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Molecular Simulation of Propane—Propylene Binary Adsorption Equilibrium in
Zeolite 13X

Miguel A. Granato,™ Thijs J. H. Vlugt, * and Alirio E. Rodrigues*:'

Laboratory of Separation and Reaction Engineering (LSRE), Department of Chemical Engineering, Faculty of
Engineering, Urdersity of Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal, and Condensed
Matter and Interfaces, Utrecht Umérsity, P.O. Box 80.000, 3508 TA Utrecht, The Netherlands

In the present work, a recently developed force field for molecular simulation of the adsorption properties of
linear alkanes in the sodium form of faujasite (FAU), MFI, and MOR-type zeolites is applied to reproduce
experimental results of propane adsorption properties in zeolite 13X. The Lenfards (LJ) parameters

for interactions between the%shpybridized bond of propylene and the other atoms of this system are successfully
determined by fitting against experimental isotherms. This new set of parameters allows the calculation of
adsorption properties of propanpropylene mixtures, as well as the isosteric heat of single-component
adsorption of propane and propylene in zeolite 13X. Good agreement between simulation results and
experimental data for propane and propylene adsorption loadings at temperatures of 303, 323, 343, 373, 423,
and 473 K and pressures in the range of-L20 kPa confirms the applicability of the force field. In addition,
molecular simulation will be used to guide the desorbent choice for propane/propylene separation by cyclic

adsorptive processes.

1. Introduction (a)

Separation of hydrocarbons by adsorption has great impor-
tance in the petrochemical industry. Olefin/paraffin separation
requires cost-effective technologies to replace energy-consuming
processes, such as cryogenic distillation. Separation based on
adsorption offers a viable alternative, because of its less-extreme
operational conditionsAdsorptive separation in molecular sieve
zeolites is an efficient way of removing unsaturated hydrocar-
bons from other hydrocarbon gas streams. Aluminosilicate
zeolites have gained increased attention, because of their
importance in the oil and gas industry. Faujasite (FAU) zeolites
are among the most widely used zeolites in separation pro-
cessed.Sodium and calcium forms of zeolite X were studied
via the gas chromatographic method to determine the potential
of separation of ethylene from ethane and metifafhibe use
of Cd—exchanged wider-pore zeolite 13X as base material in
the separation of isobutene frawbutane improves the isobutene  (b)
selectivity? Isotherms and heats of adsorption of propane and
water vapor in zeolites X and Y with varying content of
exchanged cations were measured, showing a reduction of the
amount of adsorbed water and also a reduction in the amount
of propane with decreasing exchange cation concentration.

Molecular simulations represent a very efficient tool to predict
the physical and chemical properties of a wide range of
materials. However, experimental data still remain crucially
important for validation of the simulations. Molecular dynamics
(MD) and Monte Carlo (MC) simulation techniques have been
widely used to study microscopic and macroscopic properties
of guest molecules in all-silica zeolitic ho$tsl0 It was shown
that grand-canonical Monte Carlo simulations (GCMC) with a
suitable force field may provide a reasonably accurate prediction
of the adsorption data for single-component and binary mix-
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Table 1. Intramolecular Force Field Parameters for Na~ Faujasite?

parameter @ Osi Na CH, CHs3 CHa-sp? CHa-sp? CH-sp?
CHa

elkg [K] 115.00 115.00 582.17 158.50 130.84 94.21 116.07 86.31

o [A] 3.47 3.47 2.72 3.72 3.74 3.84 3.70 3.73
CHs

elks [K] 93.00 93.00 443.73 130.84 108.00 77.70 95.81 71.25

o[A] 3.48 3.48 2.65 3.74 3.76 3.86 3.72 3.75
CHQ—Sp?’

elks [K] 60.50 60.50 310.00 94.21 77.70 56.00 68.99 51.30

o[A] 3.58 3.58 2.95 3.84 3.86 3.96 3.82 3.85
CHZ—Sp2

elks [K] 77.30 77.30 398.40 116.07 95.81 68.99 85.00 63.21

o[A] 3.50 3.50 3.14 3.70 3.72 3.82 3.68 3.70
CH—sp?

elks [K] 62.50 62.50 289.02 86.31 71.25 51.30 63.21 47.00

o[A] 3.46 3.46 3.17 3.73 3.75 3.85 3.70 3.73
Na

elks [K] 23.00 23.00 124.40 582.170 443.73 310.00 398.40 289.02

o [A] 3.40 3.40 2.16 2.72 2.65 2.95 3.14 3.17

charge Q1 Osi Na Si Al
qle] —1.20 —1.025 +1.00 +2.05 +1.75

aThe partial charges (in units of e) of the framework and the Kations are given at the bottom of the table. Most parameters are taken from Calero
et all* The parameters of the 3ponded atoms are taken from Jakobtorweihen éf @he LJ parameters for the Sparbon-cation interactions were
obtained by adjusting the force field through fitting a full isotherm. The methodology is described in ref;lare@xygens that are bridging one Si and

one Al atom, and @ are oxygens that are bridging two Si atoms.

Table 2. Parameters for United Atom (UA) Force Field

Table 3. Single Component Isosteric Heats of Adsorption

value
ki/ks = 96 500 K/A2

parameter

bond energy constant
reference bond length

CH—CH, ro=154A
CH=CHj ro=133A
bend energy constant
propane ko/kg = 62 500 K/rad
propylene ko/kg = 70 400 K/rad
reference bend angle
propane Oo= 114
propylene 6o=119.7

aData taken from refs 14 and 17.

Qi [kJd/mol]
component ref 19 ref 15 this watk
CsHsg 35.8 324 35.0
CsHsg 42.5 46.2 39.6

a Temperature= 303 K. Nonframework cations- 88 Na per unit cell.
b From refs 15 and 32. Calculated using the ClausiDispeyron relationship
from single isotherm data taken from the literature.

of butene isomers in NaY zeolites have been publisRed,
the best of our knowledge, there is no published data of MC
simulations of alkenes in Na faujasites; therefore, the interaction

FAU-type zeolites have a structure that is based on the linking Parameters between the Na atom and tifecapbons must be
of sodalite cages through hexagonal prisms to form a three- established and validated through determination of the proper-

dimensional framework of interconnected supercag#g.5 A

ties, such as heats of adsorption and adsorption properties of

in diameter. These supercages are linked through 12-memberedbinary mixtures of propane and propylene.

ring windows~7.4 A in diameter. The cations located around

The objectives of this work are to use molecular simulations

the crystallographic sites counterbalance the negative chargedo describe the isosteric heats of adsorption and equilibrium

that are induced by the presence of Al atoms in the framework.
The composition of the synthetic form is Md,Sii9o-xOzs4,
where 0< x < 96. Zeolite X contains 7796 Al atoms per
unit cell and zeolite Y has an aluminum density<of7 Al atoms
per unit cell4

Equilibrium adsorption isotherms of propane in zeolite 13X
were calculated by molecular simulation, using force field

adsorption isotherms of propane and propylene on zeolite 13X,
as well as thx—y diagram of the corresponding mixtures and
to compare the results with experimental d&t2l The novelty

of this work is the establishment of a new set of parameters for
cation interactions with alkene double-bond carbons.

parameters that were based on the force field according to Calerc?- Models and Methods

et al.}* for a pressure range of 6210 kPa and temperatures
of 303, 323, 343, 373, 423, and 473 K. Simulation boxes with
76, 86, and 88 Nacations were used in this work. We used

2.1. The Configurational-Bias Monte Carlo Method.
Equilibrium adsorption isotherms are calculated by MC simula-

different cation densities, because, in the literature, three fions in the grand-canonicak¥T) ensemble, in which the

different number of cations are reported for zeolite 13X. In 1979,
Dzhigit et al. reported the use of zeolite NaX with 76 Na per
unit cell® In 1995, Tarek et al. described a zeolite sample that
contained 86 cations per unit c€liThe number of 88 Na cations
per unit cell for zeolite 13X is mentioned in the work of Ungerer
et alé

For the adsorption equilibrium isotherms of propylene, the
Lennard-Jones (LJ) interaction parameters for tiebsmded
carbons were taken from the work of Jakobtorweihen et al.,
which originally was developed for application in all-silica
zeolites!” Although ab initio calculations of adsorption energies

temperaturd and volumeV of the system are fixed, as well as
the chemical potential of each componenj. (This requires
exchanges of molecules with a particle reservoir at a fixed
chemical potentiad??? The alkane/alkene molecules are de-
scribed with the united atom (UA) model, in which each CH
group is treated as a single interaction center. In the configu-
rational-bias Monte Carlo (CBMC) algorithm, the chain grows,
starting from the first (united) atom, which is placed at a random
position in the zeolite. The next atom is bonded to this atom by
a harmonic potential. Several trial directions for this atom are
chosen, and one of them is selected with a probability that is
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Figure 2. Propane adsorption isotherms for zeolite 13X: 76 Na atoms per unit cell, (b) 86 Na atoms per unit cell, and (c) 88 Na atoms per unit cell. Open
symbols represent simulations, and closed symbols represent experimentdl data.
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Figure 3. Propane in zeolite 13X: Comparison between simulations (open symbols) performed with different framework cation densities and experimental
data (closed symbolsy.
proportional to its Boltzmann weight. This process is continued flexibility is small for adsorptior?® the zeolite structure is
until the complete chain is grown. The bias introduced by the considered to be rigid and the cations are allowed to move freely
growth of the chain is removed in the acceptance/rejection rules.in the zeolite. Details on the force field and the CBMC method
Trial moves to insert and delete molecules must be added. Thecan be found in refs 2426.
non-framework cations are also described as single interaction 2.2. Force Field Parametersin the present work, the LJ
centers. However, the cations contain a partial charge, unlikeinteraction parameters for the3garbons, the nonframework
the united carbon atoms. As the influence of zeolite framework cations, and the zeolite atoms are taken from a recently
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Figure 4. Propylene adsorption isotherms over zeolite 13X: 76 Na atoms 3.1. I_sos_terlc_ Heats of Adsorpt_lon.US|_ng the hc_eats of
per unit cell, (b) 86 Na atoms per unit cell, and (c) 88 Na atoms per unit adsorption is suitable to test force fields, via comparison of the

cell. Open symbols represent simulations, and closed symbols representmolecular simulation results with the experimental digtal?-30
experimental dat& Isosteric heats of single component adsorption of propane and
propylene have been obtained using the GCMC ensemble, from
combined energy/particle fluctuatiofis-or the simulations, the
total number of cycles was at least>2 1(°. The calculated
heats of adsorption are shown in Table 3. Figure 1 shows a
comparison between the simulations and experimental data for
propane (Figure 1a) and propylene (Figure 1b), as a function
of the loading in zeolite 13X. All calculations have been

developed force field by Calero et ®lfor alkane adsorption.
As mentioned previously, for propylene adsorption, the interac-
tion parameters between the?smarbons, the nonframework
cations, and the zeolite atoms were fitted against experimental
isotherms.

As a first stage, we used the original set of parameters of
Calero et al. and increased the number of parameters with thepe formed using a simulation box containing 88 cations per unit
CH-sp and CH-sp? pseudo-atoms, to explicitly fit a full

isoth . h cell. The agreement between the results obtained by molecular
isotherm over different pressures and temperatures. Furt ermoregimylation is excellent for propane and for propylene. The

we calibrated the e_-xtended _set pf parameters against eXPerigifference is~7%, which is as expected for predictions of
mental data to obtain a best fit. Finally, we used the new set of ;¢ \steric heats by molecular simulaticis.

parameters to compute they diagram of propanepropylene 3.2. Propane Adsorption in Na-FAU (Zeolite 13X) Propane

mixtures. The agreement with experimental results is very good. 5ysorntion equilibrium isotherms were simulated at temperatures
Tables 1 and 2 list all parameters used herein. We use aq¢ 303 323, 343, 373, 423, and 473 K and pressure ranges of

truncated and shifted potentiak = 12 A) and tail corrections 1 _10q kPa. Simulations for this system at 293 K and pressures

are not used? Coulombic interactions are calculated by Ewald from 102 kPa to 16 kPa have been reported by Calero etal.

; oulc . : e
summation, which is extensively described elsewfi&f@In The simulation methodology is identical to that given by Calero
practice, the convergence of the Ewald sum is controlled by o 5| 14 anq a detailed description of the Monte Carlo scheme

three variables: the real space cutoff radiug)( the conver- .o, he found in ref 14. The number of MC cycles needed to
gence parameteq], and the largest reciprocal space vector used ¢5\cjjate the isotherms was>2 105. The adsorption loadings
in the reciprocal space suni,). In this work, the Ewald  cajcylated by molecular simulation have been corrected for a
summation parameters = 0.3 andkmax B 9 are _used. ) binder content of 20%, for comparison with the experimental
UA beads are connected by harmonic bonding potentials, |q4dingst® The agreement with the experiments is very good
K at all studied temperatures. Figures 2a, 2b, and 2c show
Upona = —l(r — rO)Z (1) equilibrium adsorption isotherms of propane over zeolite 13X,
o2 compared with the experimental results from Da Silva and
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Figure 5. Propylene in zeolite 13X: Comparison between simulations (open symbols) performed with different framework cation densities and experimental
data (closed symbolgy.
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Figure 6. Propane/propylene in zeolite 13X: Equilibriutay diagram at 303 K and a total pressure of 101 kPa. Closed circles are unpublished experimental
data?” and open circles are simulations results; the open square is a point that was obtained from a 50:50 propane:propylene breakth#éugh curve.

Rodriguest? Figure 3 shows isotherms at 303 K in which the all-silica zeolites'” The present work is intended to determine
simulations performed with 76, 86, and 88 Na atoms per unit reliable LJ parameters for the interaction between the non-
cell are compared with the experimental results for a zeolite framework cations and the %pybridized groups of linear
13X sample that contained 88 Na atoms per unit ¥é.The alkenes using the UA force field and to describe equilibrium
differences between the simulations and experiments are smalleadsorption properties of propylene in zeolite 13X, as well as
than the symbol size in this figure, and the shape of the their mixtures with propane.
isotherms is well-reproduced. Equilibrium adsorption isotherms were calculated using the
3.3. Propylene Adsorption in Na-FAU (Zeolite 13X). CBMC simulations in the pressure range of 0190 kPa at
Numerous studies exist regarding the adsorption of alkanes intemperatures of 303, 323, 343, 373, 423, and 473 K. The
zeolites by molecular simulatidit121.22.24 However, the simulated isotherms were compared with experimental data that
adsorption properties of alkenes in zeolites determined by was reported by Da Silva and Rodrigd@sThree different
molecular simulation found in the literature are scarce. A study sodium densities have been studied, as shown in Figures 4a,
in 2004 by Pascual et al. examined the adsorption-alkenes 4b, and 4c. Figure 5 shows the isotherms of propylene in zeolite
in silicalite-1, using the anisotropic united atom (AUA) force 13X at 303 K, as a comparison between the experimental results
field model®® The work of Zhang et al. in 2003 reported and simulation boxes of 76, 86, and 88 cations per unit cell.
molecular simulations of propane/propylene adsorption in zeolite The simulated isotherms illustrate important aspects of propylene
4A and seems to be the first study that has considered eation adsorption properties. First, at higher loadings (lower temper-
sorbate interactions for alkenes, using the all-atom m¥dal. atures, high pressures), the simulations results are higher than
2005, Jakobtorweihen et al. used a UA force field to calculate the experimental data. This is explained by the use in experi-
adsorption isotherms of several alkenes and their mixtures in ments of pelletized zeolite with a binder content of 20%, which
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can cause structural imperfections and inactivation of a large Netherlands Organization for Scientific Research (NYAQW),

part of the zeolite, because of pore blockiigOn the other

hand, the simulations reproduce a perfect zeolite crystal, and

through a VIDI grant.
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Nomenclature

kmax = Ewald summation reciprocal space vector

ki = constant related to the bond stretching interaction
k. = constant related to the bond bending interaction

| = bond length [A]

reut = cutoff radius

P = pressure

T = absolute temperature

V = volume

Greek Letters

a = Ewald summation convergence parameterjA
€ = characteristic energy in pair potential

u = chemical potential

6 = bending angle [rad]

o = characteristic distance in pair potential
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