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A Monte Carlo model is developed for the hopping conductance in arrays of quantum dots (QDs). Hopping
is simulated using a continuous time random walk algorithm, incorporating all possible transitions, and using
a nonresonant electron-hopping rate based on broadening of the energy levels through quantum fluctuations.
Arrays of identical QDs give rise to electronic conductance that depends strongly upon level filling. In the case
of low charging energy, metal insulator transitions are observed at electron occupation levels, (n), that corre-
spond to the complete filling of an S, P, or D shell. When the charging energy becomes comparable to the level
broadening, additional minima in conductance appear at integer values of (n), as a result of electron-electron
repulsion. Disorder in QD diameters leads to disorder in the energy levels, resulting in washing out of the
structure in the dependence of conductance on (n) and a net reduction in conductance. Simulation results are
shown to be consistent with experimental measurements of conductance in arrays of zinc oxide and cadmium
selenide QDs that have different degrees of size disorder, and the degree of size disorder is quantified.
Simulations of the temperature dependence of conductance show that both Coulombic charging and size
disorder can lead to activated behavior and that size disorder leads to conductance that is sublinear on an

Arrhenius plot.
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I. INTRODUCTION

Semiconductor quantum dots (QDs) small enough that
electronic wave functions are confined within the nanocrystal
volume may be considered as “designer atoms” on account
of the possibility of controlling electronic structure by con-
trolling the QD size. Assemblies of QDs condensed into QD
solids can, in an analogous way, be considered as artificial or
designer solids and can be prepared nowadays from many
different nanocrystals, including ZnO,! CdSe,>* and PbSe.’
Electronic conductance in such solids is a function of the
electronic interaction between QDs in the assembly, i.e., of
the separation, intervening medium (barrier material),
mechanism of charge transfer, and of the degree of disorder
(in both size and packing) in the assembly as well as of the
degree of shell filling due to conduction band electrons. The
range of these parameters offers the possibility to explore
electronic conductance in different physical regimes and, in-
terestingly, the transitions between such regimes.

In assemblies of ZnO semiconductor QDs, the electronic
transfer integral between neighboring QDs, Al', is expected
to be only a fraction of an meV at room temperature® and
therefore charge transport occurs by incoherent hopping be-
tween neighboring QDs. Within this weak coupling regime,
hopping conductance depends upon level filling, giving rise
to “filling controlled” metal-insulator transitions (MITs) with
additional structure (bandwidth controlled MITs of the Mott-
Hubbard variety’) introduced when the charging energy is
significant. Conductance-level filling behavior is further in-
fluenced by disorder in site energies and hopping distance.
Thus, by control of a few parameters, the characteristics of
different transport regimes can be probed. Such studies are of
great relevance both to the fundamental physical understand-
ing of charge transport in solids and to the nascent applica-
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tions of QD solids in areas such as single-electron transistors
in logic circuits, and optoelectrical devices such as solar
cells® and electrochemically gated low-threshold lasers.’

The dependence of conductance on level filling in QD
solids has been studied experimentally by several research
groups using the simple and elegant electrochemical gating
method,'” whereby the electronic Fermi level is controlled
through an applied electrochemical potential, whilst conduc-
tion is probed via a small (~10 mV) bias applied between
two metal electrodes. Such studies have shown that QD sol-
ids display a dependence of conductance on {n) that is com-
patible with the filling of electron shells. In ZnO QD solids,
conductance within the S shell, i.e., for (n)<<2, is distinct
from that via the P levels, occurring for (n)>2, and reflects
the expected degeneracy of those shells.'® With solids of
CdSe nanocrystals, higher conductance was again observed
for P-type conduction than S shell conduction, and, more-
over, a maximum in the S-shell conductance was found at
(n)=1.3 These effects are completely analogous to the
filling-controlled MITs that have been studied in transition
metal compounds in which the electron occupation of narrow
d bands was varied by means of chemical doping.’

In order to interpret the experimental results that have
been reported and to explore possible novel conductance re-
gimes which have not yet been accessed experimentally, a
theoretical framework for electron transport in QD solids is
desired. In the strong coupling regime, relevant, e.g., for
metal nanoparticles, the different transport regimes can be
described via a band structure calculation using the Mott-
Hubbard Hamiltonian in the tight binding approximation,'!
but such studies are restricted to small systems with small
occupation numbers. Disordered systems can be described
qualitatively using models such as Mott’s variable range
hopping (VRH) (Ref. 12) and that due to Efros and
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Shlovskii.'? In the weak-coupling regime explicit modeling
of disordered systems is feasible, since each state is localized
on a single QD. Monte Carlo (MC) methods are well suited
to the study of such systems as they readily allow the degree
of disorder in QD size and packing to be varied, as well as
the charging energy, occupation level and other parameters.
Until recently, MC methods had been used only in a trivial
way, to simulate hopping conduction in systems with only
one level per nanocrystal.'* Recently van de Lagemaat'> pre-
sented a first MC model for conduction in QD solids at room
temperature. His simulations focused on the Einstein relation
between mobility and diffusion constant, especially at critical
points in filling controlled MITs. The simulations were based
on a limited set of energy levels per quantum dot, which
limits accuracy, and were restricted to room temperature.

In this paper, we present a Monte Carlo-based study of
electron transport in a small three-dimensional QD array,
embedded between planar boundaries with different quasi-
Fermi levels, which represent the source and drain electrodes
of an electrochemically gated device. Conduction proceeds
by hopping between the orbitals on neighboring quantum
dots, according to a resonant tunneling rate based on quan-
tum fluctuations in the energy levels. A continuous-time ran-
dom walk algorithm is used to handle the multiple particles
and levels in the system and only single orbital occupancy is
allowed. We monitor the linear conductance as a function of
(n) in order to study the effects of shell filling and address
the behavior both in the regime of the monodisperse and
perfectly ordered QD solid and in the regime of size disor-
dered (and consequently energetically disordered) arrays. In
each limit we study the effects of Coulomb blockade on the
transport characteristics by varying the on-site repulsion en-
ergy with respect to k7. We also study the temperature de-
pendence of conduction in the different cases, and show how
features resulting from size disorder and from Coulombic
repulsion are manifest in the 7 dependence. Finally, we com-
pare our results with experimental data for ZnO and CdSe
QD solids and interpret the behavior in terms of the model.
The results obtained here form a sound basis for interpreta-
tion of the experimental results that have been acquired to
date. The variety of possible transport features that we pre-
dict will help to guide future experimental research.

II. FORMULATION OF THE MODEL
Model of electron conduction in a quantum dot lattice

The quantum-dot assembly is modeled as a small three-
dimensional cubic lattice of dimensions X, Y, Z where each
of the M=X XY X Z sites contains a QD of diameter D cen-
tered on that lattice point. We consider only QD solids with a
fully occupied valence band and conduction orbitals of vari-
ous occupation. In such a system conduction is due to the
motion of electrons only. Each QD can accommodate up to
Nievels €lectrons in a set of Ny, singly degenerate orbitals
with electron addition energies Ey(D), measured relative to
the conduction band edge of the bulk crystal. We consider
systems containing up to 34 orbitals (two S levels, six P
levels, ten D levels, two S™ levels, and fourteen F levels). For
ordered systems all QD diameters are identical; otherwise,
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the diameters D are distributed on a Gaussian distribution of
width o), truncated such that none of the dots’ energy levels
exceed the vacuum level of E,. with respect to the conduc-
tion band edge (for ZnO, E,,.=3 eV).

The system is used to simulate electron conduction in a
miniature electrochemically gated QD assembly as follows.
All QDs in the first (z=1) lattice plane, representing the elec-
tron injecting electrode, are assigned a quasi-Fermi energy of
L.+eV/2, while all QDs in the final (z=Z) lattice plane are
assigned a quasi-Fermi energy of i,—eV4/2, where i, is the
applied electrochemical potential (which is equal to the
Fermi level of the system), e is the electronic charge, and Vy
the applied source-drain bias; V is only a small perturbation
of the electrochemical potential. f, is determined by the
mean occupation number (#) of the QDs and is obtained by
solving the following equation:

1 M Nievels 1
<n> = MmEZL E e[Ei(Dm)_lae]/kT+ 1 ’ (1)

where E;(D,,) is the electron addition energy of the ith level
of the mth QD, k is Boltzmann’s constant, and 7 is tempera-
ture. The quasi-Fermi energies of the electrode planes thus
specify both the applied source-drain bias V, and the mean
QD occupation (n). To simulate conductance as a function of
temperature, we choose to keep (n) constant and recalculate
the value of f, at each temperature. This approach is appro-
priate for a system (such as that studied in the last section of
this paper) where the electrolyte is frozen after charging by
the gate bias.

For given values of V4 and (n), the steady-state source-
drain current density J,q is obtained as follows. At the start of
the simulation, the orbitals of all nonelectrode or “central”
QDs are occupied at random, roughly according to their
Fermi-Dirac occupation probabilities, to achieve a mean den-
sity of (n) electrons per QD. Each orbital of each QD in each
of the electrode planes is assigned a fractional occupation
according to the Fermi-Dirac occupation function f(E,Ey)
=(eFEPAT L )71 given the orbital energy E and the quasi-
Fermi energy E (=1, +eV/2) for that electrode, and main-
tains that fractional occupation throughout the simulation.

At the start of the random walk the transition frequencies,
I',_.,, are calculated, as defined below, for all possible elec-
tron transitions from initial level a to final level b. Transi-
tions are allowed from any occupied or partially occupied
orbital of a QD to any unoccupied or partially occupied or-
bital in each of the six nearest-neighbor QDs. Hops to further
neighbors are not taken into account. A wait time ¢, is calcu-
lated for the electron in each occupied or partially occupied
level,

In
t,= —7, 0=vy<l, (2)

Nlrans

2 Fa—»i
i=1

where N, 1s the number of possible transitions for the elec-
tron in level a. Following the continuous-time random-walk
model developed by Nelson and Chandler,'®!8 the electrons
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are sorted into the order of their wait times and the electron
with the shortest wait time ¢, is selected. For this electron, a
relative probability is defined for each possible transition:

Py=%= Vb1, (3)
where

b Nlrﬂns
’Yb=zrlai 2 Flai’ b=1, o+ sNigans- (4)
i=1

i=1

A particular transition, B, is selected by generating a random
number, vy, between 0 and 1 and determining B such that
YB-1=7Y="7p-

The transition to level b is then performed, imposing pe-
riodic boundary conditions in the x and y directions. Note
that if the transition implies electron extraction from or in-
jection into one of the electrode planes, only the occupation
of QDs in the central (i.e., nonelectrode) planes is actually
changed; the fractional populations in the z=1 and z=Z
planes are maintained. The simulation time is advanced by #,
and this walk procedure is repeated. The source-drain current
density Jy is sampled at intervals of 10 times the nearest
neighbor hopping time from a singly occupied to an empty
QD, using

e X net electron transitions from z=2 to z=3
sd =

time interval X cross sectional area
(5)

The random walk is continued until J reaches a steady state
value to within a tolerance of 10% and this value, averaged
over 50 time intervals, is recorded. The process is repeated
many (10°-10°) times for different realizations of the lattice
with the same V4 and (n), and an average J, is obtained. We
have found J to vary linearly with V, in all cases studied,
for -10 mV =V,4=10 mV. Therefore, we use the value of
J at Vig=10 mV as a standard measure of conductivity G
=Z X Jyl V. The whole procedure is then repeated for dif-
ferent values of (n), charging energy, size disorder, or tem-
perature, to study these influences on G. In some cases the
differential mobility s, tairr=(1/€)dG/d(n) is calculated
by fitting the G({n)) curve to a set of piecewise continuous
nth order polynomials and differentiating.

Calculation of the electron addition energies

The electron addition energies, Exn(D), representing the
energy of the Nth electron added to a QD of diameter D are
calculated from the expression

EN(D) = ey(D) + (2N - 1)E(D), (6)

where ey(D) is the kinetic confinement energy, i.e., the dif-
ference between the single electron energy in a nanocrystal
and in a bulk crystal of the same material, and E. is the
Coulombic charging energy. For our studies we use values of
en(D) that have been calculated using a tight binding
approach! for the S, P, D, S*, and F levels in approximately
spherical ZnO nanoparticles. The parametric forms used for
the ey (D) are given in the supplementary material.?® Al-
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FIG. 1. The family of electron addition energy curves (S, P, and
D levels) for N=1 up to N=18, and A=0.28 eV nm, calculated
according to Eq. (6) using the formulas for the kinetic confinement
energies of ZnO nanocrystals (Ref. 20).

though the values given there are specific to ZnO, the order
and degeneracy of the levels is similar for all other wurtzite
and zinc-blende quantum dots (such as CdSe, CdTe, and
ZnSe). For semiconductor nanocrystals with a rocksalt struc-
ture (e.g., PbSe) the electronic structure is different; in that
case the lowest energy level is eightfold degenerate.?!

The second term in Eq. (6) represents the sum of two
terms: The polarization energy and the electron-electron re-
pulsion energy. Because the Coulomb interaction between
two electrons is only weakly dependent on the angular mo-
mentum quantum number and because correlation effects be-
tween electrons are small (few meV) the polarization energy
is well approximated by the Coulombic charging energy E.
upon addition of one electron to a QD of capacitance C, E.
=e?/2C. If correlation effects between electrons are ne-
glected, the repulsion energy due to the N—1 electrons al-
ready in the QD is given by ~2(N—1)E,. This corresponds
to the constant capacitance of electron addition, also known
as the “standard model.”?? For a spherical QD E, is inversely
proportional to the QD diameter, hence

E,=AJD, (7)

where A, is a parameter incorporating the effect of the di-
electric environment, which is inversely related to the rela-
tive permittivity of the QD material and the polarity of the
surrounding electrolyte. The value of A, is smaller for more
polar experimental systems where Coulombic interactions
are more easily screened. Figure 1 shows the electron addi-
tion energies as a function of D for the S, P, and D levels of
a ZnO QD calculated using the formulas for ey(D) given in
the supplementary material*® and A,=0.28 eV nm.?

To simulate size disorder, a Gaussian distribution in QD
diameter is applied to the QDs in the assembly. We param-
etrize the resulting energetic disorder N\ as the half-width at
half maximum of the (slightly asymmetric) distribution in
the lowest confinement energy (Eg;) that results from the
Gaussian distribution in diameters. For example, a Gaussian
distribution with op=1 nm around a mean D of 4.5 nm leads
to A=0.087 eV.

085325-3



CHANDLER et al.

Calculation of transition rates

For resonant tunneling between a level a in system A with
density of states (i.e., degeneracy) g, and a level b in system
B with density of states g, the electron transfer rate I',,_,,, is
given by

Faﬂb(E’EF) = ga(E)f(E’EF)gb(E)[l _f(E7EF)]Bab(E)’
(8)

where 3, is the resonant tunneling rate through the interven-
ing (barrier) medium. Equation (8) expresses that the tunnel-
ing rate from a to b depends on both the concentration of
electrons in the initial level and the concentration of vacan-
cies in the final level. Under equilibrium conditions, the tran-
sition rate from a to b is equal to the transition rate from b to
a, as required by detailed balance.

If the initial energy level E, and final level E, are not
resonant, phonons have to be absorbed or emitted during the
transition from a to b, in order to conserve energy. In anal-
ogy with the Marcus model for electron transfer’* we assume
here that the absorption or emission of a single phonon oc-
casionally brings nonresonant levels into resonance at energy
E. Electron-phonon interactions lead to a Gaussian broaden-
ing of the energy levels such that the probability of the level
a being found at energy E is given by?

1 -(E-E,)?
7 exp 2
TN2mkC, 2kTC,

Po(E) = . )

where E, is the unbroadened energy level and C, is the av-
erage single-phonon heat capacity of the nanocrystal mate-
rial. C,, can be calculated for the semiconductor nanocrystals
using the Debye model for the density of phonon states (see
Ref. 20). p,(E) may be considered as the time-averaged den-
sity of states associated with level a. A similar expression
applies for the probability of the level b being found at E.
For typical values of parameters for ZnO nanocrystals, the
level broadening represented by Eq. (9) is several tens of
meV at room temperature.

The transition rate from a to b in the nonresonant system
is then obtained by substituting the effective density of states
functions, p,(E) and p,(E) for g, and g, in Eq. (8) and inte-
grating over energy:

Ty y(Ep) = f P BV AEEnpy(E)

X[1 = fo(Ep ER)Bu(E)IE.  (10a)

The above integral cannot be solved analytically, but it is
well approximated by the following expression:

Fa—»b(EF) =fA(Ea’EF)[1 _fB(Eb’EF)]
1 ( (Ea _ Eb)z)
expl - ———"—

X —
\8mkT?C, 4kT*C,
E,- Eb)
X ) 10b
ﬁahexp< 2T ( )

The Boltzmann factor in the rate I',_,,(Ey) results from the
requirement that the system obeys detailed balance at equi-
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librium, as is usual with nonresonant electron transfer in fer-
mionic systems.

The expression in Eq. (10a) was evaluated numerically
for a range of parameters representative of the systems stud-
ied here, and it was confirmed to agree with the approxima-
tion in Eq. (10b) to within a few percent. The shape of the
function described by Eq. (10b) is very similar to the line
shape of the conductance through a single quantum dot ob-
tained by Beenakker.?

According to the Wentzel-Kramers-Brillouin (WKB) ap-
proximation, the resonant tunneling rate 3, is given by

1 172
2m*<Evac - E(Ea + Eb))
Bap=wexp| — Axedge >

ﬁZ
(11)

where v is a constant with the units of frequency, m" is the
electron effective mass, and Ax.q, is the shortest edge-to-
edge distance between the original and final QD. It is as-
sumed that S,, is weakly dependent on the resonant transi-
tion energy, and the mean of E, and E, is taken as a
representative value. The dependence on level energies of the
transition rate I',_, is mathematically analogous to the ex-
pression for small polaron hopping from Marcus theory,?*
with a reorganization energy of C,T.

In the simulation, when calculating the transition rates
using Egs. (10b) and (11), we determine the fractional occu-
pation factors f for all levels of QDs in the electrode planes
using the quasi-Fermi level Ef for that electrode. For a level
in a central (nonelectrode) QD, f is set equal to 1 or 0 de-
pending on whether that level is occupied or not at that in-
stant.

Tests of the model

The very large number of possible transitions even with a
small assembly of QDs restricts the size of assembly that can
be simulated in practice. Therefore, we have carried out pre-
liminary tests in order to study the sensitivity of results to the
system size and to the number of levels included. In Fig. 2(a)
the simulated differential mobility, i.e., wg({n)) ~dG/d{n),
is shown as a function of occupation level for assemblies of
2 X2 X3 identical QDs, including S, P, D, and S levels, and
3 X 3 X4 identical QDs, including S, P, D, S*, and F levels.
Small differences in the conductivity will be enhanced in the
differential mobility, which therefore serves as a sensitive
probe. The figure shows that g ({n)) is virtually indepen-
dent of system size and of number of levels included for the
systems studied. As size disorder is increased small devia-
tions in wgi ((n)) appear at high (n). Figure 2(b) shows
simulated conductivity as a function of (n) for a size-
disordered system incorporating different numbers of orbit-
als. This shows that all of the S, P, D, S*, and F levels must
be included to calculate conductivity correctly for size-
disordered systems with occupation numbers greater than
seven. Simulations including such large numbers of levels
are very costly to run and required the use of a distributed
processing grid. Therefore, we have dealt with smaller occu-
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FIG. 2. (a) Differential mobilities calculated from fourth order
polynomial fits to the simulated conductivity G({(n)) data for an
array of 2X2X3 identical QDs with SPDS" levels and a 3 X3
X 4 identical QD array with SPDS"F levels. The QD diameter is
D=4.5 nm, and charging energy Ec=2.2 meV (A.=0.01 eV nm).
(b) Conductivity as a function of (n) for a size disordered system
with 2 X2 X3 QDs and op=1 nm [A\=87 meV] as a function of the
number of levels included. Increasing numbers of levels are needed
to calculate G correctly at high (n). The two curves for S, P, D, s,
and F are for assemblies of 2 X2 X3 (open triangles) and 3 X3
X4 (open stars) QDs, showing excellent agreement. Full lines are
to guide the eye. The QD diameter is D=4.5nm and E,.
=2.2 meV.

pation numbers, and therefore smaller total numbers of lev-
els, wherever possible. Figure 2(b) again shows agreement
between conductivity using assemblies of 2X2X3 and 3
X 3 X4 QDs, in the case of the S, P, D, S”, and F levels. The
two comparisons give confidence in the use of small systems
to simulate the bulk properties of the QD assembly, and also
emphasize that large numbers of levels are needed to prop-
erly simulate size disordered systems with large (n). We em-
phasize that although the systems are small, the fact that we
studied very many realizations (10°~10°) of the system al-
lows us to investigate the effects of size disorder (see below).

III. RESULTS AND DISCUSSION

Effects of shell filling and charging energy on the transport
characteristics in ideal QD solids

First we consider the effects of level filling and charging
energy in the case of an ideal assembly of quantum dots
without any size dispersion and no packing disorder. Figure
3(a) shows the conductivity at room temperature as a func-
tion of (n) for a system of identical 4.5 nm QDs for low
(E.=2.2 meV) and high (E,=62 meV) values of the charg-
ing energy. In the case of a very small charging energy [up-
per plot in Fig. 3(a)] three regimes are visible: A regime
between 0 and 2 electrons per quantum dot, corresponding to
the S conduction orbitals, a regime between 2 and 8 electrons
per quantum dots (P orbitals), and a regime of 8 or more
electrons per quantum dot (D orbitals). Within the shown
range of (n), there are two metal-insulator transitions (MITs),
where the conductivity is strongly decreased. The system
becomes insulating when, for every level in the system, ei-
ther the initial state is empty or the final state is full. At
(ny=2, all S orbitals are full and all P orbitals are empty,
apart from the small overlap between the S and P levels due
to phonon broadening, and so conductivity is very small.
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FIG. 3. (a) Room-temperature conductivity as a function of the
mean occupation number (n) for an array of ideal 2 X 2 X 3 identical
QDs of 4.5 nm diameter, for charging energies of E.=2.2 meV
(filled squares) and E.=62 meV (open circles). (b) The variance in
the electron occupation of a QD in the central plane of the array as
a function of charging energy, showing that a high charging energy
leads to ordering of electrons in the array. The insets show sche-
matic snapshots of the electron distribution: The left lower snapshot
corresponds to large charging energy and low variance; the right
upper snapshot corresponds to small charging energy and high vari-
ance. (c¢) Arrhenius plot of conductivity for the system in part (a)
with E,=2.2 meV, at different electron occupation levels: (n)=0.1
(squares), 0.5 (circles), 1.0 (upward triangles), and 2.0 (downward
triangles). (d) Arrhenius plots of conductivity for the system in part
(a) at (n)=3 with different charging energies, E.=0 (filled squares),
2.2 meV (open circles), 11 meV (upward triangles), and 44 meV
(downward triangles). In all plots, full lines are to guide the eye.

This overlap, and the resulting conductivity, reduce further
with decreasing temperature. For values of (n) not corre-
sponding to filled shells, electron transfer is generally pos-
sible between all the orbitals in the unfilled shell provided
that the charging energy E. separating the orbitals is small
compared to k7. This is the case for E,=2.2 meV in Fig.
3(a). Note that the conductivity is maximized in the S regime
for (n)=1 and in the P regime for (n) = 5. For a system with
degenerate orbitals in each shell, these points correspond to
the cases when f=0.5.

A very different behavior is observed when the charging
energy is larger than kT [lower plot in Fig. 3(a), E,
=62 meV]. Here conductivity reaches a minimum at every
integer value of (n), leading to ten MITs over the range of
(n) shown. Likewise, G is maximized at every half integer
value of (n). Now, because E.>kT, the energy separation
between orbitals within a given shell has become significant,
i.e., the degeneracy of the shells is lifted. Every time an
orbital is completely filled (integer (n)), the resonant transi-
tions are shut off, and the conductivity is minimal. For ex-
ample, at (n)=1, at low kT, there is exactly one electron in
every QD in the array. Then transitions within the first S
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FIG. 4. Calculated density of states functions for the S and P
levels of an assembly of ZnO QDs of mean diameter 4.5 nm, at
room temperature. (a),(b) No size disorder and (a) E.=0 and (b)
E.=62 meV. (c),(d) same as (a), (b) with a standard deviation of
0.5 nm in QD diameter, corresponding to a size disorder parameter
of 52 meV.

level, S, are closed because (1-f)=0; transitions within S,
and higher levels are closed because f=0, and the only pos-
sible transitions, which involve adding a second electron to
an occupied QD, require an energy input of E,.. This type of
MIT, which results from the charging energy, is known as a
Mott-Hubbard MIT. Similar Mott-Hubbard type MITs were
observed in simulations by van de Lagemaat.'

In order to illustrate the influence of the underlying den-
sity of states (DOS) on conductance, we have calculated the
distributions of § and P level energies in a system of ZnO
QDs of mean diameter 4.5 nm, for different values of E... For
each of the S and P levels, the mean level energy was cal-
culated using Eq. (6) and a Gaussian broadening applied to
each level using Eq. (9). This thermal broadening, of
42 meV is the same for all levels at room temperature. Fig-
ure 4(a) shows that, for a system of identical QDs with E,
=0, the density of states is strongly peaked at the S and P
energies, but drops towards zero at an energy intermediate
between the S and P bands. The low DOS at this intermedi-
ate energy explains why nonresonant tunneling between S
and P levels is highly unlikely, and as a result the conduc-
tance is minimized at (n)=2, as shown in the conductance
plots in Fig. 3(a). Figure 4(b) illustrates the case of identical
QDs when E.=62 meV. The effect of the charging energy in
separating out the S and P levels is evident. The minima in
the DOS in between each level are responsible for the
minima in the conductance at integer {n), shown in Fig. 3(a)
for E,=62 meV. Figures 4(c) and 4(d) illustrate the effect of
size disorder on the density of states in each case. Strong size
disorder washes out the minima in the DOS, resulting in
higher probability of transitions between different bands, as
we shall see below.

PHYSICAL REVIEW B 75, 085325 (2007)

The effect of increasing charging energy on the electron
distribution in a QD solid is demonstrated in Fig. 3(b). This
figure shows the variance in electron occupation for a QD in
the central plane of a dot in a 2 X2 X 3 array as a function of
E,. when (n)=1. For low E, the variance is large, correspond-
ing to frequent changes in the electron occupation. For large
E., the variance is small; multiple occupation of any QD
corresponds to a large energy cost. It is clear that, for a QD
solid with no size disorder, the effect of a large E. is to tend
to equalize the orbital occupation [lower left inset panel in
Fig. 3(b)]. This charge ordering is similar to that in a Wigner
crystal.

Interestingly, the maximum values of the conductivity can
be related to the relevant degeneracy of states in the low E,
and high E, limit. For E.>kT, only the highest unfilled or-
bital contributes to conduction at any (n), so the maximum
transition rate occurs when (n)—int((n))=0.5 (f=0.5) and is
proportional to 0.258 [see Eq. (8)], since the degeneracies of
the initial and final state are one. For E.< kT, all the orbitals
in the unfilled (twofold degenerate) shell contribute to con-
duction. Therefore the maximum conductance in the S shell
is expected to occur when (n)=1 (f=0.5) and to be propor-
tional to 1.083. Similarly the maximum conductance for the P
shell when E_.< kT is expected to be proportional to 98.

The simulation results in Fig. 3(a) show clearly that, when
E_ < kT, the ratio between the maximum of the S shell con-
ductivity and the maximum of the P shell conductivity is 1:9,
while the maximum of conductivity in the high E. (Mott
Hubbard) case is one-quarter of that for the S shell conduc-
tivity in the low E, case. This suggests that the relative mag-
nitude of conductivity at different (n) is a good indicator of
the degeneracy of levels taking part in the conduction.

We now address the temperature dependence of the con-
ductance. As described above, the transition rates depend
upon the heat capacity C, which is, in general, temperature
dependent. In order to more clearly distinguish the effects of
level filling, charging energy, and size dispersion on conduc-
tance we use a temperature independent (room-temperature)
C, for the present. In the last section of this paper we will
incorporate the temperature dependence of C,,.

The presence of MITs leads to strong variations in the
temperature dependence of the conductance. This is illus-
trated in Fig. 3(c), which shows the Arrhenius plot of G for
an ideal array of 2X2X3 identical QDs when E,
=2.2 meV (filling controlled regime). At an orbital occupa-
tion that corresponds to a critical point in an MIT, the con-
ductivity increases with increasing temperature: At (n)=2.0
the conductivity exhibits almost perfect Arrhenius behavior
(the difference will be discussed below), with an activation
energy of ~110 meV. In this situation conduction is only
possible by adding an electron to a P orbital, thus by over-
coming an energy barrier that is similar to the S-P separa-
tion. In such a situation, the expected activation energy is
equal to the difference between the first P orbital energy and
the Fermi level. Taking into account only the first S and first
P levels, and given that the S-P energy gap is much larger
than k7, the Fermi energy is given by
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where g¢ (gp) is the degeneracy of the S (P) shell. Using the
energy levels for ZnO at D=4.5 nm, this leads to a Fermi
energy of 133 meV below the first P level at 300 K, in good
agreement with the observed activation energy.

At (n) values not corresponding to filled shells, conduc-
tivity depends weakly on T and actually decreases with in-
creasing temperature over the range 25 to 300 K. This in-
verse temperature behavior is a consequence largely of our
choice to conserve (n) rather than E, as T is varied. As T is
increased, with (n) conserved, transitions against the electron
concentration gradient introduced by the applied bias be-
come relatively more likely. Thus thermal diffusion increas-
ingly washes out the small bias used for these simulations. If
Er were conserved rather than (n), thermally activated con-
ductivity would result because the increased population of all
levels above Ef and the increased vacancies in levels below
Er, both tend to increase the f(1-f) product in Eq. (8). It
should be noted that electron-phonon scattering, which could
alternatively explain the negative T dependence of conduc-
tion, is not incorporated in our simulations.

Figure 3(d) shows conductivity curves at (n)=3 for dif-
ferent values of the charging energy. It is clear that as E, is
increased, conductivity becomes more strongly activated,
with an activation energy that is similar to E,.. For example,
the activation energy of the simulation with E.=44 meV is
21 meV, which is in excellent agreement with the expected
value of (1/2) E,., given that the Fermi level should lie mid-
way between the two S levels when (n)=1 [Eq. (12)]. Such
behavior has been observed experimentally, where charging
energy was varied through choice of electrolyte in an elec-
trochemically gated system.® The data in Fig. 3(d) clearly
indicate that Coulombic charging alone can cause activated
conduction. At high 7 the inverse 7 behavior becomes more
prominent, clearly indicating competition between two
mechanisms, with the activated behavior due to Coulombic
charging becoming more prominent as the Mott-Hubbard
gap develops. Activated behavior due to charging is also seen
in the data in Fig. 3(c) when taken to lower temperature
(10-20 K). In this regime G increases with increasing tem-
perature for (n)=0.5 and (n)=1.0, with an activation energy
of ~2 meV. Using Eq. (12) with equal degeneracy for the
different levels, the Fermi energy at (n)=1 is midway be-
tween S orbitals and the expected activation energy is (1/2)
E., which corresponds to 1.1 meV, in reasonable agreement
with the simulated value.

In general, three domains can be identified in the tempera-
ture dependent conductivity of arrays of identical QDs: An
activated domain (insulator) where a shell is completely oc-
cupied, resonant transitions are blocked, and the energy dif-
ference between different shells has to be overcome; an ac-
tivated domain (insulator) where an orbital within an unfilled
shell is filled, resonant transitions are blocked, and the charg-
ing energy has to be overcome by the thermal energy; and a
nonactivated domain (metallic conductor) where resonant
transitions are always allowed.
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FIG. 5. (a) Conductivity as a function of the mean occupation
number at 300 K for an array of 3 X3 X4 QDs with E.=2.2 meV
and different size-disorder parameters: No disorder (A\=0 meV,
filled squares), weak disorder (A=28 meV, open circles), medium
disorder (\=56 meV, filled upward triangles), and strong disorder (
A=87 meV, open downward triangles). The filling controlled MITs
become increasingly washed out as the size disorder increases. (b)
The average QD occupation as a function of the S1 energy level for
QDs in the central plane of a 3 X3 X4 array with E.=2.2 meV and
A=87 meV. The vertical arrow shows the value of Eg for a QD
with D=4.5 nm. Small QDs, with a higher Eg;, quickly become
unpopulated and do not participate in conduction.

Effects of size dispersion on the transport characteristics

To investigate the effects of size disorder, we carried out
conductance simulations on arrays of QDs whose diameters
are drawn from a Gaussian distribution of width op. As de-
scribed above, we use the half-width at half maximum, \, of
the resulting distribution in 1S energies as a parameter for
the size disorder. Figure 5(a) shows simulated conductance
as a function of (n) for four different values of \ for a 3
X3 X4 array of QDs with E.=2.2 meV. To allow for wide
variations in site energy the full set of energy levels, S, P, D,
S*, and F were included. As shown in the figure, the effect of
increasing size disorder is to decrease the magnitude of the
conductivity and to wash out the minima in conductance at
the critical (filling controlled) occupation levels. The reduced
conductance at mid-shell (n) values results from the differ-
ence in energy levels of neighboring QDs such that tunneling
is in general nonresonant and never reaches the ideal rate
given by Eq. (8). The loss of the clear MIT features is due to
the overlap of the distributions of S and P shells, such that no
value of (n) exists which results in completely filled shells.
This is evident from the density of states functions of the size
disordered system shown in Figs. 4(c) and 4(d), where it is
clear that there is no energy in the S-P regime where the
transition rate vanishes at room temperature, irrespective of
the value of E.. We find that for a size disorder of A ~2kT
the MITs are still visible, whereas above this size disorder all
features of the transitions are gone. If the charging energy is
sufficiently low (E.<kT) the conductance versus (n) plots
can give an idea of the degree of energy level disorder in the
solid.

One additional reason for the decrease in conduction ob-
served in Fig. 5(a) is illustrated in Fig. 5(b). Here, the time-
averaged occupation of a QD in the central plane of an array
with (n)=1 is shown as a scatter plot against the lowest S
orbital energy, Eg;, of the QD. Small QDs, i.e., those which
have Ejg, larger than the Eg; that corresponds to the mean QD
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FIG. 6. Room temperature conductance and differential mobility
in arrays of (a) ZnO nanocrystals of mean diameter 3.3 nm and
large size dispersion of ~0.7 nm (>20%) and (b) CdSe nanocrys-
tals of mean diameter 6.4 nm and small size dispersion of ~0.6 nm
(<10%).

diameter (marked by the arrow), have a much lower occupa-
tion than the mean value of 1. Since such nanocrystals are
hardly ever populated by an electron, they form ‘“hostile”
sites in the conduction path, similar to impurity scatterers in
a metal or semiconductor, and tend to decrease the average
current through the array. A final reason for the lower con-
ductivity in the disordered system is the “trapping” of elec-
trons in lower lying levels of large dots. The net effect of size
disorder is thus to decrease the transition rate and to increase
the spread of rates (tending to cause dispersive transport) and
also to distort the conduction pathways through the system.

The washing out of filling controlled MITs can also be
seen experimentally in ZnO QD arrays at room temperature
(see also Ref. 10). Figure 6(a) shows the conductance (filled
squares) and differential mobility (open circles) of an array
of 3.3 nm ZnO nanocrystals as a function of the mean elec-
tron occupation (n). (Experimental details are given as
supplementary material.”’’) The experimentally observed
conductance strongly resembles the simulated curve with
=87 meV which corresponds to a size dispersion of 22%.
The size dispersion of the experimental ZnO particles is es-
timated to be 20%.%” In systems with a smaller size disper-
sion some features of the MIT are retained. This is the case
for arrays of CdSe particles as shown in Fig. 6(b) (see also
Ref. 3) and has also been shown for arrays of PbSe
nanocrystals.> In Fig. 6(b) the conductance is shown for an
array of 6.4 nm CdSe nanocrystals with a size dispersion of
~10%. A shoulder is visible in the conductance and a clear
minimum is observed in the differential mobility at (n)=2,
corresponding to a fully occupied S shell. The experimental
conductance resembles the simulated curve with A
=56 meV in Fig. 5(a), corresponding to a size dispersion of
~11%, although some caution should be taken in comparing
experimental results for CdSe QDs with simulations that are
based on ZnO nanocrystals.

Disorder in site energies is expected to lead to activated
conduction, because the transition rate for nonresonant tun-
neling increases with increasing thermal fluctuations. The
temperature dependence of conductivity is shown in Fig. 7(a)
for a size-disordered 2 X2 X3 QD array with E.=2.2 meV
and A=87 meV, at (n)=1 (black squares). Weakly activated
behavior is shown with an activation energy of around
10 meV. This value may be influenced by both disorder and
Coulombic charging. Therefore, also shown on Fig. 7(a) are
the temperature dependent conductance data for this system
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FIG. 7. (a) Arrhenius plot of conductivity for a system of 4.5 nm
ZnO quantum dots at (n)=1 with both size disorder and charging
energy (squares), with size dispersion only (circles) and with charg-
ing energy only (triangles). (b) Experimental conductance data for
an electrochemically gated 3.3 nm QD array at two different values
of the mean occupation level, (n)=0.2 (filled squares) and (n)
=4.1 (filled triangles), compared with simulated conductance for an
array of 3.3 nm QDs with E.=60 meV and size disorder \
=50 meV, with temperature independent C, for (n)=1 (open tri-
angles). The result for (n)=1 when a T dependent C,, is used is also
shown (open diamonds). Solid lines are guides to the eye.

with Coulombic charging alone, and with size disorder alone.
Although the small E. is insufficient to lead to activated
behavior in the temperature range shown, it does appear to
enhance the activation energy of the size-disordered system.
Simulations of size-disordered systems with larger values of
E. show qualitatively similar behavior with weak, sublinear
T dependence on an Arrhenius plot. The case of E.
=60 meV and A=50 meV, at (n)=1 is shown in Fig. 7(b)
(open triangles). The strong effect of E,. on activation energy
that is observed for ordered systems with filled levels [Fig.
3(d)] is thus lost in size-disordered systems, where the en-
ergy step for conductance in a filled-level system is no longer
well defined. From these studies it is clear that the influences
of E. and size disorder are complex and cannot, in general,
be resolved from the experimental T dependence of conduc-
tion alone.

The sublinear behavior of the Arrhenius plots of conduc-
tance can be understood as follows: The effective activation
energy E, is determined by pathways that are responsible for
the largest fraction of the current. At low temperature the
conductance is dominated by the pathway with the lowest
activation energies. As the temperature increases, the low
activation-energy pathways become T independent (k7> E,)
and other pathways become important as well. This means
that the average activation energy increases.

An additional factor which can influence the 7 depen-
dence of conductivity is the T dependence of the nanocrystal
heat capacity, C, [see Eq. (10b)]. Until this point, the calcu-
lation of the level broadening was carried out using the value
of C, at 300 K, in order to more clearly distinguish the ef-
fects of charging and size disorder. To take into account the
temperature dependence of C,, we use the Debye model (see
Ref. 20), according to which C, should vary with 7°. In Fig.
7(b) the simulated T dependent conductivity of a 2 X2 X3
array of 3.3 nm ZnO nanocrystals obtained using this 7 de-
pendent form for C, is shown (open diamonds) in compari-
son with the case of constant C, (open triangles). It is clear
that the activation energy is much larger than for the constant
C, case.
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We now compare our simulations with the 7" dependent
conductivity of an experimental QD array. In Fig. 7(b), the
experimental temperature dependence of the conductance of
an electrochemically gated array of 3.3 nm ZnO nanocrystals
at two different electron concentrations are shown (experi-
mental details can be found in the supplementary material®’).
The behavior is clearly sublinear on an Arrhenius scale, with
a low-temperature activation energy of <10 meV. The trend
is the same for the two different electron concentrations
shown, and the activation energy decreases with increasing
(n). The simulated curves in Fig. 7(b), obtained for param-
eters appropriate for this experimental system (D=3.3 nm,
E.=60 meV and A=50 meV) and (n)=1 exhibit qualitatively
similar behavior to the experimental ones with a sublinear
Arrhenius temperature dependence. [The T dependence of
the simulated conductance for different {n) (not shown) is
similar.] However, the magnitude of the slope of the Arrhen-
ius plot is only reproduced in the case when C, is tempera-
ture dependent. This shows that the 7 dependence of C, can-
not be ignored for a quantitative interpretation of
experimental results.

Although the sublinear behavior can be explained by a
competition of pathways through the system with different
activation energies, this is not the only possible explanation.
The temperature dependent conductance of arrays of other
types of nanocrystals has previously been attributed to vari-
able range hopping (VRH) in the Coulomb-gap regime, lead-
ing to a In G~T% dependence’® or to a combination of
VRH and “activated behavior”?® leading to a dependence of
In G~T7, with 0.5<a<1.0. Our work shows that such T
dependence of conductance may also be attributed to the
effect of particle-size disorder within the weak coupling re-
gime. Further experimental work on systems with controlled
disorder is needed to clarify whether the 7" dependence of
conductivity is sufficient to distinguish between variable-
range hopping and nearest-neighbor hopping mechanisms.

CONCLUSIONS

We have shown that the electronic conductance of an ar-
ray of semiconductor quantum dots is a complex function of
the QD dimensions, electrostatic environment (i.e., charging
energy), and the degree of disorder. Monte Carlo simulations
of electron hopping, using a nonresonant tunneling rate
based on thermally induced level broadening, predict distinct
regimes of conductance behavior: Metal-insulator transitions
for ordered systems with filled shells, with additional MITs
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for filled levels if the electron-electron repulsion is suffi-
ciently high, while size disorder washes out these transitions
and reduces overall conductance. The model is capable of
distinguishing the conductance behavior in experimental sys-
tems that are known to possess a different degree of size
disorder and producing a reasonable quantitative estimate of
that disorder. The comparison shows that reduced dispersion
in QD size is a clear objective, in order to obtain higher
conductance and sharper dependence of conductance on
level filling, a feature that could be exploited in devices. The
microscopic model is costly to run because of the large num-
ber of levels that must be included in size disordered systems
and has thus far been restricted to very small arrays. Exten-
sion to more realistic systems that also include features such
as packing disorder would require the development of ap-
proximate descriptions of the electron transfer rates between
multiple level, multiply occupied QDs.

The temperature dependence of conduction is key in de-
termining the nature of charge transport at a microscopic
level. In this paper we have shown that the exact T depen-
dence of conduction in a QD solid is the result of several
cooperative or competing factors: Thermal activation due to
charging, thermal activation due to site energy disorder, and
inverse temperature behavior due to diffusion when (n) is
conserved with 7. The latter phenomenon may play a role in
electrochemically gated QD solids in which a constant con-
centration of electrons are “frozen.” In addition to these fac-
tors are the temperature dependence of the heat capacity,
which is not yet fully understood for nanoparticles, and the
nature of conductance in conditions where u, should be con-
served rather than (n), which will also lead to strongly acti-
vated behavior. It is clearly difficult to assign hopping
mechanisms on the basis of the 7' dependence of conductance
alone without additional studies, such as the dependence of
G on (n), to ascertain the relative importance of E, and size
disorder. These considerations will become particularly im-
portant when attempting to compare different transport theo-
ries in the analysis of the low T behavior of systems that
approach the coherent hopping regime.?
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