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We present a statistical analysis of time-resolved spontaneous emission decay curves from ensembles of
emitters, such as semiconductor quantum dots, with the aim of interpreting ubiquitous non-single-exponential
decay. Contrary to what is widely assumed, the density of excited emitters and the intensity in an emission
decay curve are not proportional, but the density is a time integral of the intensity. The integral relation is
crucial to correctly interpret non-single-exponential decay. We derive the proper normalization for both a
discrete and a continuous distribution of rates, where every decay component is multiplied by its radiative
decay rate. A central result of our paper is the derivation of the emission decay curve when both radiative and
nonradiative decays are independently distributed. In this case, the well-known emission quantum efficiency
can no longer be expressed by a single number, but is also distributed. We derive a practical description of
non-single-exponential emission decay curves in terms of a single distribution of decay rates; the resulting
distribution is identified as the distribution of total decay rates weighted with the radiative rates. We apply our
analysis to recent examples of colloidal quantum dot emission in suspensions and in photonic crystals, and we
find that this important class of emitters is well described by a log-normal distribution of decay rates with a
narrow and a broad distribution, respectively. Finally, we briefly discuss the Kohlrausch stretched-exponential
model, and find that its normalization is ill defined for emitters with a realistic quantum efficiency of less than
100%.
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I. INTRODUCTION

Understanding the decay dynamics of excited states in
emitters such as semiconductor quantum dots is of key im-
portance for getting insight into many physical, chemical,
and biological processes. For example, in biophysics the in-
fluence of Förster resonance energy transfer on the decay
dynamics of donor molecules is studied to quantify molecu-
lar dynamics.1,2 In cavity quantum electrodynamics, modifi-
cation of the density of states �DOS� is quantified by mea-
suring the decay dynamics of light sources. According to
Fermi’s golden rule the radiative decay rate is proportional to
the DOS at the location of the emitter.3 Nanocrystalline
quantum dots,2,4,5 atoms,6,7 and dye molecules8,9 are used as
light sources in a wide variety of systems. Examples of such
systems are many different kinds of photonic materials, in-
cluding metallic and dielectric mirrors,5–9 cavities,10 metallic
films,11,12 and two-,13,14 and three-dimensional15 photonic
crystals.

Figure 1 shows how observable parameters are related to
the decay of an excited state X* to the ground state X. In
photoluminescence lifetime measurements the decay of the
number of excited emitters is probed by recording a photo-
luminescence decay curve �f�t��. The number of excited
emitters c�t� can be probed directly by transient absorption
measurements16–18 and nonradiative decay �g− f��t� can be
recorded with photothermal techniques19,20 �see Fig. 1�. g�t�
is here defined as the total intensity, i.e., the sum of the
radiative and nonradiative processes. In this paper we discuss

photoluminescence lifetime measurements, which are gener-
ally recorded by time-correlated single-photon counting.1

The decay curve f�t� consists of a histogram of the distribu-
tion of arrival times of single photons after many excitation-
detection cycles.1 The histogram is modelled with a decay
function from which the decay time of the process is de-
duced.

In the simplest case when the system is characterized by a
single decay rate �, the decay curve is described by a single-
exponential function. However, in many cases the decay is
much more complex and strongly differs from single-
exponential decay.4,15,16,21–25 This usually means that the de-
cay is characterized by a distribution of rates instead of a

FIG. 1. Schematic of the relation between decay of an excited
state X* to the ground state X and experimental observable param-
eters. The density of emitters in the excited state is equal to c�t� and
can be probed by transient absorption. The emitted light intensity as
a function of time f�t� is recorded in luminescence decay measure-
ments. In photothermal measurements the released heat �g− f��t�
after photoexcitation is detected. g�t� describes the total decay, i.e.,
the sum of the radiative and the nonradiative decay.
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single rate.46 For example, ensembles of quantum dots in
photonic crystals experience the spatial and orientational
variations of the projected local DOS �LDOS� explaining the
non-single-exponential character of the decay.26 It is a gen-
eral problem to describe such relaxation processes which do
not follow a simple single-exponential decay. Sometimes
double- and triple-exponential models are justified on the
basis of prior knowledge of the emitters.1 However, in many
cases no particular multiexponential model can be antici-
pated on the basis of physical knowledge of the system stud-
ied and a decision is made on the basis of the quality of fit.

Besides multiexponential models, the stretched-expo-
nential model or Kohlrausch function27 is frequently applied.
The stretched-exponential function has been applied to
model diffusion processes,28 dielectric relaxation,29 capacitor
discharge,30 optical Kerr effect experiments,31 and lumines-
cence decay.32–34 The physical origin of the apparent
stretched-exponential decay in many processes remains a
source of intense debate.35–37

Surprisingly, in spite of the rich variety of examples
where non-single-exponential decay appears, there is no pro-
found analysis of the models available in the literature.
Therefore, we present in this paper a statistical analysis of
time-resolved spontaneous emission decay curves from en-
sembles of emitters with the aim of interpreting ubiquitous
non-single-exponential decay. Contrary to what is widely as-
sumed, the density of excited emitters c�t� and the intensity
in an emission decay curve �f�t� or g�t�� are not proportional,
but the density is a time integral of the intensity. The integral
relation is crucial to correctly interpret non-single-
exponential decay. We derive the proper normalization for
both a discrete and a continuous distribution of rates, where
every decay component is multiplied by its radiative decay
rate. A central result of our paper is the derivation of the
emission decay curve f�t� when both radiative and nonradi-
ative decays are independently distributed. In this most gen-
eral case, the well-known emission quantum efficiency is
also distributed. Distributed radiative decay is encountered in
photonic media,26 while distributed nonradiative decay has
been reported for colloidal quantum dots32,34 and powders
doped with rare earths.38 We derive a practical description of
non-single-exponential emission decay curves in terms of the
distribution of total decay rates weighted with the radiative
rates. Analyzing decay curves in terms of distributions of
decay rates has the advantage that information on physically
interpretable rates is readily available, as opposed to the pre-
viously reported analysis in terms of lifetimes. We apply our
analysis to recent examples of colloidal quantum dot emis-
sion in suspensions and in photonic crystals. We find excel-
lent agreement with a log-normal distribution of decay rates
for such quantum dots. In the final section, we discuss the
Kohlrausch stretched-exponential model, and find that its
normalization is ill defined for emitters with a realistic quan-
tum efficiency of less than 100%.

II. DECAY MODELS

A. Relation between the concentration of emitters
and the decay curve

A decay curve is the probability density of emission
which is therefore modeled with a so-called probability den-

sity function.39 This function tends to zero in the limit t
→�. The decay of the fraction of excited emitters c�t�� /c�0�
at time t� is described with a reliability function or cumula-
tive distribution function �1−c�t�� /c�0��.39 Here c�0� is the
concentration of excited emitters at t�=0. The reliability
function tends to 1 in the limit t�→� and to zero in the limit
t�→0. The fraction of excited emitters and the decay curve,
i.e., the reliability function and the probability density
function,39 are related as follows:

�
0

t�
g�t�dt = 1 −

c�t��
c�0�

. �1�

Physically this equation means that the decrease of the con-
centration of excited emitters at time t� is equal to the inte-
gral of all previous decay events, or equivalently, the total
intensity g�t� is proportional to the time derivative of the
fraction of excited emitters. As an illustration, Fig. 2 shows a
non-single-exponential decay function simultaneously with
the corresponding decay curve. It is clear that the two curves
are strongly different. In many reports, however, the distinc-
tion between the reliability function and the probability den-
sity function is neglected: the intensity of the decay curve
g�t� is taken to be directly proportional to the fraction of
excited emitters c�t�� /c�0�. This proportionality holds only
for single-exponential decay and not for non-single-
exponential decay, which has important consequences for the
interpretation of non-single-exponential decay.

B. Single-exponential decay

In this section, we will illustrate some concepts with the
well-known single-exponential model. We will also indicate
which features of single-exponential decay will break down

FIG. 2. �Color online� Plot of a non-single-exponential decay of
the fraction c�t� /c�0� �black solid curve, left axis� and the corre-
sponding total intensity decay curve g�t� �red dashed curve, right
axis�. The curves that describe the fraction of excited emitters and
the corresponding intensity decay curve are strongly different. In
this example, c�t� /c�0� is the Kohlrausch stretched-exponential de-
cay of the fraction �Eq. �19�, black solid curve� and g�t� the corre-
sponding decay curve �Eq. �20�, red dashed curve�. We have taken
�=0.5 and �str=1.
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in the general case of non-single-exponential decay. It is well
known that in case of first-order kinetics the rate of decrease
of the concentration is constant in time:

dc�t��
dt�

= − �c�t�� , �2�

where � is the decay rate of the process. As a consequence,
the concentration c�t�� decreases single-exponentially in
time:

c�t��
c�0�

= exp�− �t�� . �3�

The mathematical expression for the luminescence decay
curve can be obtained by inserting Eq. �3� into Eq. �1�, where
� is identified with the total decay rate �tot, resulting in

g�t� = �rad exp�− �tott� + �nrad exp�− �tott� , �4�

where �rad is the radiative decay rate, �nrad is the nonradia-
tive decay rate, and �tot is the total decay rate with �tot
=�rad+�nrad. In a luminescence decay measurement the re-
corded signal is proportional to the first term of g�t� only,
which is f�t�:

f�t� = ��rad exp�− �tott� , �5�

and therefore a single-exponential luminescence decay pro-
cess is modeled with Eq. �5�. The preexponential factor � is
usually taken as an adjustable parameter, and it is related
to several experimental parameters, i.e., the number of
excitation-emission cycles in the experiment, the photon-
collection efficiency, and the concentration of the emitter.
Henceforth � will be omitted in our analysis. A comparison
between Eqs. �5� and �3� shows that in the case of pure
single-exponential decay neglect of the distinction between
the reliability function �Eq. �3�� and the probability density
function �Eq. �5�� has no important consequences, since both
the fraction and the decay curve are single exponentials. As
Fig. 2 shows, this approximation breaks down in the case of
non-single-exponential decay.

Figure 3 shows a luminescence decay curve of a dilute
suspension of CdSe quantum dots in chloroform at a wave-
length of �=650±5 nm,40 with the number of counts on the
ordinate and the time on the abscissa. Clearly, the data agree
well with single-exponential decay as indicated by the qual-
ity of fit �r

2 of 1.12, close to the ideal value of 1. This means
that all individual quantum dots that emit light in this par-
ticular wavelength range do so with the same rate of
1 /39.0 ns−1. It appears that the rate of emission strongly de-
pends on the emission frequency and that it is determined by
the properties of the bulk semiconductor crystal.40

Since f�t� as given by Eq. �5� is a probability density
function, the probability of emission in a certain time inter-
val can be deduced by integration. The total probability for
emission at all times between t=0 and t→� is given by

�
0

�

f�t�dt = �
0

�

�rad exp�− �tott�dt =
�rad

�tot
�6�

which is equal to the luminescence quantum efficiency. The
luminescence quantum efficiency is defined as the probabil-
ity of emission after excitation.1 The correct recovery of this
result in Eq. �6� shows that Eq. �5� is properly normalized.

The average arrival time of the emitted photons or the
average decay time can be calculated by taking the first mo-
ment of Eq. �5�:

�t� = �av =

�
0

�

f�t�tdt

�
0

�

f�t�dt

=
1

�tot
. �7�

Only in the case of single-exponential decay is the average
decay time �t� equal to the inverse of the total decay rate �tot.
The average arrival time for the data in Fig. 3 was �t�
=39.1 ns, very close to the value of 39.0±2.8 ns obtained
from single-exponential modeling, which further confirms
the single-exponential character of the decay of quantum
dots in suspension.

C. Discrete distribution of decay rates

In contrast to the example shown in Fig. 3, there are many
cases in which decay curves cannot be modeled with a
single-exponential function. As an example, Fig. 4 shows a
strongly non-single-exponential decay curve of spontaneous
emission from CdSe quantum dots in an inverse opal photo-
nic crystal.15,26 If a non-single-exponential decay curve is
modeled with a sum of single exponentials, the decay curve
has the following form:

FIG. 3. �Color online� Luminescence decay curve of emission
from a dilute suspension of CdSe quantum dots �open dots, left
axis�. Data were collected at the red side of the emission maximum
of the suspension, at �=650±5 nm. Single-exponential modeling
�red dashed curve, right axis� yields a decay time of 39.0±2.8 ns
and a �r

2 of 1.12. The average photon arrival time �t�, calculated
with Eq. �7�, is 39.1 ns.
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f�t� =
1

c�0��i=1

n

ci�rad,i exp�− �tot,it� , �8�

where n is the number of different emitters �or alternatively
the number of different environments of single emitters26�, ci
is the concentration of emitters that have a radiative decay
rate �rad,i, and c�0� is the concentration of excited emitters at
t=0, i.e., the sum of all concentrations ci. When the different
fractions �or environments� are distributed in a particular
way, a distribution function 	��tot� may be used. Such a
function describes the distribution or concentration of the
emitters over the emission decay rates at time t=0. The frac-
tion of emitters with a total decay rate �tot,i is given by

ci

c�0�
=

1

c�0�
�c��tot,i−1� + c��tot,i+1��

2

=
1

2
�

�tot,i−1

�tot,i+1

	��tot�d�tot

= 	��tot,i�
�tot, �9�

where 	��tot,i� expresses the distribution of the various com-
ponents i over the rates �tot,i and has units of inverse rate s.

�tot is the separation between the various components i in
the sum. The decay curve now has the following mathemati-
cal form:

f�t� = �
i=1

n


�tot	��tot,i��rad,i exp�− �tot,it� . �10�

It is important to note that in Eq. �10� every component in
the sum is correctly normalized since every component is
multiplied by its radiative decay rate �rad,i.

D. Continuous distribution of decay rates

For infinitesimal values of 
�tot, Eq. �10� can be written
as an integral:

f�t� = �
0

�

�rad��tot�	��tot�exp�− �tott�d�tot. �11�

In the case of single-exponential decay the distribution func-
tion is strongly peaked around a central �tot value, i.e., the
distribution function is a Dirac � function. Inserting a Dirac
� function into Eq. �11� recovers Eq. �5�:

f�t� = �
0

�

�rad����tot − �tot��exp�− �tott�d�tot

= �rad� exp�− �tot�t� . �12�

This result confirms that the generalization to Eq. �11� is
correct since it yields the correctly normalized single-
exponential functions.

In Eq. �11� it is tacitly assumed that for every �tot there is
one �rad: the function �rad��tot� relates each �tot to exactly
one �rad. In general both �tot and �rad vary independently,
and Eq. �11� is generalized to

f�t� = �
0

� 	�
0

�tot

d�rad	�tot
��rad��rad
	��tot�exp�− �tott�d�tot,

�13�

where 	�tot
��rad� is the normalized distribution of �rad at con-

stant �tot. For every �tot the integration is performed over all
radiative rates; a distribution of �rad is taken into account for
every �tot. Equation �13� is the most general expression of a
luminescence decay curve and a central result of our paper.
From this equation every decay curve with a particular dis-
tribution of rates can be recovered. An example described by
Eq. �13� is an ensemble of quantum dots in a photonic crys-
tal. In photonic crystals the local density of optical states
varies with the location in the crystal and the distribution of
dipole orientations of the emitters.41 Therefore, an ensemble
of emitters with a certain frequency emits light with a distri-
bution of radiative rates �rad. In addition, when an ensemble
of emitters has a distributed �tot and a single radiative rate
�rad, i.e., 	�tot

��rad� is a � function, then Eq. �13� reduces to
Eq. �11�. Even though the nonradiative rates may still be
distributed, Eq. �11� suffices to describe the decay curve
since for every �tot there is only one �rad. Such a situation
appears, for example, with powders doped with rare earth
ions38 and with polymer films doped with quantum dots.32,34

Interestingly, an ensemble of emitters with a distribution
of rates �tot is not completely characterized by a single value
of the quantum efficiency �as opposed to Eq. �6� for single-

FIG. 4. �Color online� Luminescence decay curve of emission
from CdSe quantum dots in a titania inverse opal photonic crystal
�dots, left axis�. The lattice parameter of the titania inverse opal was
340 nm and the emission wavelength �=595 nm. �a� A log-normal
distribution of rates �Eqs. �17� and �18�, red dashed curve, right
axis� models the data extremely well ��r

2=1.17�. The �mf is
91.7 �s−1 �1/�mf =10.9 ns� and the width of the distribution 
� is
0.57 ns−1. �b� In contrast, a Kohlrausch stretched-exponential model
�red dashed curve, right axis� does not fit the data ��r

2=60.7�. The
stretched-exponential curve corresponds to �str=96.2 �s−1 �1/�str

=10.4 ns�, an average decay time �t� of 31.1 ns, and a � value of
0.42.
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exponential decay�. In such an ensemble, the quantum effi-
ciency is distributed, since each �tot is associated with a dis-
tribution of radiative rates �rad. The average quantum
efficiency �
� can be calculated by integrating Eq. �13� for
all times:

�
� = �
0

�

f�t�dt

= �
0

� �
0

� 	�
0

�tot

d�rad	�tot
��rad��rad


�	��tot�exp�− �tott�d�totdt . �14�

Most often, detailed information on the relation between
�tot and �rad is not available. Then, direct modeling with a
distribution of decay rates is applied.21,23,24,37,42 This
approach has a major advantage over modeling with a
stretched-exponential function, where it is complicated to de-
duce the distribution of decay rates �see below�. A function
of the following form is used to model the non-single-
exponential decay curve:

f�t� = �
0

�

���tot�exp�− �tott�d�tot. �15�

In Eq. �15� the various components are not separately nor-
malized as in Eq. �13�. Modeling with Eq. �15� boils down to
using an infinite series of single exponentials which are ex-
pressed with only a few free parameters. The form of the
distribution can usually not be predicted and a decision is
made on the basis of the quality of fit. While a good fit does
not prove that the chosen distribution is unique, it does ex-
tract direct physical information from the non-single-
exponential decay on an ensemble of emitters and their
environment.26

It is widely assumed that ���� is equal to the distribution
of total rates.21,23,24,43,44 A comparison with Eq. �13� shows
that this is not true and reveals that ���� contains informa-
tion about both the radiative and nonradiative rates:

���tot� = 	��tot��
0

�tot

	�tot
��rad��radd�rad. �16�

Thus ���� is the distribution of total decay rates weighted by
the radiative rates. This conclusion demonstrates the practi-
cal use of Eq. �13�: the equation allows us to completely
interpret the distribution of rates found by modeling with Eq.
�15�. Such a complete interpretation has not been reported
before to our knowledge.

E. Log-normal distribution of decay rates

Distribution functions that can be used for ���� are �sums
of� normal, Lorentzian, and log-normal distribution func-
tions. In Fig. 4�a� the luminescence decay curve of quantum
dots is successfully modeled with Eq. �15�, with a log-
normal distribution of the rate �,

���� = A exp�− 	 ln � − ln �mf

�

2� , �17�

where A is the normalization constant and �mf is the most
frequent rate constant �see Fig. 5�. � is related to the width of
the distribution:


� = 2�mf sinh��� , �18�

where 
� is equal to the width of the distribution at 1 /e. The
most frequent rate constant �mf and � are adjustable param-
eters, only one extra adjustable parameter compared to a
single-exponential model. Clearly, this model �Eqs. �15� and
�17�� describes our non-single-exponential experimental data
extremely well. �r

2 was 1.17, �mf was 91.7 �s−1 �1/�mf

=10.9 ns�, and the width of the distribution 
� was
0.57 ns−1. In addition to �mf and 
�, an average decay rate
can be deduced from the log-normal distribution in Fig. 5.
However, this average is biased since the various compo-
nents are weighted with their quantum efficiency, as shown
in Eq. �16�.

Modeling with a log-normal distribution of decay rates
yields direct and clear physical parameters, for instance the
shape and width of the decay rate distribution. The log-
normal function is plotted in Fig. 5 �curve a�. The broad
distribution of rates demonstrates the strongly non-single-
exponential character of the decay curve. In Ref. 26 we were
able to relate the width of this broad distribution to the spa-
tial and orientational variations of the LDOS in inverse-opal
photonic crystals.

The log-normal model was also modeled to the decay
curve from quantum dots in suspension �Fig. 3�. The distri-
bution is plotted in Fig. 5 �curve b�. �mf was 25.8 �s−1

�1/�mf =38.8 ns�, close to the lifetime deduced from the
single-exponential modeling of 39.0±2.8 ns. The narrow
width of the distribution 
� of 0.079 ns−1 is in agreement
with the single-exponential character of the decay curve.

FIG. 5. Log-normal distribution of �. This distribution was
modeled to the data of Fig. 4 �curve a, quantum dots in photonic
crystal� and Fig. 3 �curve b, quantum dots in a diluted suspension�,
with �mf and 
� as adjustable parameters. For curve a �mf is
91.7 �s−1 �1/�mf =10.9 ns� and the width of the distribution 
� is
0.57 ns−1 and for curve b �mf is 25.8 �s−1 �1/�mf =38.8 ns� and the
width of the distribution 
� is 0.079 ns−1.
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F. Stretched-exponential decay

In addition to the multiexponential models discussed in
Secs. II C–II E, the Kohlrausch stretched-exponential decay
model27,29 is widely applied to model non-single-exponential
decay curves. The fraction of excited emitters, i.e., the reli-
ability function, of the Kohlrausch stretched-exponential
model is equal to

c�t��
c�0�

= exp�− ��strt���� , �19�

where � is the stretch parameter, which varies between 0 and
1, and �str the total decay rate in the case of stretched-
exponential decay. The stretch parameter � qualitatively ex-
presses the underlying distribution of rates: a small � means
that the distribution of rates is broad and � close to 1 implies
a narrow distribution. The recovery of the distribution of
rates in the case of stretched-exponential decay is mathemati-
cally complicated47 and feasible only for specific
�’s.22,29,35,36

The decay curve corresponding to a Kohlrausch stretched-
exponential decay of the fraction c�t�� /c�0� can be deduced
using Eqs. �19� and �1�, and results in

g�t� =
�

t
��strt�� exp�− ��strt��� . �20�

The normalization of Eq. �20� can, in analogy with Eq. �6�,
be deduced by integration for all times between t=0 and t
→�, which yields 1. Therefore, an important consequence is
that Eq. �20� is correctly normalized only for emitters with a
quantum yield of 1 ��rad=�tot and f�t�=g�t��. It is not clear
how normalization should be done in realistic cases with
quantum yield less than 100%. To the best of our knowledge,
this problem has been overlooked in the literature.

The main advantage of modeling with a Kohlrausch
stretched-exponential function is that the average decay time
�t� can readily be calculated. The average decay time is equal
to29

�t� = �av =

�
0

�

g�t�tdt

�
0

�

g�t�dt

=
1

�str�
�̄	 1

�

 , �21�

where �̄ is the mathematical Gamma function. For the
single-exponential limit of �→1 Eq. �21� reduces to Eq. �7�.
Note again that in this average the various contributions are
weighted with their quantum efficiency and that the average
decay time �t� differs from 1/�str �see Sec. II E�. Indeed, for
the data in Fig. 4�b�, Eq. �21� yielded an average decay time
of 31.1 ns, strongly different from the 1/�str value of
10.4 ns, in contrast to the result �Eq. �5�� for single-
exponential decay.

It is important to note that Eq. �21� is the average decay
time �t� corresponding to the decay curve given by Eq. �20�.
In, for instance, Refs. 32 and 45 the average time given by

Eq. �21� has erroneously been associated with fluorescence
decay described by Eq. �19�.

In contrast to the single-exponential model, the reliability
function and the probability density function of a stretched
exponential do not have the same form �see Fig. 2�; the prob-
ability density function contains a time-dependent prefactor.
Therefore, the relation between the reliability function and
the probability density function �Eq. �1�� has important con-
sequences. For a � value of 0.5 the average decay times of
the reliability function �Eq. �19�� and of the probability den-
sity function �Eq. �20�� differ by more than a factor of 10.
Thus it is important to take into consideration whether Eq.
�19� or Eq. �20� is used to describe the experimental photo-
luminescence decay curve. This is important, since in many
reports,32–34,37,43,44 the luminescence decay curve is modeled
with the time dependence of Eq. �19�. We remark that, while
Eq. �19� can be used to account for the deviation from
single-exponential decay, it does not represent the true Kohl-
rausch function, but is simply an alternative model. We argue
that using the Kohlrausch stretched exponential as a reliabil-
ity function to model the fraction48 c�t�� /c�0� implies that
the proper probability density function, i.e., Eq. �20�, must be
used to model a luminescence decay curve. Figure 4�b�
shows the modeling of experimental data with Eq. �20�, with
�str and � as adjustable parameters. The � value was 0.42
and �str was 96.2 �s−1 �1/�str=10.4 ns�. Modeling with a
stretched exponential is obviously more satisfactory than a
single exponential, but here fails at long times, reflected by
the high �r

2 value of 60.7.

III. CONCLUSIONS

We have presented a statistical analysis of time-resolved
spontaneous emission decay curves from ensembles of emit-
ters, in particular colloidal quantum dots, with the aim of
interpreting the ubiquitous non-single-exponential decay.
Contrary to what is widely assumed, the density of excited
emitters c�t� and the intensity in an emission decay curve
�f�t� or g�t�� are not proportional, but the density is a time
integral of the intensity. The integral relation is crucial to
correctly interpret non-single-exponential decay. We have
derived the proper normalization for both a discrete and a
continuous distribution of rates, where every decay compo-
nent is multiplied by its radiative decay rate. A central result
of our paper is the derivation of the emission decay curve
f�t� when both radiative and nonradiative decays are inde-
pendently distributed �Eq. �13��. In this case, the well-known
emission quantum efficiency can no longer be expressed by a
single number, but is also distributed. We derive a practical
description of non-single-exponential emission decay curves
in terms of a distribution of total decay rates weighted with
the radiative rates. Analyzing decay curves in terms of decay
rate distributions is opposite to the usual and widely reported
analysis in terms of distributed lifetimes. We apply our
analysis to recent examples of colloidal quantum dot emis-
sion in suspensions and in photonic crystals, and we find that
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this important class of emitters is well described by a log-
normal distribution of decay rates with a narrow and a broad
distribution, respectively. Finally, we briefly discuss the
Kohlrausch stretched-exponential model; we deduce the av-
erage decay time and we find that its normalization is ill
defined for emitters with a realistic quantum efficiency of
less than 100%.
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