Chaotic Modeling and Simulation (CMSIM) 1: 3-16, 2011

Extension of Poincaré’s program for
integrability, chaos and bifurcations

Ferdinand Verhulst

Mathematisch Instituut
University of Utrecht, PO Box 80.010, 3508 TA Utrecht, The Netherlands
(E-mail: f.verhulst@uu.nl)
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We restrict ourselves to a discussion of the ‘Méthodes nouvelles de la mécanique

céleste’ (based on [17]), leaving aside for instance the interesting thesis and the
Mémoire on differential equations. The following key results are in the field of
dynamical systems, the chapter indication refers to the ‘Méthodes nouvelles’:

e Poincaré-expansion with respect to a small parameter around a particular
solution of a differential equation (chapter 2).

e The Poincaré-Lindstedt expansion method (chapter 3) as continuation method
and as bifurcation method for periodic solutions.

e Characteristic exponents and expansion of exponents in the presence of a
small parameter; exponents when first integrals exist (chapter 4).

e The famous proof that in general for time-independent Hamiltonian sys-
tems no other first integrals exist besides the energy (chapter 5).

e The idea of ‘asymptotic series’ as opposed to convergent series (chapters 7
and 8).

e The divergence of series expansions in celestial mechanics (chapters 9 and
13).

e The Poincaré-domain to characterise resonance in normal forms (chapter

13 and in his thesis).

The notion of ‘asymptotic invariant manifold’ (chapter 25).

The recurrence theorem (chapter 26).

The Poincaré-map as a tool for dynamical systems (chapter 27).

Homoclinic (doubly asymptotic) and heteroclinic solutions; the image of

the corresponding orbit structure.

The term ‘New methods’ contrasts with the old methods of Lagrange,
Laplace, Delaunay, Jacobi that are correct and classical, but leaving a great
many unsolved problems. This holds in particular for integrability questions,
convergence of series which is related to Poisson-stability and bifurcation the-
ory.

2 The deception of two degrees-of-freedom

A time-independent Hamiltonian produces equations of motion that have in
general only one first integral, the energy. So, for integrability of a two d-o-f
Hamiltonian system, a second independent integral is needed, but near stable
equilibrium both numerics and analytic approximation suggests integrability
in this case. Why?

The reason is, that the measure of chaos in two d-o-f near stable equilibrium
is exponentially small. We will discuss this in more detail in section four. A
famous example is the Hénon-Heiles problem [6] that was published in 1964.
For small values of the energy it looks integrable and many futile expansions
were computed to pinpoint this apparent second integral. The ‘proofs’were
futile, but as we shall see, such expansions are not useless. For small values of
the energy they describe the KAM-tori that abound near stable equilibrium of
near-integrable systems.

The dynamics of a time-independent Hamiltonian system corresponds with
a two-dimensional area-preserving Poincaré-map. We can turn this around:
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a two-dimensional area-preserving map has a suspension that is Hamiltonian.
Consider as an example a two-dimensional area-preserving map Ty studied by
Igor Hoveijn [9]:

x cosa —sina T . —sina
<>—>( )()—&-smm( ) (1)
Y sina  cos « Y Cos

Fig. 1. The area-preserving map Ty produced by eq. (1) for « = 37/5. In the centre
of the plane there is a dominant family of closed KAM-curves. In between the curves
there are again stable and unstable periodic solutions but they can not be observed at
this level of precision. Outside this family of closed curves one finds stable periodic
solutions associated with unstable periodic solutions. Moving out one observes a
stable and unstable 10-periodic solution and further on another pair of 10-periodic
solutions. The unstable solutions have stable and unstable manifolds that intersect
an infinite number of times producing chaotic behaviour. The dots correspond with
orbits returning chaotically in the plane when applying the map repeatedly. Poincaré
described the folding process, see [17], that can be seen dynamically by considering
a small square in the plane and following its subsequent mappings (figure courtesy
Igor Hoveijn).

In fig. 1 we took o = 37/5. The closed KAM-curves around the centre
suggest that for small values of z and y the map is nearly integrable. For larger
values of x and y the chaotic nature of the map becomes more transparent.

3 Critical exponents, the (1 : 2 : 2)-resonance

Chapter four of the ‘Méthodes nouvelles’ introduces characteristic exponents.
Consider an n-dimensional autonomous equation of the form

&= X(a),
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and suppose we know a particular solution z = ¢(t). We call this a generating
solution. When studying neighbouring solutions of ¢(t) we put

x = ¢(t) + &

The variational equations of ¢(t) are obtained by substituting z = ¢(t) + £ into
the differential equation and linearising for small £ to obtain

- 0X
§= %L’::gﬁ(t)é

If ¢(t) is a periodic solution, the variational equations are a Floquet system.

Using the variational equations we can obtain a linear system of equations
of which the characteristic eigenvalue equation produces the characteristic ex-
ponents. There are some important cases:

e It is clear from the linear system determining the characteristic exponents
that if X (z,t) does not depend explicitly on ¢, the autonomous case, ¢(t)
is a solution, so one of the characteristic exponents is zero.

o If the vector field is time-dependent (¢ = X(z,t)) and contains a small
parameter u, can be expanded with respect to this parameter and admits
a T-periodic solution ¢(t) for 4 = 0, a periodic solution for small nonzero
values of p exists if all the characteristic exponents of ¢(t) are nonzero.

e If the vector field X is autonomous, has a periodic solution and we have
one and only one zero characteristic exponent, the same conclusion for the
existence of a periodic solution holds.

e If we have a T-periodic equation of & = X (z,t) with T-periodic solution
¢(t) and in addition an analytic first integral F'(x) = constant, at least one
of the characteristic exponents of ¢(t) is zero; the rather exceptional case
for this result is if all the partial derivatives 0F/0x vanish for x = ¢(t).

e If the vector field X is autonomous and we have p independent first inte-
grals, p < n, we have at least p + 1 characteristic exponents zero.

A number of special results hold in the case that our nonlinear system of dif-
ferential equations is Hamiltonian and autonomous. Poincaré proves, that in
this case the 2n characteristic exponents of a periodic solution, emerge in pairs
Ai, —Ai, equal in size and of opposite sign. In addition, the energy integral
produces two characteristic exponents zero; if there exist p other independent
first integrals we have either 2p + 2 characteristic exponents zero or, in the
exceptional case, the functional determinants of the integrals restricted to the
periodic solution vanish. For the proof, Poincaré uses Poisson brackets and the
theory of independent solutions of linear systems.

If the time-independent Hamiltonian system has a periodic solution with
more than two zero characteristic exponents, this can be caused by the presence
of another first integral besides the energy or it may be the exceptional case.

Examples of more than two zero characteristic exponents are found in the
normal forms of three degrees-of-freedom systems in 1 : 2 : n-resonance with
n > 4, where normalization to H3 produces two families of periodic solutions on
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the energy manifold. The normal form truncated to cubic terms is integrable.
The families break up when adding higher order normal form terms; see [13].
The technical problems connected with drawing conclusions from the presence
of more than two zero characteristic exponents, have probably prevented its use
in research of conservative dynamics, but the statement “a continuous family
of periodic solutions on the energy manifold is a non-generic phenomenon” is
one of the remaining features in the literature. Nowadays the analysis is easier
by the use of numerical continuation methods.

The 1 : 2 : 2 — resonance

continuous

family

-
-

normalised to H3 normalised to H4

integrable

Fig. 2. The three d-o-f (1 : 2 : 2)-Hamiltonian resonance, left the periodic solutions
in an action simplex of the Hamiltonian normlised to Hs, right normalization to Hy
(figure courtesy Springer).

Regarding the complications it is of interest to look at the general (1 :
2 : 2)-resonance, see fig. 2. The general Hamiltonian has 56 cubic terms,
normalization leaves three cubic terms. Remarkably enough, the cubic normal
form is integrable with energy integral, a quadratic integral and a cubic integral.
However, on the energy manifold we find one continuous family of periodic
solutions and two isolated solutions. So we have here an exceptional case as
described by Poincaré. It turns out that the cubic normal form displays a
hidden symmetry that vanishes at higher order. The interpretation is that the
phase-flow shows this symmetry with accuracy O(e) on the timescale 1/¢, the
integrability is asymptotic with error estimate O(g2t) (see the next section for
the error estimates). In fig. 2 the action simplex of the normal form to Hy
(before normalization 126 terms) shows the break-up of the continuous family
of periodic solutions into six periodic solutions on the energy manifold.

4 Measures of chaos

Most Hamiltonian systems are not integrable. However, as we shall see, this
is a very deceptive statement although it is mathematically correct. To get
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this in the right perspective, we shall start by outlining suitable approximation
methods. These are canonical normal form methods, sometimes called after
Birkhoff-Gustavson, and averaging performed in a canonical way. The meth-
ods admit precise error estimates and enable us therefore to determine local
measures of regularity and chaos. The methods also permit us to locate normal
modes and other short-periodic solutions.

We recall that two d-o-f time-independent Hamiltonian systems near stable
equilibrium can be normalized and that the normal form is always integrable
to any order. The integrals are the Hamiltonian and its quadratic part. The
motion on the KAM-tori dominates phase-space and this result expresses that
the amount of chaos near stable equilibrium is exponentially small. Explicitly:
near stable equilibrium, the measure of chaos is O(e® exp(—1/e®) for suitable
positive constants a, b where the energy E = O(¢?). An illustrative example is
studied in [7].

4.1 Approximations and normal forms

Consider the n degrees of freedom time-independent Hamiltonian

1 n
H(p.g)= 5 wi (i +al) + Hs+ Hat - 2)
=1

with Hy, k > 3 a homogeneous polynomial of degree k and positive frequencies
w;. We introduce a small parameter € into the system by rescaling the variables
by ¢; = €, p;i = €ps,i = 1,---,n and dividing the Hamiltonian by €2. This
implies that we localize near stable equilibrium with energy O(g?).

We can define successive, nonlinear coordinate (or near-identity) transforma-
tions that will bring the Hamiltonian into the so-called Birkhoff normal form;
see [3] and [14] for details and references. For a general dynamical systems ref-
erence see [1,4], for symmetry in the context of Hamiltonian systems see [4,10].
A stimulating text on chaos and resonance is [5]. In action-angle variables T, ¢,
a Hamiltonian H is said to be in Birkhoff normal form of degree 2k if it can be
written as

H=> w+ePy(r) +*P3(1) + - + 2 Py(7),
=1

where 7 = (71, -+, 7,) and P;(7) is a homogeneous polynomial of degree i in
T = %(piz +¢?%),i = 1,---,n. The variables 7; are called actions; note that
if Birkhoff normalization is possible, the angles have been eliminated. If a
Hamiltonian can be transformed into Birkhoff normal form, the dynamics is
fairly regular. The system is integrable with integral manifolds which are tori
described by taking 7; constant. The flow on the tori is quasi-periodic.

Suppose a Hamiltonian is in Birkhoff normal form to degree m, but the fre-
quencies are satisfying a resonance relation of order m + 1. This means that
H,y1, Hyqo etc. may contain resonant terms which can not be transformed
away. The procedure is now to split Hy, 1, Hyn42 etc. in resonant terms and
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terms to which the Birkhoff normalization process can be applied. The result-
ing normal form will generally contain resonant terms and is called Birkhoff-
Gustavson normal form. It contains terms dependent on the action 7 and on
resonant combination angles of the form y; = k1¢1 + - - - + kn¢,. In practice
we have to consider a truncation of the Birkhoff-Gustavson normal form H at
some degree p > m:

H=Hy+cHy+e*Hy+ - +eP 2, (3)
Because of the construction we have the following results:

e H is conserved for the original Hamiltonian system (2) with error O(eP~!)
for all time.

e H, is conserved for the original Hamiltonian system (2) with error O(e)
for all time. So the normal form has at least two integrals. Symmetry can
enhance the regularity, see [13].

e If we find other integrals of the Birkhoff-Gustavson normal form, we have
slightly weaker error estimates. Explicitly, suppose that F(p, q) is an inde-
pendent integral of the truncated Hamiltonian system (3), we have for the
solutions of the original Hamiltonian system (2) the estimate

F(p,q) — F(p(0),4(0)) = O(e"~'t).

An important consequence is the following statement: if the phaseflow induced
by the truncated Hamiltonian (3) is completely integrable, the flow of the orig-
inal Hamiltonian (2) is approximately integrable or asymptotically integrable
in the sense described above. In this case the original system is called formally
integrable. This implies that the irregular, chaotic component in the flow of
the original Hamiltonian is limited by the given error estimates and must be a
small-scale phenomenon on a long timescale. For details see [14] and [13].

4.2 Normal modes and short-periodic solutions

Liapunov proved that if the frequencies w; satisfy no resonance relation, the
normal modes, obtained by linearization, can be continued for the full, non-
linear Hamiltonian system (2), resulting in at least n short-periodic solutions
with periods e-close to 27 /w;.

Weinstein [18] proved that even in the case of resonance, there exist at least n
short-periodic solutions of Hamiltonian system (2). Note, that these periodic
solutions are not necessarily continuations of the linear modes, the term ‘nor-
mal modes’ in this context can be confusing. Another important point is that n
short-periodic solutions is really the minimum number. For instance in the case
of two degrees of freedom, 2 short-periodic solutions are guaranteed to exist by
the Weinstein theorem. But in the 1 : 2 resonance case one finds generically 3
short-periodic solutions for each (small) value of the energy. One of these is a
continuation of a linear normal mode, the other two are not. For higher-order
resonances like 3 : 7 or 2 : 11, there exist for an open set of parameters four
short-periodic solutions of which two are continuations of the normal modes.
Of course symmetry and special Hamiltonian examples may change this picture
drastically.
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4.3 Three degrees of freedom

The question of asymptotic integrability is different for more than two degrees
of freedom. First we consider the genuine first order resonances of three d-o-f
systems.

First-order resonances

As we have seen, the cubic normal form of the (1 : 2 : 2)-resonance is integrable;
this is caused by a hidden symmetry which reveals itself by normalization. The
(1 :2: 1)-resonance and the (1 : 2 : 3)-resonance on the other hand are not
integrable for an open set of parameters of the Hamiltonian. The results are
illustrated for the four first-order resonances in the table from [13].
If three independent integrals of the normalized system can be found, the nor-
malized system is integrable. The integrability depends in principle on how
far the normalization is carried out (Hj, represents the normal form of Hy, the
homogeneous part of the Hamiltonian of degree k). The formal integrals have
a precise asymptotic meaning as discussed in section 4.1. We use the following
abbreviations: no cubic integral for no quadratic or cubic third integral; discr.
symm. q; for discrete (or mirror) symmetry in the p;, g;-degree of freedom; 2
subsystems at H}, for the case that the normalized system decouples into a one
and a two degrees of freedom subsystem upon normalizing to Hy. In the second
and third column one finds the number of known integrals when normalizing
to H3 respectively Hy.

The remarks which have been added to the table reflect some of the re-
sults known on the non-existence of third integrals. Note that the results pre-
sented here are for the general Hamiltonian and that additional assumptions,
in particular involving symmetry, may change the results. In this respect it
is interesting that in a number of applications, chaotic dynamics appears to
be of relatively small size. An example is the dynamics of elliptical galaxies
that display three-axial symmetry. Astrophysical observations suggest highly
nonlinear but integrable motion. The statements above with indication ‘As-
sumptions’: ‘general’; are for Hamiltonian systems in general form near stable
equilibrium.

Ezample: the (1: 2 : 3)-resonance

This resonance was analyzed in [8] and [15]. We will summarize some results
and formulate some open problems. When normalizing to H one finds 7 short-
periodic (families of) solutions. One of them is for an open set of parameters
complex unstable (for the complementary set it is unstable of saddle type). This
complex instability is a source of chaotic behaviour. Using éilnikov—Devaney
theory, it is shown in [8] that a horseshoe map exists in the normal form to Hy
which makes the normal form chaotic.

Numerics indicate that the normal form H = Hs + Hj is already chaotic, but
a proof is missing. Also the dynamics of the case where the periodic solution
is unstable, but of saddle type, has still to be characterized.

Discrete symmetry in either the first or the last degree of freedom makes the
normal form to H, integrable.
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Table 1. Integrability of the normal forms of the four genuine first order resonances.

Resonance Assumptions Hs|Hy Remarks
1:2:1 general 2 | 2 | no analytic third integral
discr.symm. ¢ 2 | 2| no analytic third integral
discr.symm. g2 3| 3 |Hs =0; 2 subsystems at H,
discr.symm. g3 2 | 2 | no analytic third integral
1:2:2 general 3 | 2 |no cubic third integral at Hg4
discr.symm. g2 and q3| 3 | 3 | H3 = 0; 2 subsystems at H,4
1:2:3 general 2 | 2| no analytic third integral
discr.symm. ¢ 3 | 3 |2 subsystems at Hz and H,
discr.symm. g2 313 Hs=0
discr.symm. g3 3 | 3 | 2 subsystems at Hs and Hy4
1:2:4 general 2|2 no cubic third integral
discr.symm. ¢ 212 no cubic third integral
discr.symm. g2 or q3 | 3 | 3 | 2 subsystems at Hs and H,4

Higher-order resonances
Higher order resonances abound in applications. The results discussed thus far
are mostly general, but, with regards to applications, it is very important to
look again at the part played by symmetries. This will be illustrated for the
(1:3: 7)-resonance and will be discussed in some detail. This also serves as an
example that resonances with odd resonance numbers are particularly sensitive
to symmetries.
Ezample: the (1:3:7)-resonance
We start with the general Hamiltonian with this resonance in Hs:

Hy =11+ 3m + T73.

At Hj level there is no resonance and we find after normalization, Hs = 0.
There are two combination angles active at Hy level:

X1 = 3¢1 — ¢2 and x2 = ¢1 + 2¢2 — ¢3.

At Hj level no combination angles are added, Hs can be brought in Birkhoff
normal form. We list the consequences of mirror symmetry in each respective
degree of freedom:

o In the first d-o-f: x; and y2 not active; formal integrability until Hs, chaotic
dynamics has measure O(gt).

e In the second d-o-f: y; not active; formal integrability until H;, chaotic
dynamics has measure O(e%t).

e In the third d-o-f: y2 not active; formal integrability until H7, chaotic
dynamics has measure O(e°t).

e The case of mirror symmetry in all three d-o-f. is discussed below.

One can continue the analysis to higher order normal forms to obtain more
precise estimates of the remaining chaotic dynamics. We discuss an example.
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Three-azxial elliptical galaxies in (1:3:7)-resonance

In this case we have discrete (mirror) symmetry in three degrees of freedom.
Until H7 the system can be brought into Birkhoff normal form, chaotic dynam-
ics has measure O(e%) which predicts regular behaviour on a long timescale.
The Birkhoff-Gustavson normal form Hg contains the combination angles 6¢; —
2§Z§2 and 2(251 + 4¢2 - 2¢3.

The situation needs a very high degree of normalization as becomes clear when
considering the analysis of periodic solutions. Because of the discrete symmetry
7, = 0,7 =1,2,3 each corresponds with a two d-o-f submanifold of the original
(symmetric) Hamiltonian. The normal modes are exact periodic solutions of
the normal form and the original Hamiltonian. The normal forms in these 4-
dimensional submanifolds are all integrable (section 4.1) and chaotic behaviour
takes place in exponentially small sets. Consider the question of how far we
have at least to normalize the flow in these submanifolds.

Case 7; = 0. This is the worst case, as it involves the 3 : 7-resonance. In the
symmetric case this system has to be normalized to Hyy to characterize the
periodic solutions.

Case 7 = 0 involving the 1 : 7-resonance. The system has to be normalized to
Hig to characterize the periodic solutions.

Case 13 = 0 involving the 1 : 3-resonance. This relatively well-known system
has to be normalized to Hg to characterize the periodic solutions. In [13] it is
described how to deal with such higher-order cases.

4.4 A remark on chains of oscillators

Our knowledge of chains of oscillators is still restricted. Remarkably enough
the normal form of the 1 : 2 : ... : 2-resonance with n degrees of freedom is
integrable. Consider the Hamiltonian

1 n
H(p,q) = 50 + )+ D 0 + )+ Hs + -,
=2

where H3+- - - represents the general cubic and higher order terms. The Hamil-
tonian is formally integrable and the proof runs along the lines of the analysis
of the (1 :2: 2)-resonance, displaying again hidden symmetry.

A spectacular result arises for the classical Fermi-Pasta-Ulam problem which is
a chain of identical oscillators coupled by nearest neighbour interaction. At low
energy levels the chain shows recurrence and no chaos. Recently it was shown
in [12] by normal form methods and symmetry considerations, that a nearby
integrable system exists which make the KAM-theorem applicable. This solves
the recurrence phenomenon at low energy.

5 Bifurcations

The analysis of periodic solutions is based on the implicit function theorem. If
the conditions of the theorem are not satisfied we have a bifurcation.
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The treatment in the ‘Méthodes nouvelles’ is very general, it applies to
nonlinear ODEs, including dissipative systems. The bifurcations discussed have
a universal character:

e Hopf bifurcation (continuation near an equilibrium).
e Transcritical bifurcation, exchange of stability.
e Emergence and vanishing of periodic solutions in pairs.

A bifurcation that plays a very prominent role in nonlinear dynamics is the
Hopf bifurcation, also referred to as Poincaré-Andronov-Hopf bifurcation. It
may happen that, when an equilibrium point of which the eigenvalues depend
on parameters, will have two purely imaginary eigenvalues if one of the pa-
rameters (4) assumes a critical value, say po. In this case, depending on the
nonlinearities, there may exist a nearby periodic solution. If the periodic solu-
tion emerges for p < g it is called subcritical, for g > g it is supercritical.

For periodic solutions and fixed points of a map, there are analogous results,
where one usually refers to generalized Hopf, Hopf-Hopf or Neimark-Sacker
bifurcation.

The first place where the Hopf bifurcation arises in the literature is in
the Méthodes nouvelles. Poincaré considers an equilibrium of an autonomous
equation in R"

= X(x)

and views this equilibrium as a periodic solution with arbitrary period. Suppose
that there is a parameter y in the equation and that x1 =29 =--- =2, =0is
an equilibrium for any value of u. We will look for a periodic solution near the
origin = 0 for g = 0, with initial value 2(0) = 8 and z(T") = ¢ + 8. If we can
determine T with ¥ = 0 and non-trivial 3, we have found a periodic solution.
Poincaré finds from the determinant of the Jacobian J:

19,4
J = % |;L:O,ac:Oa

that if |J| # 0, we will have only the trivial solution 8 = 0, corresponding with
the equilibrium solution = 0. The condition |J| = 0 to obtain a nontrivial
solution corresponds with (at least) two eigenvalues to be purely imaginary
and conjugate. This condition makes the existence of a small periodic solution
branching off equilibrium x = 0 possible, but we still have to consider the
nonlinear terms to see whether a periodic solution actually emerges.

The eigenvalues \; will depend on u. Adding the condition that at the
critical value pp = 0, we have two conjugate imaginary eigenvalues \; ; with
dX; ;/dp # 0, we will call such a bifurcation value of 1 a Hopf point.

Poincaré considers in the ‘Méthodes nouvelles’ as an example the equations
formulated by Hill for the motion of the Moon, two second-order equations with
one nontrivial equilibrium. The equilibrium corresponds with the Moon being
in constant conjunction or opposition at constant distance of the Earth. The
eigenvalues of the Jacobian as formulated above, have two real values and two
conjugate imaginary ones. The conclusion is that a periodic solution exists near
this equilibrium in near-opposition or near-conjunction with an amplitude that
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grows with the small parameter |/z. As two conjugate eigenvalues are real, it
will be unstable.

The classical example of the Van der Pol-equation is easier to analyse.
Poincaré’s interest in wireless telegraphy induced him to use periodic solutions
obtained by this type of bifurcation, see [17].

5.1 Tori created by Neimark-Sacker bifurcation

Another important scenario to create a torus, arises from the Neimark-Sacker
bifurcation. For an instructive and detailed introduction see Kuznetsov (2004)
[11]. Suppose that we have obtained an averaged equation & = €f(x, a), with
dimension 3 or higher, by variation of constants and subsequent averaging; a
is a parameter or a set of parameters. It is well-known that if this equation
contains a hyperbolic critical point, the original equation contains a periodic
solution. The first order approximation of this periodic solution is character-
ized by the time variables ¢ and et.

Suppose now that by varying the parameter a a pair of eigenvalues of the crit-
ical point becomes purely imaginary. For this value of a the averaged equation
undergoes a Hopf bifurcation producing a periodic solution of the averaged
equation; the typical time variable of this periodic solution is et and so the
period will be O(1/e). As it branches off an existing periodic solution in the
original equation, it will produce a torus; it is associated with a Hopf bifur-
cation of the corresponding Poincaré map and the bifurcation has a different
name: Neimark-Sacker bifurcation. The result will be a two-dimensional torus
which contains two-frequency oscillations, one on a timescale of order 1 and
the other with timescale O(1/¢).

A special case of a system studied by Bakri et al. (2004) [2] is:

&+ erd + (1 4+ecos2t)x + exy = 0,
J+ey+4(14e)y —ea® =0.

This is a system with parametric excitation and nonlinear coupling; x is a
positive damping coefficient which is independent of €. Away from the coordi-
nate planes we may use amplitude-phase variables by © = 71 cos(t + ¢1),4 =
—risin(t + Y1),y = racos(2t + ¥2),y = —2rosin(2t + ¢1); after first order
averaging we find, omitting the subscripts a, the system

7= 67"1(%2 sin(211 — 12) + ism 29h — %"0),
Uy = 5(%2 cos(21 — P2) + %COSQM)?
Y. 5 )
7”2—55(47425111( 1/11—¢2)— ),

s = S(= L cos(2 2

Yo = 5(*47742 cos(291 — 2) + 2).

Putting the righthand sides equal to zero produces a nontrivial critical point
corresponding with a periodic solution of the system for the amplitudes and
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phases and so a quasi-periodic solution of the original coupled system in x and
y. We find for this critical point the relations

72 = 4v/519, cos(2001 —1hy) = %,Sin(2¢1—¢2) = %,Tl = 21/2k + /5 — 162,

This periodic solution exists if the damping coefficient is not too large: 0 < k <
%. Linearization of the averaged equations at the critical point while using
these relations produces a (4 x 4) matrix A.

A condition for the existence of the periodic solution is that the critical
point is hyperbolic, i.e. the eigenvalues of the matrix A have no real part zero.
It is possible to express the eigenvalues explicitly in terms of k by using a soft-
ware package like MATHEMATICA. However, the expressions are cumbersome.
Hyperbolicity is the case if we start with values of k just below % = 0.559.
Diminishing x we find that, when x = 0.546, the real part of two eigenvalues
vanishes. This value corresponds with a Hopf bifurcation producing a noncon-
stant periodic solution of the averaged equations. This in its turn corresponds
with a torus in the original equations (in z and y) by a Neimark-Sacker bi-
furcation. As stated before, the result will be a two-dimensional torus which
contains two-frequency oscillations, one on a timescale of order 1 and the other

with timescale O(1/g).

6 Breakdown and bifurcations of tori

Complementary to the emergence of tori, their breakdown is of great theoretical
and practical interest. In particular we would like to have a general idea of how
two-dimensional invariant tori break down and how nontrivial limit sets are
created when certain parameters are varied. To obtain insight the analysis of
maps can be very helpful as the phenomena governed by differential equations
are much more implicit.

A common feature is the presence of stable and unstable periodic solutions in
p/q-resonance on a torus. Breakup can be triggered by heteroclinic tangencies,
arising when a parameter is varied. This leads rather quickly to strange, chaotic
behaviour. There are other scenarios producing strange behaviour where the
normal hyperbolicity of the torus decreases more gradually. For an introduction
and references see [16].
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