 25.06,12.06 and 0.775 cm2 yr'!; values of A, B and Care 0.36,0.162 and 0.008 em yr'!, 
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Oxygen exposure times 
For the three depositional environments considered, stochastically computed median OEYs of 
particles being buried in the sedimentary record are generally lower than values 

(Figure 4). For very small L02 , on the order of a few mm or less, mixing may actually result 

in OEYs that exceed (This is barely visible on Figure 4 because of the scale of the L02 

axis). Like particle age, OEY depends on the reactivity of the constituent. For a given oxygen 
penetration depth, the OEY is highest for an inert constituent, and lowest for a proxy 
for highly reactive particulate constituents. This is due to the fact that only particles with the 
shortest early diagenetic trajectories still carry highly reactive constituents when exiting the 
model domain. 

o 

5 

10 

15 

Figure 4. Median OET of reactive and nonreactive substances exiting the lower boundary, plotted as a function 
of the oxygen penetration L 02• The labels are identical to Figure that the 
penetration depth, and the x-axis the OET rather than age. 

104 



Particle time scales 

The probability density functions of the OETs have similar features as those of the 
particle ages described previously: they exhibit a large spreading and are skewed towards 
high values. Thus, median OETs, rather than mean values, provide a more meaningful 
measure of the typical amount of time a given constituent spends in the oxic surface layer of 
the sediment. Furthermore, in bioturbated depositional environments, particles having 
experienced a range of OETs are buried together in the sedimentary record. 

The oxygen penetration depth is a crucial variable controlling the OET (Figure 4). 
Typically, L02 increases with increasing water depth (TROMP et ai., 1995). On the continental 

shelves, L02 varies mostly from a few mm to several cm, while in deep-sea sediments 

dissolved oxygen may persist for several tens of em or more. Hence, for most marine 
sediments L02 < except in organic-poor deep-sea sediments. As shown by Figures 4A, 
4B and 4C, the offset between the median OET of a reactive constituent and the OET of an 
inert tracer increases with increasing L 02' when L02 < Xmix. For L02 > Xmix, the offset remains 
constant with increasing L02' because biodiffusional mixing is now entirely confined to the 
oxic zone. Below the mixed layer, the median OET of both reactive and nonreactive 
substances increases linearly with depth, due to sedimentation, until the bottom of the oxic 
zone is reached. 

Organic carbon burial efficiency 
The oxygen exposure time (OE1) approximated by Loz/whas been suggested to be a master 
variable determining the extent of organic matter burial into the geologic record 
et ai., 1998). In the oceans, the sedimentation rate varies over many orders of magnitude, and 
is a likely determining factor underlying the empirical relationship between burial efficiency 
and OET. However, there is also evidence that oxic conditions may enhance organic matter 
(Corg) degradation, e.g. through more efficient degradation of refractory organic materials 
coupled to aerobic respiration (CANFIELD, 1994; ALLER and ALLER, 1998). 

Here, we investigate the impact of 02 exposure on Corg preservation in the three 
virtual sediments introduced earlier. Organic matter degradation is assumed to follow first 
order kinetics with respect to the concentration of Corg (BERNER, 1980). For the baseline 
scenario, we estimate the oxic and anoxic rate constants (yr.l) of degradation using the global 
relationships as a function of sedimentation rate (cm yr.l) presented by (TROMP et al., 1995): 
k = 2.97wo.62 

, and k = 0.057w1.
94 

. Typical values of the O2 penetration depth of 0.3,2
ox anax 

and 7.5 cm are assigned to the sediments at 200, 1000 and 4000 m water depth, respectively. 
Burial efficiencies are calculated by monitoring the fraction of organic matter that survives 
early diagenesis and exits the lower boundary. 

The baseline simulations reproduce the overall trend of increasing Corg burial (or 
preservation) efficiency with decreasing OETs (Figure 5, squares). On the figure, the filled 
squares correspond to OETs derived from the stochastic model, while the open squares 
correspond to values. At the 200 m water depth site, the two approaches yield fairly 
similar OET values. At the deeper sites, however, the two approaches predict significantly 
different O2 exposure times for deposited organic matter. This is due to the deeper oxygen 
penetration depths, which result in a greater offset between the actual OET and the 
sedimentation-only estimate (see Figure 4). 
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The effect of doubling the 02 penetration depth at the three sites can be seen by 
comparing the squares (Lm =0.3, 2 and 7.5 cm) and triangles (Lo2 =0.6, 4 and 15 cm) in 
Figure 5. A major drop in the Corg burial efficiency occurs at the 200 m water depth site. 
However, the OETs computed by the stochastic model for the 200 and 1000 m sites are not 
dramatically altered, because enhanced degradation shifts more weight to younger particles 
that exit the model domain. This effect is similar to the decrease in OET with increasing 
reactivity illustrated in Figure 4. In contrast, at the deep-sea site, oxygen penetration below 
the mixed layer (Lo2 = 15 cm) causes a large shift in OET, relative to the baseline scenario. 

The empirical rate constant estimates based on (TROMP et al., 1995) result in 
ratios of 200,575 and 3104 at 200, 1000 and 4000 m water depth, respectively. These large 
differences integrate multiple effects including, not only the difference in intrinsic 
degradation efficiencies of aerobic and anaerobic microbial populations, but also the 
progressive decrease in reactivity of organic matter with advancing early diagenesis. 
Because of the much longer time scales of early diagenesis in the deep-sea, compared to the 
continental shelves, the relative difference in is largest for the simulations at 4000 m 
water depth. 
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Figure 5. OET and burial efficiency. Open symbols are based on sedimentation-only estimates of OET, while 
filled symbols are based on the median values of stochastically-calculated O2 exposure times. Error bars for the 
stochastic OETs denote the range between and 3n:1 quartile. The squares are the baseline scenario with = 
0.3, 2, and 7.5 em, and = 200, 575 and 3'104

, at 200, 1000 and 4000 m water depth, respectively. 
Simulations in which the value of the anoxic rate constant is adjusted to give = 100 are indicated with 
circles. Triangles show results after doubling the penetration depth at the three model sites (I-02 =0.6, 4 and 
15 em). Dots are the data from et al., 1998), using OET = 1..,02/00. 
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To better constrain the effect of rate constants for aerobic degradation are 
estimated with the empirical expression, k = 2.970)0.62, while is assigned a constant ox 

value of = 100 in all three model sediments. At the 200 m water depth site there is a 
substantial drop in the Corg burial efficiency relative to the baseline scenario (Figure 5, 
circles), while the changes at the two deeper sites are less pronounced. These results are 
consistent with the observation that anaerobic decomposition accounts for a major fraction of 
the organic matter degraded in shelf and coastal sediments, while aerobic degradation 
dominates in hemipelagic and pelagic sediments «TROMP et aI., 1995), and references 
therein). In the latter environments, the Corg burial efficiency depends primarily on the value 
of kox; increasing even by several orders of magnitude, has only a small impact on the 
burial efficiency. 

At the 4000 m water depth site the calculations predict Corg burial efficiencies that 
approach zero, compared to typical values between 1 and 10% for abyssal plain environments 

and REEBURGH, 1987). This reflects the existence of preservation mechanisms 
that render some organic matter unavailable to bacterial degradation (see (HEDGES and KEIL, 
1995) and accompanying articles in the same issue). These mechanisms are not included in 
the simple first-order degradation model used here, where 100% of the organic matter is 
assumed to be reactive. 

Conclusions 
1. Particle ages, transit times and OETs in marine sediments are strongly affected by 
bioturbation. Biodiffusive mixing leads to large spreading of these temporal properties within 
sediment layers. The challenge ahead will be to incorporate heterogeneous particle age and 
OET distributions in the description of early diagenetic processes, e.g. the age-dependent 
degradation of organic matter (MIDDELBURG, 1989). 

2. Stochastic simulations, using global parameterizations, demonstrate that actual OETs 
deviate from estimates based on even for nonreactive species. For reactive chemical 

constituents, the deviations are even larger. In the model environments studied, L02/O) ratios 
overestimate OETs, especially at the deepest site. 

3. Organic carbon preservation efficiencies are sensitive to the mlxmg regime of the 
sediment and the degradation kinetics of the organic matter. The simulation results stress the 
need for a better understanding the mechanisms and factors influencing the reactivity of 
organic matter. Further progress requires mechanistic (predictive) rate models for organic 
matter degradation under variable redox conditions. 
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Reactive transport lIIodeling & optimization 

CHAPTER 7: A flexible modeling framework for quantitative and 
objective analysis of aquatic system dynamics 6 

Introduction 
The cycling of many elements on the Earth's surface result from the coupling between a large 
number of biogeochemical processes. Their dynamics is controlled by complex reaction 
networks which tightly couple the fate and behavior of many chemical constituents in natural 
environments. In their full complexity, the quantitative assessment of these coupled multi­
component reaction systems requires the use of advanced mathematical models which can 
only be solved via numerical simulation. 

Mathematical models allow for a quantitative implementation of the processes considered 
important in a given system, and hence, offer intellectual support for deciphering 
biogeochemical complexity in natural systems. However, large uncertainties remain when it 
comes to the selection of the most appropriate reaction network, to the mathematical 
formulation of the processes included and to the parameterization of these processes. These 
uncertainties upstream of the process of numerical simulation are often a limiting factor for 
the quantitative understanding of many problems relevant to the geoscientist. 

Modem Reaction-Transport Models (RTM) should therefore 
(i) offer means aiming at a reduction of the uncertainty related to the non-unique model 
structure; 
(ii) include in some way the uncertainty that presently cannot be reduced. 

These objectives guided the development of a new modeling environment, the 
"Biogeochemical Reaction Network Simulator (BRNS)". The BRNS allows for a flexible 
process selection and formulation, and offers objective means of parameter estimation. 
Hence, this modeling environment facilitates comparison of competing model structures, and 
provides optimal integration of measurements into RTMs. 

This chapter describes the current status of the BRNS, with focus on the newly incorporated 
optimization layer. A continuous update on the work in progress is provided at 
http://www.geo.uu.nl/ResearchiGeochemistryIRTM web/index I.htm. 

6 Meile, C. and would like to acknowledge D. Aguilera for constructive comments artistic 

design of Fig. 2 and P. Jourabchi for the formulation ofthe deep-sea scenario used in the optimization test case. 
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General description of the BRNS 

The BRNS is a modeling environment in which RTMs can be constructed in a fully 
automated way. The flexibility of the approach stems from a procedure which allows 
constructing the corresponding RTM application for any given biogeochemical reaction 
network. 

Maple interface -

*Reactions Automated 
*Chemical [ code generator 
constituents (ACG) 

*Stoichiometry 
*Boundary& Linear Algebra 
initial conditions Algorithms

*Rate parameters & 
equilibrium constants Transport

*Transport parameters v subroutines 

m 
>< 

0 

Figure 1. Structure of the BRNS. 

The set of equations, which represent the relevant biogeochemical processes included in a 
reaction network, are defined within the MAPLE symbolic programming environment 
(CHILAKAPATI, 1995; REGNIER et al., 2002; REGNIER et aI., 1997). Within MAPLE, 
conservation equations for all the chemical constituents pertaining to the reaction network are 
constructed, and the information necessary for their numerical solution is assembled and 
processed symbolically. The results, along with additional user-specific information (e.g., 
parameter values, boundary and initial conditions) are then translated into fully structured 
FORTRAN code, combined with generic transport routines and linked to standard Iinear­
algebra solvers (Fig. 1). All symbolic programming operations and their translation into 
FORTRAN have been combined into a MAPLE binary library called ACG (short for 

Qenerator). Hence, model construction and simulation from within the 
BRNS requires no prior knowledge of programming or numerical procedures from the user, 
and therefore facilitates quantitative process oriented studies. 

Objective Data Analysis 

Mathematical formulations of biogeochemical reaction rates involve many model parameters 
that must be constrained experimentally. Examples of such parameters are rate constants, 
their temperature dependence, and half saturation constants or inhibition functions. Due to 
inherent difficulties in experimental setup, differences between laboratory and field 
conditions, or lack of a fundamental understanding of the natural system, model parameters 
are only known approximately. It may therefore be desirable to constrain these parameters to 
the maximum extent possible by taking full advantage of the available measured data. 
This objective has been achieved using the following strategy (Fig. 2): Forward RTMs 
produce synthetic data which can be compared to measurements. Using optimization 
techniques, parameters are then adjusted to systematically improve the fit between modeled 
and measured data. As the selection of parameters to be optimized is user-selectable from 
within the BRNS, it takes full advantage of its flexible structure. 
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A variety of optimization algorithms have been implemented and tested, both with a set of 
synthetic functions and with a RTM application representative of early diagenesis in deep sea 
sediments. In what follows, the general structure of the forward RTM is outlined, the 
optimization procedures are described and the results for the optimization test cases are 
discussed. 

Figure 2. Scheme of the optimization procedure. 

Forward RTM 
The temporal and spatial evolution of m chemical constituents undergoing transport and 
reaction can be described by a set of conservation equations of the form: 

_J = Tj + R j , (j=l, ... , m) (1) 

where t is time, T is the transport operator and R represents the sum of reactions affecting a 
substance j of concentration C. 

Physical transport in aquatic systems typically encompasses advective and diffusive 
processes. A general one-dimensional form of T is written as: 

I acj(x,f)]Tj - -- (2) 

with 
solids: A(x)
 

solutes: A(x) 

solids: Db (x) 
D(x) = { , and 

solutes: Db (x )+ Ddi,p(V(x» + 
solids: w(x)
 

vex) = {
 
solutes: v + w(x) 

In Eq. 2, C is the cum.:entration of solutes or solids in mass per fluid volume or solid volume, 

respectively and is the porosity [-]. vflowand ware velocities [L T I
]. As w is a generic 
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advection velocity acting upon both solids and solutes, it may represent a moving reference 
frame. Db, D disp and D sed all formally represent diffusion coefficients [L2 T I 

]. In the current 
version of the BRNS, Dsed is (internally) defined as D mol and D disp is calculated 

from flow velocity vj10w and longitudinal dispersivity [L2
]: D disp = fiowl. A is a cross 

section area [L2
], normal to the x-direction, which may change over the spatial domain. The 

coefficients A, Db, Dmol, w, and Vilow can all be dermed as a function of space. 
For a sediment application, A is set to one, Db represents the bioturbation coefficient and D sed 

is the in situ molecular diffusion coefficient corrected for tortuosity (BOUDREAU, 1997). Dmol 

is the molecular diffusion coefficient at in situ temperature and salinity and w is the 
sedimentation velocity. In many cases Vilow is close to 0, and setting to 0 results in ignoring 
dispersion (Ddisp = 0). Alternatively, in a groundwater flowpath model, Db can be set to 0, 
Dmol may be negligible, w is 0, Vilow is the fluid flow velocity and has to be set to the 
appropriate, scale-dependent value of the dispersivity. In a simulation of an estuary along its 
longitudinal curvilinear axis, ¢ is set to 1 and a proper choice of A and Vilow allows for an 
implementation of fluid flow. Eddy diffusivities may be implemented through the Db-term. 

Generally, the reaction term depends on more than one species of the reaction network. 
Through this coupling, most mUlti-component problems result therefore in sets of coupled 
nonlinear PDEs, which have to be solved simultaneously. In most cases, no analytical 
solutions are available for such problems and one has to resort to discretized approximations 
of the partial differential equations along a spatio-temporal gridded domain. 

Numerical solvers 
The discretized form of Eq. 1 can be expressed with the operators evaluated either at the 
current time or at the previous time. This is referred to as implicit or explicit solution 
procedure. Using a Euler time-discretization, one may write 
C k+! _C k 

---= + (1- a)(Tk +Rk 
), (3) 

where k is the time index and [0-1] is a weighting parameter, which leads to an implicit 
Crank-Nicholson (a=0.5) or explicit (a=O) formulation of the problem. 

Transient simulations 
Reaction networks generally involve coupled, nonlinear rate laws operating over a wide 
spectrum of time scales. The high degree of stiffness and nonlinearity of the resulting 
equations generally require implicit numerical schemes for their solution. However, the 
matrices resulting from the spatio-temporal discretization of the full set of PDEs can become 
prohibitively large for implicit, simultaneous numerical solution of the transport and reaction 
operators (YEH and TRIPATHI, 1989). The solution procedure implemented in the BRNS, an 
alternative to such one-step methods, is Operator splitting (OS), which handles the transport 
and reaction terms sequentially (STEEFEL and MACQUARRIE, 1996) and hence takes 
advantage of the additive nature of the operators T and R. The separation of T and R allows 
the numerical solution to be tailored to the properties of the individual operators, which can 
speed up computation significantly. 

The formal separation of reaction and transport processes induces error into the solution of 
the governing equations. Indeed, if transport precedes the reaction step, a substance entering 
the model domain will be transported during a finite amount of time before it 

reaction. The error induced by OS depends therefore on the time step of integration as well as 
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on the order of the operators (BARRY et aI., 1996; KAWARACHCHI and MORSHED, 1995; 
MORSHED and KALUARACHCHI, 1995). This error may be evaluated for simple problems by 
comparison with analytical solutions. However, for more complex cases, comparison 
between different numerical solutions is necessary. This can be done by decreasing the size 
of the integration time step or by comparing OS results to one-step approaches, which are not 
subject to this type of error. One may also compare results using different operator splitting 
strategies. In the BRNS, two operator splitting methods are implemented: The Sequential 
Non-Iterative Approach (SNIA) and Strang splitting (STEEFEL and MACQUARRIE, 1996). In 
the former, the transport step precedes reaction, each computed for the entire time step, while 
in Strang splitting, half a timestep of transport is followed by a full reaction timestep and the 
remaining half of the transport. Such an embedding of the reaction part into transport is likely 
to reduce the operator splitting error at a relatively low computational cost, since solving the 
reaction step is by far the most time consuming operation (see below). 

Transport 

The PDEs are essentially uncoupled in the transport operator (see Chapter 1). Hence, they can 
be solved for each constituent separately, which results in solving m separate problems of 

•
size n, where n is the number of spatial nodes. The transport part of Eq. 1, -- = IS 

J 

approximated using finite differences. The discretized transport equation for each constituent 
j can be recast into matrix form: 
M =d (4) 

where M is the tridiagonal transport matrix, d is a vector depending on the concentration at 
the previous timestep and Cj is the concentration vector of a constituent j extending over the 
spatial domain. Hence, solving for the new concentration profile only involves inversion of a 
tridiagonal system (PRESS et aI., 1992): 

=M-1·d (5) 

The boundary conditions currently implemented are known concentrations, known 
concentration gradients or known local (diffusive and advective) fluxes. Further details on the 
implementation are given in the Appendix. 

In order to resolve details in certain parts of the model domain without wasting computational 
resources, a scheme allowing for a spatially variable grid has been implemented (see 
Appendix for details). The scheme does not support radically changing grid spacing over 
short distances. The spatial discretization is preferably done through a coordinate 
transformation, e.g. x'=aj 'sin(az +aJx), where x' and x are the transformed and the 

equally spaced grid coordinates and are transformation coefficients (NoYE, 1984). 

Reaction 
Using OS, the reaction part can also be simplified significantly as reactions can be viewed as 
local phenomena depending only on the concentrations of chemical species within a given 
representative elementary volume. The reaction part of the problem can be represented as a 
series of batch reactors, operating independently at each node of the spatial domain. 
Therefore, OS reduces to a problem of solving n times a reaction network of size m, 
formulated as a set of coupled ODEs (rather than PDEs). A fully implicit formulation of the 
reaction part ofEq. I leads to the following problem: 

_c k 

J =0; j =1, m (6)J 

J 
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This expression defines the function residuals fj, a set of functions which have to be zeroed. 
The task at hand is therefore to find the values of fulfilling this condition. This is a 
nonlinear multidimensional root finding problem which can be solved using the Newton­
Raphson (NR) method. The NR method makes use of a Taylor Series expansion off, 

if (C + = if (C) + aif (C) + (7) 
;=1 ac; 

Neglecting the terms of the reaction problem can be recast into matrix form 
according to: 

J = - i , (8) 

wherei is the vector of function residuals of length m and J is the Jacobian matrix consisting 
of the partial differentials of i with respect to the different chemical components (STEEFEL 

and MACQUARRIE, 1996): 

ail/aCm] 

J = (9) 

The update vector IS obtained by matrix inversion, = r l
(- i), which is 

implemented as LU-decomposition (PRESS et aI., 1992). In an iterative procedure, the 

concentrations are updated, = Cold + where subscripts new and old are iteration 
indices, untiliis sufficiently close to O. 

The Newton-Raphson root finding method is based on a local linearization of the problem. 
This is efficient for local searches, but nevertheless may fail depending on the topography of 
the function(s) for which the root is to be determined (e.g., cyclic non-convergence, shooting-off; (PRESS et aI., 1992)). When the Newton step is large, the local linearization at 

may be a poor approximation after e.g., half of has been taken. It is possible that at this 
point, not only the suggested step size is different, but that the Newton direction may be 
significantly different. Loosing the advantage of a local linearization due to a changing 
topography within a single concentration update can be partially remediated by using a 
relaxation factor, which limits the individual iteration stepsize to a fraction of the Newton 
step. As an alternative, to take fuller advantage of the local linearization, a combination of the 
Newton-Raphson with a line search method has been implemented (PRESS et aI., 1992). Close 
to the starting point, the linear approximation points towards lower values of the function 
residuals, i.e. the direction of the iterative improvement of the solution is locally correct. 
Therefore, the line search backtracks along the Newton-direction if the full Newton step leads 
to a position whose functional value is worse than the previous one. Note however that both 
relaxation and combination with line search can not guarantee the success of the root finding 
procedure in all cases. 

In MAPLE, the function residuals and Jacobian matrix are automatically assembled from the 
rate expressions (or equilibrium constraints) forming a reaction network. The MApLE 
preprocessor combines mixed kinetic and equilibrium expressions into a DAE system using 
Gauss-Jordan elimination. The advantage of this method is that it minimizes the size of for 
a given reaction network. The Jacobian matrix and function residuals required in the Newton 
algorithm are then translated into fully structured FORTRAN code taking advantage of the 
MACROFOR package (GOMEZ, 1990). Detailed examples of the automated procedure are 
given in (REGNIER et aI., 2002). 
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Steady State Solver 
Steady state solutions are often of interest, either because the system is truly at steady state or 
because an educated guess for unknown initial conditions is required. It is possible to run a 
transient simulation to a steady state, but this procedure has the disadvantage that the slowest 
changing component is determining the time it takes to reach steady state. This may lead to 
long simulation times, which are particularly prohibitive when combined with 
computationally demanding optimization procedures. To remediate this situation, an 
approximate, iterative steady state solver has been implemented. 

At steady state, the derivative of with respect to time is zero: __J = 0 = + such that 
J J 

Tj = -R j • Similar to the transient case, the transport term is recast into a tridiagonal matrix 

form (Eq. 4). However, in contrast to the transient solver, the reaction term is implemented 
here in an explicit fashion. The reaction rates are calculated from the known (old) 
concentrations, Rj =R(Cold )' a strategy which avoids the iterative root-finding procedure. 

The solution of the resulting system of equation, M· Cj.n,w =d - R(Cold )' only requires 

inversion of a tridiagonal matrix for each constituentj. 

The explicit formulation of the reaction term may cause this scheme to fail. An improved 
approximation of R at the current iteration therefore proposed: 

Rnew R(Cold )+ (Cnew - COld)' (10) 
old 

which corresponds to a linear approximation of the rate along the direction of the constituent 
to be solved for. This approach leads to an improved estimate of R if the component C exerts 
a strong feedback on its own dynamics, but only slightly increases the computational cost. 
Combining transport and reaction, the new concentration vector can be obtained from 
inversion of the following tridiagonal system: 

Cnew =(M +1, dRI ]-l(R(COld )+ dRI .COld ], (11) 
dC old dC old 

where the LHS and the last parenthesis on the RHS are vectors of length n, and is the 
identity matrix (n*n). Eq. 11 is solved in sequence for each component and embedded into an 
iterative loop (Fig. 5). Simulations are run until convergence is achieved, i.e. until 

The steady-state solver has been implemented within the ACG, which computes 

automatically the required rate and derivative information (R(COld dR I ). If the derivative 
dC 

of R with respect to C is a function of C, is being used. Currently, only kinetic reaction 
formulations can be used in this procedure. Equilibrium reactions are recast into kinetic 
expressions using the principle of microscopic reversibility (LASAGA, 1998; STEEFEL and 
MACQUARRIE, 1996). 
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Optimization 
The general objective of optimization is to constrain poorly known model parameters by 
making use of available measurements. To that purpose, an optimization layer, which 
encapsulates the forward RTM described above, has been implemented (Fig. 2). As 
parameter optimization is based on a comparison between measured and calculated data - the 
latter depending on parameter values many forward RTM runs are required to determine 
their optimal values. After each forward simulation, the parameters are adjusted and the 
operation is repeated until the misfit between measurements and calculated data is 
sufficiently small to meet user-defined convergence criteria. 

In general, the number of parameters to be optimized (nap,) is smaller than the total number of 
model parameters, either because some are already well known (e.g., molecular diffusion 
coefficients), or simply because optimization over a large number of parameters is 
computationally too expensive. The choice of the parameters to be optimized is a matter of 
experience and is left to the user. This is however a crucial step, as it is a priori difficult to 
assess whether or not model results vary similarly with changes in different parameters 
(BRUN et aI., 2001 ). 

The quality of the model parameterization is based on a comparison between calculated and 
measured concentrations. For each forward RTM simulation, the quality of the 
parameterization is quantified by the scalar objective function, OF. It consists of a summation 
of the misfit between calculated and measured values at each time and position where 
measurements are available and is defined as: 

= J (12) 

where p is the entire parameter set, including the nap' parameters to be optimized, y is the 

measured value and y(p) is the calculated concentration of species j at time t and position x 

of measurement. To match the exact location, yep) is interpolated with natural splines from 

the gridded domain to the position of the measurement. is the standard deviation associated 
with a measurement. If no error estimates are available for species j, can be defined as the 
average concentration of the species over the whole spatial domain at the time of 
measurement. Scaling by is essential to avoid dominance of the objective function by one 
single species when species concentrations differ by orders of magnitude. 

The parameters subject to optimization and the data files containing the measurements are 
specified in the MAPLE interface. Hence, this approach takes full advantage of the flexibility 
of the BRNS and extends its domain of applicability. 

The optimization schemes
 
There exist many strategies for minimization of the objective function (e.g., (BLIEK et aI.,
 
2001; GILL et aI., 1981; OSBORNE, 1985)). Here, four methods for unconstrained optimization
 
have been implemented:
 

• Downhill Simplex (DS) 
• Levenberg-Marquardt (LM) 
• Simulated Annealing (SA) 
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• Differential Evolution (DE) 
DS and LM are local procedures while SA and DE are global schemes. The fundamental 
difference between local and global optimization algorithms is that the local schemes may 
fail in finding a global minimum in the OF if there exists a local minimum near their starting 
point. Global optimization strategies aim at overcoming this problem, but are 
computationally more expensive. In what follows, the four optimization procedures are 
briefly summarized. 

Downhill Simplex 
In the Downhill Simplex approach (NELDER and MEAD, 1965), the topography of the OF is 
mapped by evaluating its value for nopt+ 1 parameter sets. The first set Po contains, apart from 
the known parameters, the initial guesses for the napt parameters to be optimized. In the other 
nopt parameter sets, the adjustable values are slightly perturbed one by one: Pi = (1 + )Po, 

where ej is a unit vector in the ilh direction and is a perturbation factor. These nopt+ 1 sets 
hence define the initial vertices, which together form a geometrical figure called simplex. 
During optimization, the simplex is systematically modified to ooze towards a parameter set 
with a corresponding minimum value of the objective function. It is altered during 
optimization by reflection (Fig. 4A), reflection and expansion (Fig. 4B), contraction in one 
dimension (Fig. 4C) and contraction among all dimensions towards the low point (Fig. 4D). 
Further details are given in (PRESS et aI., 1992). 

A new B C D 

high high high
low low low low 

Figure 4. Movements of a two dimensional simplex during minimization. High / low indicates the value of the 
objective function associated with a vertex. 

Levenberg-Marquardt 
The Levenberg-Marquardt algorithm is an iterative nonlinear least-square mmlmlzation 
which combines the Newton procedure with a steepest-descent search (PRESS et al., 1992). In 
contrast to all other schemes presented here, the minimization process is guided by 
information on the gradient directions of the OF with respect to the parameters. This property 
makes LM the most efficient search method, albeit it may fail if the initial guess is not close 
enough to the minimum. 
LM is based on a quadratic approximation of the objective function (FINSTERLE, 1999): 

OF(p new 
) OF(poid 

) + gT + (13)
2 

where =pnew - pOid. g is the OF gradient vector, H is the Hessian matrix, which contains 

information on the curvature of the local OF topography, and the superscript T indicates 
transposition. 
Combining Eqs. 12 and 13, g and H can be written as (FINSTERLE, 1999): 

g =_2J T K-1(y - J 
(14) 
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where K is the covariance matrix, whose diagonal elements consist of the measurement 
variances and is 0 elsewhere. J is the Jacobian matrix whose elements are defined as 

jik = .Hence, g depends on the misfit between measurements and calculated values, 

weighted by the sensitivity of the calculated concentrations towards the adjustable 
parameters. The matrix B is defined as 

(15) 

At the minimum of the OF, locally approximated by Eq. 13, OF(pnew) equals OF(pOld). 

Hence, gradient and second derivative terms in Eq. 13 must cancel each other (second and 
third terms on the RHS of Eq.13, respectively). After substitution of Eq. 14 into Eq. 13 one 
obtains the parameter update vector: 

= (JTK-1J +B y - (16) 

The Jacobian matrix can be computed by finite difference approximation using small 
perturbations of the nop, parameters to be optimized. This requires n op,+1 runs of the forward 
RTM. 

Various gradient-based optimization methods can be derived using different approximation of 
matrix B. For instance, setting B=O results in the Gauss-Newton method, which has quadratic 
convergence when the parabolic aRProximation is appropriate (Eq. 13). Alternatively, B may 
be approximated by I . (J TK -IJ ), where is a factor which increases diagonal dominance. 

For 00, the steepest-descent algorithm is obtained. This algorithm is less error prone 
than the Gauss-Newton method far from the minimum, but exhibits poorer convergence 
characteristics. In the LM algorithm, is dynamically adjusted, adapting the minimization 
strategy to the progress of the optimization. Figure 5 describes the algorithm implemented 
(CAVALIER, 2001; PRESS et aI., 1992): 

Choose initial guess 

forp and (0.001) 

ICompute X2 (p): OF 

Solve a = for 
k ] ] no 

[ 1 1 
a jk I 

Compute (p + =
-update p =p ++ > X2 (p)7

1yes minimum found 7 

=
stop 

Figure 5. Levenberg-Marquardt algonthm 
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Simulated Annealing 
Simulated Annealing is a global optimization technique which can deal with discontinuous 
objective functions (METROPOLIS et aI., 1953). In SA, the key feature is to occasionally allow 
for exploration of regions with OF values larger than the ones encountered so far. Hence, SA 
is not restricted to the local neighborhood of the starting point and is in theory able to explore 
the entire solution domain. The implementation of this algorithm requires selection of a 
probability to accept "uphill moves" and definition of how this probability changes during 
optimization. By analogy to a slow cooling process in material sciences, these two criteria are 
referred to as "starting temperature", To, and "cooling schedule", respectively. Intuitively, a 
high acceptance rate of uphill moves is desirable at the beginning of the optimization in order 
to minimize the likelihood that only local minima near the starting point are found. As the 
algorithm explores the solution space further, the probability of accepting parameter sets with 
higher objective function values than the minimum found so far should decrease to allow for 
the accurate determination of the minimum. 

In the BRNS, To is chosen such that initially about 80% of the uphill moves are accepted 
(VAN LAARHOVEN and AARTS, 1987). The starting temperature is chosen such that 

= 0.8, where is the average difference between the objective functions 
corresponding to the unperturbed and the perturbed initial parameter sets, as defined in the 

DS section above. Using a truncated series expansion of leads to To . 

Therefore, the selection of To requires that the user-selectable parameter perturbation is 
large enough to guarantee significant differences in the associated objective function values. 
This is important to achieve a sufficiently large search space. The probability to accept uphill 
moves is progressively lowered, in such a way that the algorithm never spends more than a 
finite amount of time (typically 10% of the maximum allowed iterations) at a given 
temperature. Here, the new temperature, corresponding to a lower probability of accepting 
uphill moves, depends on the ratio of the number of function evaluations performed so far (it) 

to the total number of iterations (itmx): = Told (1 - it/itmx)a . The exponent determines 

the cooling speed, and by default is set to 2. Large values of this coefficient lead to slow 
cooling speed. 

Selection of appropriate starting temperature and cooling schedule are subject of debate (e.g., 
(BOHACHEVSKY et al., 1995; BOHACHEVSKY et aI., 1986; CARDOSO et al., 1996; FORBES and 
JONES, 1990; JONES and FORBES, 1995; PARK and 1998)). For poor choices of these 
criteria, SA may not be an efficient technique. Hence, in the BRNS, SA is combined with the 
Downhill Simplex method, according to the procedure proposed in (PRESS et aI., 1992). 

Differential Evolution 
Differential Evolution is a global optimization algorithm applicable also to nonlinear and 
non-differentiable continuous functions (STaRN and PRICE, 1995). DE belongs to the class of 
genetic algorithms (GA), which involve random combinations of trial parameter sets. In the 
terminology of GA, these combinations are named mutation and crossover. Initial parameter 
sets, called populations, are selected randomly from within a bound range. New parameter 
sets, forming the next "generation", are obtained by random recombination of the old 
populations. The procedure can however be biased towards the fittest population (Phesl): 
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or (17) 

Pi .G+l = Pi .G+ F· 

where P is the parameter set (population), G is the generation index, "best" indicating the 
fittest population as measured by the minimum value of the ri is a random variable 
selecting the populations from which the new generation is created and i determines the 
number of populations from which a new population is generated. It is typically set to 1, a 
value which results in a combination of two or three randomly selected population with the 
best one. F is a factor which amplifies the difference between and while is a 

greediness factor, which biases the new generation towards the fittest population. To limit the 
number of control parameters, is typically set equal to The new parameter set replaces its 
predecessor if fitness, measured by the value of the objective function, is improved. Other 
control settings are number of populations, typically set to 10 times the number of parameters 
to be optimized, and the number of generations evaluated. 

The algorithm exhibits good convergence properties and in many instances is not very 
sensitive to the user-defined control settings (STORN and PRICE, 1996). In order to be 
successful, it is however crucial that the global minimum lies within the range of the 
parameters from which the population vectors are randomly selected. In our case, the range is 
by default assumed to be within one order of magnitude around the values of the initial 
parameter profile. Random selection from within this range is based either on a uniform or 
log-uniform distribution of the parameters. 

Stopping conditions 
The optimization process requires the implementation of convergence criteria, which 
determine when to stop the procedure. Two criteria are proposed here. The first one is related 
to the progress of the optimization: the process is halted if the difference between best and 
worst OF values in the current parameter sets - or current and previous set in the case of LM 
is smaller than typically set to 10'6: 

< (18) 
IOFwoml+jOFbesrl 1 

The second criterion relates the fit between calculated and measured concentrations to the 
number of measurements and adjustable parameters. Assuming independent and normally 
distributed random measurement errors, the OF follows a -distribution (Eq. 12 with as 
standard deviation). The probability that the observed mismatch between measurements and 
calculated values for the correct model parameters is less than is given by (CAVALIER, 

2001; PRESS et aI., 1992): 

2Je-rt V 
-

1dt/ 

(19)
Je -f t"/2-1dt 

o 

where v represents the degree of freedom, i.e. v =number of measurements - number of 
adjustable parameters. Optimization is stopped when P is smaller than typically set to 10-3

. 
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Application of optimization algorithms 

Synthetic objective functions 
Performance and possible shortcomings of the optImIZation algorithms are evaluated by 
running several test cases of increasing complexity. In order to validate the algorithms, all 
cases are based on synthetic data. In this section, the objective of the simulations is to 
determine the accuracy and the potential of the various procedures to find known minima, 
rather than accurately benchmarking their respective execution speed. 

Three test cases involve functions of a single parameter, the fourth one depends on two 
parameters and the last one consists of a realistic RTM application. 

Functions ofa single parameter 
The OF is defined by the value of the selected functions, i.e., OF =!(x), where x is the 
parameter to be optimized. Hence, the OF is not based on a comparison between "measured" 
and calculated data and therefore differs from the OF as defined in Eq. 12. For all test cases, 
each algorithm is executed twice, once starting from the right and once from the left side of 
the global minimum. The initial guesses Xstart are set to 3 and -0.5, respectively. Rather than 
an initial parameter value, DE requires specification of the range within which to search for 
the minimum. It is set to ±1O. 

Parabola. The first test case consists of finding the minimum of !(x)=(X-2)2. All 
optimization procedures converge to the minimum value at x = 2, independent of the starting 
point. 

Modified Parabola. The second test case (Fig. 6A) consists of a parabola upon which a 
sinusoidal perturbation is superimposed: lex) = 0.3x2 + 3sin( x). This function has two 
minima within the range ±10: The global minimum at -1.33 and a local minimum at +3.83. 
The two local optimization procedures (OS and LM) end up in the local minimum when 
starting at x = 3, but successfully reach the global minimum when starting at -0.5. 
Irrespective of the starting point, both global optimization schemes (SA and DE) find the 
global minimum. 

Many local minima. In the third test case (Fig. 6B), the objective function is defined as 
lex) = xsin((x This function exhibits a large number of narrow minima between 
0.2 and 1, with the global minimum located at x = 0.91. When starting from the left of the 
minima at x = -0.5, the OS converges to the first minimum encountered near 0.254. When 
starting from the right side at x = 3, both DS and LM shoot off towards infinity. In contrast to 
the local minimization algorithms, DE is able to find the global minimum at x = 0.91 in many 
instances. However, as this scheme uses random selection, the algorithm occasionally ends 
up in one of the many local minima between 0.6 and 0.8. Using the default control settings 
implemented in SA, this algorithm fails to find the global minimum. It either converges to the 
local minima adjacent to the starting position (i.e. x 00 and x = 0.25, as does the DS), or to 
one of the many local minima between 0.2 and 0.8. However, when the number of iterations 
is increased and the probability of accepting uphill moves is raised, SA recovers the global 
minimum. 
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Function oftwo parameters 

The fourth test case (Fig. 6C) consists of the Rosenbrock saddle: 

!(xl'x2 ) = 100(x2 - +(1- X,)2 • This function requires optimization of the two parameters 
Xl and X2. The global minimum is located at X2) = (I,I).In addition, this function exhibits 
also several local minima. The search algorithms are started at (2,2), (2,-2), (-2,2) and (-2,-2). 
DS finds the global minimum from all starting points, while LM never recovers the global 
minimum. Depending on the starting point, this algorithm ends up at a local minimum near 
(±2,4). Within the allotted maximum number of iterations, DE only finds the global minimum 
when the search range for both parameters is restricted between 0 and 2. When this range is 
increased to ±1O, only local minima are recovered. SA fmds the global minimum in all 
instances. 

15 

10 

A 

10·6 

Figure 6. Topography of the synthetic test functions. In panels A and B, the x-axis represents the parameter 
values and the y-axis the value of the OF. In panel C, parameter values are plotted on the x- and y-axes. The OF 
value is represented by conTOur lines and dark colors mdicate low values Of the JunctIOn. Junction is quite 
flat, and to better depict the topography of the OF, the logarithm of the function values is used. 
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Case 2 and 3 reveal that local optimization algorithms may get trapped in local minima. In 
case 4, DS finds the global minimum because of a fortunate perturbation of the initial 
parameter profile. However, no general conclusion regarding the properties of the DS 
algorithm can be drawn from these results. Case 3 demonstrates a shortcoming of the LM 
algorithm, which falls back onto its starting value if Xstart is below 0.04. Below this value, 
both first and second derivatives ofjwith respect to x are negative which leads to an update 
vector pointing towards more negative values (Fig. 5). However, the updated position is 
associated with an increased OF value, and the trial point is therefore rejected. Subsequently, 

is increased, which results in smaller and smaller step sizes until the stopping criterion is 
met. This illustrates that the parabolic approximation of the OF in the LM algorithm may 
cause the optimization to fail if the starting point is not sufficiently close to the minimum. 
Cases 3 and 4 show that the success of global schemes may depend on the values of the 
control parameters tuning the search progress. Nevertheless, DE and SA are the methods of 
choice for problems with poorly constrained initial parameter guesses or with complex 
topographies of the OF. 

RTM application 
In this section, the various search algorithms are tested on a multi-component reactive 
transport problem. This application consists of an early diagenetic model for marine deep-sea 
sediments. The reaction network involves the species Oz, N03', HC03', co2, Corg, 

Mn02, Fe2
+, Fe(OHh, H2S and HS'. The reactions considered are 

degradation of organic matter using O2, N03', Mn02, Fe(OHh or as terminal electron 
acceptors. Secondary redox reactions are also implemented following (WANG and VAN 

CAPPELLEN, 1996). In addition to these kinetic processes, equilibrium expressions (acid-base 
reactions for dissolved carbonate and sulfide species) are included in the reaction network. In 
the early diagenetic model, transport is due to burial, molecular diffusion and bioturbation. 
The conservation equations (Eq. 1) are subject to the following boundary conditions: No 
concentration gradient at depth for all species and either Dirichlet (fixed solute 
concentrations) or Robin (fixed solid fluxes) condition at the sediment-water interface (SWI). 

mol/g, M 
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Figure 7. O2 (thin line) and (thick line) concentration profiles used as proxy for measured data. The 
profiles are calculated using k = 3.10.3 yr· l and F = 2. J .10.6 mol em g.l yr'] 
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The modeled steady state 02 and Corg depth distributions (Fig. 7) are taken as target profiles 
for the optimization procedure. These synthetic profiles play the role of the measured data. 
Two parameters, the first order rate constant for organic carbon degradation k, and the flux of 
organic matter at the SWI, F, are selected as the parameter set to be optimized. The initial 
parameter guesses in the optimization are set one order of magnitude lower than the values 
used to construct the target profiles. k and F are then optimized to reproduce the synthetic 
concentration profiles of 02 and Corg, assuming 5% "measurement error" as an estimate of

All optimization routines converge towards the parameter values used to construct the target 
profiles. However, they differ in their search progress. The OS algorithm (Fig. 8A) moves 
quite efficiently towards the minimum, but has difficulties locating its exact value. The LM 
algorithm (Fig. 8B) is the most efficient search algorithm for this multi-component nonlinear 
problem. SA (Fig. 8C) first explores the region near the starting point extensively. It is only 
when uphill moves are accepted less frequently that the search for the minimum becomes 
more efficient. The OE scheme (Fig. 80) searches a large parameter space, most of which is 
outside the range shown. 

Downhill Simplex 
-5 -5 

-5.5 -5.5 

-6 -6 

-6.5 -6.5 

-3.5 -3 -2.5 -2 

Simulated Annealing Differential Evolution 
-5 -5 

-5.5 -5.5 

-6 -6 

-6.5 -6.5 

-3.5 -3 -2.5 -2 

log (k) 

Figure 8. Progress of optimization for different algorithms. Crosses indicate parameter sets which the 
objective function has been evaluated. Based on these model runs the topography is estinUlted. The gray scale 
gives the value of the objective function (dark color = low values). The lines indicate the path of the 
optimization. The minimum is located at (log kllog F) = (-2.52/-5.68) and the starting point at (-3.521-6.68). 

In the particular case studied here, the OF varies fairly smootWy with both k and F. The 
sampling density of the OF is indicated by the crosses in Fig. 8. At this sampling scale, the 
topography does not show any local minima. Hence, there is no obvious advantage to use a 
global search algorithm. This is why LM is the most efficient search procedure in this case. 
However, it is important to keep in mind that the OF topography is not known a priori. 
Therefore, use of multiple optimization strategies is still recommended. 
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An important caveat arises when using unconstrained search strategies as they may lead to 
parameter values that cause inconsistency between model representation and actual system 
dynamics. 
For example, in this application, methanogenesis is not included in the reaction network. 
Hence, if optimization algorithms generate high values of F, this will lead to a depletion of all 
terminal electron acceptors. In this case, the description of organic matter respiration 
incorporated in the RTM falls short. Similarly, if very low degradation rate constants are 
generated, the zero gradient condition imposed at the lower boundary of the spatial domain 
may not represent the natural environment appropriately. Therefore, to guarantee physical 
meaning of the simulations, the forward RTM should be defined in such a way that it remains 
a valid representation of reality for all parameter combinations encountered during 
optimization. In practice, the appropriateness of the RTM may sometimes be difficult to 
assess. This argues for the use of comprehensive RTMs. As the above example aims at 
illustrating the capability of the optimization procedures, a throughout analysis has not been 
performed here. 

Conclusions 
The various optimization strategies presented here perform well for both synthetic objective 
functions and the early diagenetic scenario. However, they can all fall short finding the global 
minimum. In practice, it is therefore recommended to use a combination of optimization 
algorithms. In well constrained cases, LM is the method of choice due to its efficiency, but 
when largely unknown parameters are involved, one may need to resort to more general 
search strategies such as SA or DE. 

The BRNS is a modem tool for modeling the dynamics of aquatic systems. The general 
transport description and flexible implementation of the reaction network allows the use of a 
single modeling environment for estuaries (REGNIER et aI., 1997), aquatic sediments or 
groundwater systems (REGNIER et al., 2003). The incorporation of a suite of optimization 
algorithms extends the capabilities of the BRNS significantly. Poorly known model 
parameters and complex reaction networks are indeed commonly encountered when 
modeling environmental systems. Therefore, with its new facilities, the BRNS can cope with 
one of the most pressing issues in the field of biogeochemistry. 
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Appendix: Discretization 
The governing transport equation 

aC(X,t)j 
= a(V(x)· C(x,t)) 

(AI) 

is discretized by calculating the fluxes at faces: 

(A2) 

where i denotes a spatial node and i±1 are faces (in between nodes). Time is incorporated 
with an Euler approximation for the temporal derivative and a semi-implicit/explicit 
description. 

Cn+l_cn 
j 

, 

- C;'+l - C +! C + j
n n l 

a. X i+2 - Xi Xi - X i- 2 i+t Vi _1 i-I i-I (A3) 
X i+1 - X i_ l X i+1 X i- 1[ 

n 

D _C, j
n n 

X,+2 Xi -Xi-2 

[ 
X/+1 - X t _ 1 X i+1 X i_1 

where the superscript n is a time index. Thus, this scheme varies from explicit to 
Crank-Nicholson to implicit 

Concentrations at faces 
Concentrations at the faces can be obtained by linear interpolation from the nodes to the 
coordinates of the faces: 

(M) 

For variable grid spacing, the coordinates of faces are set such that the nodes are midpoints 
between faces, which can be changed by the user as desired. However, significant differences 
of the estimated concentration at the faces are only expected in regions with large 
concentration gradients coinciding with a coarse grid, indicative of a poor choice for the 
discretization. 
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Discretized equation and matrix notation 
Substitution of Eq. A4 into Eq. A3, separating terms of old and new concentrations and 
regrouping gives: 

. 

X i+ 2 -Xi 

a 

(I-a) 

(AS) 
Eq. AS can be written as QQi . +bbi . + C = d Ci: )' or in matrix form as .i i 2 

M . = di(C n ) (A6) 

Thus, defining bb as the diagonal of the tridiagonal matrix M, aa the off diagonal below, and 

c as the off diagonal above, and multiplying both sides with the coefficients are: 

aa j =a·ma 

bb =a'm
b (A7) 

n
d i = +mbCi +mC Ci: 2 )-

with 
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Boundary conditions 
The coordinate system is defined such that system boundaries are located at nodes rather than
 
faces. Thus, fixing a concentration is straightforward, while defining gradients or fluxes
 
requires approximation of gradients of C, D, with respect to x at the boundaries. The
 
strategy employed here is to estimate the concentration at a point outside the domain based
 
on the (central) finite difference approximation, the concentrations within the domain and the
 
gradient or flux information at the boundary and then solve the governing equation (Eq. AI)
 
at the boundary.
 

Known concentration (Dirichlet)
 
For a known concentration at a node i, Ci = Cknown' the matrix coefficients are simply:
 

(A9)aai = O,bbi = I,ei = O,di = Cknown 

Known concentration gradient (Neumann) 
The boundary condition is: 
g = (Xi+2- + (Xi+2- - (Xi - X,_2) + (Xi - X,_2) 

boundary (Xi X j _ 2 XXi+2 - X i_2 ) (Xi - X i_2 XXi+2 - Xi) I (Xi+2 - X j XXi+2 - X i_2 ) 

(AlO) 
In general, the concentration outside the domain (Cout) can be expressed in terms of the 
concentration at the boundary and the one adjacent inside the domain (Cin ): 

C =[ -(Xou, -Xi) c. _ (Xvu, -2xi +Xin ) c.]. (Xou, -Xi)(Xou, -Xin) (All) 
out g (Xi - X )(X - X ) (Xi - X )(X - Xi) I (Xi - x )

in out in in out in 

After substitution at the boundary and using the form introduced in Eq. A7, one obtains: 

(xou, - 2xi + xin ) (xuu, - Xin )]bb. =a'm +a·m - . - ­
I b a [ (Xj-X ) (Xj-X )

in in 

(_ (Xou, - 2xi + xin ) . (Xou, - Xin +m (Xou, C n
 
d = (a-I (Xi (Xi ' a (Xi (AI2.1)

i 
(X -X)(X -X)
+m out i out in g+m +m0(_) bi 

Xi Xin 

-a[m (Xuu, -Xin) 
a 

(Xi 

If the gradient is defined at the upper boundary, then 

aa j = O;cj=a·mc+a·ma (._ .)2 (A12.2) 
XI 
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whereas at the lower boundary
 

aa. =a·m +a'm [(XOU =0 (AI2.3)
! 
, a c ( _ )2 " 

Xi X in 

Known flux condition (Robin) 
A known flux at the boundary is described by: 

+ (AI3) 

Approximation of the concentration gradient gives 

F -(Xi+2 ]
known 1-2 

(Xi - X -

-2 )(X;+2 -Xi D d;I_;: (AI4), ( )( )'
Xi -Xj_ 2 Xi+2 -Xi j

+C (X; -X;_2) ] 
1+2 I I (X + - Xi )(X + -

i 2 i 2 

In general terms, the concentration outside is hence 

(xou, -2x; D. 
c = I I - XX,u, - x;) , x i " . (xou, - Xi XXV", - (A1S) 

J-F 
I (x _ X )(x _ x ) 

j in out in 

and the resulting matrix coefficients are: 

bb=a'm (xom -2x,+xm ) + 
, , (x, _ x" - x, ) i dx, v" (x; ­ xio ) 

+a·m 
b 

(A16.l) 

(x, xm Xi) , , ) (Xi XiO )
d i = a-I 

+ - + m - Xi - Xm ) F + + m 
ma ( _ X)' D;: (X _ X) mb ,

XI ill 

« 

-a'm (Xu., -2xi +Xio ) D. 
v " (Xi - XXvu, - , , dx," ,qi (Xi -

If the flux is defined at the upper boundary, then 

aa =O'c =a·m +a· m -Xi)'] (AI6.2) 
, , -xJ' 

whereas at the lower boundary 

(A16.3)aa = a· m +a'm c = 0 
a -X,,)' ' 

Note that calculation of the derivatives of v (Eq. AI6.1) with respect to X involves points 
outside the domain. By default, the property outside the domain is approximated by linear 
extrapolation: 
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Pout = + __ X out - Xi (AI7) 
Xin -Xi 

where Xout is set to the coordinates of the ghost concentration and i is situated at the boundary. 
Consistency of the extrapolation is checked by restricting it to physically sensible values such 
as D 0 and 1 O. Alternatively, if additional information is available, these coefficients 
outside the domain can be explicitly defined by the user. 

Finally, in advection dominated systems, central difference approximations may not be 
stable. Hence, the BRNS currently also contains an upwind scheme. Future extensions will 
incorporate more elaborate transport schemes such as weighted finite differences 
(BOUDREAU, 1997; FIADEIRO and VERONIS, 1977) or TVD schemes (STEEFEL and 
MACQUARRIE, 1996). Due to the modular operator splitting approach, the BRNS is well 
suited for such incremental improvements. 
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