
A Cache-Oblivious Sparse Matrix–Vector
Multiplication Scheme Based on the
Hilbert Curve

Albert-Jan N. Yzelman and Rob H. Bisseling

Abstract The sparse matrix–vector (SpMV) multiplication is an important kernel
in many applications. When the sparse matrix used is unstructured, however,
standard SpMV multiplication implementations typically are inefficient in terms
of cache usage, sometimes working at only a fraction of peak performance.
Cache-aware algorithms take information on specifics of the cache architecture
as a parameter to derive an efficient SpMV multiply. In contrast, cache-oblivious
algorithms strive to obtain efficiency regardless of cache specifics. In earlier work
in this latter area, Haase et al. (2007) use the Hilbert curve to order nonzeroes in the
sparse matrix. They obtain speedup mainly when multiplying against multiple (up
to eight) right-hand sides simultaneously.

We improve on this by introducing a new datastructure, called Bi-directional
Incremental Compressed Row Storage (BICRS). Using this datastructure to store
the nonzeroes in Hilbert order, speedups of up to a factor two are attained for the
SpMV multiplication y D Ax on sufficiently large, unstructured matrices.

1 Introduction

Given an m�n sparse matrix A and a dense vector x, we consider the sparse matrix–
vector (SpMV) multiply y D Ax, with y a dense result vector. A standard way of
storing a sparse matrix A is the Compressed Row Storage (CRS) format [1], which
stores data in a row-by-row fashion using three arrays: j , v, and r . The first two
arrays are of size nz.A/, with nz.A/ the number of nonzeroes in A, whereas r is of
length mC1. The array j stores the column index of each nonzero in A, and v stores
the corresponding numerical values. The ranges Œri ; riC1/ in those arrays correspond

A.-J.N. Yzelman (�) � R.H. Bisseling
Utrecht University, 3508 TA Utrecht, The Netherlands
e-mail: ALBERT-JAN.YZELMAN@CS.KULEUVEU.BE; R.H.Bisseling@uu.nl

M. Günther et al. (eds.), Progress in Industrial Mathematics at ECMI 2010,
Mathematics in Industry 17, DOI 10.1007/978-3-642-25100-9 73,
© Springer-Verlag Berlin Heidelberg 2012

627



628 A.-J.N. Yzelman and R.H. Bisseling

Algorithm 3 SpMV multiplication algorithm calculating y D Ax using CRS
for i D 0 to m � 1 do

for k D rŒi � to rŒi C 1� � 1 do
yŒi � D yŒi � C vŒk� � xŒj Œk��

end for
end for

to the nonzeroes in the i th row of A. A standard SpMV multiply algorithm using
CRS is given in Algorithm 3. It writes to y sequentially, and thus performs optimally
(regarding y) in terms of cache efficiency. Accesses to x, however, are unpredictable
in case of unstructured A, causing cache misses to occur on its elements. This is the
main reason for inefficiencies during the SpMV multiply [3, 5, 6, 12].

A way to increase performance is to force the SpMV multiply to work only
on smaller and uninterrupted subranges of x, such that the vector components
involved fit into cache. This can be done by permuting rows and columns from
the input matrix so that the resulting structure forces this behaviour when using
standard CRS. Results on this method have been reported in [16], using a one-
dimensional (1D) method, and in [17], where the method has been extended to
two dimensions (2D). It must be noted that the 2D method theoretically requires
a different datastructure than CRS, but results show that CRS can still outperform
more complex datastructures when an appropriate permutation strategy is used.
Gains can be as large as 50% for the 1D method and 63% for the 2D method.

What we consider in this paper is a change of datastructure instead of a change
in the input matrix structure. This means finding a datastructure which accesses
nonzeroes in A in a more “local” manner; that is, an order such that jumps in the
input and output vector remain small and thus yield fewer cache misses. Earlier
work in this direction includes the Blocked CRS format [11], the auto-tuning sparse
BLAS library OSKI [13], exploiting variable sized blocking [10, 14], and several
other approaches [2, 12]. In the dense case, relevant are the work by Goto et al. [4],
who hand-tuned dense kernels to various different architectures, and the ATLAS
project [15], which strives to do the same using auto-tuning. Of specific interest
is the use of space-filling curves to improve cache locality in the dense case, in
particular the use of the Morton (Z-curve) ordering [9], more recently combined
with regular row-major formats to form hybrid-Morton formats [8].

In the sparse case, the work by Haase et al. in [5], which already contains the
foundation of the main idea presented here, is of specific interest. They propose to
store the matrix in an order defined by the Hilbert curve, making use of the good
locality-preserving attributes of this space-filling curve. Figure 1 shows an example
of a Hilbert curve within 2 � 2 and 4 � 4 matrices. This locality means that, from
the cache perspective, accesses to the input and output vector remain close to each
other when following the Hilbert curve. The curve is defined recursively as can be
seen in the figure: any one of the four “super”-squares in the two-by-two matrix
can readily be subdivided into four subsquares, onto which a rotated version of the
original curve is projected such that the starting point is on a subsquare adjacent to



A Cache-Oblivious Sparse Matrix–Vector Multiplication Scheme 629

Fig. 1 The Hilbert curve drawn within two-by-two and four-by-four matrices

where the original curve entered the super-square, and similarly for the end point.
A Hilbert curve thus can be projected on any 2dlog2 me � 2dlog2 ne matrix, which
in turn can embed the sparse matrix A, imposing a 1D ordering on its nonzeroes.
Haase et al. [5] stored these nonzeroes in triplet format: three arrays i; j; v of length
nz.A/ are defined, such that the kth nonzero of A with value vŒk� is stored at the
location .i Œk�; j Œk�/, as determined by the Hilbert ordering. The main drawback is
the difference in storage space required; this is 3�nz.A/, an increase of nz.A/ � m

compared to the standard CRS datastructure. The number of cache misses prevented
thus must overtake this amount of extra data movement before any gain in efficiency
becomes noticeable.

A new datastructure is proposed in Sect. 2 to alleviate this problem, and results
of experiments using the Hilbert curve and this new data format are presented in
Sect. 3. These are followed by the conclusions in Sect. 4.

2 Bi-directional Incremental CRS

If using the Hilbert curve to store the nonzeroes of a sparse matrix can be said to be
the first of two main ideas around this cache-oblivious method, the second enabling
idea is the Bi-directional Incremental CRS datastructure (BICRS). It is capable
of efficiently storing the nonzeroes of A in the Hilbert order. We will introduce
BICRS by deriving it from the Incremental CRS datastructure (ICRS), which can
be viewed as an alternative implementation of the standard CRS datastructure, as
presented by Koster [7]. Instead of storing the j array, an incremental version �j is
stored instead; that is, �j Œ0� D j Œ0� and �j Œq� D j Œq�� j Œq � 1� for 1 � q < n. This
means that an SpMV multiplication kernel, upon processing the kth nonzero, simply
increases its current column index with �j Œk� to find the column index of the next
nonzero to be processed. A row change can be signalled by overflowing the column
index such that subtracting n from the overflowed index yields the starting column
index on the next row. The row array r can then be exchanged for an incremental row



630 A.-J.N. Yzelman and R.H. Bisseling

array �r as well, so that �rŒk� yields the distance between the kth nonempty row
and the next nonempty row. �rŒ0� specifies which row contains the first nonzero.
Note that when there are no empty rows, �r contains only 1-values except at �rŒ0�,
which equals 0. This means the array does not have to be stored, bringing the total
storage requirement down to 2�nz.A/. When the row increment array is stored, the
storage requirement is equal to that of CRS with 2�nz.A/ C m, worst case; in the
case where A has empty rows, the required storage is less. The main gain is that the
SpMV multiply can be efficiently written using pointer arithmetic, which yields a
decrease in machine code instructions [7].

As described, ICRS is not capable of storing nonzeroes in any ordering other
than the CRS ordering. A simple extension, however, is to allow negative incre-
ments, thus facilitating jumping through nonzeroes of the sparse matrix in any
bi-directional, possibly non-CRS, order. Overflows in the column-direction still
trigger row changes, as with ICRS. We refer to this generalised datastructure as
Bi-directional ICRS. An immediate disadvantage is that the row increments array
now can become larger than the number of nonempty rows if nonzeroes are not
traversed in a row-by-row manner. This hampers efficiency since the number of
memory accesses required to traverse A increases to 2�nz.A/Cmjumps, where mjumps

is the number of row jumps stored in �r , with m � mjumps � nz.A/. It is, however, a
definite improvement over the triplet structure used in [5]. In case of a dense matrix,
the number of row jumps made when nonzeroes are ordered according to the Hilbert
curve is about nz.A/=2, but this gives no guarantee for the number of jumps in the
sparse case; this is entirely dependent on the nonzero structure. Note that while this
datastructure is bi-directional, the datastructure orientation still matters.

3 Experiments

Experiments have been performed on two quad-core architectures, using only one
of the four cores available for the sequential SpMV multiplications. The first is an
Intel Core 2 Q6600 with a 32 KB L1 data cache, and a 4 MB semi-shared L2 cache.
No L3 cache is available. The second architecture is an AMD Phenom II 945e
on which each core has a private 64 KB L1 and 512 kB L2 data cache, while all
four cores together share a 6 MB L3 cache. The SpMV kernels,1 based on CRS,
ICRS and BICRS using Hilbert ordering, are each executed 100 times on given
matrices, and report an average running time of a single SpMV multiplication.
Experiments have been performed on 9 sparse matrices, all taken to be large
in the sense that the input and output vector do not fit into the L2 cache; see
Table 1(top). All matrices are available through the University of Florida sparse
matrix collection. Tests on smaller matrices were performed as well, but, in contrast
to when using the reordering methods, any decrease in L1-cache misses did not

1The source code is freely available at http://albert-jan.yzelman.net/software

http://albert-jan.yzelman.net/software


A Cache-Oblivious Sparse Matrix–Vector Multiplication Scheme 631

Table 1 Matrices used in our experiments (top) and SpMV timings (bottom). An S (U) indicates
that a matrix is considered structured (unstructured). Experiments were done on the Intel Q6600
(bottom-left) and the AMD 945e (bottom-right). Timings are in milliseconds

Name Rows Columns Nonzeroes Symmetry, origin

Stanford 281903 281903 2312497 U Link matrix
cont1 l 1918399 1921596 7031999 S Linear programming
Stanford-berkeley 683446 683446 7583376 U Link matrix
Freescale1 3428755 3428755 17052626 S Circuit design
Wikipedia-20051105 1634989 1634989 19753078 U Link matrix
cage14 1505785 1505785 27130349 S Struct. symm., DNA
GL7d18 1955309 1548650 35590540 U Combinatorial problem
Wikipedia-20060925 2983494 2983494 37269096 U Link matrix
Wikipedia-20070206 3566907 3566907 45030389 U Link matrix

Hilbert Extra Hilbert Extra
CRS ICRS BICRS build Matrix CRS ICRS BICRS build

30:22 40:24 25:74 1456 Stanford U 22:15 27:52 18:48 832

44:02 46:41 62:85 5085 cont1 l S 31:07 26:99 48:05 3084

35:29 34:56 45:82 5578 Stanford-berkeley U 26:05 24:52 34:29 3415

122:27 131:52 210:10 14458 Freescale1 S 98:55 95:00 148:04 8913

366:45 374:82 253:45 12632 Wikipedia-20051105 U 368:36 387:39 250:30 5850

136:19 141:07 165:21 20453 cage14 S 116:44 110:69 140:20 12095

774:55 856:16 372:25 22126 GL7d18 U 716:32 824:32 452:89 10064

812:42 831:17 576:67 23839 Wikipedia-20060925 U 823:53 879:53 550:00 11814

1012:73 994:35 776:48 27345 Wikipedia-20070206 U 1033:95 1124:02 591:08 14753

result in a faster SpMV execution. Results on larger matrices in terms of wall-clock
time are reported in Table 1 for the Q6600 system (bottom-left), as well as for the
AMD 945e (bottom-right). Also reported is the extra build time, that is, the time
required to build the Hilbert BICRS structure minus the time required to build a CRS
datastructure.

4 Conclusions

The cache-oblivious SpMV multiplication scheme works very well on large unstruc-
tured matrices. In the best case (the GL7d18 matrix on the Q6600), it gains 51%
in execution speed. On both architectures, 5 out of the 6 unstructured matrices
show significant gains, typically around 30%–40%. The only exception is the
stanford-berkeley matrix, taking a performance hit of 32%, on both architectures.
Interestingly, the 1D and 2D reordering methods also do not perform well on
this matrix [16, 17]. The method also shows excellent performance regarding pre-
processing times, taking a maximum of 28 s for wikipedia-2007 on the Q6600
system. This is in contrast to 1D and 2D reordering methods, where pre-processing
times can take hours for larger matrices, e.g., 21 h for wikipedia-2006 [16, 17].



632 A.-J.N. Yzelman and R.H. Bisseling

Gains in efficiency when reordering, however, are more pronounced than for the
Hilbert-curve scheme presented here. Note that the methods do not exclude each
other: 1D or 2D reordering techniques can be applied before loading the matrix
into BICRS using the Hilbert ordering to gain additional efficiency. The results also
show that, as expected, the method cannot outperform standard CRS ordering when
the matrix already is favourably structured, resulting in slowdowns.

For future improvement of the Hilbert-curve method, we suggest applying the
Hilbert ordering to small (e.g., 8 by 8) sparse submatrices of A instead of its
nonzeroes, and imposing a regular CRS ordering on the nonzeroes contained within
each such submatrix. Such a hybrid scheme has also been suggested for dense
matrices [8], although the motivation differs; in our case, since BICRS can still
be used, the number of row jumps required is reduced in case the rows of the
submatrices contain several nonzeroes, thus increasing performance further.

References

1. Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H. (eds.): Templates for the Solution
of Algebraic Eigenvalue Problems: A Practical Guide. SIAM, Philadelphia, PA (2000)

2. Bender, M.A., Brodal, G.S., Fagerberg, R., Jacob, R., Vicari, E.: Optimal sparse matrix dense
vector multiplication in the I/O-model. In: Proceedings 19th Annual ACM Symposium on
Parallel Algorithms and Architectures, pp. 61–70. ACM Press, New York (2007)

3. Dennis, J.M., Jessup, E.R.: Applying automated memory analysis to improve iterative algo-
rithms. SIAM J. Sci. Comput. 29(5), 2210–2223 (2007)

4. Goto, K., van de Geijn, R.: On reducing TLB misses in matrix multiplication. Technical Report
TR-2002-55, University of Texas at Austin, Department of Computer Sciences (2002)

5. Haase, G., Liebmann, M., Plank, G.: A Hilbert-order multiplication scheme for unstructured
sparse matrices. Int. J. Parallel, Emergent Distr. Syst. 22(4), 213–220 (2007)

6. Im, E.J., Yelick, K.A.: Optimizing sparse matrix computations for register reuse in SPARSITY.
In: Proceedings International Conference on Computational Science, Part I, Lecture Notes in
Computer Science, vol. 2073, pp. 127–136, Springer, Berlin (2001)

7. Koster, J.: Parallel templates for numerical linear algebra, a high-performance computation
library. Master’s thesis, Utrecht University, Department of Mathematics (2002)

8. Lorton, K.P., Wise, D.S.: Analyzing block locality in Morton-order and Morton-hybrid
matrices. SIGARCH Comput. Archit. News 35(4), 6–12 (2007)

9. Morton, G.M.: A computer oriented geodetic data base and a new technique in file sequencing.
Technical report, IBM, Ottawa, Canada (1966)

10. Nishtala, R., Vuduc, R.W., Demmel, J.W., Yelick, K.A.: When cache blocking of sparse matrix
vector multiply works and why. Appl. Algebra Engrg. Comm. Comput. 18(3), 297–311 (2007)

11. Pinar, A., Heath, M.T.: Improving performance of sparse matrix-vector multiplication. In:
Proceedings Supercomputing 1999, p. 30. ACM Press, New York (1999)

12. Toledo, S.: Improving the memory-system performance of sparse-matrix vector multiplication.
IBM J. Res. Dev. 41(6), 711–725 (1997)

13. Vuduc, R., Demmel, J.W., Yelick, K.A.: OSKI: A library of automatically tuned sparse matrix
kernels. J. Phys. Conf. Series 16, 521–530 (2005)

14. Vuduc, R.W., Moon, H.J.: Fast sparse matrix-vector multiplication by exploiting variable block
structure. In: High Performance Computing and Communications 2005, Lecture Notes in
Computer Science, vol. 3726, pp. 807–816, Springer, Berlin (2005)



A Cache-Oblivious Sparse Matrix–Vector Multiplication Scheme 633

15. Whaley, R.C., Petitet, A., Dongarra, J.J.: Automated empirical optimizations of software and
the ATLAS project. Parallel Comput. 27(1–2), 3–35 (2001)

16. Yzelman, A.N., Bisseling, R.H.: Cache-oblivious sparse matrix–vector multiplication by using
sparse matrix partitioning methods. SIAM J. Sci. Comput. 31(4), 3128–3154 (2009)

17. Yzelman, A.N., Bisseling, R.H.: Two-dimensional cache-oblivious sparse matrix–vector mul-
tiplication, Parallel Comput. 37(12), 806–819 (2011)


	A Cache-Oblivious Sparse Matrix–Vector Multiplication Scheme Based on the Hilbert Curve
	1 Introduction
	2 Bi-directional Incremental CRS
	3 Experiments
	4 Conclusions
	References


