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Abstract

In this paper we develop the theory of cardinals in the theory COPY.
This is the theory of two total, jointly injective binary predicates in a
second order version, where we may quantify over binary relations. The
only second order axioms of the theory are the axiom asserting the exis-
tence of an empty relation and the adjunction axiom, which says that we
may enrich any relation R with a pair x, y. The theory COPY is strictly
weaker than the theory AS, adjunctive set theory. The relevant notion of
weaker here is direct interpretability. We will explain and motivate this
notion in the paper. A consequence is that our development of cardinals
is inherited by stronger theories like AS. We will show that the cardinals
satisfy (at least) Robinson’s Arithmetic Q. A curious aspect of our ap-
proach is that we develop cardinal multiplication using neither recursion
nor pairing, thus diverging both from Frege’s paradigm and from the tra-
dition in set theory. Our development directly uses the universal property
characterizing the product that is familiar from category theory.

The broader context of this paper is the study of a double degree
structure: the degrees of (relative) interpretability and the finer degrees
of direct interpretability. Most of the theories studied are in one of two
degrees of interpretability: the bottom degree of predicate logic or the
degree of Q. The theories will differ significantly if we compare them using
direct interpretability.
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1 Introduction

There is a wide and natural class of theories called ‘weak theories’. These are
the theories that are mutually interpretable with Robinson’s Arithmetic Q.1

1The notion of weak theory is informal in the literature. It is not fully clear which theories
are ‘weak’. Thus, another plausible explication would be: a theory is weak if it is locally
mutually interpretable with Q.
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Examples of weak theories are the following.

a. Arithmetical theories like Robinson’s Arithmetic Q, I∆0, Buss’s theory S1
2

and I∆0 + Ω1.

b. Various theories of concatenation like Szmielew & Tarski’s theory F (see:
[TMR53], p86) and Grzegorczyk’s theory TC (see: [Grz05]).

c. Theories of sequences, like the one introduced by Pavel Pudlák in [Pud83].

d. Various weak set theories like adjunctive set theory AS, a set theory intro-
duced by Pudlák in [Pud83] (see also: [MPS90]).2 Pudlák’s theory is, modulo
some inessential details, the same as a weak set theory introduced and studied
by Tarski & Szmielew, minus extensionality. See [ST50] and [TMR53].

All these theories are mutually interpretable with each other. This insight can
be viewed as a basic theorem of what Harvey Friedman calls strict reverse
mathematics, where one classifies mathematically natural weak systems.

There is a strong feeling that the theories mutually interpretable with Q form
a natural class. For one thing, in the light of results of Solovay and Pudlák,
the theories in this degree seem to be the minimal natural theories in which
we can do formalization of syntax in the care free way, so that we can give the
usual proof of the Second Incompleteness Theorem —at least when we choose
the natural numbers of the theory wisely. This feeling of naturality suggests
that Q should be characterizable by some perspicuous (universal) property. Re-
grettably, no such property has been found (yet). For example, one would hope
that the degrees of interpretability of finitely axiomatized, essentially undecid-
able theories have a unique minimal element given by Q. This is not so.3

Modulo mutual interpretability all the theories of the groups (a), (b), (c),
(d) are the same, but, still, there is an important division between (a) and (b)
on the one hand and (c) and (d) on the other. To explain why this is so, let
us make a slight detour. Consider an arbitrary theory U in predicate logic.
What would it mean to say that this theory ‘has pairing’ or ‘supports pairing’?
Well, it means that there is a formula Axyz in the language of U such that U
proves that, for every x and y, there is a z such that Axyz, and that, for every
x, y, x′, y′, z, if Axyz and Ax′y′z, then x = x′ and y = y′. We can reformulate
this definition in terms of interpretability as follows. We can define a theory
of pairing with a basic ternary relation pair that has as axioms that for every
x and y, there is a z such that pair(x, y, z), and that, for every x, y, x′, y′, z, if
pair(x, y, z) and pair(x′, y′, z), then x = x′ and y = y′. We now would like to
say: a theory has pairing if it interprets the theory of pairing. This is however
not quite right. In fact every theory interprets our theory of pairing in the sense
of relative interpretability where identity need not necessarily be translated to
identity. Our theory of pairing has a one point model and any theory with a one

2A nice variant of AS was given by Harvey Friedman in his Tarski Lecture Interpretations,
according to Tarski.

3This follows from a result of William Hanf. See [Han65].
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point model is interpretable in any other theory. What went wrong is of course
that we should neither allow a change of our domain nor a change of the identity
relation. We call an interpretation direct if it is unrelativized and if it sends
identity to identity. Now we can say: U has pairs iff it directly interprets the
theory of pairing. We can repeat this idea for certain basic theories of sequences
and sets. Thus, we can say that an abritrary theory U has sets iff it directly
interprets the basic theory, AS, of sets. The theories classified under (b) and (c)
are examples of theories that can play the role of basic theories of a certain kind
of container. It turns out that the basic theories under (b) and (c) are mutually
directly interpretable. This implies that if an arbitrary theory ‘has sets’ then it
also ‘has sequences’ and vice versa. Theories that interpret adjunctive se theory
AS will be called sequential.

Sequential theories were independently introduced by Pavel Pudlák and Har-
vey Friedman, who called them adequate theories. See, e.g., [Pud83], [Pud85],
[Smo85], [MPS90]. For a survey, see [Vis07].

An important ingredient of the usefulness of a theory like AS is the fact that
it (relatively) interprets Robinson’s Arithmetic Q. In this paper we zoom in on
the question of the interpretability of Q in weak container theories. Here is a
brief history of the result that Q is interpretable in the salient weak container
theory Adjunctive Set Theory or AS.

1. In the paper [ST50], Wanda Szmielew and Alfred Tarski announce the in-
terpretability of Q in a theory S that is essentially AS plus extensionality.4

See also [TMR53], p34. No proof was published.

2. A proof of the Szmielew-Tarski result is given by George Collins and
Joseph Halpern in [CH70]. Collins and Harper did not have Solovay’s
method of shortening cuts available.5 So, it is rather amazing that they
manage to prove addition and multiplication total. They succeed by a
clever choice of values for plus and times whenever the recursive definition
does not turn out a value. Their interpretation of Q is direct.

3. Franco Montagna and Antonella Mancini, in their paper [MM94], give an
improvement of the Szmielew-Tarski result. They prove that Q can be
interpreted in an extension N of AS in which we have the functionality
of empty set and the operation of adjoining of singletons. They sketch a
proof of the Herbrand consistency of their set theory that can be proved
in a predicative arithmetic.

4. In appendix III of [MPS90], Jan Mycielski, Pavel Pudlák and Alan Stern
provide the ingredients of the interpretation of Q in AS.6 They do not
develop the theory of addition and multiplication, but these can be treated
in familiar ways using the theory of sequences that provided by their
argument. See e.g. [Pud83] or [HP91].

4John Burgess in [Bur05] , p90-91, calls this theory ST, for Szmielew-Tarski set theory.
5Solovay’s method dates from roughly 1976. See the unpublished letter [Solle].
6Mycielski, Pudlák and Stern do not provide a name for their weak set theory. They call

any theory that directly interprets AS: a weak set theory.
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5. John Burgess in his [Bur05], Section 2.2, provides a variant of the Montagna-
Mancini argument.

The style of the interpretation of Q provided in each of these proofs is by treating
the numbers mainly as finite ordinals. Specifically, the main part of the defini-
tions of addition and multiplication consists of a recursion. We will provide yet
another proof of the interpretability of Q in AS.

Why is the interpretability of Q in AS interesting? A first reason is that it
plays an important role in verifying that adjunctive set theory directly interprets
a theory of sequences. The role of this insight is as follows. The use of sequential
theories has two sides. The first is verification of the fact that a given theory is
sequential. This should be as easy as possible. For this purpose, we only have to
verify that AS is directly interpretable in the given theory. the theory AS is ideal
with its simple signature and modest axioms. The second side is application of
the fact that a theory is sequential. For this it is essential that we have a rich
theory of sequences and coding available. To move from the verification side to
the application side, we have a bridging theorem that says that a rich theory of
numbers and sequences is directly interpretable in the poor theory AS. The key
part of this bridging theorem is to provide suitable numbers in AS. To have an
interpretation that validates Q is sufficient here.

A second source of interest, is the desire to understand what is minimally
involved in the connection between sets and numbers. The development of Q
in AS (and, in the even weaker theory COPY) shows that we can proceed from
fairly minimal assumptions.

What is to be found in the present paper? We provide an alternative proof
of the theorem of Mycielski, Pudlák and Stern. The main difference in approach
is that we develop Q as a theory of cardinals in the theory COPY that is directly
interpretable in AS.7

In order to implement cardinals, the central problem is to develop the Carte-
sian product. One obvious difficulty is that we do not have a functional pairing
in AS, so that the usual set theoretic definition of product does not yield a
unique class of pairs. One can develop products in two ways.

The first is to mimic the usual development in set theory as much as possible,
working with many isomorphic classes of pairs as ‘cartesian products of the form
X × Y ’. To realize such a development the appropriate theory to work with is
a theory CART of pairs and classes, that is mutually directly interpretable with
AS. The theory CART has non-functional pairing. Basically, following the first
strategy, one would develop a certain implementation of the product. Such a
development is undoubtedly possible, but one has to work hard to cope with the
non-functionality of pairing and, e.g., to provide the necessary isomorphisms
between any product of the form (X × Y ) × Z and any product of the form
X × (Y × Z).8

7The remark that Q can be viewed as a theory of cardinals is attributed by John Burgess
to Saul Kripke. See [Bur05], p56.

8Associativity of multiplication is not an axiom of Q, but one needs it nevertheless to make
multiplication a total function via Solovay style trickery.
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The other way to define products is by their universal property and to cre-
ate sufficiently many objects having this universal property. Here we do not
work with a specific implementation. As bonus, we get the associativity and
commutativity of multiplication for free. Moreover, we are able to interpret Q
in a theory that is strictly weaker than AS modulo direct interpretability.9 The
theory COPY seems precisely the theory to work with since it allows us to con-
struct the isomorphic copies of classes, needed to develop disjoint union. COPY
is the theory of two jointly injective binary predicates enriched with a theory of
binary relations containing just the existence-of-empty-relation axiom and the
adjunction axiom for relations.

We opt for the second strategy. To attain our goal, we develop a category
in COPY. I feel that this development holds some independent interest. We get
a bit more than just the cardinals with addition and multiplication, e.g., in our
category, we have all finite limits. Moreover, it seems to offer us some further
possibilities for further research, like the development of exponentiation as a
partial function in the set theoretic way.

The paper contains a few extras. We give a slow exposition and scenic tour
of some theories ‘in the environment of’ AS. E.g., we show that AS is mutually
directly interpretable with the theory of pairs and classes called CARD.

Remark 1.1 Burgess provides an interpretation of Q in the Montagna-Mancini
variant of AS. He does this by showing that the extension of the successor axioms
of Q with a second order part concerning binary relations, axiomatized by the
existence-of-empty-relation axiom and the adjunction axiom for relations. Let
us call this theory SUCC+. We note the analogy of the role of COPY in our
proof and of SUCC+ in Burgess proof. Of course, Burgess’ is development is
Frege style: he uses recursion. Our development is recursion free.

Finally, the paper illustrates a methodological point. In reverse mathematics
notions of reducibility play a central role. There are various such notions like
conservativity10 and interpretability. In strict reverse mathematics, where we
study really weak theories, interpretability is an obvious choice of reduction. In
this paper we illustrate the importance of the notion of direct interpretability
as a notion of reduction, not to replace relative interpretability, but to use in
conjunction with it.

Prerequisites

All necessary techniques are developed in the paper. For some background to
the project, see e.g. [HP91]. Of category theory we only use the elementary
facts about sum and product. See [Mac71].

9We will show that COPY does not have pairing of its objects.
10Note that conservativity presupposes interpretability: formula classes like Π0

2 are usually
only present via a designated interpretation.
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2 Theories and Interpretations

We consider theories in many-sorted first order predicate logic. We assume that
these theories have officially relational signature. Unofficially, we use function
symbols, but these can be eliminated using a well-known unwinding procedure.
We will consider a notion of reduction called direct interpretability. This re-
duction relation holds between pointed theories, i.e., theories with a designated
sort, o, ‘the sort of objects’. The pointed sort always has identity.

We will consider piecewise, more-dimensional, many-sorted, relative inter-
pretations with parameters, where identity is not necessarily translated as iden-
tity. Since, the presence of parameters, being piecewise and more-dimensionality
only play a minor role, we will give a careful definition of one-dimensional,
many-sorted, relative interpretations without parameters, where identity is not
necessarily translated as identity. We will briefly indicate how to extend the
framework to being piecewise, more-dimensionality and parameters. We recom-
mend the reader to skip these subsections and return to them if needed.

2.1 Translations

To define an interpretation, we first need the notion of translation. Let Σ and Ξ
be finite signatures for many-sorted predicate logic with finitely many sorts. We
assume that the sorts are specified with the signature. We also assume that the
designated sort is also given by the signature. A relative translation τ : Σ → Ξ
is given by a triple 〈σ, δ, F 〉. Here σ is a mapping of the Σ-sorts to the Ξ-sorts.
The mapping δ assigns to every Σ-sort a a Ξ-formula δa representing the domain
for sort a of the translation. We demand that δa contains at most a designated
variable vσa

0 of sort σa free. The mapping F associates to each relation symbol
R of Σ a Ξ-formula F (R). The relation symbol R comes equipped a sequence
~a of sorts. We demand that F (R) has at most the variables vσai

i free. We
translate Σ-formulas to Ξ-formulas as follows:

• (R(ya0
0 , · · · , yan−1

n−1 ))τ := F (R)(yσa0
0 , · · · , yσan−1

n−1 ).

(We assume that some mechanism for α-conversion is built into our defi-
nition of substitution to avoid variable-clashes.)

• (·)τ commutes with the propositional connectives;

• (∀ya A)τ := ∀yσa (δa(y) → Aτ );

• (∃ya A)τ := ∃yσa (δa(y) ∧Aτ ).

Suppose τ is 〈σ, δ, F 〉. Here are some convenient conventions and notations.

• We write δτ for δ and Fτ for F .

• We write Rτ for Fτ (R).

• We will always use ‘=a’ for the (optional) identity of a theory for sort a.
In the context of translating, we will however switch to ‘Ea’.
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• We write ~x : δ~a for: δa0(xσa0
0 ) ∧ . . . ∧ δan−1(xσan−1

n−1 ).

• We write ∀~x : δ~a A for: ∀xσa0
0 . . .∀xσan−1

n−1 (~x:δ~a → A).

Similarly for the existential case.

• Suppose U is a theory of signature Ξ. Suppose further that U ` ∃v δa
τv,

for every Σ-sort a. We define: τ−1(U) := {A∈sentΣ | U ` Aτ}.

2.2 Interpretations and Interpretability

A translation τ supports a relative interpretation of a theory U in a theory V , if,
for all axioms A of U , we have U ` A ⇒ V ` Aτ . (Note that this automatically
takes care of the theory of identity. Moreover, it follows that V ` ∃v0 δa

τv0, for
each Σ-sort a.) Thus, an interpretation has the form: K = 〈U, τ, V 〉.

Par abus de langage, we write ‘δK ’ for: δτK
; ‘PK ’ for: PτK

; ‘AK ’ for: AτK , etc.
We define:

• We write K : U � V or K : V � U , for: K is an interpretation of the form
〈U, τ, V 〉.

• V � U :⇔ U � V :⇔ ∃K K : U � V .

We read U �V as: U is interpretable in V . We read V �U as: V interprets
U .

2.3 Direct Interpretations

We now consider pointed theories, i.e., theories with a designated sort of objects
o. An translation τ is direct if στ preserves the designated sort, and, for the
designated sort, τ is unrelativized and has absolute identity, i.e.:

• δo(v0) :↔ (v0 = v0),

• v0E
o
τ v1 :↔ v0 = v1.

An interpretation is direct if it is based on a direct translation. We write V �dirU ,
for V directly interprets U , etc. Direct interpretation is our main tool in this
paper: we want to ‘refine’ our sort of classes without tinkering with our objects.

We will use the sum T � U of pointed theories. This sum is obtained as
follows. First we make the sorts and predicates of the theories disjoint except
the designated sort o and except for the identity predicates for the designated
sorts. Then, we take the union of the modified theories.

Our sum is the sum in the category of direct interpretations. Thus, the sum
is a bifunctor w.r.t. the preorder of direct interpretability, i.e., if V �dir U and
V ′ �dir U ′, then (V � V ′) �dir (U � U ′).

The one-sorted theory of pure identity identity is in the lowest degree of direct
interpretability together with any many-sorted predicate logic. We clearly have
identity � U = U .
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We will speak about the degrees of direct interpretability inside a given
degree of interpretability. Note that strictly speaking the switch from direct
interpretability to ordinary interpretability involves removing the designation
of the designated sort from the theory. We will ignore this subtlety in the text.

2.4 Expansion and Definitional Extension

A translation τ : Σ → Ξ is an expansion if:

1. Σ has the same sorts as Ξ;

2. for every sort b of Σ, στb = b and δb
τ v0 :↔ v0 = v0;

3. every predicate P of Ξ is also in Σ, and Pτ~v :↔ P~v.

Suppose τ is an expansion and U is a theory of signature Ξ. We call τ−1U a
definitional extension of U . Note that τ−1U is axiomatizable over U by axioms
of the form ` ∀~v (P~v ↔ Pτ~v).11

2.5 Local Interpretability

We say that a (pointed) theory V locally (directly) interprets a (pointed) theory
U if, for any finite subtheory U0 of U , we have V �(dir)U0. We write V �(dir,)locU
for: V locally (directly) interprets U .

2.6 Multidimensionality

We can extend the notion of interpretation to the case of multidimensional
interpretations by sending a sort a of the interpreted theory via σ to a sequence
of sorts of the interpreting theory. A domain formula δa will have a sequence
of variables as arguments. These variables have the sorts given by σ(a). If we
are considering pointed theories and direct interpretations, the designated sort
o goes to the singleton sequence 〈o〉. Etc.

2.7 Parameters

We can extend the notion of interpretation to the case of interpretation with
parameters by allowing extra parameters from a given finite sequence ~w into the
δτ and Pτ . As extra data we need a fixed formula A~w of the language of the
interpreting theory representing the intended range of the parameters. E.g., in
the Poincaré disk interpretation of the hyperbolic plane in the Euclidean plane,
the parameters could be w0, w1, where w0 is the centre of the Poincaré disk and
where w0 is a point on the circumference of the disk. The formula A would be

11Definitional extensions are definitionally equivalent with their original theories. This
means that they are isomorphic in an appropriate category of interpretations with their original
theories. We will follow the usual practice of confusing a theory with its definitional extensions.

There should also be a good notion of definitional extension for the case where we add new
sorts. We postpone developing this to another paper.
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w0 6= w1. We define: 〈U,A~w, τ ~w, V 〉 is an interpretation iff V ` ∃~w A~w and,
for any axiom B of U , we have V ` ∀~w (A~w → Bτ ~w).

2.8 Piecewise Interpretations

The idea of piecewise interpretations12 is that we can develop the domains for
each sort as built up from a finite number of pieces. These pieces may overlap.
However the same original object may pose as two different objects depending
on which piece we are considering.

For example, let us define a one dimensional, one sorted, parameter free
translation with two pieces, for a theory with just one binary predicate P . Our
translation τ provides two domain pieces δ0 and δ1. The δi are formulas of
the target language containing just v0 free. We have a function F that assigns
formulas Aij(v0, v1) to P and 0,1-pairs ij. Similarly for the identity. Our trans-
lation function has as inputs formulas B of source language and assignments α
of 0 or 1 to the free variables of B. We give the clauses for Pxy, conjunction
and universal quantification.

• (Pxy)τ,α := Aα(x),α(y)(x, y), where α has domain {x, y};

• (B ∧ C)τ,α := Bτ,α�FV(B) ∧ Cτ,α�FV(C), where α has domain FV(B ∧ C);

• (∀x B)τ,α := ∀x:δ0 (B)τ,α∪{〈x,0〉} ∧ ∀x:δ1 (B)τ,α∪{〈x,1〉}, where α has do-
main FV(∀x B).

Note that τ will be the empty assignment for sentences. The rest of the develop-
ment is as expected. Note that any theory with a finite model has a piecewise,
one-dimensional, parameter free interpretation in identity, the one-sorted theory
of pure identity.

A natural example of a piecewise interpretation is ‘adding the unit to the
theory of semigroups’.

Remark 2.1 Prima facie, piecewise translations are rather costly. Translations
that are not piecewise yield p-time transformations of formulas (if we handle the
needed alpha-conversions in a sufficiently smart way). Piecewise translations,
on the other hand may be exponential.

Fortunately, in rather general circumstances piecewise translations can be
eliminated. E.g., if the target theory T , i.e., the interpreting theory T , does not
have a one-element model, then a piecewise translation can always be replaced
by a a multi-dimensional interpretation with parameters that is ‘the same’ in
the sense that there is a T -definable, T -verifiable isomorphism between these
translations (considered as inner model constructions).

12I learned the idea of piecewise interpretability in a slightly less general form from Harvey
Friedman.
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3 Boolean Operations on Classes

In this section, we study the construction of Boolean operations in a very weak
theory of classes.

The theory acl is a two-sorted theory, with a sort of objects o and a sort
of classes or concepts c. x, y, z, . . . will range over objects and X, Y, Z, . . . will
range over classes. Our predicates are identity for the object sort and ∈ of type
oc. Our axioms are as follows.

acl1. ` ∃X ∀x x 6∈ X,

acl2. ` ∀X, x∃Y ∀y (y ∈ Y ↔ (y ∈ X ∨ y = x)).

We will ‘load’ acl modulo mutual direct interpretability to a (seemingly) much
stronger theory.

We extend acl with an identity relation on classes, setting:

X =c Y :↔ ∀z (z ∈ X ↔ z ∈ Y ).

This justifies the introduction of a constant ∅, a function x 7→ {x} and partial
functions ∪ and ∩. Note that ∅ will be provably inhabited and that the mapping
X, x 7→ X ∪ {x}, will be provably total.

Remark 3.1 The theory acl is very weak, because it has a model with one
object and two classes. Thus it will be (piecewise) interpretable in identity,
the one-sorted theory of pure identity. Thus, identity interprets acl extended
with full impredicative comprehension —since full comprehension is trivial on
a domain with one object.

The remark illustrates the importance of restricting oneself to direct inter-
pretations when studying acl. Corollary 4.4 tells us that acl is not in the minimal
degree of direct interpretability. We will provide a theory arel that has a finite
model, that does directly interpret acl, but that is not directly interpretable in
acl. See Theorem 5.1. Thus, there are at least three strictly ascending degrees
of direct interpretability in the minimal degree of interpretability.

Let class0 be the following predicate of classes:

• class0(X) :↔ ∀Y (Y ∪X) ↓.

We have the following lemma.

Lemma 3.1 (acl) The predicate class0 is closed under empty class, singletons
and union.

Proof

It is easy to see that class0 contains the empty class and all singletons. Let X
and X ′ be in class0. Then X ∪X ′ exists. Moreover, for any Y , (Y ∪X) ∪X ′

exists, and this is equal to Y ∪ (X ∪X ′). 2
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By restricting our domain of classes to class0, we obtain a direct interpretation
of acl1 := acl + union, where union is the axiom stating that union is total.

We define the predicate class1 as follows.

• class1(X) :↔ ∀Y (Y ∩X) ↓.

Lemma 3.2 (acl1) The predicate class1 is closed under empty class, singletons,
union and intersection.

Proof

It is clear that class1 contains the empty class. Note that Y ∩ {x} is ∅ if x 6∈ Y ,
and is {x} if x ∈ Y . In both cases Y ∩ {x} exists. Suppose X and X ′ are in
class1. Let Y be arbitrary. Then, Y ∩ (X ∪ X ′) = (Y ∩ X) ∪ (Y ∩ X ′) and
Y ∩ (X ∩X ′) = (Y ∩X) ∩X ′. So, Y ∩ (X ∪X ′) and Y ∩ (X ∩X ′) exist. We
may conclude that X ∪X ′ and X ∩X ′ are in class1. 2

Restricting to class1 gives us a direct interpretation of acl2 := acl1 + intersection,
where intersection is the axiom stating that intersection is total. We proceed
to work in acl2 � U , where U is any theory. For any definable predicate P of
classes we take:

• PsX :↔ ∀Y⊆X PY .

Lemma 3.3 (acl2 � U) Suppose P is a predicate of classes which is closed un-
der empty class, singletons, and union. Then, Ps is closed under empty set,
singletons and union. Moreover, Ps is downwards closed w.r.t. ⊆, and, hence,
closed under intersection.

Proof

Clearly, the empty class and all singletons are in Ps. Downwards closure w.r.t.
⊆ is trivial. Suppose X and X ′ are in Ps and Y ⊆ X∪X ′. We have: Y ∩X ⊆ X
and Y ∩X ′ ⊆ X ′. So, Y ∩X and Y ∩X ′ are in Ps and, hence, in P. It follows
that Y = (Y ∩X) ∪ (Y ∩X ′) is in P. 2

Consider, in acl2 � U , any predicate Ax~y~Y . Now consider the predicate classA

of all Z such that, for all ~y, ~Y , we have that {z∈Z | Ax~y~Y } exists. It is easily
seen that classA is closed under empty class, singletons and union, and that it
is downwards closed w.r.t. ⊆: if {z∈Z | Az~y~Y } exists and W ⊆ Z, then:

{w∈W | Aw~y~Y } = {z∈Z | Az~y~Y } ∩W.

Thus, we can get Aussonderung for any A, when we restrict ourselves to forming
subclasses of classes from classA:

• acl � U ` ∀Z : classA {z∈Z | Az} exists .
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Note that {z∈Z | Ax~y~Y } will be itself in classA. This principle, however, is
not absolute. If we relativize to a predicate that is closed under empty class,
singletons, union and downwards closed w.r.t. ⊆, the principle is not preserved
—since the meaning of A changes. We can remedy this by restricting ourselves
to ∆⊆

0 (U)-formulas A, i.e. (acl � U)-formulas where all class-quantifiers are
⊆-bounded. Thus, we get:

Theorem 3.2 The theory acl3(U) := (acl1 � U) + ∆⊆
0 (U)-Aussonderung is lo-

cally directly interpretable in acl � U . This theory is preserved to relativizations
of the classes to subdomains that are closed under empty class, singletons, union
and that are downwards closed w.r.t. ⊆.

Remark 3.3 Our second order variables have two ‘standard meanings’: the
strong one, where the variables range over arbitrary sets of objects, and the weak
one where the variables range over finite sets of objects. thus, we have strong
standard models and weak standard models. Note that our interpretations all
behave like the identity interpretation both in weak and in strong standard
models.

4 Adjunctive Set Theory

The language of the one-sorted theory AS has, apart from identity, just one
binary predicate ∈. The theory is given by the following axioms.

AS1. ` ∃x∀y x 6∈ y,

AS2. ` ∀x, y ∃z ∀u (u ∈ z ↔ (u ∈ x ∨ u = y)).

There is a slight variant ASs, where we have an additional unary predicate set,
which is axiomatized by the following axioms.

ASs1. ` ∃x:set∀y x 6∈ y,

ASs2. ` ∀x:set∀y ∃z:set∀u (u ∈ z ↔ (u ∈ x ∨ u = y)),

ASs3. ` ∀x, y (x ∈ y → y : set).

One easily shows that AS ≡dir ASs. The theory AS has the advantage of econ-
omy of signature. On the other hand, for our general program, it seems more
natural to distinguish urelements from empty sets as in ASs. Since we are think-
ing mainly modulo mutual direct interpretability, we will use both versions as
convenience dictates.

We give two possible ways of linking AS to acl. The first is via the Frege relation.
The second is by adding pairing to acl.
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4.1 Adjunctive Set Theory & the Frege Relation

We add to the language of acl the binary Frege relation � of type co. The theory
aclfr is axiomatized by.

aclfr1. ` ∃X ∀x x 6∈ X,

aclfr2. ` ∀X, x∃Y ∀y (y ∈ Y ↔ (y ∈ X ∨ y = x)),

aclfr3. ` ∀X ∃x X � x,

aclfr4. ` ∀X, Y, z ((X � z ∧ Y � z) → ∀w (w ∈ X ↔ w ∈ Y )).

Remark 4.1 If one adds full comprehension to aclfr, one can derive the Russell
paradox as follows. Let R be a class such that, for all x, we have x is in R iff,
for no X, x ∈ X and X � x. Pick an r such that R � r. In case r ∈ R, we have
r ∈ R and R � r. So, r 6∈ R. A contradiction. So r 6∈ R. Suppose, for some X,
we have r ∈ X and X � r. Since X � r, we find that X is extensionally equal
to R. Ergo r 6∈ X. A contradiction. So, for all X, not (r ∈ X and X � r). This
tells us that r ∈ R. A contradiction on no assumptions.

We prove the following theorem.

Theorem 4.2 aclfr ≡dir AS.

We will prove the theorem by showing that aclfr ≡dir ASs. We directly interpret
ASs in aclfr via the following translation [.

• σ[o := o,

• δo
[ v0 :↔ v0 = v0,

• xE[y :↔ x = y,
set[(x) :↔ ∃X X � x,
x ∈[ y :↔ ∃Y (x ∈ Y ∧ Y � y).

It is easily seen that indeed [ supports an interpretation of ASs in aclfr. Con-
versely, we have a direct interpretation of aclfr into ASs, which is given by the
translation ].

• σ]c := σ]o := o,

• δo
] v0 :↔ v0 = v0, δc

]v0 :↔ set0(v0),

• xEo
] y :↔ x = y, x ∈] y :↔ x ∈ y, x �] y :↔ (set(x) ∧ x = y).

Under the weak assumptions we are considering, [ and ] are in no sense each
other inverses. This can be seen e.g. by noting that the Frege relation produced
by ] is functional. We can do a little bit better by adding the following axiom
to ASs.

• ` ∀X, Y, z (∀w (w ∈ X ↔ w ∈ Y ) → (X � z → Y � z)).

13



Clearly our axiom justifies considering extensional equality as an identity rela-
tion. Thus, we can definitionally extend aclfr with an identity relation on classes
defined by extensional equality. We now can extend ] by taking

xEcy :↔ (x, y : set ∧ ∀z (z ∈ x ↔ z ∈ y)).

One can show that the modified [ and ] are each other’s inverse in the sense
that they witness bi-interpretability. See [Vis06], for the relevant notions.

4.2 Adjunctive Set Theory and Pairing

We consider a theory of non-surjective unordered pairing and a theory of non-
surjective ordered pairing. Our theory of unordered pairing13 has the same
signature as AS. We define PAIRuno,ns by:

PAIRuno,ns1. ` ∃y ∀x x 6∈ y,

PAIRuno,ns2. ` ∀x, y ∃z ∀u (u ∈ z ↔ (u = x ∨ u = y)).

Our theory of ordered pairs is a one-sorted theory that has, apart from identity,
a single ternary predicate pair. (Alternatively, we could develop it with two
partial projection functions π0 and π1.)

PAIRo,ns1. ` ∃z ∀x, y ¬pair(x, y, z),

PAIRo,ns2. ` ∀x, y ∃z pair(x, y, z),

PAIRo,ns3. ` ∀x, x′, y, y′, z ((pair(x, y, z) ∧ pair(x′, y′, z)) → (x = x′ ∧ y = y′)).

We can directly interpret PAIRuno,ns in PAIRo,ns, by translating x ∈ y to the
formula ∃u (pair(x, u, y) ∨ pair(u, x, y)). We can directly interpret PAIRo,ns in
PAIRuno,ns via Wiener-Kuratowski pairing. We translate pair(x, y, z) into:

∃u, v ( ∀w (w ∈ z ↔ (w = u ∨ w = v)) ∧
∀w′ (w′ ∈ u ↔ w′ = x) ∧ ∀w′′ (w′′ ∈ v ↔ (w′′ = x ∨ w′′ = y))).

We consider CART := acl � PAIRo,ns. We clearly have that AS �dir CART. The
desired translation uses the Wiener-Kuratowski formula given above. We will
prove the converse.

Theorem 4.3 CART �dir AS, and, hence, CART ≡dir AS.

Proof

To give the heuristic, let’s ignore for a moment the fact that pairing is not
necessarily functional. The basic idea is to code e.g. the set consisting of a, b, c
as 〈〈〈0, a〉, b〉, c〉, where 0 is a non-pair. Now forget about functionality again.
We define:

13John Burgess in [Bur05] calls the result of adding extensionality to this theory: UST.

14



• dc(Y ) :↔ ∀u, v, p ((pair(u, v, p) ∧ p ∈ Y ) → u ∈ Y ),
(We will also write Y :dc for dc(Y ).)

• x ∈ y :↔ ∀Y :dc (y ∈ Y → ∃w, q (pair(w, x, q) ∧ q ∈ Y )).

Consider any non-pair z. We clearly have {z}:dc. If we would have x ∈ z, then,
for some pair q, we would have that q is in the class {z}, quod non. So z is an
empty set.

Consider any x and y. Pick any p with pair(y, x, p). We show that:

∀u (u ∈ p ↔ (u ∈ y ∨ u = x)).

We first treat the right-to-left direction. Suppose u ∈ y, dc(Y) and p ∈ Y . We
find y ∈ Y , and, hence, for some w and q, pair(w, u, q) and q ∈ Y . So u ∈ p.
Moreover, it is immediate that x ∈ p.

Conversely, suppose u ∈ p, dc(Y ) and y ∈ Y . We have dc(Y ∪ {p}) and
p ∈ Y ∪ {p}. It follows that, for some w and q, we have pair(w, u, q) and
q ∈ Y ∪ {p}. If q = p, then u = x. If q 6= p, then q ∈ Y and, thus, u ∈ y. 2

The above theorem illustrates that the ‘direct’ sum � makes the summands
interact in non-trivial ways. In this, it contrasts with the ordinary disjoint sum
⊕. E.g., sequential theories like AS are connected or join-irreducible in the
degrees of interpretability. See [Pud83] and [Ste89].

Corollary 4.4 The theory acl is not directly interpretable in identity, the theory
of pure identity.

Proof

Suppose identity �dir acl. Then:

PAIRo,ns = identity � PAIRo,ns

�dir acl � PAIRo,ns

= CART

≡dir AS

However, PAIRo,ns has a decidable extension (see e.g., [Ten] or [CR01]) and AS
is essentially undecidable. Quod impossibile. 2

The theory CART is an ideal starting point to develop cardinal arithmetic in
the traditional way. The Cartesian product will be an appropriate class of pairs.
Note however that it is still a lot of work to get things done here. First, we have
to live with the fact that our products are not unique, since we do not have
functional pairing. Secondly, to get our product total, we need associativity of
the product modulo isomorphism. Thus, we have to perform Solovay trickery
to get the product associative.

15



We will follow another strategy. We will develop cardinal arithmetic using
the universal properties of sums and products that are employed in category
theory. As a bonus it turns out that this plan can be executed in a theory
COPY that is strictly weaker than CART in the sense of direct interpretability.
The theory COPY will be constructed using Adjunctive Relation Theory, which
we present in the next section.

5 Adjunctive Relation Theory

We define adjunctive relation theory, arel, as follows. The theory arel is two-
sorted, with a sort o of objects and a sort r of binary relations. We have a
ternary application predicate app of type roo. We write ‘Rxy’ or ‘(x, y) ∈ R’
for: app(R, x, y).

arel1. ` ∃R ∀x, y ¬Rxy,

arel2. ` ∀R, x, y ∃S ∀u, v (Suv ↔ (Ruv ∨ (u = x ∧ v = y)).

Adjunctive Relation Theory is the theory employed by John Burgess in [Bur05],
section 2.2, to interpret Q. Specifically, let SUCC be the theory of one single
successor operation and zero, given by the first two axioms of Q. Burgess shows
how to interpret Q in SUCC+ := arel � SUCC.

We determine the relationships between arel, acl and identity.

Theorem 5.1 We have:

a. identity � arel,

b. arel �dir acl and acl �dir identity,

c. acl 6 �dirarel and identity 6 �diracl.

Thus, there is a strictly ascending sequence of three in the degrees of direct
interpretability that is contained in the minimal degree of interpretability.

Proof

We have (a), because arel has a finite model. (b) is easy. The second claim of
(c) is Corollary 4.4. We prove the first claim of (c). Suppose acl �dir arel. Then,

acl � SUCC �dir arel � SUCC

= SUCC+

� Q

It follows that acl � SUCC is essentially undecidable. On the other hand, acl �
SUCC is contained in the (true) monadic second order theory of one successor.
This theory is decidable. A contradiction.
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Alternatively, acl � SUCC is contained in the weak (true) monadic second
order theory of one successor. Here the second order variables range over finite
sets. This theory is decidable. Again we have our contradiction.

We may conclude that arel is not directly interpretable in acl.

See [BE59], [Büc60], [Elg61], [ER66], for the basics on weak and strong successor
theories. 2

5.1 Boolean Operations on Relations

We can repeat the development in Section 3, to strengthen our theory with
identity between relations and total operations of disjunction and intersection
on relations. Moreover, we can get, via local direct interpretability, for any
theory U , an appropriate version of ∆⊆

0 (U)-Aussonderung in arel�U . Note that
this version of Aussonderung guarantees the existence of relations of the form
{(x, y) ∈ R | A(x, y, ~z, ~S)}, where all relation quantifiers in A are subrelation
bounded. We call the theory arel � U , plus the axiom unions of relations exist,
plus ∆⊆

0 (U)-Aussonderung, arel+(U). If U is the theory of identity, we will
simply use arel+.

5.2 Relational Algebra

We enrich arel+(U) to a theory with several convenient operations on relations.
We define:

• x δ(R) y :↔ x = y ∧ ∃z xRz,

• x ρ(R) y :↔ x = y ∧ ∃z zRx,

• x γ(R) y :↔ yRx,

• x (R ◦ S) y :↔ ∃z (xSz ∧ zRy).

First, we take rel0 as the class of all relations R such that γ(R) exists.

Theorem 5.2 (arel+(U)) rel0 is closed under empty relation, singleton rela-
tions, union, and γ and is downwards closed w.r.t. ⊆.

Proof

Closure under the empty relations and singleton relations is easy. Clearly γ
commutes with unions, and hence rel0 is closed under union. Closure under γ
follows from the fact that γγ(R) = R. 2
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We relativise our relations to rel0. In the resulting theory, say arel+1 (U), γ is
total. We proceed in arel+1 (U). Let rel1 is the class of all relations R such that:

1. δ(R) exists,

2. ρ(R) exists,

3. for all S, we have S ◦R and R ◦ S exist,

4. there is an R′ ⊆ R, R′ is functional and δ(R′) = δ(R),

5. there is an R′ ⊆ R, R′ is injective and ρ(R′) = ρ(R′),

We have:

Theorem 5.3 (arel+1 (U)) The predicate rel1 is closed under empty relation,
singleton relations, union, and is downwards closed w.r.t. ⊆. Moreover, it
is closed under δ, ρ, γ and composition

Proof

The case of the empty relation and of singleton relations is easy.

We treat downward closure. Suppose R∗ ⊆ R. The cases of δ, ρ and composition
are by ∆⊆

0 -Aussonderung. E.g., δ(R∗) = {(x, y) ∈ δ(R) | ∃z xR∗z}. If R′ is
the functional subrelation guaranteed for R, then {(x, y) ∈ R′ | ∃z xR∗z} is the
one we are looking for in the case of R∗. The case of the injective subrelation
is similar.

We show that rel1 is closed under union. Suppose R0 and R1 are in rel1. Clearly,
δ and ρ, and composition commute with union. So δ(R0 ∪ R1), is in rel1, and
similarly for ρ and composition. Let R2 := {(x, y) ∈ R1 | ¬ ∃z R0xz}. Then, R2

is in rel1. Let R′
0, R′

2 be the promised functional subrelations for respectively
R0, and R2. Then R′

0 ∪ R′
2 is a functional subrelation for R0 ∪ R2, which is

identical to R0 ∪R1. The case of the injective subrelation is similar.

We show that rel1 is closed under δ and ρ. Suppose R is in rel1. Then δ(R)
exists. Clearly, δδ(R) = δ(R), ρδ(R) = δ(R) and γδ(R) = δ(R), so δδ(R), ρδ(R)
and γδ(R) exist. Consider any S. Clearly S ◦δ(R) and δ(R)◦S are subrelations
of S. Hence they exist. Since δ(ρ) is both functional and injective, we can take
it as its own desired subrelation. The case of ρ is similar.

We prove that rel1 is closed under γ. Suppose R is in rel1. We show that γ(R)
is in rel1. Clearly, δγ(R) = ρ(R), ργ(R) = δ(R) and γγ(R) = R. So, δγ(R),
ργ(R) and γγ(R) exist. Consider any S. We have γ(R) ◦S = γ(γ(S) ◦R), and,
hence, γ(R) ◦ S exists. Similarly for S ◦ γ(R). Finally, let R′ be an injective
subrelation of R with ρ(R′) = ρ(R). Then, γ(R′) is a functional subrelation of
γ(R) with δγ(R′) = δγ(R). Similarly, for the case of the injective subrelation.

2
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Relativising to rel1 and adding the new operations to the signature, we obtain
the theory arel+2 (U) which is arel+0 (U) plus the defining axioms and the totality of
δ, ρ, γ, ◦, the principle that every relation has a functional subrelation with the
same domain and the principle that every relation has an injective subrelation
with the same range.

5.3 Adding Classes

We proceed to add classes to our theory arel+2 (U). We extend the signature with
a new sort c, identity for the new sort, a relation symbol ε of sort oc, a function
symbol diag of sort cr and function symbols δ+ and ρ+ of sort rc. We define the
domain for c to be class, where class(R) :↔ ∀x, y (xRy → x = y). We take, for
R in class, diag(R) := R, and δ+(R) := δ(R), ρ+(R) := ρ(R).

The axioms for arel+3 (U) are the axioms for arel+2 (U), plus the functionality
axioms for the new operations and:

• ` diag(X)(x, y) ↔ (x ∈ X ∧ x = y),

• ` X = Y ↔ diag(X) = diag(Y ),

• ` diag(δ+(R)) = δ(R),

• ` diag(ρ+(R)) = ρ(R).

Note that we can derive union and ∆⊆
0 (U)-Aussonderung for classes from these

axioms.
We definitionally expand arel+3 (U) with three operations:

• R � X := {(x, y)∈R | x ∈ X}.

• R � Y := {(x, y)∈R | y ∈ Y }.

• R > S := R ∪ (S � (δ(S) \ δ(R))).

These operation are total by ∆⊆
0 (U)-Aussonderung. The resulting theory is

arel+4 (U). Note that our operations preserve functionality.

5.4 Building a Category

We proceed to build a category in arel+4 (U). We add a sort of morphisms. We
define morphisms f, g, h, . . . via a three dimensional interpretation. It’s domain
will be given by the formula morph. We say morph(X, F, Y ) iff X and Y are
classes and F is a functional relation with δ+(F ) = X and ρ+(F ) ⊆ Y . We let
the variable f correspond to the triple (X, F, Y ), and g to (W,G, Z) and h to
(U,H, V ). We add various notations. Let’s call our translation z. We translate
all our existing predicats like ∈ to themselves.

• f : A → B for: X = A and Y = B. Officially: (f : A → B)z iff X = A
and Y = B.
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• f = g for X = W and Y = Z and F = G.

• dom(f) = A for: X = A.

• cod(f) = B for: Y = B.

• carr(f) = J for: F = J .

• fx = y for: Fxy.

• idA is the triple (A, diag(A), A). Officially it is defined as: (idA(f))z iff
X = A, Y = A and, F = diag(A). Note that idA is a constant: there is a
unique f satisfying (idA(f))z.

• coA,a is a partial constant denoting the function from A to {a} which
sends every a′ ∈ A to a. Officially it is defined as: (coA,a(f))z iff X = A,
Y = {a} and, for all a′ in A, Fa′a.

• iniA is the unique function from ∅ to A, so (iniA(f))z iff X = ∅ and F = ∅
and Y = A.

• ((f � A)(g))z iff W = (X ∩A) and Z = Y and G = F � A.

• ((f � B)(g))z iff W = {x∈X | f(x) ∈ B} and Z = (Y ∩B) and G = F � B.

• f > g is given by: ((f > g)(h))z iff U = (X ∪W ) and V = (Y ∪ Z) and
H = F > G.

• f ◦ g is given by ((f ◦ g)(h))z iff U = W and V = Y and H = F ◦G.

Note that all our definitions can be rewritten to ∆⊆
0 (U)-formulas.

We work in CAT0(U) := z−1(arel+4 (U)). Since via dom, cod, application and
carr, we have access to the underlying triples, we can switch from a morphism
f to an underlying presentation. Note that we have, for X, Y and F , such that
X = δ(F ) and ρ(F ) ⊆ Y , that there is a unique f such that dom(f) = X,
cod(f) = Y and carr(f) = F . Thus, we may speak about the morphism f given
by (X, F, Y ).

The strategy we will follow to gain more properties for our category is to
restrict the classes to some totality, say X , that is closed under union and
downward closed under ⊆. We restrict our relations to those relations that have
domain and range in X , and we similarly restrict our morphisms. It is easily seen
that the new relations are closed under union, taking subrelations and under the
operations of Subsection 5.2. Similarly, the new morphisms will be closed under
the operations specified above. It follows that the theory obtained by redefining
our sorts using these predicates, still satisfies all the desired properties.

Let class0 consist of all the X such that, for any y, the unique function G
from X to {y} exists. We have the following easy theorem.

Theorem 5.4 (CAT0(U)) class0 is closed under empty class, singletons, union
and is downward closed under the subset relation.
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We form our next theory CAT1(U) by restricting our relations and morphisms
to those with domain and codomain from class0 as described above. Note that
coA,a is inhabited in CAT1(U).

We can prove many properties familiar form the category of sets in CAT1(U).
Here are a few of these.

• f is an injection iff f is a monomorphism iff f is a split monomorphism.

• f is a surjection iff f is an epimorphism iff f is a split epimorphism.

• f is a bijection iff f is an isomorhism.

• We have an initial object and we have end objects.

• We have all equalizers.

5.5 The Embedding Ordering on Classes

The embedding ordering between classes will be useful in the development of the
product, following an idea due to Mycielski, Pudlák and Stern (see Appendix
III of [MPS90]). In this subsection we will prove an important fact about this
ordering.

We work in CAT1(U). We define X � Y iff there is a injection f : X → Y .

Theorem 5.5 (CAT1(U)) a. � is a partial preordering.

b. Suppose that X ⊆ Y . Then, X � U .

Proof

It is easy to see that � is a partial preordering. Let eXY := (idX > iniY ). Then
eX,Y is an injection, witnessing X � Y . 2

We have the following.

Theorem 5.6 (CAT1(U)) Suppose a virtual class J of classes is closed under
empty class, singletons and union. Let J pr be the virtual class of all X such
that, for all Y , if Y � X, then Y is in J . Then, J pr is closed under empty
class, singletons and union. Moreover, J pr is downwards closed under �, and,
hence under ⊆.

Proof

Let J be as stipulated in the theorem. It is easy to see that J pr is closed under
empty class and singletons.

Suppose X0 and X1 are in J pr. Let X := X0 ∪ X1. Suppose Y � X. Let
f : Y → X be an injection. Take fi := f � Xi and let Yi := dom(fi). then,
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fi : Yi → Xi is an injection. So, Yi � Xi. It follows that the Yi are in J . It is
easily seen that Y = Y0 ∪ Y1. Hence, Y is in J .

Suppose Z � Y � X and X is in J pr. Let g : Z → Y and f : Y → X be
injective. Then, f ◦ g : Z → X is injective. Hence Z � X, and, thus, Z ∈ J .

Suppose Y ⊆ X and X is in J pr. Then, Y � X and, hence Y is in J pr. 2

6 Constructing Sum and Product

It is easily seen that we cannot expect to have all sums in CAT1(U), for all U .
E.g., if we take U to be identity, we see that our theory has finite models. Thus,
we need a suitable base theory to get sums. Our choice is the theory COPY. In
this section we construct sum and product in COPY.

6.1 Introducing COPY

The theory TJI of two total, jointly injective relations is one-sorted and has to
binary predicates P0 and P1. The theory is axiomatized as follows.

TJI1. ` ∀x∃y Pi(x, y) (i = 0, 1),

TJI2. ` (Pi(x, y) ∧ Pi(x′, y)) → x = x′ (i = 0, 1),

TJI3. ` ¬ (P0(x, y) ∧ P1(x′, y)).

Now consider COPY := arel � TJI.

Theorem 6.1 CART directly interprets COPY, but COPY does not directly in-
terpret CART.

Proof

We specify a direct interpretation of COPY in CART. We interpret objects as
objects and relations as classes. We translate:

• Rxy to ∃p (pair(x, y, p) ∧ p ∈ R).

• P0(x, y) to ∃z (∀u, v ¬ pair(u, v, z) ∧ pair(x, z, y)),

• P1(x, y) to ∃z (pair(x, x, z) ∧ pair(x, z, y)).

To see that COPY does not directly interpret CART, consider the following
model M of COPY. The object domain of M is ω × ω. We set:

• PM
i (〈m,n〉, 〈p, q〉) :⇔ m = p and q = 2n + i (i = 0, 1).
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The relations of M are the finite relations on ω × ω. Suppose that some
formula A represents pair in M in finitely many object and relation param-
eters. The set X of first components of the object parameters and of the ele-
ments of the domains and ranges of the relation parameters is finite. Suppose
m,n, k, k′ are pairwise disjoint numbers, not in X. For some 〈p, q〉, we have
M |= A(〈m, 0〉, 〈n, 0〉, 〈p, q〉). (We suppress the parameters in A.) Let σ be the
function that interchanges m and k on ω. Let σ?〈i, j〉 := 〈σi, j〉. Clearly, σ?

lifts to an automorphism of M that leaves the parameters in place. We have
M |= A(〈k, 0〉, 〈n, 0〉, 〈σp, q〉). It follows that p = m or p = k. Since we could
have chosen k′ for k, we may conclude that p = m. By similar reasoning, we
find p = n. A contradiction. 2

Note that the model used in the proof is a weak standard model, since the
class variables range over all finite sets of objects. The argument would have
worked as well if we had taken all sets as the classes of the model and, thus,
had considered a strong standard model. So there are both weak and strong
standard models of COPY, such that pairing of objects cannot be defined in
these models.

Open Question 6.2 What are the precise relations in the preorder of direct
interpretability of the theories COPY and arel � SUCC?

6.2 Building Isomorphic Copies of Classes

Our theory COPY is arel � TJI. Using the materials of Subsection 5.4, we build
a theory CAT?

0 := CAT1(TJI), that is locally directly interpretable in COPY. We
work in CAT?

0.
We define class0 to be the totality of all X, such that for i = 0, 1, there is a

function Fi with δ+(Fi) = X, such that, for all x ∈ X, Pi(x, Fix).

Theorem 6.3 (CAT?
0) class0 is closed under empty class, singletons, union and

is downward closed under the subset relation.

Proof

Closure under empty class and singletons is trivial.

We prove closure under subsets. Suppose X is in class0 and X ′ ⊆ X. Let Fi be
the functions promised for X in the first clause. We may take F ′

i := Fi � X ′.

We prove closure under unions. Suppose X0 and X1 are in class0. Let X :=
X0∪X1. Let Fji be the functions promised for Xj . We may take as the desired
functions for X the functions Fi := F0i > F1i. 2
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Consider X. Suppose there are functions Fi with δ+(Fi) = X, such that, for
all x ∈ X, Pi(x, Fix). Let Yi := ρ(Fi). since Pi is injective, it follows that Fi,
is injective. Thus, the morphism fi given by (X, Fi, Yi) is a bijection. It follows
that fi is an isomorphism, since fi has an inverse given by (Yi, γ(Fi), X). Note
that the Yi are disjoint, by the joint injectivitiy of the Pi.

We define class1 to be (class0)pr, i.e., the class of all X, such that, for all
Y � X, we have Y is in class0. By Theorem 5.6, class1 will be closed under
union and downward closed under�. We restrict our classes to class1, we restrict
our relations to the relations with domain and range in class1 and we similarly
restrict our morphisms. Thus, we obtain CAT?

1. We preserve all the desirable
properties we previously acquired.

Note that, for X in class1, it follows that the isomorphic copies Yi are also
in class1. Thus, CAT?

1 proves that, for any X, there are mutually disjoint iso-
morphic copies Yi. What is more, for any X0, X1, we have an isomorphic copy
Y00 of X0 and an isomorphic copy Y11 of X1 such that Y00 and Y11 are mutually
disjoint.

6.3 The Sum

We show that sums exist in CAT?
1. We build a sum X0 + X1 of X0 and X1

as follows. Let X ′
0 and X ′

1 be disjoint isomorphic copies of X0, resp. X1. We
claim that X ′

0 ∪X ′
1 is a sum of X0 and X1 with as in-arrows gi > iniX1−i

, where
gi : Xi → X ′

i is the standard isomorphism with inverse hi.
Suppose fi : Xi → Y . Let gi := (fi ◦ hi) : X ′

i → Y . The unique arrow
finishing the sum diagram is g0 > g1. The verification is the usual reasoning.

Note that in models of our theory we will have a functor +. However, our
theory cannot ‘see’ this, since we do not have enough Choice in the theory to
select unique representatives.

6.4 The Product

We work again in CAT?
1. Let class2 be the virtual class of the X such that, for

all Y a cartesian product X×Y exists. Here the product is defined by its usual
universal property.

Theorem 6.4 The virtual class class2 is closed under empty class, singletons,
sum, product, and is downwards closed w.r.t. �. It follows that class2 is closed
under unions.

Proof

The case of the empty class is easy. For the case of singletons we can take
{x} ⊗ Y to be Y , with π

{x},Y
0 := coY,x and π

{x},Y
1 := idY .

We prove closure under sum. Consider three classes X0, X1 and Y . X0 + X1

is isomorphic to the union of two disjoint isomorphic copies X ′
0 and X ′

1 of,
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respectively, X0 and X1. Since the product is determined modulo isomorphism
anyway, it is sufficient to prove our theorem for this disjoint union. So, we
assume that X0 and X1 are disjoint and that X0 + X1 is their union.

Suppose Xi × Y exists with witnessing projection functions πi
j . We show

that any sum (X0× Y ) + (X1× Y ) is a product (X0 + X1)× Y with witnessing
projection functions π∗0 := π0

0 + π1
1 and π∗1 := [π1

0 , π1
1 ]. Here [·, ·] is given by the

sum diagram.

X0 × Y
in0- (X0 × Y ) + (X1 × Y ) �in1

X1 × Y

Y

[π1
0 , π1

1 ]......?

.....

�

π
1
1

π 1
0

-

Suppose we have f : W → X0 + X1 and g : W → Y . Let fi := f � Xi and
Wi := dom(gi). Clearly the Wi form a partition of W . Let gi := g � Wi. We
find: f = f0 + f1 and g = [g0, g1]. Clearly we have (fi, gi) : W → Xi × Y . Here
(·, ·) is given by the product diagram.

Wi

Xi
�

πi
0

�

f i

Xi × Y

(fi, gi)......?

......

πi
1

- Y

g
i

-

Putting everything together, we obtain the following diagram.

W0+W1

X0+X1
�
π0
0+π1

0

�

f0
+f1

(X0 × Y )+(X1 × Y )

(f0, g0)+(f1, g1)......?

......

[π0
1 , π1

1 ]
- Y

[g
0 , g

1 ]

-

It is easily seen that the diagram commutes. Suppose h also finishes the diagram.
We have: h : (W0 + W1) → ((X0 × Y ) + (X1 × Y ). Since, we may work
modulo isomorphism, we may assume (X0 × Y ) and (X1 × Y ) to be disjoint
and (X0 × Y ) + (X1 × Y ) to be the union of (X0 × Y ) and (X1 × Y ). Let
hi := h � Wi. Clearly the range of hi is Xi × Y . So, h = h0 + h1. We
may conclude that πi

0 ◦ hi = fi and πi
1 ◦ hi = gi. So hi = (fi, gi) and, thus,

h = (f0, g0) + (f1, g1).

We show that class2 is closed under products. Suppose X0 and X1 are in class2.
Consider any Y . Since X1 is in class2, we find that X1 × Y exists. Since, X0
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is in class2, we find that X0 × (X1 × Y ) exists. Similarly, X0 ×X1 exists. By
familiar arguments, X0× (X1×Y ) is also a product of the form (X0×X1)×Y

with projections πX0×X1,Y
0 = idX0 × πX1,Y

0 and πX0×X1,Y
1 = πX1,Y

1 ◦ πX0,X1×Y
1 .

We show that class2 is downward closed w.r.t. �. Suppose f : W → X is an
injection and X is in class2. Let X ′ := f [W ] := {x∈X | ∃w∈W f(w) = x}.
By ∆⊆

0 -Aussonderung, X ′ exists. Clearly, f ′ := f � X ′ is a bijection. Hence,
f ′ is an isomorphism. Since class2 is evidently closed under isomorphism, it is
sufficient to show that X ′ is in class2.

Consider any Y . We take X ′ × Y := Z := {z∈(X × Y ) | πX,Y
0 ∈ X ′}, and

πX′,Y
i := πX,Y

i � Z. Let f ′ : U → X ′ and g : U → Y . We take f := f ′ > iniX
and (f ′, g) := (f, g) � Z. It is easy to see that (f ′, g) makes the product diagram
for X ′ and Y commute and that any other such morphism is equal to (f ′, g).

Finally, we show closure under unions. Consider any X0 and X1 in class2. We
have (X1 \ X0) ⊆ X0, hence, (X1 \ X0) � X0. It follows that (X1 \ X0) is in
class2. The union of X0 and (X1 \X0) is a sum, and, thus, it is in class2. 2

We restrict our classes to class2 and restrict our relations and morphisms ac-
cordingly, thus obtaining a theory CAT?

2, which is closed under products. Note
that, since equalizers trivially exist, we find that according to CAT?

2 all finite
limits exist. Note also that the proof of Theorem 6.4 gives us the distributivity
of sum over product.

Open Question 6.5 I. Can we improve upon our construction to get also
all coequalizers (and, hence, all finite colimits)?

II. Can we develop the theory of exponentiation as a partial function in a
similar style?

III. Can we improve our interpretation to get the theorem of Cantor-Schröder-
Bernstein?

Remark 6.6 Note that our interpretation of sum and product reduces to the
identity interpretation in standard models of both sorts. Thus, our definition
gives us all cardinals lesser than or equal to the cardinality of the domain for
any model of COPY, where the class variables range over all subsets of the
domain, and it gives us all finite cardinals for any model of COPY, where the
class variables range over all finite subsets of the domain.

7 Interpretation of Robinson’s Arithmetic

We have shown how to locally directly interpret in COPY a theory CAT?
2 in

which we have a category of functions and classes. We now build the following
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interpretation of Q in CAT?
2.

14 The domain of the interpretation is formed by our
classes. Identity is interpreted by isomorphism in our category. Successor is the
sum of the given class and any singleton, Addition is sum and Multiplication is
product. In short: we interpret arithmetic as a theory of cardinals. We remind
the reader of the axioms of Q.

Q1. ` Sx = Sy → x = y,

Q2. ` 0 6= Sx,

Q3. ` x = 0 ∨ ∃y x = Sy,

Q4. ` x + 0 = x,

Q5. ` x + Sy = S(x + y),

Q6. ` x× 0 = 0,

Q7. ` x× Sy = x× y + x.

We verify Q1. Suppose X + {x} is isomorphic to Y + {y}, say via f . Without
loss of generality, we may assume that X and {x} are disjoint and that sum
is union. Similarly, for Y and {y}. In case fx = y, we find that f � X is an
isomorphism between X and Y . If not, there are x0 ∈ X, y0 ∈ Y such that
fx0 = y and fx = y0. Let g be the unique morphism such that g : {x0} → {y0}.
It is easily verified that (f � (X \ {x0})) > g is an isomorphism between X and
Y . The other axioms are even easier.

Note that our interpretation yields (at least) the following extra principles:
the associativity and commutativity of plus and times and the distributivity of
times over plus.

If we interpret x ≤ y as x � y, we also get the principle:
Q8. ` x ≤ y ↔ ∃z z + x = y.
Of course, we can also get this for free by defining x ≤ y as ∃z z + x = y.

Remark 7.1 Some philosophical logicians think that a theory should satisfy
certain minimal conditions to qualify as an arithmetic or a set theory. I never
completely understood how one would want to make philosophical judgments
of this kind. Our construction suggest one possible answer for the case of Q. To
view Q as a theory of cardinals one needs a development in a theory COPY of
cardinals that give us precisely Q. However, we see that any plausible develop-
ment of cardinals will also give us associativity and commutativity of plus and
times and distributivity of times over plus. So, in a way, Q is too weak.

Open Question 7.2 Precisely which principles are validated by our interpre-
tation of Q?

14Note that this interpretation is not direct.
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Open Question 7.3 Our development of CAT?
2 switched back and forth from

categorical reasoning to reasoning about the implementation as a matter of
course. Inspecting e.g. the subproof of closure under sums in the proof of
Theorem 6.4, we see that it can be rewritten to a proof wholly in terms of the
category by noting first some natural CAT?

1-verifiable properties of the category.
In other words, we can put all reasoning that calls upon the implementation at
the beginning of the argument.

This raises the question, which properties we could ask of our category such
that (1) we can directly interpret such a category easily in COPY and (2) the
verification of the interpretation of Q is wholly categorical. It seems that the
main problem here is the injectivity of successor: this appears to be deeply
unnatural from the point of view of category theory.
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