Real Time Process Algebra with
Time-dependent Conditions

J.C.M. Baeten! and C.A. Middelburg!?

! Computing Science Department, Eindhoven University of Technology
Eindhoven, the Netherlands

2 Department of Philosophy, Utrecht University
Utrecht, the Netherlands

{josb,keesm}@win.tue.nl

Abstract

We extend the main real time version of ACP presented in [6] with condition-
als in which the condition depends on time. This extension facilitates flexible
dependence of process behaviour on initialization time. We show that the con-
ditions concerned generalize the conditions introduced earlier in a discrete time
setting in [4].

Keywords & Phrases: process algebra, ACP, real time, discrete time, absolute
timing, relative timing, parametric timing, initialization, time-dependent con-
ditions, conditionals.

1994 CR Categories: D.1.3, D.3.1, F.1.2, F.3.1.

1 Introduction

Algebraic concurrency theories such as ACP [9, 8, 7], CCS [16, 17] and CSP [10, 14]
have been extended to deal with time-dependent behaviour in various ways. In [6],
we presented results of a systematic study of some of the most important issues rele-
vant to dealing with time-dependent behaviour of processes — viz. absolute vs relative
timing, continuous vs discrete time scale, and separation vs combination of execution
of actions and passage of time — in the setting of ACP. We presented real time and
discrete time versions of ACP with both absolute timing and relative timing, starting
with a new real time version of ACP with absolute timing called ACP%**. We demon-
strated that ACP**" extended with integration and initial abstraction generalizes the
presented real time version with relative timing and the presented discrete time ver-
sion with absolute timing. Integration provides for alternative composition over a
continuum of alternatives; and initial abstraction, being A-calculus-like functional ab-
straction where the parameter is initialization time, provides for simple parametric
timing. We focussed on versions of ACP with timing where execution of actions and
passage of time are separated, but explained how versions with time stamping of
actions can be obtained.

The real time versions of ACP presented in [6], unlike those presented in [2] and [3],
do not exclude the possibility of two or more actions to be performed consecutively
at the same point in time. That is, they include urgent actions, similar to ATP [19]
and the different versions of CCS with timing [11, 18, 21]. This feature seems to
be essential to obtain simple and natural embeddings of discrete time versions as
well as useful in practice when describing and analyzing systems in which actions
occur that are entirely independent. This is, for example, the case for actions that
happen at different locations in a distributed system. In [2] and [3], ways to deal with
independent actions are proposed where such actions take place at the same point in
time by treating it as a special case of communication. This is, however, a real burden
in the description and the analysis of the systems concerned.

In this paper we extend ACP**' further with conditionals in which the condition
depends on time. The conditions concerned generalize the conditions introduced
earlier in [4] to extend discrete time versions of ACP with conditionals in which the
condition depends on time. The extension allows an interesting expansion property of
processes with parametric timing, called time spectrum expansion, to be expressed.
It is practically useful as well, because it facilitates flexible dependence of process
behaviour on initialization time. We also extend the discrete time counterpart of
ACP®* presented in [6] with conditionals in which the condition depends on time. In
this case, the conditions are essentially the same as the conditions introduced earlier
in [4].

In [6], our aim was to present a coherent collection of algebraic concurrency theories
generalizing ACP that deal with time-dependent behaviour in different ways. In this
paper, we extend the main real time and discrete time versions of ACP presented
in [6] with conditionals in which the condition depends on time. By showing that the
discrete time version with conditionals can be embedded in the real time version with
conditionals, we demonstrate that the extensions with conditionals do not destroy the
coherence.

The structure of this paper is as follows. First, we review ACP® and its extension
with integration and initial abstraction in Sections 2. Then, in Section 3, we add
conditionals in which the condition depends on time to this real time version of ACP.
After that, in Section 4, we first briefly review the discrete time counterpart of ACPS*
and then add conditionals in which the condition depends on time to this discrete time
version of ACP. In Section 5, we show that the discrete time version with conditionals
can be embedded in the real time version with conditionals.

2 Real time process algebra with absolute timing

In this section, we review ACP®3 the real time process algebra with absolute timing
introduced in [6], and its extension with integration and initial abstraction. A detailed
account of this real time version of ACP and these extensions is given in [6]. The
axioms and operational semantics rules — extracted from [6] — are given in Appendix A.

In case of ACP®, it is assumed that a theory of the non-negative real numbers
has been given. Its signature has to include the constant 0 : — Ry, the operator
+ : Ry x Ryp — Ryg, and the predicates < : Ryg X Ryp and = : Ryg X Ryg. In
addition, this theory has to include axioms that characterize + as a commutative and
associative operation with 0 as a neutral element and < as a total ordering that has

0 as its least element and that is preserved by +.

In ACP® | as in the other versions of ACP with timing presented in this paper, it is
assumed that a fixed but arbitrary set A of actions has been given. It is also assumed
that a fixed but arbitrary communication function, i.e. a partial, commutative and
associative function v : A x A — A, has been given. The function v is regarded
to give the result of the synchronous execution of any two actions for which this is
possible, and to be undefined otherwise. The weak restrictions on v allow many kinds
of communication between parallel processes to be modeled.

First, in Section 2.1, we treat BPA®* basic standard real time process algebra
with absolute timing, in which parallelism and communication are not considered.
After that, in Section 2.2, BPA® is extended to ACP%* to deal with parallelism and
communication as well. In Section 2.3, integration and initial abstraction are added
to ACP***. Finally, some useful additional axioms, derivable for closed terms, and
elimination results are given in Section 2.4.

2.1 Basic process algebra

In BPA®2* we have the sort P of processes, the urgent action constants a : — P
(one for each a € A), the urgent deadlock constant 6 : — P, the immediate deadlock
constant § : — P, the alternative composition operator +: P x P — P, the sequential
composition operator - : P x P — P, the absolute delay operator o, : Rsog X P — P,
the absolute time-out operator v, : Rsg X P — P, and the absolute initialization
operator U,y : Rsg x P — P.

The process a is only capable of performing action a, immediately followed by suc-
cessful termination, at time 0. The process §, although existing at time 0, is incapable
of doing anything. The process § stands for a process that exhibits inconsistent timing
at time 0. This means that (.5, different from ¢, does not exist at time 0 and hence
causes a time stop at time 0. The process o%, () is the process x shifted in time by p.
Thus, the process afbs(g) is capable of idling from time 0 upto and including time p —
and at time p it gets incapable of doing anything — whereas the process afbs(S) is only
capable of idling from time 0 upto, but not including, time p. So afbs((.s) can not reach
time p. The process x -y is the process = followed upon successful termination by the
process y. The process x + y is the process that proceeds with either the process x
or the process y, but not both. As in the untimed case, the choice is resolved upon
execution of the first action, and not before. We also have two auxiliary operators:
Uaps and Ty The process vf, () is the part of that starts to perform actions before
time p. The process UL () is the part of = that starts to perform actions at time p
or later.

We assume that an infinite set of variables of sort P has been given. Given the
signature of BPA% terms of BPA® are constructed in the usual way. We will in
general use infix notation for binary operators. The need to use parentheses is further
reduced by ranking the precedence of the binary operators. Throughout this paper we
adhere to the following precedence rules: (i) the operator - has the highest precedence
amongst the binary operators, (ii) the operator + has the lowest precedence amongst
the binary operators, and (iii) all other binary operators have the same precedence.
We will also use the following abbreviation. Let (¢;);cz be an indexed set of terms of

BPA®" where Z = {iy,...,i,}. Then we write >, t; for t;, + ... +t;,. We further

use the convention that 3°,; ; stands for § if Z = 0.

We denote variables by =, ', y,vy/,.... We use a,d’,b,V, ... to denote elements of
AU{¢} in the context of an equation, and elements of A in the context of an operational
semantics rule. Furthermore, we use H to denote a subset of A. We denote elements
of R>g by p, 7', ¢, ¢ and elements of Ry by r,7'. We write A; for AU {d}.

Axiom system The axiom system of BPA®* consists of the equations given in Ta-
ble 15. For a discussion of the axioms of BPA®™ see [6].

The following lemmas from [6] are useful in proofs. They were, for example, used
there to shorten the calculations in the proof of an embedding theorem.

Lemma 1 In BPAS gnd ACP®2t, as well as in the further extensions with restricted
integration and initial abstraction:

1. the equation t = vb, (t) + ©h (t) is derivable for all closed terms t such that
t= Uabs() andt =1+ Uabs(é)

2. the equations t = v, (t) and UL (t) = aabs(;S) are derivable for all closed terms
t such that t =T9(t) and t #t + 0¥, (5).

Lemma 2 In BPAS gnd ACP®2t, as well as in the further extensions with restricted
integration and initial abstraction, for each p € Rsy and each closed term t, there
exists a closed term t' such that U8 () = ob (t') and ' =TY(t').

Lemma 1 indicates that a process that is able to reach time p can be regarded as being
the alternative composition of the part that starts to perform actions before p and
the part that starts to perform actions at p or later. Lemma 2 shows that the part of
a process that starts to perform actions at time p or later can always be regarded as
a process shifted in time by p.

Semantics A real time transition system over A consists of a set of states S, a root
state p € S and four kinds of relations on states:

a binary relation (-,p) foreach a € A, p e Ry,
a

(-,p) =

a unary relation (_,p) — (y/,p) for each a € A, p € Ry,
(- p)
I

b

r

a binary relation — (_,q) foreach r € Ry, p,q € Rsy where ¢ =p +r,
a unary relation ID(_,p for each p € Ryy;

Y

satisfying

1. if (s,p) iy <s',q>, r,r" > 0, then there is a s” such that (s,p) — (s",p+7)

and (s",p+ 1) = (s', q);
2. if (s,p) = (5", p+ 1) and (s",p+ 1) = (s', q), then (s,p) =5 (s/,q).

The four kinds of relations are called action step, action termination, time step and
immediate deadlock relations, respectively. We write RTTS(A) for the set of all real
time transition systems over A.

We shall associate a transition system in RTTS(A) with a closed term ¢ of BPA®*
by taking the set of closed terms of BPA®* as set of states, the closed term ¢ as root
state, and the action step, action termination, time step and immediate deadlock

4

relations defined in Table 20 using rules in the style of Plotkin [20]. A semantics
given in this way is called a structural operational semantics. On the basis of the
operational semantics of BPA%2 the operators of BPA% can also be directly defined
on the set of real time transition systems in a straightforward way. Note that, by
taking closed terms as states, the relations can be explained as follows:

(t,p) == (t',p): process t is capable of first performing action a at time p
and then proceeding as process t';

(t,p) == (/,p): process t is capable of first performing action a at time p
and then terminating successfully;

(t,p) = (', q): process t is capable of first idling from time p to time ¢
and then proceeding as process t';

ID(t, p): process t is not capable of reaching time p.
. . hl, Ceey h/m; S .
The rules for the operational semantics have the form T where s is
optional. They are to be read as “if h; and ...and h,, then ¢; and ...and ¢,, provided
s”. The conclusions cy,...,c, are positive formulas of the form (t,p) = (¢, p),
(t,p) == (\/,p), (t,p) = (t',q) or ID(¢,p), where ¢ and ' are open terms of BPA®.
The premises hq, ..., h,, are positive formulas of the above forms or negative formulas

of the form —ID(¢,p). The rules are actually rule schemas. The optional s is a side-
condition restricting the actions over which a, b and ¢ range and the non-negative real
numbers over which p, ¢ and r range.

By identifying bisimilar processes we obtain our preferred model of BPA®*. One
process is (strongly) bisimilar to another process means that if one of the processes
is capable of doing a certain step, i.e. performing a certain action at a certain time
or idling from a certain time to another, and next going on as a certain subsequent
process then the other process is capable of doing the same step and next going on
as a process bisimilar to the subsequent process. More precisely, a bistmulation on
RTTS(A) is a symmetric binary relation R on the set of states S such that:

1. if R(s,t) and (s,p) == (s’,p), then there is a ¢ such that (¢,p) - (', p) and
R(s',t);

2. if R(s,t), then (s,p) - (v/,p) iff (t,p) - (/, p);

3. if R(s,t) and (s,p) — (s',q), then there is a ¢’ such that (t,p) —— (t',q) and
R(s',t);

4. if R(s,t), then ID(s,p) iff ID(¢, p).

We say that two closed terms s and ¢ are bisimilar, written s < ¢, if there exists a
bisimulation R such that R(s,t). Bisimulation equivalence is a congruence for the
operators of BPA®. For this reason, the operators of BPA® can be defined on the
set of bisimulation equivalence classes. We can prove that this results in a model for
BPAS®a j.e. all equations derivable in BPA® hold. In other words, the axioms of
BPA® form a sound axiomatization for the model based on bisimulation equivalence
classes. As in the case of the other axiomatizations presented in this paper, we leave
it as an open problem whether the axioms of BPAS* form a complete axiomatization
for this model.

2.2 Algebra of communicating processes

In ACP®2* we have, in addition to the constants and operators of BPA®, the parallel
composition operator ||: P x P — P, the left merge operator [[: P x P — P, the
communication merge operator |: P x P — P, the encapsulation operators 0y : P — P
(for each H C A), and the absolute urgent initialization operator vaps : P — P.

The process x || y is the process that proceeds with the processes z and y in
parallel. It may start to perform actions by (i) performing an action of x if x can do
so before or at the ultimate time for y to start performing actions or to deadlock, (ii)
performing an action of y if ¥ can do so before or at the ultimate time for x to start
performing actions or to deadlock or (iii) performing an action of x and an action of
y synchronously if z and y can do so at the same time. Furthermore, we have the
encapsulation operators dy (one for each H C A) which turns all urgent actions a,
where a € H, into §. As in ACP, we also have the auxiliary operators | and | to get
a finite axiomatization of the parallel composition operator. The processes = || y and
x || y are the same except that z || y must start to perform actions by performing an
action of x. The processes x | y and z || y are the same except that z | y must start
to perform actions by performing an action of x and an action of y synchronously. In
case of ACP** one additional auxiliary operator is needed: v,ps. The process Vups(r)
is the part of process x that starts to perform actions at time 0.

Axiom system The axiom system of ACP®* consists of the axioms of BPA%" and
the equations given in Table 16. For a discussion of the axioms of ACP®* see [6].

Semantics The structural operational semantics of ACP%" is described by the rules
for BPAS? and the rules given in Table 21. For a discussion of some of these rules,
see [6]. Bisimulation equivalence is also a congruence for the additional operators of
ACPs2* Therefore, these operators can be defined on the set of bisimulation equiv-
alence classes as well. As in the case of BPA®' we can prove that this results in a
model for ACP®t,

2.3 Integration and initial abstraction

In this subsection, we review the extension of ACP®** with integration and initial
abstraction. The extension with integration is needed to be able to embed discrete
time process algebras. The extension with initial abstraction is needed to be able to
embed process algebras with relative timing.

Integration and initial abstraction are both variable binding operators. Following
e.g. [12], we will introduce variable binding operators by a declaration of the form
f oS,y Sky - ST X oo x Spty ooy Sak,, - S — S. Hereby is indicated that f
combines an operator f* : ((S11 X ... X Sig) = S1) X ... X ((Sp1 X -.. X Spg,,) —
Sn) — S with A-calculus-like functional abstraction, binding k; variables ranging over
Sity ..y Sik, in the ith argument (0 < 7 < n). Applications of f have the following
form: f(x11,..., %1k -t1,-- -, Tn1, .- Tnk, - tn), where each z;; is a variable of sort S;;
and each ¢; is a term of sort S;.

Integration requires a more extensive theory of the non-negative real numbers than
the minimal theory sketched at the beginning of Section 2 (page 2). In the first place,
it has to include a theory of sets of non-negative real numbers that makes it possible to

deal with set membership and set equality. Besides, the theory should cover suprema
of sets of non-negative real numbers.
First, ACP®" is extended with integration. After that, initial abstraction is added.

Integration

In ACP®*I, we have, in addition to the constants and operators of ACP®, the integra-
tion (variable-binding) operator [: P(Rso) X Rsg . P — P. The integration operator
[provides for alternative composition over a continuum of alternatives. That is,
fveV P, where v is a variable ranging over R>q, V' C R>y and P is a term that may
contain free variables, proceeds as one of the alternatives P[p/v] for p € V. Obvi-
ously, we could first have added integration to BPA%® resulting in BPA®'I, and then
have extended BPAS*] to deal with parallelism and communication.

We assume that an infinite set of time variables ranging over R has been given,
and denote them by v,w,.... Furthermore, we use V,W,... to denote subsets of
R>o. We denote terms of ACP*'T by P,(@,.... We will use the following notational
convention. We write [. P for [(V,v. P).

Axiom system The axiom system of ACPS*I consists of the axioms of ACPS
and the equations given in Table 17. Axioms INTI1-INT6 are the crucial axioms of
integration. They reflect the informal explanation given above.

Semantics The structural operational semantics of ACPS*'[is described by the rules
for ACP*" and the rules given in Table 22. Bisimulation equivalence is also a con-
gruence for the integration operator. Hence, this operator can be defined on the set
of bisimulation equivalence classes as well. As in the case of BPA%* and ACP®*, we
can prove that this results in a model for ACP®'I. We will call this model Ma.

Initial abstraction

In ACPS**1v, we have, in addition to the constants and operators of ACP®*'I, the initial
abstraction (variable-binding) operator \/ : Rso . P* — P*. The initial abstraction
operator 4/ provides for simple parametric timing: /v . F, where v is a variable
ranging over R>y and F' is a term that may contain free variables, proceeds as F'[p/ v]
if initialized at time p € R>. This means that \/v.F denotes a function f : Ry — P
that satisfies f(p) = Th(f(p)) for all p € Ryp. In ACP*'1v, i.e. ACP**I with initial
abstraction, the sort P of processes is replaced by the sort P* of parametric time
processes. Of course, it is also possible to add the initial abstraction operator to
ACP® | resulting in a theory ACPsaty,

We now use z, 9, ... to denote variables of sort P*. Terms of ACP***Iv are denoted

by F,G,.... We will use the following notational convention. We write /v . F for

. F).

Axiom system The axiom system of ACP*'Iv consists of the axioms of ACP***T and
the equations given in Table 18. Axioms SIA1-SIA6 are the crucial axioms of initial
abstraction. Axioms SIA1 and SIA2 are similar to the a- and [-conversion rules
of A-calculus. Axiom SIA3 points out that multiple initial abstractions can simply
be replaced by one. Axiom STA4 shows that processes with absolute timing can be
treated as special cases of processes with parametric timing: they do not vary with

7

different initialization times. Axiom SIA5 is an extensionality axiom. Axiom SIA6
expresses that in case a process performs an action and then proceeds as another
process, the initialization time of the latter process is the time at which the action is
performed.

Semantics On the basis of the rules for its operational semantics, the operators of

ACP®*'] can also be directly defined on real time transition systems in a straightfor-

ward way. We will now describe a model of ACP***Iv in terms of these operators.
We have to extend RTTS(A) to the function space

RTTS*(A) = {f : Rop — RTTS(A) [Vp € Rug « f(p) = Uhpe(f(p))}

of real time transition systems with parametric timing. In Table 23, the constants and
operators of ACP*'Iv are defined on RTTS*(A). We say that f,g € RTTS*(A) are
bisimilar if for all p € R>¢, there exists a bisimulation R such that R(f(p), g(p)). We
obtain a model of ACP**'Iv by defining all operators on the set of bisimulation equiv-
alence classes. We will call this model M}. Notice that f € RTTS"(A) corresponds
to a process that can be written with only the constants and operators of ACPS2'] iff

U2 (f) = f. In fact, Mp is isomorphic to a subalgebra of M.

2.4 Miscellaneous
Standard initialization axioms

In Table 19, some equations concerning initialization and time-out are given that hold
in the model M3, and that are derivable for closed terms of ACP**Iv. We will use
these axioms in proofs in subsequent sections.

Using the standard initialization axioms, the following can easily be derived for
all terms F' and F":

(Mv.F)O((/v.F')=y/[v.(FOF') DISTRO

for O = +, |, ||,]- In other words, initial abstraction distributes over +, ||, || and |.
This fact is a useful aid to shorten the calculations needed in proofs.

Elimination results

We can prove that the auxiliary operators v, and v, , as well as sequential com-
positions in which the form of the first operand is not a (¢ € A) and alternative
compositions in which the form of the first operand is o}, (¢), can be eliminated in
closed terms of BPAS*I with a restricted form of integration. Basically, this restric-
tion means that in terms of the form fvEV P, V is an interval of which the bounds
are given by linear expressions over time variables and P is of the form ol (a) or
ols(@) -t (a € As). This restricted form of integration is essentially the same as
prefix integration from [15]. The terms that remain after exhaustive elimination are
called the basic terms over BPA®" with restricted integration. We can also prove that
the operators ||, ||, |, O and vaps can be eliminated in closed terms of ACP*** with
restricted integration. Because of these elimination results, we are permitted to use
induction on the structure of basic terms over BPA® with restricted integration to
prove statements for all closed terms of ACP®** with restricted integration.

The elimination results for ACP%*'v with restricted integration are essentially the
same as the ones for ACP®* with restricted integration. Besides, all closed terms of
ACP®**v with restricted integration can be written in the form /v . F' where F is a
basic term over BPA® with restricted integration.

Ezamples We give some examples of a closed term of ACP®*Tv with restricted inte-
gration, the corresponding term of the form /v . F where F is a basic term and, if
possible, the corresponding basic term without initial abstraction:

U U (w0 (@) = v . 0% (3)

0 T2 (w0 (@) = v 0% (@) .

V(v —:bt“qwe[ﬁ,s_l) o, (@) = v . 052(3) = o%2(3)

D0 - T2 focos1) T2 @) = AL Lociosn) Tone (@) = Locisisn) Tona(®)

3 Conditionals with time-dependent conditions

In this section, we add a conditional operator with time-dependent conditions to
ACPs2*Ty. This operator facilitates flexible dependence of process behaviour on ini-
tialization time. The time-dependent conditions introduced here generalize the time-
dependent conditions introduced in a discrete time setting in [4]. First, in Section 3.1,
ACPs']v is extended with time-dependent conditions and conditionals. After that, in
Section 3.2, we describe a similar extension of ACP*'I and explain how it is related
to the extension of ACP*'Tv. In Section 3.4, we give an example of the use of con-
ditionals with time-dependent conditions. In Section 3.3, we describe the addition of
recursion in outline to make understanding of the specifications given in Section 3.4
easier.

3.1 Parametric timing

We first introduce time-dependent conditions. We have the sort B* of time-dependent
conditions, the at time point operator pt : R — B*, the at time point greater than
operator pty : R — B* (for technical reasons, it is convenient to use R instead of
R>o as the domain of these functions), the logical constants and operators t :— B*,
f:— B, -:B - B, Vv:B xB — B and A : B* x B* — B*, the initialization
operator Uaps © R>o XIB* — B*, and the initial abstraction operator \/ Ry . B* — B*.

For a t1me dependent condltlon b, U8, (b) is either t or f, determined by whether b
holds at time point p or not. For p € Ry, the condition pt(p) holds only at time point
p and the condition pt.(p) holds at all time points greater than p. For r € Ry, the
condition pt(—r) never holds and the condition pt.(—7) always holds — recall that all
time points are in R>. The logical operators =, V and A are defined on B* pointwise.
Initial abstraction for conditions is similar to initial abstraction for processes.

We join time-dependent conditions with parametric time processes by means of the
conditional operator ::—. In ACP**'IvC, we have, in addition to the above-mentioned
constants and operators on B*, the constants and operators of ACP®*1v and the
conditional operator ::—: B* x P* — P*.

Initialized at times where the condition b holds, the process b ::— x proceeds as
the process x; initialized at other times, b ::— z is the same as immediate deadlock.

We write b, 0, ... to denote variables of sort B*. Terms of sort B* are denoted by
C,D,.... We will use the following abbreviations. We write pt.(p) for pt.(p) V pt(p),
pt(p) for —pt_(p) and pt_(p) for —pt.(p). We further write /v . C for \/(v.C).

Axiom system The axiom system of ACP**IvC consists of the axioms of ACP**'[v
and the equations given in Tables 1, 2 and 3. Axioms CSAI1-CSAI10 (Table 2)

-t=f BOOL1 tVb=t BOOL4
-f=t BOOL2 fVvb=b BOOL5
—-—b=0b BOOL3 bV =bVD BOOL6

bAY ==(=bV b)) BOOLT

Table 1: Axioms for logical operators

vh(t) =t CSAIl Vw.D =\/[v.D[v/w] CSIA1
U;)bs(f) =f CSAI2 Ufbs(\/sv . C) = U;)bs(c[p/ ’U]) CSIA2
oh(pt(p) =t CSAI3 Vv . (Mw.C)=[v.Clv/w] CSIA3
oh (pt(p— 7)) =f CSAl4 D=.[v.D CSIA4
vh(ptlp+71)) =f CSAI5 (Vp € Rsg o 0%, () = 0L, (b)) = b=1b' CSIA5
Ths(pts(p — 1)) =t CSAI6

Uaps(PL(P +q)) = csarr (v @) =vv. o0 . CSIAG
B by = o (b csare (LU C)AD =/v.(CAT}s(D)) CSIAT
Daps(0) = “aps(0) (Lv.C)VD =1/v.(CVT (D)) CSTAS
Th (bAD) =T (b) ATE (b)) CSAI9 sT I abs

Thys(DV ') =T, (b) VTL (b)) CSATI0

Table 2: Axioms for conditions (p,q > 0, r > 0, v not free in D)

reflect the intended meaning of the initialization operator on conditions, viz. evalua-
tion at initialization time, clearly. Axioms CSIA1-CSIA8 (Table 2) closely resemble
the axioms for initial abstraction of processes. Axioms SCG1, SCG2ID, SASGC1
and SASGC2 from Table 3 are the crucial axioms of conditionals. Axioms SCG1,
SCG2ID and SASGCI1 reflect the informal explanation of the conditional operator
given above. Axiom SASGC2, also called the time spectrum expansion axiom, indi-
cates that a parametric time process can be regarded as including a separate alterna-
tive for each initialization time. These alternatives are expressed by terms of the form
pt(v) = Tl (x). The important point here is that T () is a process with absolute
timing, i.e. it can be written with the constants and operators of ACP**I only.

Ezxamples Using the time spectrum expansion axiom, we can derive:

~

Vv (o352 (@) | 0%I(0) = [f,epo.0.5 (PE©) 1= 03512 (@) - 0351 (D)) +
fv€[2.5,oo) (pt('U) s Usbz(b) : 0-;’;;12(6)) +
(pt(2.5) =— o3 (a | b))

abs

It is easy to check that Lemmas 1 and 2 from Section 2.1 go through for the extension
with conditionals.

Semantics First of all, we need the structural operational semantics of ACPS*'Iv
extended with a restricted form of conditionals, viz. conditionals where the condition

10

ti—or==x SGC1

fooz=3 SGC2ID
Ugps(b i @) = (U54(0) 2= T (@) + Uabs(5) SASGC1
7 = ([(PED) 52 Tipe(a))) + (ptolp) 50 7) SASGC2
busd=4 SGC3ID
(b= 0%, (1)) + 0%, (8) = VL v - 08 (Tl (b) :—) SASGC3
buim(z+y)=0u>z)+ (ba>y) SGC4
b= (z-y)=0hu>x)y SGCbs
V)= z=(0buoz)+ (b o) SGC6
bim (b = x)=(bAY) > SGC7
b vl () =08 (b= x) SASGC4
b= (zly) =0Bu=a) | (baoy) SASGC5
b= (z|ly)=0u—z)| (bioy) SASGC6
b:— Op(x) =0 (b::— x) SASGC7
b i Vabs(Z) = Vabs(b 11—) SASGCS8
D= ([, P) = [,cy(D == P) SASGC9
D :— (Vv.F)=\[v.(@k(D) == F) SASGC10
(Mv.C) 2= G =[v.(C 2= T5Q)) SASGC11

Table 3: Axioms for conditionals (p > 0, v not free in D and G)

is either t or f. Tt is described by the rules for ACP**1v and the rules given in
Table 4. On the basis of these rules the conditional operator can also be directly
defined on real time transition systems in a straightforward way. In Table 5, the
conditional operator is defined on RTTS*(A) in terms of this operator. Additionally,
the operators introduced for conditions are defined on B*. We use ¢, d, ... to denote
elements of B*. As in the case of ACP**'Iv, we obtain a model by defining all operators
on bisimulation equivalence classes.

(z,p) = (', p) (z,p) = (V:p)
(t = z,p) = (¢',p) (t i= z,p) = (V,p)
(z,p) = (z,p + 1) ID(z, p)
(tu—>z,p)— (t > z,p+T) ID(t ::— z,p) ID(f ::— z,p)

Table 4: Rules for conditionals (a € A, r > 0, p > 0)

cu—= f=At.(c(t) > (1)) —c = At . —(c(t))

t=A\.t eNd=Xt. (c(t) Ad(t))
f=At.f eVd=At.(c(t) Vdt))
pt(s) = At . (if t = s then t else f) b (c) = c(p)

pto(s) = At. (if t > sthen telse f) [y =Xt. T (v(t))

c

Table 5: Definition of conditional operator on RTTS" (p € Rsg, s € R, v : Ryg — B¥)

11

Standard initialization axioms The following equation concerning initialization of
conditions holds in the model described above, and is derivable for closed terms of
sort, B*:

Ufbs(Ugbs(b)) = Ugbs(b) SI18

We will use this axiom in proofs in subsequent sections.

3.2 Absolute timing

Conditions of the forms pt(p) and pt.(p) make it possible to express time-dependent
conditions without using initial abstraction. As a result, an extension of ACPSI
similar to the extension of ACP***Iv described in Section 3.1 is possible. This would
not have been the case if we had taken conditions of the forms p = ¢ and p < ¢ as
basic conditions instead.

The signature and axioms of this extension of ACPS*'I, called ACP*'IC, are as
follows. The signature of ACPS*'IC is simply the signature of ACP**IvC without the
initial abstraction operators for conditions and processes. The axioms of ACPS*'IC
consists of the axioms of ACPS*I, the equations given in Tables 2 and 3 except
SASGC3, SASGC10 and SASGCI11, and the following equation:

(b > ol (2)) + anbs((.S)) =04 (0 (Th (b) == x)) SASGC3'

Note that axiom SASGC3 can be replaced by axiom SASGC3' in ACP**'IvC as well;
it follows immediately from axiom SIA5.

We treated ACP*IvC first, despite the fact that it is a conservative extension
of ACP**IC. The reason is that semantically the conditionals with time-dependent
conditions are simpler to deal with in case of ACP**'IvC. A model of ACP**IC can
be obtained from the model of ACP**'IvC presented in Section 3.1 by taking the
subalgebra of bisimulation equivalence classes of elements f € RTTS*(A) such that
U2 (f) = f. An isomorphic model can be obtained by using the variant of real time
transition systems described below.

A real time transition system with initialization times over A consists of a set of

states S, a root state p € S and four kinds of relations on states:

a binary relation (_,p) %, (_,p) for each a € A, p,p’ € Ry where p’ < p,
a unary relation (_,p) %, (v/,p) for each a € A, p,p’ € Ry where p’ < p,
a binary relation (_,p) >, (_,¢q) for each r € R.q, p,p’,q € R>g

where ¢ = p+7r and p' < p,
a unary relation IDy(_,p) for each p,p" € R>¢ where p’ < p;

satisfying

1. if (s, p) |L’",>p/ (s',q), r,r’" > 0, then there is a s” such that (s, p) +—, (s",p+7r)
and (s",p+r) %Qp/ (s',q);
2. if (s,p) +op (", p+7r) and (s",p+ 1) %Qp/ (s',q), then (s,p) ﬁi@: (s',q).

We write RTTS*(A) for the set of all real time transition systems with initialization
times over A.

12

We can associate a transition system in RTTS™ (A) with a closed term ¢ of ACPs3IC
like before. The action step, action termination, time step and immediate deadlock
relations can be explained by adding the proviso “provided ¢ is initialized at time p'”
to the explanation given for the case of the original real time transition systems in
Section 2.1.

The structural operational semantics of BPA®'C is described by the rules given in
Tables 6 and 7. In the rules for the conditional operator, use is made of unary relations
p € [-] on conditions (for p € Rs(). In Table 8, these relations are defined using rules
in the style of structural operational semantics as well. The intended meaning of

p € [b] is that p belongs to the time points at which condition b holds. Apart from

ID, (3, p) 1D, (3,7) (@,0) —“5¢ (/,0) 1D, (a@,r)

(z,p) —p (7',p) (z,p) == (VD)
<U£?bs(m)7p> i)P' <xl7p> <Ugbs(x))p> L>P’ <\/;p>

<£U,p> L>P' <mlap> <£L',p> L>P’ <\/7p>
<Uabs(x)7p + 1“> L>P’ <U:bs(ml)7p + T> <Uabs($))p +r i)p’ <\/7p + T>
<:I’.7p> }L>P' <Q?,p+7"> IDp’(wap)
(08hs(@), P+ @) =y (0h(x),p+q+T) 1Dy (02s(x),p + q)
q>p —IDy(z,0)

<0.;1;-ST‘(:L,)’p> 'L>p' <0-;1;'_5T(w)ap + T> <Ugtj;r(m)7q> }L>q’ <0-;1}j_sr(x)v q+ ’I">

(z,p) —=p (2',p) (z,p) —=p (VD)
<'Clj + yap> L>P' <wl,p>’ <.’L' + y7p> i>p’ <\/7p>7
(y + z,p) —=p (2',p) (y +z,p) —p (VD)

<1‘,p> —pr <:L’,p+1“> IDP' (xap)) IDP' (y;p)

(+y,p) ——p (x+y,p+r7), IDy (z + y,p)
(y +z,p) —=p (y +z,p+7)

<£L',p> L>P' <xlap> <£U,p> L>P' <\/7p>
(x-y,p) —=p (2 -y, p) (x-y,p) —=p (y,0)

<:L’,p> 'L)p’ (a:,p + 1“> IDP’ (:r,p)
(x-y,p) =y (x-y,p+r) IDy (2 -y, p)
(z,p) —=p (2',p), ' € [B] (z,p) —=p (Vsp), D' € [B]

(b= x,p) ==y (@', p) (b= x,p) —=p (VD)

(z,p) —=p (x,p+7), p' € [B] IDy (2,p), p' € [b] p' & [b]

(b z,p) >y (b= z,p+r) IDy (b ::— x,p) IDy (b ::— x,p)

Table 6: Rules for BPA*C (a € A, 7 >0, p,p',q,¢,7" > 0,p' <p, ¢ <q, 7" <)

the rules for the initialization operator U, , the rules for the operational semantics of
BPA® (Table 20) have been adapted in a simple uniform way. The additional rules
for ACP®**IC are obtained by adapting the additional rules for ACPS*'I (Tables 21
and 22) in the same way. Bisimulation on RTTS"(A) is defined similar to bisimulation
on RTTS(A). Like before, we obtain a model for ACP**IC by identifying bisimilar
processes.

13

(z,p) —=p (2',p), ¢>p

(V3ps(), P) ==y (7', D)
(:L’,p) '_>p’ <1‘,p+7‘>, qg>p+r

(z,p) —=p (VsD)y ¢>p

(Vis(2),0) == (Vs D)
IDy (%,p), ¢ >p

(Ugbs(m),p> 'Lﬁ)’ (Ugbs(f),p +7r)
q<p

Dy (v3ps (%), P)

(z,p) —>p (z',p

)

Dy (v3ps (%), P)

(z,p) = (V,D)

(@ (@),) = (v/sP)

(0s(2),9) ~2pr (', D)
(z,p) Hp (, p +7) ID, (z,p)
(O (@),9) Fovy (Tlge(@),p + 1) D, (0%y,(x), p)
q>p IDg (z,q + 1)
(O (@), p) oy (U0 (@), p+ 1) (04 (2),q) oy (T (), q + 1)

Table 7: Rules for BPAS**C (a € A, r > 0, p,p’,¢,¢' > 0, p' < p, ¢ < q)

p>s
p €t p € [pt(p)] p € [pto(s)]
p & [b] peE D], pe v p € [b] q € [b]
p € [0] peEDBAY] peVV], pet'VE] pe[T0)]

Table 8: Rules for condition evaluation (p,q € R, s € R)

3.3 Recursion

In this paper, we do not treat the addition of recursion to any of the presented versions
of ACP with timing in detail. However, we describe in this subsection the addition
of recursion to ACP**IC and ACP**'IvC in outline to make understanding of the
specifications given in Section 3.4 easier.

In case of ACP*'IC and ACPS*'IvC, recursive specification, solution and guard-
edness are defined in a similar way as for ACP in [7].

Let V be a set of variables of sort P (P*). A recursive specification E = E(V)
in ACP*IC (ACP*IvC) is a set of equations F = {X = tx | X € V} where
each ty is a ACP®IC (ACP**IvC) term that only contains variables from V. A
solution of a recursive specification E(V') in ACP**'IC (ACP***IvC) is a set of processes
{{X|E) | X € V} in some model of ACP**IC (ACP**IvC) such that the equations
of E(V) hold if, for all X € V', X stands for (X |E). Mostly, we are interested in one
particular variable X € V. When adding recursion, we add constants (X|E) : — P
((X|E) : — P*) for all recursive specification E(V') and all X € V. For a fixed E(V),
the constants (X|FE) for X € V make up a solution of E(V).

Let ¢ be a term containing a variable X. We call an occurrence of X in ¢ guarded if
t has a subterm of the form a -t' or o], (t') with r € Ry, and ¢’ a term containing this
occurrence of X. We call a recursive specification guarded if all occurrences of all its
variables in the right-hand sides of all its equations are guarded or it can be rewritten
to such a recursive specification using the axioms of ACP**IC (ACP**IvC) and its
equations. The Recursive Specification Principle (RSP) states that every guarded

14

recursive specification has a unique solution. It is possible to obtain a model of
ACP*'IC (ACP**IvC) with recursion in which every guarded recursive specification
has a unique solution.

Let E = {X =tx | X € V} bearecursive specification in ACP***IC. Then roughly,
the additional rules for the operational semantics of ACP®*IC with recursion come
down to looking upon (X |E) as the process tx with, for all X’ € V| all occurrences
of X' in tx replaced by (X'|E). In the model of ACP*'IC with recursion obtained
in the same way as for ACP***IC (Section 3.2), every guarded recursive specification
has a unique solution. We obtain a model of ACP**'IvC with recursion in the same
way as for ACP**Iv (Section 3.1). Because of the extensionality of parametric time
processes in this model, it is easy to see that in this model every guarded recursive
specification in ACP*'IvC has a unique solution.

In the recursive specifications given in Section 3.4, we use equations of the form
X(p) = t, with p ranging over some interval I of Ry, for a system of equations with
one equation for each p € I. The advantage of this view is that the X (p) do not have
free variables and no complications arise with name clashes and a-conversion. It is
possible to view such equations as single ones instead, but in that case terms with
parameters have to be understood in detail.

3.4 Example

We will now use ACP**IvC in an example concerning railroad crossings. Controlling
a railroad crossing involves the behaviour of trains, a gate and a controller. We shall
give (guarded recursive) specifications of the behaviour that is relevant to railroad
crossing control. We take the following informal description of the time-dependent
behaviour of the trains, the gate and the controller from [13] as the starting-point of
our specifications. The example originates from [1].

When a train approaches the gate from a great distance its speed is between 48 m/s
and 52m/s. As soon as it passes a detector placed at 1000 m backward from the gate,
an app signal is sent to the controller. The train may now slow down, but its speed
stays between 40m/s and 52m/s, and pass the gate. As soon as it passes another
detector placed at 100 m forward from the gate, an exit signal is sent to the controller.
A new train may come after the current one has passed the second detector, but only
at a distance greater than or equal to 1500 m. The gate is able to receive [ower and
raise signals from the controller at any time. As soon as the gate receives a lower
signal, it lowers from 90° to 0° at a constant rate of 20° per second. As soon as it
receives a raise signal, it raises from 0° to 90° at the same rate. The controller is
able to receive app and exit signals from the train detectors at any time. When the
controller receives an app signal, it takes at most 5 s before a lower signal is sent to
the gate. When it receives an ezt signal, it takes at most 5 s before a raise signal is
sent to the gate. Because of fault tolerance considerations, app signals should always
cause the gate to go down, and exit signals should be ignored while the gate is going
down.

In the specifications given below, actions are used to model the acts of sending and
receiving signals as well as the acts of passing the gate and completing the opening
or the closing of the gate.

15

Trains = fte[o,oo)(Ptg(t - 45%0) g (U:bs(a’p%tr) Troear))
Tr pear = fte[O,oo)((ptS(t — %) A pts(t — %)) = (0hp(pass) - Trpast))
Trpast = frcpo ooy (Pt(t = 290) A pts(t — 40)) 5 (0 (egityy) - Trains))

Some simple calculations give us the lower and upper bounds for the times at which
a train may pass the detectors and the gate. If a train goes at time ¢, from one point
to another point at a distance d with a speed between v; and vy, then the lower and
upper bounds for the time ¢ at which the train passes the latter point are couched
by the assertions ¢y + % <tandt < ty+ v%, respectively. The conditions used in
the specification given above are modelled on the equivalent assertions t; < ¢t — %
and ty >t — 1%. There is only a lower bound in case of the first detector because the
train that comes after the current one may be at any distance greater than or equal
to 400 m backward from the first detector.

Gate = fte[o w0) (asbs(lowNerg) - Gagn(90) + Uﬁbs(miwseg) - Gate)

Gan(a) = /1o - fyepp o) ((PL(E = 55) (0Lyo(ready) - Gan)) +)
(ptz(t — %) i (ol (lowery) - Gagn(a —20(t — to)) + ol (raisey) - Gayy(a — 20(t —to)))))

Gay = fte[o,oo) (Uﬁbs(lowNerg) - Gag + Uﬁbs(miwseg) - Gayy(0))

Grup(@) = Vi to - e o0 (PEE = %552) (0!, (ready) - Gate)) +

(Pts(t — 2552) 5= (ohps(lower,) - Gagn(a +20(t = to)) + ohys(raise,) - Gauy(a+20(t - 10)))))

where a ranges over the interval [0,90] of Rx¢.

While the gate is going up or down, its angle a is relevant whenever a controller
signal is received. If that happens, say at time ¢, the time passed since the previous
controller signal was received determines the angle at time ¢. In the specification of
the behaviour of the gate given above, we use initial abstraction to be able to refer to
the time at which the previous controller signal was received.

Control = ftE[U@O) (otp(app.) - Coan(0) + Uébs(e:vwitc) -+ Co.up(0))

Coan(d) = vLto - fye[g,m0) (Pt = (5 — d)) i (0Lys(lower.) - Control +
Taps(aPP.) - Coun(d+ (t —to)) + opps(emite) - Coan(d + (t — to))))

Coup(d) = /[to - LE[O’W)(ptZ(t — (5—d)) =~ (o, (raise.) - Control +
Taps(aPP.) - C04n(0) + Ugbs(exNitC) - Coup(d + (t = to))))

where d ranges over the interval [0,5] of R>¢.

While the controller is preparing for sending a signal to the gate in response to a

detector signal, the delay d of the response is relevant whenever another detector

signal is received. If that happens, say at time ¢, the time passed since the previous

detector signal was received determines the delay at time ¢. We use initial abstraction

to be able to refer to the time at which the previous detector signal was received.
Let the communication function v be such that

v(appy,, app.) = app, y(exite,, exit,) = exit, y(lower., lower,) = lower, y(raise., raise,) = raise

and 7 is undefined otherwise. Then the railroad crossing system is described by

16

Ou(Trains || Control || Gate)

where

H = {app,,., app.., exity,, ezitc, lower., lower,, raise., raisey }

Analysis of this term can provide answers to various basic questions about the system.
It can, for example, be simplified to a term which shows that (1) a train can only pass
the gate when the gate is closed, (2) the gate opens after a train has left the track
unless a new train has entered the track and (3) the system reacts adequately when
a new train enters the track while the gate is going up. We do not give an account
of the simplification here. It involves the use of various standard process algebraic
techniques, such as linearization of guarded recursive specifications and expansion of
parallel composition (see e.g. [13]), of which the treatment in the setting of ACP***IvC
would go beyond the scope of this paper.

4 Discrete time and time-dependent conditions

In this section, we briefly review ACPYty/, the discrete time counterpart of ACPsIv/
presented in [6], and add a conditional operator with time-dependent conditions to it.
In Section 5, we show that the resulting theory, called ACPtvC, can be embedded
in ACP**'IvC. In ACP9'v(C, the conditions are essentially the same as the conditions
introduced earlier in [4]. First, in Section 4.1, we review ACPIv. After that, in
Section 4.2, we extend ACP%tyv to ACP42ty(C.

4.1 Discrete time process algebra

In this subsection, we briefly review ACP' a discrete time process algebra with
absolute timing, and its extension with initial abstraction. A more detailed account
is given in [6]. The axioms — extracted from [6] — are given in Appendix B.

ACPdt i5 a conservative extensions of ACP g, [4]. In ACP%t | time is measured
on a discrete time scale. The discrete time points divide time into time slices and
timing of actions is done with respect to the time slices in which they are performed
— “in time slice n + 1”7 means “at some time point p such that n <p <n+1”.

In ACP%* we have the constants @ and ¢ instead of @ and 5. The constants a
and ¢ stand for a in time slice 1 and a deadlock in time slice 1, respectively. The
operators o, , U, and v, have a natural number instead of a non-negative real
number as their first argument. The process o (x) is the process z shifted in time

abs
by n on the discrete time scale. The process v (x) is the part of = that starts to

abs
perform actions before time slice n+ 1. The process Tl () is the part of x that starts
to perform actions in time slice n 4+ 1 or a later time slice. Recall that time point n
is the starting-point of time slice n + 1. In ACP%', we do not have a discrete time
counterpart of vaps. Unlike before in the case of real time, we can use v, instead.
The initial abstraction operator / is the discrete counterpart of /. This means that
V4t . F, where i is a variable ranging over N and F' is a term that may contain free
variables, denotes a function f : N — P that satisfies f(n) = UL (f(n)) for all n € N.
In the resulting theory, called ACP%ty, the sort P of processes is replaced by the sort

P* of parametric time processes.

17

We denote elements of N by m, m’,n,n’. We assume that an infinite set of time

variables ranging over N has been given, and denote them by i, 7, We denote terms
of ACP%ty by F.G,

Axiom systems The axiom system of BPAY" consists of the equations given in
Table 24. The axiom system of ACPY' consists of the axioms of BPA" and the
equations given in Table 25. The axiom system of ACPy consists of the axioms

of ACPY and the equations given in Table 26. For a discussion of the axioms of
BPAdat ACP9at and ACPYty| see [6].

Semantics In case a discrete time scale is used, we use a variant of real time transition
systems, called discrete time transition systems, with only relations (_,p) -~ (_,p),
(_,p) = (V,p), (_,p) = (_,q) and ID(_,p) for p,qg € N, r € Nyg. We write
DTTS(A) for the set of all discrete time transition systems over A. Associating a
transition system in DTTS(A) with a closed term ¢ of BPAY4® and ACP' proceeds
in essentially the same way as associating a transition system in RTTS(A) with a
closed term t of BPA®® and ACP®, The only difference is that in the rules for the
operational semantics of BPA9" and ACP9" all numbers involved are restricted to
N. For ACP%tv, we have to extend DTTS(A) to the function space

DTTS*(A) ={f:N—=DTTS(A) |Vn € N« f(n) =7,(f(n))}

4.2 Conditionals with time-dependent conditions

We add a conditional operator with time-dependent conditions to ACP4ty/. The time-
dependent conditions introduced here were originally introduced in [4] (see also [5]).

First of all, we introduce time-dependent conditions for the discrete time case. We
have the in time slice operator sl and the in time slice greater than operator sls instead
of pt and pt.. The operator U, has a natural number instead of a non-negative real
number as its first argument. For a time-dependent condition b, T% (b) is either t or
f, determined by whether b holds in time slice n + 1 or not. For n € N, the condition
sl(n) holds only in time slice n and the condition sls(n) holds in all time slices greater
than n. For m € Nyg, the condition sl(—m) never holds and the condition sls(—m)
always holds. We also have the initial abstraction operator y/, instead of 4/, for
conditions.

We join time-dependent conditions with parametric time processes by means of the
conditional operator ::—. In ACP9*vC, we have, in addition to the above-mentioned
constants and operators on B*, the constants and operators of ACP'v and the
conditional operator ::—: B* x P* — P*. Initialized in time slices where the condition
b holds, the process b ::— x proceeds as the process x; initialized in other time slices,
b ::— =z is the same as immediate deadlock.

Axiom system The axiom system of ACPY'vC consists of the axioms of ACPtv
and the equations given in Tables 1, 9 and 10.

Semantics In Table 11, the conditional operator is defined on DTTS*(A) in terms
of the conditional operator on discrete time transition systems for the conditions t
and f (see also Section 3.1). Additionally, the operators introduced for conditions are
defined on B*. In this table, ¢ is a variable ranging over N. As in the case of ACP%y/,
we obtain a model by defining all operators on bisimulation equivalence classes.

18

v (t) =t CDAIl Vai-D=+ji.Dli/j] CDIA1
Tgps(f) =f CDAI2 (Vi - C) =15(Cln/i]) CDIA2
Uns(slin+1)) =t CDAI3 Vit (Vyg-C) =i . Cli/ j] CDIA3
Taps(sl((n +1) —m)) =f CDAI4 D=4i.D CDIA4
o (sl((n+1)+m)) =f CDAI5 (Vn e Newl (b) =00 (b)) = b=10 CDIA5
ok (sls((n+1)—m)) =t CDAI6 _)

U}Ez(sl>((n +D4n))=f CDAly (i C) =i 0 CDIAG
Bn. (=) = o7 () CDAIS (V4 z .CYAD = \/dz- (C AT (D)) CDIA7Y
U;lbs(b A bl) = U;Lbs(b) A Uabs() CDAIQ (\/d v C) v b= \/d b (C v UabS(D)) CDIAS
U;lbs(b \4 b) - U;Lbs(b) \4 Uabs() CDAI]-O

Table 9: Axioms for conditions (n,n’ > 0, m > 0, i not free in D)

ti—s ==z SGC1
fossz=24 SGC2ID
Tio(b 1= @) = (T (b) := Tlhs (@) + 054 (8) DASGC1
= (L hep,n(Slk+1) — ok (7)) + (sls(n + 1) ==) DASGC2
b d=3 SGC3ID
(b= ol (2) + ol (8 5) = Voi ol (Dhs(b) i x) DASGC3
b= (z+y)=0u>z)+ (ba>y) SGC4
b= (z-y)=0Buo2x)y SGC5
bVY)umz=(0buoz)+ (b o) SGC6
bum (V' =) = (DAY) x> SGC7
b= vl (x) = vl (b=) DASGC4
b= (zly)=0:—x) || (b:oy) DASGC5
b= (zly)=0bu=z)| (bi>y) DASGC6
b= Ou(z) =0u(b:— x) DASGC7
D= (Vi . F) = \ji. (0 (D) - F) DASGC8
(Voi.C) = G =i (C i Tig(G)) DASGC9

Table 10: Axioms for conditionals (n > 0, i not free in D and G)

cu= f=At.(c(t) = (1)) —c = Xt . =(c(t))

t=A.t eANd =Xt (c(t) Ad(t))
f= At f evd = (c(t) Vd(t))
sl(k) = At. (if t + 1 = k then t else f) Tas(€) = ¢(n)

sls(k) =Xt . (if t +1> Kk then t else f) /[y = At . T} (v(1))

c

Table 11: Definition of conditional operator on DTTS* (n € N, k € Z, v : N — B¥)

5 Embedding

In this section, we will show that ACP*vC can be embedded in ACP*IvC. We will
establish the existence of an embedding as follows. We give explicit definitions of the
constants and operators in the signature of ACP9vC that are not in the signature of
ACP**'IvC and we prove that for closed terms the axioms of ACP%'vC are derivable
from the axioms of ACP®**'IvC and the explicit definitions. The soundness of this

19

method is discussed in [6]. The explicit definitions needed are given in Table 12.

a fue[o 1) Tas (@) sl(k) = Ptz(k —1) Apt (k)
Taps (%) = 035(T) sls(k) = pt>(k)

Vabs (@) = U () vai-C=v.Clw]/1]
Tabs(T) = Tgs(T)

Vii . F=y[v.F[lv]/i]

Table 12: Definitions of discrete time operators (a € As, n € N, k € Z)

Before we establish the existence of an embedding, we first take another look
at the connection between ACP**IvC and ACPtvC by introducing the notion of
a discretized real time process. Discrete time processes can be viewed as real time
processes that are discretized. We define the notion of a discretized real time process
in terms of the auxiliary discretization operators D : P* — P* and D : B* — B* of
which the defining axioms are given in Table 13. In [6], discretization is also defined

D(3) =4 D(t) =t

D(a)=a D(f) =f

D(0%, (7)) = out) (D()) D(pt(s)) = sl(|s + 1])

D +y)=D(z) + Dly) D(pt(s)) = sls(|s])

D(z-y) = D(x) - D(y) D(=b) = =D(b)

Db = z) =DOb) == D(x) DOAY)=D(b)ADD)

D(fvEV F) fvEV D(F) DHVY)=DOb) VD)

D(Vv.F) =[v.D(F) D(Tt,, (b)) = T (D (b))
D(\,v.C) = [v.D(C)

Table 13: Definition of discretization (a € As, p € R>g, s € R)

on the domain of the model of ACP**'IvC from Section 3.1. A real time process
x is a discretized real time process, written x € DIS, if x = D(z). The notion of
a discretized real time condition is defined in the same way. The relevant closure
properties of discretized real time processes and discretized real time conditions are
given in Table 14. Hence, restriction of the domain of the model of ACP**IvC to the

5, a € DIS t, f, sl(k), sls(k) € DIS

z €DIS = o} (z), v (x), Ths(z), Ou(x) € DIS be DIS = —b, U]i,(b) € DIS
z,y€DIS = x+y,z-y,z||y,z |y, z|yeDIS bdeDIS = bAb,bVvd €DIS
beDIS,z € DIS = b:— zeDIS (Vn € Ne Cln/i] € DIS) =

(Yn e Ne F[n/i] € DIS) = ji.F €DIS Vii.C e DIS

(Vp €V e F[p/v] €DIS) = [_, FeDIS
z €DIS = D(z) € DIS beDIS = D(b) € DIS

Table 14: Properties of discretized processes and conditions (a € As, n € N, k € Z)
discretized elements yields a subalgebra of that model. Because we will prove that for

closed terms the axioms of ACP9'v(C are derivable from the axioms of ACP**IvC
and the explicit definitions, this subalgebra induces a model of ACP%tvC.,

20

The following lemmas present other useful properties of discrete time processes.
These lemmas are used to shorten the calculations in the proof of Theorem 6.

Lemma 3 In ACP*'1vC:

1. for each closed term b of sort B* generated by the embedded constants and oper-

ators of ACP#VC, b= SU.ELUJ (b);

abs
2. for each closed term t of sort P* generated by the embedded constants and oper-
ators of ACP%VC, t = \/v.TLA(t).

abs

Lemma 4 For each p € Ry and closed term t of ACP®™IvC generated by the em-
bedded constants and operators of ACPY*VC, there exists a closed term t' such that
Ul (1) = 08os (1), 1/ = Ts (), and if p € [0,1) and D (1) # o (5), ' = 1" + 0,57(3)

and Th (t + 0) = ob, (t' + §).

Lemma 5 For each closed term t of ACP**'IvC generated by the embedded constants
and operators of ACPI/C, there exists a term t' containing no other free variable
than w such that v (t +9) =\, w. qu[O,l) 0l (Vaps(t') + 5).

Lemmas 3.2, 4 and 5 are lemmas 7, 9 and 10, respectively, from [6] adapted to the
case with conditionals. It suffices to extend the proofs of those lemmas with the case
that t is of the form b ::— #'. This is outlined in Appendix C.

Lemma 3 points out that for a real time process corresponding to a discrete time
process, the initialization time can always be taken to be a discrete point in time.
Lemma 4 shows that for a real time process corresponding to a discrete time process,
and for p € [0,1) such that the whole process is able to reach time p, the part of
the process that starts to perform actions at time p or later is able to reach any time
q € [p,1). Lemma 5 indicates that for a real time process corresponding to a discrete
time process, the part of the process that starts to perform actions before time 1 can
be regarded as a real time process that starts to perform actions at time 0 shifted
in time by any p € [0,1) — and parametrized by the initialization time of the whole
process.

The existence of an embedding of ACP4vC in ACP**IvC is now established by
proving the following theorem.

Theorem 6 (Embedding ACP%vC in ACP*1vC) For closed terms, the ax-
ioms of ACPYtyC are derivable from the azioms of ACP*'IvVC and the explicit def-
initions of the constants and operators a, o,.., U.pe, Uapss V4 (for processes as well as
conditions), sl and sls. in Table 12.

This is Theorem 12 from [6] adapted to the case with conditionals. Because some
lemmas used in the proof of that theorem had to be adapted to the case with condi-
tionals as well, minor changes to the proofs for some axioms of ACP'v are needed.
What remains to be shown is that the additional axioms for conditionals are derivable
for closed terms. This is outlined in Appendix C.

6 Concluding remarks

We extended the main real time version of ACP presented in [6] with conditionals
in which the condition depends on time. We illustrated how this extension can be

21

used by means of an example concerning a simple hybrid system, namely a railroad
crossing system. We also extended the main discrete time version of ACP presented
in [6] with conditionals in which the condition depends on time. The conditions
introduced in this case are essentially the same as the ones originally introduced in [4].
We demonstrated that the presented real time version of ACP with time-dependent
conditions and conditionals generalizes the presented discrete time version of ACP
with time-dependent conditions and conditionals.

The discrete time version of ACP with time-dependent conditions and condition-
als presented in [4] can not be embedded in the one presented here — although the
conditions introduced are essentially the same. The reason is that one of the auxiliary
operators used in [4] for the axiomatization of the time-dependent conditions and
conditionals, viz. the spectrum tail operator u, can not be explicitly defined in the
version presented here. We refrained from introducing an additional operator making
this operator explicitly definable because its usefulness in practice remains doubtful.

In Section 5, we introduced the discretization operator to define the notion of a
discretized real time process. However, this is not the only application of this operator.
Having a closed term ¢ denoting some real time process, one often obtains by apposite
change of the time scale a closed term ¢’ denoting a discretized real time process, i.e.
t' =D(t"). In that case, the process can safely be considered at a more abstract level
where time is measured with finite precision, i.e. on a discrete time scale. This means
that analysis of the real time process ¢ can be replaced by analysis of the discrete time
process D(t'). The point here is that the abstraction made in the discrete time case
makes processes better amenable to analysis.

It is frequently useful to abstract fully from the timing aspects of a process at
a certain stage of its analysis. This is, for example, the case in the analysis of a
railroad crossing system outlined in Section 3.4. Further extension of the real time
and discrete time versions of ACP presented in this paper with time abstraction
appears to be important to make them suitable for being applied in a fully formal
way.

References

[1] R. Alur, T.A. Henzinger, and P.-H. Ho. Automatic symbolic verification of em-
bedded systems. IEEE Transactions on Software Engineering, 22:181-201, 1996.

(2] J.C.M. Baeten and J.A. Bergstra. Real time process algebra. Formal Aspects of
Computing, 3(2):142-188, 1991.

(3] J.C.M. Baeten and J.A. Bergstra. Real space process algebra. Formal Aspects of
Computing, 5(6):481-529, 1993.

[4] J.C.M. Baeten and J.A. Bergstra. Discrete time process algebra. Formal Aspects
of Computing, 8(2):188-208, 1996.

[5] J.C.M. Baeten and J.A. Bergstra. Discrete time process algebra: Absolute time,
relative time and parametric time. Fundamenta Informaticae, 29(1/2):51-76,
1997.

22

(6]

7]

8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

J.C.M. Baeten and C.A. Middelburg. Process algebra with timing: Real time and
discrete time. Computing Science Report 99-11, Eindhoven University of Tech-
nology, Department of Mathematics and Computing Science, September 1999.
To appear in J.A. Bergstra, A. Ponse and S.A. Smolka, editors, Handbook of
Process Algebra, Elsevier, 2000.

J.C.M. Baeten and C. Verhoef. Concrete process algebra. In S. Abramsky,
D. Gabbay, and T.S.E. Maibaum, editors, Handbook of Logic in Computer Sci-
ence, Volume IV, pages 149-268. Oxford University Press, 1995.

J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge Tracts in Theo-
retical Computer Science 18, Cambridge University Press, 1990.

J.A. Bergstra and J.W. Klop. The algebra of recursively defined processes and the
algebra of regular processes. In Proceedings 11th ICALP, pages 82-95. LNCS 172,
Springer Verlag, 1984.

S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe. A theory of communicating
sequential processes. Journal of the ACM, 31:560-599, 1984.

L. Chen. An interleaving model for real-time systems. In A. Nerode and M. Tait-

slin, editors, Symposium on Logical Foundations of Computer Science, pages
81-92. LNCS 620, Springer-Verlag, 1992.

W.J. Fokkink and C. Verhoef. A conservative look at operational semantics with
variable binding. Information and Computation, 146:24-54, 1998.

J.F. Groote and J.J. van Wamel. Analysis of three hybrid systems in timed
#CRL. CWI Report SEN-R9815, Centre for Mathematics and Computer Science,
September 1998.

C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

A.S. Klusener. Completeness in real-time process algebra. In J.C.M. Baeten and
J.F. Groote, editors, CONCUR’91, pages 376-392. LNCS 527, Springer-Verlag,
1991.

R. Milner. A Calculus of Communicating Systems. LNCS 92, Springer-Verlag,
1980.

R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

F. Moller and C. Tofts. A temporal calculus of communicating systems. In
J.C.M. Baeten and J.W. Klop, editors, CONCUR’90, pages 401-415. LNCS 458,
Springer-Verlag, 1990.

X. Nicollin and J. Sifakis. The algebra of timed processes ATP: Theory and
application. Information and Computation, 114:131-178, 1994.

G.D. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI FN-19, University of Aarhus, Department of Computer Science, 1981.

23

[21] Wang Yi. Real-time behaviour of asynchronous agents. In J.C.M. Baeten and
J.W. Klop, editors, CONCUR’90, pages 502-520. LNCS 458, Springer-Verlag,
1990.

A ACP®*, integration and initial abstraction

Axiom systems The axiom system of BPA® consists of the equations given in
Table 15. The axiom system of ACP® consists of the equations given in Tables 15
and 16. The axioms for integration are given in Table 17 and the axioms for standard
initial abstraction are given in Table 18. In Table 19, some equations concerning ini-
tialization and time-out are given that hold in the model M} described in Section 2.3,
and that are derivable for closed terms of ACP®1v/,

Semantics The structural operational semantics of BPA® is described by the rules
given in Table 20. The structural operational semantics of ACP%* is described by the
rules given in Tables 20 and 21. The rules for integration are given in Table 22.

In Table 23, the constants and operators of ACP**1v are defined on RTTS*(A).
We use f,g,...to denote elements of RTTS*(A). We use A-notation for functions, ¢
is a variable ranging over R>o. We write f(t) * g for the real time transition system
obtained from f(¢) by replacing (s,p) - (\/,p) by (s,p) - (s',p), where s is the
root state of g(p), whenever s is reachable from the root state of f(t).

Tt+y=y+=zx Al gm:g ATSA
z+y)t+z=z+ y+z A2 . .
a(v + a:y): T v A3 Uaps(0) =0 SATOO0
0 _ L]
(1’ + y) -z = (1‘ . z) + (y - Z) A4 ’Uabs(f) - (Z SATO1
) z=z-(y- V(@) = @ SATO?2
(z-y)-z=z-(y-2) A5
r4+5= A6ID VBT (0804 (2)) = 0Fe (Ve () SATO3
Sx=34 AT7ID Vs (T +) = v (z) + Vi (y) SATO4
Vaps (T - Y) = V(@) -y SATO5
0 —0
Uabs(x) = Uaps\T SAT1 0 /% __®
Ufbs(o-aqbs(x)) = g'f’j;q (CU) SAT2 Uabs((:;) =4 . SAIOa
Typs(0) = 035(0) SAIOb
ol (z) + of, (y) = of (z + y) SAT3 UabS(N _abs
D (2)- o () = 0P (e -3 T0ys(@) = i SAI1
Uabs(x) . Uabs(y) = Oaps\T - 6) SAT4 o’ (CNZ) = o7 ((.5) SAI2
ohs(@) - (VB (y) + ol (2)) = Uabs\@) = Oaps
5Pt (P _ P (=9 (=0
Thus (T - Tgps(2)) SATS Uabs (Tabs (%)) = 0gps (Vaps (Vabs())) SAI3
. a.bs abs Up (.’I,' + y) :EP (.’L') +6P (y) SAI4
Ufbs((s) "= Ufbs(é) SAT6 _;bs _pabs abs
i+d=a AGSAn Vabs(Y) = V() -y SAI5
Ols () + 6 = 07s(2) A6SAb

Table 15: Axioms of BPA® (a € As, p,q > 0, r > 0)

24

if v(a,b) =c
if v(a, b) undefined

=@ly+tyle)+zly

8
~—
=
—~
S
= =

T s (y) + 03ps(2)) =
(z+y llz=zllz+yl=2

CFISA o7 (2) | (vans(y) +3) =0
CF2SA ol (2) | o (y) = obp (@ | y)
ot (r+y)|z=z]z+y]|=z
CMID1 slura)=sly+als
CMID2 9x(5) =4

CM2SA Oy(a)=a ifag H
CM3SA Op(d)=¢ ifacH
SACM1 dy(oh, (x)) = oF, (Om(x))
SACM2 Oy(z +y) = Ou(z) + Ou(y)
CM4 On(z-y) = 0u(x) - Om(y)
CMID3 o e

CMID4 Vabs((s) =0

cMssa vs(@=a

cMesA Vebs(ans(7) =0

CMT7SA Vabs(w + y) = Vabs(m) + Vabs(y)
SACMS3 Vabs(w : y) = Vabs CU))

SACM4
SACM5
CMS8
CM9

DO
D1SA
D2SA
SAD
D3
D4

SAUO
SAU1
SAU2
SAU3
SAU4

Table 16: Additional axioms for ACP*** (a,b € As, c€ A, p >0, r > 0)

Joev R fUGV [v/ w] INTL [oy 0he(P) = 0hy([oer P) if p# v INTI10
[eogP =4 INT2 [., (P+ Q fvev P + fvev Q INT11
Joegpy P = Plp/v] INT3 [,y (P-R)=([,cy P INT12
Joevow P = Joev P+ Joew P INT4 [,ey (P LL) = (Juev) LLR INT13
V#0 = [, R=R INT5 [y (PIR)=([,ery P) | R INT14
(Vp € V o Plp/v] = Qlp/v]) = Loov(RIP) =R (f,cy P) INT15
Joev P=[cy @ INT6 [,y Ou(P) =0u([,cy P) INT16
VED = [epoin@ =0t V0) INTT vi(foey P) = fiev Vins(P) if p# v SATOG

V£D supV gV = 0oy P) = [ooy Dho(P) i p £ v SAI6

fUGV U:bs(g) Tabs V((.s) INTS8 "abs(fuev P) = fvev Vabs(P) SAUS

Sp VEV = [oey 04s(9) = 037 ¥ (3) INT9
Table 17: Axioms for integration (p > 0, v not free in R)

Vw .G =[v.Gv/w] SIA1 (Jv.F)-G=\[v.(F-Q) SIA9
P (v . F) =105 (Flp/v]) SIA2 VB (Vv . F)=\[v. V5 (F) ifp#v SIA10
Vv. (Mw.F)=[v.Fv/w] SIA3 (Vv.F) |G =+v.(F | 0%(G)) STA11
G=\[v.G SIAL G || (Vv.F) = fv. (@4(G) | F) STA12
(Vp € Rop o Tlyy(0) = Thay(y) = (o F) |G = fv. (F|5%(G)) SIAL3
c=y SIA5 G| (v.F)=[v. (0%G) | F) STA14

oh(a) -z =ob (a) v () SIA6 Ou(v.F)=+[v.0u(F) SIA15
o (v F) = oF_(F0]] SIA7 Vabs(VLV . F) =\ v . Vaps(F) SIA16

(Vv . F) + G =[v.(F +T(G)) SIA8

Joev(Vw - F) =

Vw . ([ey F) if v #w SIAIT

Table 18: Axioms for standard initial abstraction (p > 0, v not free in G)

25

Tl (U (2)) = VB (Th (@) ST1 The(@ | y) = Tlg(®) | Thi(y) STIO
Ufbs(U;);gq (1‘)) = Uft;q(m) SI2 U;)bs(m | y) = Ufbs(x) | Ufbs(y) SI]‘]‘
TR (Vh(2)) = oF0 (5) SI3 o (Om(z)) = Ou (vl (z)) SII2
Ufbs(Uftj;q(x)) = Ufbs((.s) SI4 Ugbs(VabS(w)) = VabS(Ugbs(x)) SI13
0hs(5) + Dhe(2) = DL (@) SI5 Tlpe(Vabs (7)) = 054s() SI14
08s(0) + Dhe(z + 8) =Th(x +8) SI6 vaps(Thps(2)) = 6 SI15
Tlos (2) + 3 = Tl (2) SI7T Ule(Vabs()) = Vabs(w) SI16
Vhe (05 () = Vi 0 () SIS Vabs(Uls(w)) = vabs () ST17
Tl (T (Ts (7)) = TP (%, () SI9

Table 19: Standard initialization axioms (p,q,q > 0, r > 0)

26

ID(5, p) ID(5,) (@,0) - (\/,0) ID(a,r)
(z,p) = (2',p) (z,p) = (VD)
(05hs(2),) = (2', p) (050s(2),0) == (Vs)
(z,p) = (2',p) (z,p) = (VD)
(0aps(2),p + 1) == (o5s(2), P+ 7) (07ps(@),p+ 1) == (V,p+ 1)
(z,p) = (z,p+71) ID(z, p)
(0as(),p + @) = (o) (@), P+ q + 1) ID(0s(2),p + q)
q>p =ID(z,0)
(o33 (), p) = (o5 (x),p + 1) (o33 (), q) = (o487 (x),q + 1)
(z,p) — <x’,p> (z,p) = (V,p)
(x +y,p) <w D) (x +y,p) == (VD)
(y + z,p) — (', p) (y +z,p) = (V/,p)
(z,p) = (z,p+7) ID(z,p), ID(y,p)
(z+y,p)— (z+y,p+r) ID(z + y, p)
(y +z,p) = (y + ,p+7)
(z,p) == (2',p) (z,p) == (VD)
(z-y,p) = (2" -y, p) (x-y,p) = (y,p)
(z,p) = (z,p+7) ID(z, p)
(x y,p) = (z y,p+7) ID(z - y,p)
(z,p) = (z',p), a>p (z,p) — <¢p> q>p
vipe(2), p) = (2',) (Vips(2),) == (/)
(z,p) == (z,p+71), ¢>p+r ID(z,p), ¢ > p
(Vghs (), D) F= (Vips(2), p + 1) ID(v35(2), P)
qg<p
ID(vi (), p
(z,p) == (a',p), ¢ <p (z,p) = <\/p> ¢<p
(Thps(2),) == (2', p) (Tdos (%), p) == (Vs p)
(z,p) == (z,p+71), ¢ <p+r ID(z,p), ¢ <p
(Tdos (@),) == (Ths(2),p +7) ID (T35 (), p)
q>p =ID(z,q + 1)
(@8 (@), p) ¥ (O (2),p+7) @8 (), q) — (@ (), q + 1)

27

Table 20: Rules for operational semantics of BPA®* (¢ € A, r > 0, p,q > 0)

(z,p) == (z',p), —ID(y,p)

(z,p) = (V/,p), ~ID(y,p)

)
(@ ly,p) == (@' Nly,p)s Wl z,p) == (y || 2',p), (x | y,p) = (&' || y,p)
)

(@ lly,p) = (,p), wllz,p) = (y,p), (& [Ly,p) — (y,p)

(z,p) % (2, p), (y,p) —= ¥',p), Y(a,b) =

(zlly,p) = & lv,p), (z|y,p) — (&' || v, p)
(

(z,p) = (2',p), (v, >—b><\/,p>,7a,b)=c
(ly,p) = (=',p), (y Ipr> (@', p),

(z Iyp>—c>< ><y|wp> (', p)
(z,p) = (V,p), (y,p) — <\/p> v(a,b) =c
(v IIyp>—C><\/p> (z|y,p) — (x/p>

(z,p) = (z,p+ 1), (y,p) — (y,p+7)

(]l y,p) = (x IIyp+r> (z ly,p)— (z Ly, p+r),
(ly,p)— (z|y,p+r)

ID(z, p)

ID(z || y,p), ID(y || z,p), ID(z | y,p),
ID(y | z,p), ID(z | y,p), ID(y | z,p)

(z,p) = (2',p), a ¢ H (z,p) = (Vip), a ¢ H
(Om(2),p) — (Om ("), p) (Om (2),p) — (Vs p)
(z,p) — (z,p+ 1) ID(,p)
(On(z),p) = (Ou(z),p+r) ID(Ou(z),p)
(z,0) = (2',0) (,0) = <\/ 0)
(vabs(z),0) = (2',0) (vabs(2),0) = (/,0)
ID(z,0)
ID(vabs(), 0) ID(vabs(x),)

Table 21: Additional rules for ACP** (a,b,c € A, r >0, p > 0)

(Plg/v],p) == (P',p), €V (Plg/v],p) = <\/ P, qeV
([,ev Pp) == (P, p) (Joev PiP) == (V)

(Plg/v],p) = (Plg/v],p+7), g€V ID(P[g/v],p) forallge V
(Juev Pop) = {foev Do+ 1) ID(J,e P5p)

Table 22: Rules for integration (a € A, r > 0, p,q > 0)

28

S=M.5 fllg=Xx.(f#) Il g)
d =\t .0t (@) fla=Xx.(f) Lg®)
b (F) = At Tl (0, ((0))) flg=At.(f(t) | 9(t))
F+g=Xt.(f(t) + g(t)) ou(f) = Xt . 0u(f(1))

Fg=M.(f(t)*g) Vabs(f) = At . Ty (vans(f (1))
VB () = AT (Wh(F@) Joev (F) = At [y (f(9)
Ths(f) = f(p) V= Xt Th(0(t))

Table 23: Definition of operators on RTTS" (a € A, p € Rsg, ¢ : Ryg — RTTS*(A))

29

B ACP% and initial abstraction

Axiom systems The axiom system of BPA consists of the equations given in
Table 24. The axiom system of ACPYt consists of the equations given in Tables 24
and 25. The axioms for discrete initial abstraction are given in Table 26.

r+y=y+x Al
T+y)+z=2+(y+2) A2
r+r=2z A3 v (8) =35 DATO0
(x+y)-z=(@ 2)+({y-2) A4 VO (x) =6 DATO1
(@-y)z=a-(y-2) A5 vt (a) =a DATO?2
%‘ +4 ? z A6ID U:;:n((f:bs(x)) = U:bs(vgﬁs(x)) DATO3
dx=9¢ ATID vl (x4 y) = vl (x) + vl (v) DATO4
o0 () = D%, (& DAT1 Usbs(Ty) = vips(@) -y DATO5
s (03 (7)) = 035" (2) DAT2 ©%.(8) =34 DAT0a
0Ths(z) + 0Tis(y) = olhe(x +y) DAT3 T (5) = o3t (5) DAIOb
07s(@) - Viho(y) = olg(w-3) DAT4 Tl (a) =a DAIl
Tas () + (Vibs(y) + Oas(2)) = T (a) = o (5) DAI2
, T D(2)) DATS D024, (1) = 7 (05 (04s()) DAT3
U;Lbs((f) "= U;Lbs((s) DAT6 U;Lbs(x + y) = U;Lbs(x) + Uanbs(y) DAI4
U;bs(a) =0 DAT7 Eanbs(m : y) = Eanbs(w) Yy DAI5
at+d=a A6DAa
Table 24: Axioms for BPAY (q € Ay)
alb=c fr(mb) =c CFIDA a7 |b-y=(alb) (v]y) CM7DA
a|b=23 if y(a,b) undefined CF2DA (v}(2) +0) | ot (y) =8 DACM3
ot (@) | (lhs(y) +8) =8 DACM4
f bty L is(0) | 0%0) = 0Tl [1) DACMS
.« o (z+y)|z=z|z+y|=z CMS8
vlo=2o CMID2 zlly+z2)=z|y+z]|z CM9
al(z+d)=a-(z+9) CM2DA
a-z|(y+d) =ga- (x| (y+93) CM3DA 9u(d) =3 DO
ol (@) L (Vi) + o0 (2) = of(x |l 2) DACM2 On(a)=a ifa¢g H D1DA
(x+y)|lz=zz+y]| 2 CM4 Op(a) =40 ifae H D2DA
Sle=35 CMID3 9p(o7(z)) = 0" (Ju(x)) DAD
z|§=4 CMID4 du(x +y) = Ou(z) + Ou(y) D3
a-z|b=(a|b) x CM5DA Op(z-y) =0u(x)-0u(y) D4
alb-z=(al|b) -z CM6DA

Table 25: Additional axioms for ACP (a,b € As, c € A)

30

Voi-G=+ji.Gli/j] DIAl (Vi.F)+G=+}i.(F +7vi(G) DIAS

oo (Vi F) = o (Fn/ i) DIA2 (\i.F)-G=+i.(F-G) DIA9
Vii- (Wi -F)=+4i.Fli/j] DIA3 o (Vji.F)=ji.v(F) ifn#i DIAL0
G=y,i.G DIA4 (i .F) | G=+ji.(F|Ti(G) DIAlL
(Vn € N e D (z) =Dj4s(y) = G (i F)=+}i.(U5(G) L F) DIAIL2

z=y DIA5 (Vi.F)|G=\ji.(F|0(Q)) DIA13
oihs(a) - x = o (a) - Ths(w) DIA6 G| (y4i.F)=i.(03(G)|F) DIAl4
ol (Voi-F) = ol (F[0/ 1)) DIA7T Ou(\i. F) =\ji.0u(F) DIA15

Table 26: Axioms for discrete initial abstraction (i not free in G)

31

C Outline of proofs

Proof of Lemma 3.
1. Tt is easy to prove by induction on the structure of b that b = /v . vabi(b)

2. Lemma 3.2 is Lemma 7 from [6] for the case with conditionals. Therefore, it suffices
to extend the proof by induction on the structure of ¢ with the case that ¢ is of the form
bt

by ¢ Wy _>\/v _LUJ(t') SAsgclo\/v (@7 (b) : —>UH(t')) A61D,caset:z§,DISTR+
LU

abs abs

\/U ((abs() .y Uatﬁi (t')) n Eain (5)) Lemma 3.1, OSIAZ, ST18
_|lv —|v ® SAIO, SAT1
Vo (@) s sl @) + 5l (5)) s
_|lv v ® SASGC1 v
V0 (Tya(B) = Toaea (1) + oapa (8)) *E \Lv . Do (b 2> 1) O

Proof of Lemma 4. Lemma 4 is Lemma 9 from [6] adapted to the case with conditionals.
The condition ol (t) # aabs(.) needed in the case with conditionals implies the condition
t # ¢ used in [6]. There, observing that the lemma would follow immediately, we only proved
by induction on the structure of ¢ that there exists a t' such that: (1) o5, (¢) = o, (¢') and
(2) if p € [0,1) and T, (t) # o, (6)t =t + O'abs ?(5). Here, it suffices to extend that proof
with the case that ¢ is of the form b ::— ¢':

L abs(b = tl) SASGCI (Ufbs(b) = Uabs(t,)) abs(é) :H SI18, STA.
_ ®\ SASGC3 —v (— 18, SIA4
(U052 1)) 75 0 OO 0) 50 1)
Uabs(gabs(b) . 3)

2. TP (b 1) # oF (§) SO SCESACN T (5) =t and TP, (¢) # 0P ()
By the induction hypothesis,
Uhos(B) 10 87 =00 (0) 11 (17 + 03"(5)) "= (W5 (0) 1> 1) + 07 (8) O

abs abs

Proof of Lemma 5. Lemma 5 is Lemma 10 from [6] adapted to the case with conditionals.

The form /w . fve[o 0 00bs (Vabs(t') + 5) realizable in the case with conditionals generalizes

the form | €f0,1) 0¥ (Vabs(t') + §) obtained in [6]. Hence, it suffices to extend the proof by
induction on the structure of ¢ with the case that ¢ is of the form b ::— ¢

SATO4, SASGC4 SGC1,6, BOOL4,6
bs(b = t, + 6) = (b = Uabs()) + U;bs(é) =
SATO00,3,6
n— vl (1) + (b= vl (8) + vl (8) 7=

9)
sy Uabs(t)) (b N Uabs(%)) SGC4 SAT04
9)

IE

(b = Uabs(t, + é)) + é
N o (V . ()) SAT3 INT10
T v€E[0,1) ~abs\7abs

n (fue[o 1) Taps(Vabs(t")) + 9)) + 5 5601, 200140

~—

w7 Juelo,n) abs(Vabs()+ = fvE[O 1)(b e U:bs(yabs(t”))) +90 hE

(
(b
(b
(b
(b
f ~) AGID SAT3
Sy
Joer
f

~—

[0,1)((b i= O s (Vabs(t7))) 4 03ps(6)

elo,) (0 = o5ps (vans (7)) + 0%s(8) + 025 (5))
(

[

—_ -

SASGC3, SIA4

)) DISTR+, SAT3

(t"
(t"
€lo,1 \/w T s (Tabs (D) i vaps(t"))) + L w . Uabs(g
0,1) abs((Uabs(b) = vabs(t")) +
fve O (Vabs (T (b) = ") + 5) O

N) SASGCS SIA17

Proof of Theorem 6. Theorem 6 is Theorem 12 from [6] adapted to the case with
conditionals. In [6], it is shown that the axioms of ACP9v are derivable for closed

32

terms from the axioms of ACP**'Iv and the explicit definitions of the constants and
OPErators @, O,.e, Usps, Uaps A 1/ (for processes) in Table 12. In [6], use is made of
two lemmas that do not go through for the extension with conditionals, viz. Lemmas 9
and 10 from that paper. In the case with conditionals, Lemmas 4 and 5 from this
paper have to be used instead. Fortunately, this requires only minor changes to the
proofs for four axioms, viz. CM2DA, CM3DA, DACM3 and DACMA4.

What remains to be shown is that the additional axioms for conditionals are derivable
for closed terms. This is nontrivial for the following axioms: CDAI3-CDAI7, CDIA1-
CDIAS8, DASGC2, DASGC3, DASGCS8 and DASGCY9. However, the proofs for most
of these axioms are either similar to proofs for axioms of ACP9v (CDIA1-CDIAS,
DASGC8 and DASGQC9) or simpler than most of those proofs (CDAI3-CDAI7 and
DASGC3). Therefore, we only give an idea of the proofs.

The proofs for axioms CDAI3-CDAIT7 require little effort. They involve short calculations
using axioms BOOL1-BOOL7 and CSAI1-CSAT10.

The proofs for axioms CDIA1-CDIA5 are analogous to the proofs for DIA1-DIA5 in [6] —
axioms CSIA1-CSIA5 are used instead of axioms SIA1-SIA5.

The proof for axiom CDIAG6 is similar to the proof for DIA10 in [6] - axiom CSIAG6 is used
instead of axiom SIA10.

The proof for axioms CDIA7 and CDIAS8 are similar to the proof for DIAS in [6] — axioms
CSIAT and CSIAS are used instead of axiom SIA8. Distributivity of initial abstraction over
A and V is needed, but that can be derived as in the case of +.

The proof for axiom DASGC2 goes as follows. First of all, prove (1) sl(n +1) n— = =
fve[n’nﬂ)(pt(v) ::— x), mainly by short calculations using axioms BOOLI1-BOOL7 and
CSAI1-CSAIL0, and (2) 2 = = + (b ::— z), by application of axioms SGC1, SGC6 and
BOOL4. Then, having proven equations (1) and (2), the proof for axiom DASGC2 involves
mainly application of axiom SASGC2, these equations and the following immediate conse-

quence of Lemma 3.2 and axiom SIA2: T}, (Th, (t)) = Ufbs(Uiﬁi (1)).

The proof for axiom DASGC3 is very easy. It consists of applying axiom SASGC3 and
the following immediate consequence of Lemma 3.1 and axioms CSIA2 and SI18: o} (b) =

o2 (b).

The proofs for axioms DASGC8 and DASGCY9 are again similar to the proof for DIAS —
axioms SASGC10 and SASGC11 are used instead of axiom SIA8. Distributivity of initial
abstraction over ::— is needed, but that can be derived as in the case of +. O

33

