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Abstract

A theory T is trustworthy iff, whenever a theory U is interpretable in T ,
then it is faithfully interpretable. In this paper we provide a characteriza-
tion of trustworthiness. We provide a simple proof of Friedman’s Theorem
that finitely axiomatized, sequential, consistent theories are trustworthy.
We provide an example of a theory whose schematic predicate logic is
complete Π0

2.
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3.3.4 Smoryński’s Theorem . . . . . . . . . . . . . . . . . . . . 14

4 Σ0
1-Soundness in Potentia 15

5 On the Manufacture of Faith 21
5.1 An Upper Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 The Characterization . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 On the Nature of Trustworthiness 25

A A Notational Convention 28

B Conservativity 29

C Derivable Consequence 30

D On the Existential Axioms of Q 34

2



1 Introduction

Let’s begin with a definition.

Definition 1.1 A theory T is trustworthy if every U interpretable in T is also
faithfully interpretable in T .

Thus our trustworthiness is the trustworthiness of someone who is, in principle,
able to truly tell a story without false embellishments. Trustworthiness is a
peculiar notion that has nothing to do with strength. It has to do with the
constraint a theory puts on the available linguistic means. In Section 6 we will
probe deeper into the true and proper nature of trustworthiness. This paper is
a study of trustworthiness. We aim to show that the notion of trustworthiness
is interesting both in its own right and by its connection to other notions.

1.1 Contents of the Paper

Three central results form the core of the paper. The first is a characterization
of trustworthiness. This characterization is provided in Section 5.

As the second central result, we will reprove Friedman’s Theorem concerning
trustworthiness. The theorem is reported in Craig Smoryński’s paper [Smo85a]
(Theorem 3, on p224). The theorem states that finitely axiomatized, adequate
(sequential1), consistent theories are trustworthy. The proof of the result is
provided in Section 5. Friedmans’ Theorem will be proved as a consequence of
our characterization and of a theorem that is proved in Section 4. In fact, the
results of Section 4 make a modest strengthening of Friedman’s result possible.

Our third central result is the description of trustworthiness in terms af an
adjunction between the preorder of faithful interpretability and the preorder of
interpretability. This result is proved in Section 6.

An important method used in the paper is the use of the FGH Theorem,
which approximately says that we can prove the following principle in Elemen-
tary Arithmetic. Let T be a theory into which a suitable fragment of Arithmetic
can be interpreted. Then, for any Σ0

1-sentence S, there is a Σ0
1-sentence R, such

that (S ∨ incon(T )) is equivalent to 2T R. I.o.w. if T is consistent then S is
equivalent to a T -provability statement. Since the FGH Theorem plays such
an important role, I devote Section 3 to an extensive discussion of it and its
applications.

A side result with some independent interest is contained in appendix C.
We give an example of a theory whose schematic logic is complete Π0

2.

1.2 Prerequisites

Most of what is needed to understand the paper is contained in the text-
book [HP91].

1We will use sequential instead of adequate in this paper.
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1.3 History of the Paper

The present paper is a sequel of [Vis93]. In that work a somewhat sharper
version of Theorem 4.1 of the present paper was proved. The present proof is,
however, considerably simpler. The article [Vis93], was the result of reflecting
on Jan Kraj́ıček’s [Kra87]. In that paper Kraj́ıček studies Viteslav Švejdar’s
question “When is it consistent for inconsistency proofs to lie between cuts?”.
In other words, for which theories T and for which T -cuts I and J is the theory
T + conJ(T ) + inconI(T ) consistent? Kraj́ıček proves that for every finitely
axiomatized, sequential and consistent theory T , and for every T -cut I, we can
find a T -cut J such that Švejdar’s question has a positive answer for T , I, J .

Neither Kraj́ıček nor I noted that Kraj́ıček’s Theorem is an immediate conse-
quence of Friedman’s Theorem on trustworthiness.2 I only realized this recently
after Harvey Friedman reminded me of his result in e-mail correspondence. It
turns out that in the other direction, the methods of [Vis93] yield a proof of
Friedman’s Theorem. This paper reports this proof.

1.4 Acknowledgements

I thank Lev Beklemishev and Volodya Shavrukov for providing me with pointers
to the literature. I thank Lev also for his comments on the penultimate version of
the paper. I am grateful to Harvey Friedman who reminded me of his theorem. I
thank Warren Goldfarb and Volodya Shavrukov for e-mails clarifying the history
of the FGH Theorem.

2 Arithmetization

In this section we introduce some basic notions and conventions.

2.1 Theories and Interpretations

Theories in this paper are theories of first order predicate logic. Unless stated
otherwise, we will assume that theories have an axiom set that is p-time de-
cidable. Interpretations between theories are relative interpretations. For a
description of the notion of relative interpretation, see the classical [TMR53],
or e.g. [Vis98]. We write:

• K : T � U , for: K is an interpretation of U in T .

• T � U , for ∃K K:T � U .

We will be interested in theories in which a sufficiently large fragment of arith-
metic is relatively interpretable. Let us fix a weak, finitely axiomatized, arith-
metical theory F. Our theory has as language, the arithmetical language with
0, S,+,×,≤. The theory F is axiomatized by Robinson’s Arithmetic Q plus

2See remark 5.7 of the present paper.
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axioms that ≤, is linear, plus the axiom x ≤ Sy ↔ (x ≤ y ∨ x = Sy).3 We use
F instead of Q, because it is pleasant to have some important properties of the
Rosser ordering in one’s simplest theory.

The theory F is interpretable in Q on a definable initial segment I. See
[HP91], pp 366–371. We comment on some details in our appendix D.

To numerize a theory T is to specify an interpretationN such thatN : T �F.
Thus, a theory T is numerizable if T � F. We will also need the notion of
numerized theory. A numerized theory T is a pair 〈T,N〉, where N : T � F.
The numerized theory 〈T,N〉 is a numerization of the numerizable theory T .
In the context of numerized theories T , the variables x, y, z, . . . will range over
the numbers provided by N . Thus, e.g. ∀x . . . will mean ∀x (δN (x) → . . .). We
will use ξ, η, . . . for general variables. We will use T + A for 〈T + A,N〉, etc.

We will be sloppy between numerizable and numerized in the case of ‘ex-
plicitly arithmetical’ theories, like PA. Officially, PA is a numerizable theory.
However, we will confuse it with the numerized theory 〈PA, id〉, where id is the
identity interpretation.

We will fix an arithmetization of metamathematical notions in the language
of F. The arithmetization is supposed to be efficient so that we can verify all rel-
evant facts in Buss’ S1

2. See e.g. [Bus86] or [HP91].4 We will write 2UA (2UA),
for provU (#A) (provU (#A)). The use of 2U (2U ) will be only meaningful inside
a numerized theory T = 〈T,N〉. The formalization of an outer 2 will always
be in the designated numbers given by N . So 2UA will be a different formula
inside 〈T,N〉 than inside 〈T,K〉, if N and K are different. Boxes inside boxes
will take their numerization from the numerized theory corresponding to the
first box above in the parse tree. In appendix A this convention is made precise.
The convention is best illustrated by some examples.

Example 2.1 Suppose T = 〈T,N〉 and U = 〈T,K〉 are numerized theories.

• ‘T ` ∀ξ ∃y Q(ξ, y)’, where Q is an atomic predicate, means:
T ` ∀ξ ∃η (δN (η) ∧Q(ξ, η)).

• ‘T ` 2U ∀ξ ∃y R(ξ, y)’, where R is an atomic predicate, means:
T ` 2NU ∀ξ ∃η (δK(η) ∧R(ξ, η)).

• ‘T ` 2UA → 2UB’ is meaningless. There is nothing to tell us from which
set of numbers to take the witnesses for 2U .

• ‘T ` 2UA → 2UB’ is meaningless. The witnesses for outer 2’s must come
from the numerization of T .

• ‘T ` 2UA → 2UB’ means: T ` 2NU A → 2NU B.

• ‘T ` 2UA → 2U2UA’ is meaningless. Where could the witnesses for the
last 2U come from?

3Our version of Robinson’s Arithmetic has ≤ as an atomic symbol and includes the axiom
y ≤ x ↔ ∃z z + y = x. See appendix D.

4As is well known, we can replace S1
2 by a variant in the arithmetical language. We assume

we are working with this variant.
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• ‘T ` 2UA → 2U2UA’ means: T ` 2NU A → 2NU 2KUA.

Schematic letters A, B, range over the expanded language with boxes and
two kinds of variables or over the original language. Schematic letters for
Σ0

1-formulas receive the same treatment as boxed formulas: they range of Σ0
1-

formulas relativized to the stipulated numbers.
Free variables in a formula inside a 2 will be treated according to the usual

convention so that they are still free in the resulting formula. Thus, A(x) inside
a box will really stand for a term that defines the following function: we map
the number n to Gödelnumber of the result of substituting the (binary) numeral
n of n for x in A.5

There are various orderings for interpretations of F in a numerizable theory
T . The one that is relevant for us is given as follows.

• E : K ≤T N iff E is a T -formula which T -provably gives an initial embed-
ding of the K-numbers into the N -numbers. We omit the subscript if the
theory is clear from the context.

We give the clauses for E. To increase readability we use Plus for + and Times
for ×.

1. T ` ∀ξ ∀η (E(ξ, η) → (δK(ξ) ∧ δN (η))),

2. T ` ∀ξ (δK(ξ) → ∃η (δN (η) ∧ E(ξ, η))),

3. T ` ∀ξ ∀η ((E(ξ, η) ∧ η′ ≤N η) → ∃ξ′ (E(ξ′, η′) ∧ ξ′ ≤K ξ)),

4. T ` ∀ξ ∀ξ′ ∀η ∀η′ ((E(ξ, η) ∧ E(ξ′, η′) ∧ ξ =K ξ′) → η =N η′),

5. T ` ∀ξ ∀ξ′ ∀η ∀η′ ((E(ξ, η) ∧ E(ξ′, η′) ∧ SK(ξ, ξ′)) → SN (η, η′)),

6. T ` ∀ξ ∀ξ′ ∀ξ′′ ∀η ∀η′ ∀η′′ ((E(ξ, η) ∧ E(ξ′, η′) ∧ E(ξ′′, η′′) ∧
PlusK(ξ, ξ′, ξ′′)) → PlusN (η, η′, η′′)),

7. T ` ∀ξ ∀ξ′ ∀ξ′′ ∀η ∀η′ ∀η′′ ((E(ξ, η) ∧ E(ξ′, η′) ∧ E(ξ′′, η′′) ∧
TimesK(ξ, ξ′, ξ′′)) → TimesN (η, η′, η′′)).

Any provably initial embedding E : K → N can be split into two parts: E0 :
K → I, and emb : I → N . Here E0 is a provable isomorphism and I is an initial
segment of the N -numbers, satisfying F. The embedding emb is the identical
embedding of I into N . We will call such an initial segment of N satisfying F a
T -cut of N . If we are considering a numerized theory T = 〈T,N〉, then we will
call a T -cut of N a T -cut.

A sequential theory is a theory with a good notion of sequence for all objects
of the domain of the theory. This notion is due to Pavel Pudlák. See e.g.
[Pud85], or [HP91], p151. The notion of sequential theory is equivalent to Harvey
Friedman’s notion of adequate theory. (See [Smo85a].) A sequential theory is
always numerizable. Here are a few facts about ≤ and cuts.

5The ‘term’ mentioned here need not be really a term, but can given as a suitable formula
of which the theory proves that it behaves in the desired way.
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Fact 2.2 Consider a numerizable theory T . The variables K, M, N will range
over interpretations of F.

1. For any numerized theory T = 〈T,N〉, there is a T -cut I, such that, for
standard k, T ` ∀x∈I ∃y itexp(x, k) = y.

Here, itexp(x, 0) := x and itexp(x,m + 1) := 2itexp(x,m).

This theorem is due to Robert Solovay (in an unpublished manuscript “On
Interpretability in Set Theories”). Later a sharper version was proved by
Pavel Pudlák in [Pud85]: S1

2 ` ∀z ∃I 2T ∀x∈I ∃y itexp(x, |z|) = y.

Here |n| = entier(2 log(n)).Thus |n| is the binary length of n.

2. For any numerized theory T = 〈T,N〉, there is a T -cut I, such that
I : T �(I∆0+Ω1). Since I is a cut, Π0

1-sentences are downwards preserved
from N to I and Σ0

1-sentences are upwards preserved from I to N .

This theorem is due to Alex Wilkie. See [HP91], p366-369. See also our
remarks in appendix D.

3. Suppose that T is sequential. Then, for all M, N , there is a K with
K ≤M and K ≤ N .

This theorem is due to Pavel Pudlák ([Pud85]).6 Note that, by 2., we can
always assume that K : T � I∆0 + Ω1.

4. Suppose I is a T -cut. Then we have: S1
2 ` ∀x 2T x ∈ I.

This theorem is the obis-principle. It shows that numbers that are big
outside are always small inside. The result is proved e.g. in [WP87].

Remark 2.3 Consider a numerized theory T = 〈T,N〉. Let I, J range over
T -cuts. We can assign an invariant to T as follows:

li(T ) := {A | ∃I ∀J≤I T ` AJ}.

li stands for ‘limes inferior’. It is easily seen that, if T is consistent, then li(T )
is also consistent. We find that li(T ) extends I∆0 + BΣ0

1 + {conn(F) | n ∈ ω}.
Here BΣ0

1 is the Σ0
1-collection principle:

` ∀x≤a∃y S0(y) → ∃b ∀x≤a∃y≤b S0(y),

where S0 ∈ ∆0. The formula conn stands for consistency w.r.t. n-provability.
(See Section 4, for an explanation.)

In case T is sequential, by Fact 2.2(3), li(T ) will be independent of the numer-
ization T of T . Thus, we may write li(T ), when T is sequential. For sequential
theories T and U , we find the following.

6Our statement is not precisely Pudlák’s, who considers a numerized theory and takes K
to be a cut of the designated numbers. The two statements are easily seen to be equivalent.
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1. li(T ) extends I∆0 + BΣ0
1 + {conn(T ) | n ∈ ω}.

2. If li(T ) ⊆ li(U), then T is locally interpretable in U .

3. If T is finitely axiomatized and consistent, then li(T ) is Σ0
1-sound. (This

follows from Theorem 4.1.)

Open Question 2.4 Remark 2.3 suggests the following questions. What are
the possible complexities of the li’s? Do we have, for sequential T and U , that
if T is interpretable in U , then li(T ) ⊆ li(U)?

2.2 Preliminaries to Rosser Arguments

Suppose A = ∃xA0(x) and B = ∃xB0(x). Here A0 and B0 are arbitrary
formulas of the language of some numerized theory T = 〈T,N〉. Remember
that x and y range over the N -numbers. We write:

• A ≤ B :↔ ∃x (A0(x) ∧ ∀y < x ¬B0(y)),

• A < B :↔ ∃x (A0(x) ∧ ∀y ≤ x ¬B0(y)).

• If C = (A ≤ B), we write C⊥ for (B < A). If D = (A < B), we write D⊥

for (B ≤ A).

Formulas of the form A ≤ B and A < B are called witness comparison formulas.
We present some facts about witness comparison formulas.

Fact 2.5 We have:

1. T ` A ≤ B → A.

2. T ` A < B → A ≤ B.

3. T ` A ≤ B → ¬ (B < A).

4. T ` (A ≤ B ∧B ≤ C) → A ≤ C.

5. T ` A ≤ A → (A ≤ B ∨B < A).

6. T ` (A ∧ ¬B) → A < B.

7. T ` ((A → A ≤ A) ∧B) → (A ≤ B ∨B < A).

8. T ` (A < B ∨B ≤ A) ↔ (A ≤ B ∨B < A).
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Proof

We prove (5). Reason in T . Suppose A ≤ A. This tells us that {x | A0(x)} has
a smallest element, say x0. We have ∀y<x0 ¬B0(y) or ∃y<x0 B0(y). In the
first case, we find A ≤ B, in the second, B < A. 2

In I∆0, we can prove the ∆0-minimum principle. So, I∆0 ` S → S ≤ S, for
S ∈ ∃∆0. In fact, ∆0-induction is equivalent to this principle, assuming we
allow free parameters in S. Similarly, Buss’ theory T1

2 proves the Σb
1-minimum

principle.7 So, T1
2 ` S → S ≤ S, for S ∈ ∃Σb

1. In fact, Σb
1-IND is equivalent

to this principle, assuming we allow free parameters in S. (See [Bus86], p61,
Theorem 24.) Thus, we can draw the following corollary from Fact 2.5(5,7).

Corollary 2.6 Let S be ∃∆0 [∃Σb
1]. Suppose that N : T � I∆0 [N : T � T1

2].
Then, T ` (S ∨A) → (S ≤ A ∨A < S).

Note that it follows, from the conclusion of Corollary 2.6, by substituting S
for A, that T ` S → S ≤ S, which expresses the ∆0-minimum principle [Σb

1-
minimum principle], and hence ∆0-induction [Σb

1-IND]. If, in the Σb
1-case, we

could prove our corollary using S1
2, it would follow that T1

2 = S1
2, deciding an

open problem. However, we can prove a related fact for S1
2, which is sufficient

for some important applications.

Fact 2.7 Let T be a numerized theory. Let 2 := 2T . Suppose that S is
∃Σb

1 and that A = ∃xA0(x). We have S1
2 ` S → 2(S ≤ S), and, hence,

S1
2 ` S → 2(S ≤ A ∨A < S).

Proof

Reason in S1
2. Suppose S. By Σb

1-completeness, we find 2S0(x), for some x. By
the obis-principle, we find 2SI , for any T -definable cut I. By Fact 2.2(2), we
can pick I such that it satisfies I∆0 + Ω1.8 It follows that in 2(S ≤ S)I and,
thus, 2(S ≤ S). 2

The following fact is, modulo some insignificant differences, verified in [VV94].

Fact 2.8 Small Reflection Principle. Let T = 〈T,N〉 be a sequential nu-
merized theory. Suppose that T is either finitely axiomatized or an extension
by finitely many axioms of I∆0 + Ω1 (relativized to N ). Let 2 := 2T . Let S
be ∃Σb

1. Let A be any sentence in the language of T . We have:

S1
2 ` S → 2(2A ≤ S → A).

7For a description of T1
2, see [Bus86] or [HP91].

8In fact, we need only a sufficiently large finite fragment of I∆0 + Ω1 here.
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We finish this section by providing a verification of Rosser’s Theorem in S1
2

for theories finitely axiomatized over either S1
2 or I∆0 + Ω1. The idea of this

argument is due to Viteslav Švejdar. See [Šve83].

Theorem 2.9 Fast Rosser Theorem. Let T be a sequential numerized the-
ory. Suppose that T is either finitely axiomatized or an extension by finitely
many axioms of I∆0 + Ω1 (relativized to N ). Let 2 := 2T . Let R be such that
S1

2 ` R ↔ 2¬R ≤ 2R. We have: S1
2 ` (2R ∨2¬R) → 2⊥.

Proof

Reason in S1
2. Suppose (a) 2R. By Fact 2.8, we have (b) 2((2¬R ≤ 2R) →

¬R). By Fact 2.7, we have (c) 2((2¬R ≤ 2R) ∨ (2R < 2¬R)). Combining
(b) and (c), we find: (d) 2¬R. Combining (a) and (d), we get 2⊥. The proof
from the assumption ¬R is similar. 2

Note that it follows, by Buss’s results, that there is a p-time transformation of
a proof of R to a proof of ⊥, and, similarly, for proofs of ¬R.

Open Question 2.10 The restriction on the theories of Theorem 2.9 is some-
what unsatisfactory. So one might ask whether the theorem also holds for
non-sequential theories or for sequential theories that are not either finitely
axiomatized or finitely axiomatized as extensions of I∆0 + Ω1.

It is well known that, if S1
2 did prove “NP=co-NP”, then the usual formaliza-

tion of Rosser’s Theorem would work. Thus, a negative answer to our question
would entail: S1

2 0 NP=co-NP.

3 A Miraculous Argument

Sometimes, in Mathematics, we meet an argument that is utterly simple, and yet
has many surprising consequences. The reasoning leading to the FGH Theorem
surely qualifies as an example of such an argument. It is a Rosser type argument
and, thus, it inherits the inherent mystery of such arguments. It is a simple
Rosser type argument, not much more complicated in terms of number of steps
than Rosser’s original argument, even simpler in terms of the definition of the
fixed point. However, the formalization of the FGH Theorem seems to ask for
more resources than the formalization of Rosser’s, as will be explained below.

3.1 The FGH Theorem

Let us first state the FGH Theorem. Let EA be Elementary Arithmetic, i.e.
I∆0 + exp. This theory is called EFA in [Smo85a].

Theorem 3.1 Consider any numerized theory T = 〈T,N〉. Let 2 := 2T . Let
S be Σ0

1 and let R be such that Q ` R ↔ S ≤ 2R. We have:

EA ` (S ∨2⊥) ↔ (R ∨2⊥)
↔ 2R

10



or, equivalently, EA + con(T ) ` (S ↔ R) ∧ (S ↔ 2R).

‘FGH’ stands for Friedman–Goldfarb–Harrington. The history is as follows.
Around 1976 or very early 1977, Harrington proved a principle very close to the
FGH principle. The main difference was that Harrington’s sentence R was Π0

1

and not Σ0
1. Harvey Friedman saw Harrington’s result and realized that one can

also get the result for R in Σ0
1. He wrote down his result in a manuscript “Proof

Theoretic Degrees”, dated February 1977. An early paper reporting the re-
sult is Smoryński’s [Smo81], p366. Smoryński refers to Friedman’s unpublished
manuscript.

Warren Goldfarb rediscovered the principle independently in November 1980.
He communicated the result to George Boolos. Boolos then promulgated it to
the logic of provability community. Via this channel I learned of it. So I called
it Goldfarb’s Principle. I guess everyone gets due credit in my new name for it:
The FGH Theorem. Here is the proof.

Proof

Reason in EA.

Step 1. Suppose S ∨ 2⊥. We want to derive R ∨ 2⊥. If we have 2⊥, we
are done. Suppose S. It follows that R ∨ R⊥. In the first case, we are again
done. In case we have R⊥, we find (a) 2R, since R⊥ = (2R < S). Moreover,
by Σ0

1-completeness, we have (b) 2R⊥. Combining (a) and (b), we obtain 2⊥.

Step 2. Suppose R ∨2⊥. By Σ0
1-completeness, we find 2R ∨2⊥, hence, 2R.

Step 3. Suppose 2R. We want to derive R ∨ 2⊥. We find: R ∨ R⊥. Now we
may proceed as in step 1.

Step 4. Suppose R ∨2⊥. We may immediately conclude that S ∨2⊥. 2

Remark 3.2 We can also prove EA ` 2¬R⊥ ↔ 2R. Right-to-left is trivial. In
the other direction, let I be a T -cut satisfying I∆0 + Ω1. We have:

EA ` 2¬R⊥ → 2(¬R⊥)I

→ 2(2R → R)I

→ 2(2IR → RI)
→ 2(2IR → R)
→ 2R

The last step is an application of Löb’s Theorem for 〈T, I〉. For a discussion of
Löb’s theorem with shifting interpretations, see [Vis93], section 4.

An immediate generalization of the FGH theorem is due essentially to Franco
Montagna.
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Theorem 3.3 Consider any numerized theory T = 〈T,N〉. Let 2 := 2T . Let
S(x) be Σ0

1 and let R be such that Q ` R ↔ S(#R) ≤ 2R. We have:

EA ` (S(#R) ∨2⊥) ↔ (R ∨2⊥)
↔ 2R

or, equivalently, EA + con(T ) ` (S(#R) ↔ R) ∧ (S(#R) ↔ 2R).

It is easy to see that Rosser’s Theorem is an immediate consequence of Mon-
tagna’s Theorem. We end this subsection, by proving a variant of a part of the
FGH Theorem that will be used in Section 4.

Theorem 3.4 Consider any numerized theory T . Let 2 := 2T . Let A be
∃∀∆0 and let R be such that Q ` R ↔ A ≤ 2R. Let BΣ0

1 be the Σ0
1-collection

principle: ` ∀x≤a∃y S0(y) → ∃b ∀x≤a∃y≤b S0(y), where S0 ∈ ∆0. We have:

EA + BΣ1 ` 2R → (A ∨2⊥),

or, equivalently, EA + BΣ1 + con(T ) ` 2R → A.

Proof

Reason in EA + BΣ1. Suppose 2R. We have A ≤ 2R or 2R < A. In the first
case, we may conclude A, and we are done. Suppose 2R < A. This has the form
∃p (proof(p, #R) ∧ ∀y≤p ∃z ¬A0(y, z)), where A0 is in ∆0. By Σ0

1-collection,
our formula is equivalent to:

C := ∃p∃x (proof(p, #R) ∧ ∀y≤p ∃z ≤ x ¬A0(y, z)).

Thus, we find: 2C, and, hence, 2(R < A). I.o.w., 2R⊥. Combining this with
our assumption 2R, we find 2⊥ and we are done. 2

3.2 The FGH Theorem and S1
2

It is an open problem whether the FGH Theorem can be formalized in S1
2, even

for S ∈ ∃Σb
1. However for a restricted range of theories we can prove a salient

consequence of FGH Theorem.

Theorem 3.5 Let T = 〈T,N〉 be a sequential numerized theory. Suppose that
T is either finitely axiomatized or an extension by finitely many axioms of I∆0+
Ω1 (relativized to N ). We write 2 := 2T . Let A be any T -sentence. Let R be
such that Q ` R ↔ 2A ≤ 2R. We have: S1

2 ` 2A ↔ 2R.

12



Proof

Reason in S1
2.

Suppose 2A. By the small reflection principle 2.8, we have (a):

2((2R < 2A) → R).

By 2A and Fact 2.7, we have (b) 2(2A ≤ 2R ∨ 2R < 2A). Combining (a)
and (b), we find 2R.

Conversely, suppose 2R. By the small reflection principle 2.8, we have:

2((2A ≤ 2R) → A),

i.e. 2(R → A). Ergo, 2A. 2

3.3 Some Consequences of the FGH Theorem

The proof of Theorem 4.1 is our central application of the FGH Theorem in this
paper. We also use it in the proof of Theorem C.7. In this subsection we spell
out some more immediate consequences of Theorem 3.1. These consequences
are not strictly needed for the rest of the paper. They have, however, heuristic
value. Moreover, they are interesting in their own right. For some further
information, the reader is referred to [Smo85b], chapter 7.

3.3.1 1-Reducibility

We give a quick proof of a well-known fact.

Theorem 3.6 Suppose T can be extended to a consistent numerizable theory
W . Then, any RE set is 1-reducible to T . A fortiori, T is of Turing degree 0′.

Proof

Clearly, we may assume that W is a finite extension of T , say W = T + A. Let
W = 〈W,N〉 be a numerization of W . Consider any RE set X with index e.
Let Rn be the FGH sentence for the theory W corresponding to the sentence
Sn := ({e}n ' 0). Clearly, the mapping n 7→ (A → RNn ) is recursive. By the
FGH Theorem, formulated externally, we have: n ∈ X ⇔ T ` A → RNn . 2

3.3.2 Closure under Disjunction

We show that provabilities are closed under disjunction.

Theorem 3.7 Let T be a numerized theory. Let 2 := 2T . For any sentences
A and B of the language of T , there is a Σ1-sentence C such that EA ` 2C ↔
(2A ∨2B).

13



Proof

Take S := (2A ∨2B) in Theorem 3.1. 2

Note that C can in fact be taken to be ∃Πb
1.

3.3.3 Degrees of Provably Deductive Consequence

Let T be numerized. Let A and B be be sentences of the language of T . Let
2 := 2T . We define:

• A �T B :⇔ T ` 2A → 2B.

• A ≡T B :⇔ A �T B and B �T A.

We call �T provably deductive consequence and we call ≡T provably deductive
equivalence. Clearly, these notions yield a degree structure on the sentences of
T .

Theorem 3.8 Each degree of provably deductive equivalence of T contains a
∃Πb

1-sentence.

Proof

Let γ be such a degree. Suppose C ∈ γ. Take S := 2C in Theorem 3.1. 2

3.3.4 Smoryński’s Theorem

The following application is due to Smoryński. See [Smo81], p366 or [Smo85b],
p312.

Theorem 3.9 Let T = 〈T,N〉 be numerized theory. Suppose T ` EA. Then,
we have, verifiably in EA, that T is Σ0

1-sound iff T is consistent and T +con(T )
is Σ0

1-conservative over T .

Proof

We write 2 := 2T . Reason in EA.

Suppose T is Σ0
1-sound. Let S be in Σ0

1. Suppose 2(con(T ) → S). Then,
we find 2(S ∨ 2⊥). By Σ0

1-soundness, it follows that (S ∨ 2⊥). Hence, by
Σ0

1-completeness, 2S.

Suppose that T is consistent and T +con(T ) is Σ0
1-conservative over T . Suppose

2S. Applying the first equivalence of the FGH Theorem inside the 2, we obtain
2(R ∨ 2⊥). Ergo, 2(con(T ) → R). By Σ0

1-conservativity, it follows that 2R.
We may conclude, now applying the FGH Theorem outside the 2, that S. 2

14



Note that the assumption that T ` EA, was only used in the second part of
the proof in the ‘internal’ application of the FGH Theorem. We can extend the
result to theories T such that every T -cut I has a subcut J with J : T � T .
Examples of such theories are S1

2, I∆0 + Ω14 + con(F), I∆0 + {Ωn+1 | n ∈ ω}
and PA + incon(PA),

Theorem 3.10 Let T = 〈T,N〉 be numerized theory. Suppose that every T -cut
I has a subcut J with J : T � T . Then, we have, verifiably in EA, that T is
Σ0

1-sound iff T is consistent and T + con(T ) is Σ0
1-conservative over T .

Proof

We replace the second part of the previous proof by the following variation.
Suppose that T is consistent and that T + con(T ) is Σ0

1-conservative over T .
Suppose 2S. Using Fact 2.2(2),(1), we can find a T -cut J such that (a) J :
T � (I∆0 + T ) and (b) 2(∀x∈J ∃y 2x = y). By (a), we find 2SJ . Ergo
2(R ∨ R⊥)J , Hence, 2(R ∨ (R⊥)J). Also (c) 2((R⊥)J → 2R). Since, in the
proof of Σ0

1-completeness for T , the transformation of the witness x of a Σ0
1-

sentence S′ to a proof p of S′ is of order 2xm

, for standard m, we get by (b):
2((R⊥)J → 2R⊥). Ergo (d) 2((R⊥)J → 2⊥). We may conclude from (c) and
(d): 2(R ∨2⊥).

Hence, 2(con(T ) → R). By Σ0
1-conservativity, it follows that 2R. We may

conclude, by the FGH Theorem, that S. 2

Here is a corollary from Theorem 3.9. A theory T = 〈T,N〉 is reflexive if it
proves for every n the statement con(Tn). Here Tn is the theory axiomatized by
EAN plus the T -axioms with Gödelnumber less than or equal to n.

Corollary 3.11 Suppose T is a consistent, numerized, reflexive theory such
that T ` EA. Suppose there is an n, such that, for all Σ0

1-sentences S, whenever
T ` S, we have Tn ` S. Then T is Σ0

1-sound.

Proof

Let 2 := 2T and 2n := 2Tn
. Suppose 2n(con(Tn) → S), then, by reflexivity,

2S. Hence, 2nS. Applying Theorem 3.9 to Tn, we find S. So Tn is Σ0
1-sound.

Hence, T is also Σ0
1-sound. 2

The above theorem tells us that, if a theory that is consistent, numerized, re-
flexive and verifies EA, proves a false Σ0

1-sentence, then it is forced to tell more
and more complex lies, i.e., it will prove false Σ0

1-sentences the proofs of which
need more and more axioms.

4 Σ0
1-Soundness in Potentia

In this section, we prove a theorem that will be the main lemma to our proof that
consistent, finitely axiomatized, sequential theories are trustworthy. Let EA+ be
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I∆0 + supexp, where supexp is the axiom stating that the superexponentiation
function is total.

Theorem 4.1 Let T := 〈T,N〉 be a finitely axiomatized, sequential theory.
We write 2 := 2T . There is a T -cut I such that, for all Σ0

1-sentences S,
EA+ ` (S ∨2⊥) ↔ 2SI , or equivalently, EA+ + con(T ) ` S ↔ 2SI .

Before proving our theorem we formulate and prove an immediate corollary.

Corollary 4.2 Let T := 〈T,N〉 be a finitely axiomatized, sequential theory.
There is a T -cut I such that 〈T, I〉 is (EA+ + con(T ))-verifiably Σ0

1-sound.

Proof

Let I be the cut promised in theorem 4.1. We have, for any Σ0
1-sentence S,

EA+ + con(T ) ` 2T SI → S, and hence, EA+ + con(T ) ` 2〈T,I〉S → S. 2

To get the proof of theorem 4.1 going, we need a few preparatory steps. We will
apply the FGH Theorem to a restricted proof predicate, where the formulas in
the proof are restricted to formulas of a certain complexity. We take as measure
of complexity ρ, where ρ(A) is the depth of quantifier changes. This measure
is discussed in some detail in [Vis93]. We take Γn to be the set of formulas
of complexity at most n and Γcl

n the set of sentences of Γn. m-provability will
be provability from axioms with Gödelnumber below m, where the formulas
occurring in the proof are all in Γm.

The notation A(k) is somewhat misleading. In general we are working in
some interpretation of number theory. So the term k occurs in unwinded rela-
tional form. Our measure ρ is designed to be insensitive to such fine points.

Lemma 4.3 ρ(A(k)) is independent of k.

Proof

Suppose, for simplicity, that we are working with tally-numerals. A(k) in T
could look like this:

∃x0 . . .∃xk (0N (x0) ∧ SN (x0, x1) ∧ . . . ∧ SN (xk−1, xk) ∧A(xk)).

The complexity of this formula is max(ρ(0N (x)), ρ(SN (x, y)), ρ(A(x)))+1. This
formula is clearly estimated by ρ(A(x)) + c, for a fixed standard c. Similar
reasoning works for efficient numerals based e.g. on binary notations. 2

Here is a fundamental lemma about 2n.

Lemma 4.4 Suppose that T := 〈T,N〉 is a finitely axiomatized theory. Let
2 and 2m be the provability and the m-provability predicates of T . We have,
for any T -sentence A and k > ρ(A) and k larger than the complexities of the
axioms of T , EA+ ` 2kA ↔ 2A.
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Proof

The left-to-right direction is obvious. To prove the right-to-left direction, reason
in EA+. Suppose 2A. We can, using supexp, find a cutfree proof in predicate
logic of C → A, where C is the conjunction of the T -axioms. See [HP91], part V,
chapter 5, for details. By the subformula property, this proof is also an k-proof.

2

Note that we used the fact that T is finitely axiomatized in an essential way in
the proof.

Open Question 4.5 Is it possible to replace, in the usual superexponential
estimate of the growth involved in cut elimination, the usual measure of com-
plexity (depth of connectives) by ρ, i.e. depth of quantifier changes?

Lemma 4.6 Let T := 〈T,N〉 is a finitely axiomatized. Let 2 and 2m be the
provability and the m-provability predicates of T . Consider a Σ0

1-sentence S.
We can find Rm such that Q ` Rm ↔ S ≤ 2mRm, by the Gödel Fixed Point
Lemma. Note that ρ(Rm) := ρ(S) + c, for a standard c which is independent of
m. Choose n > ρ(S) + c. We have: EA+ ` (S ∨2⊥) ↔ 2Rn.

Proof

We want to apply the FGH Theorem. To do this we must verify that the
steps in the proof go through for our n-provability. Note e.g. that n is large
enough to have: EA ` Rn → 2nRn and EA ` R⊥n → 2R⊥n . Thus, we have:
EA ` (S ∨2n⊥) ↔ 2nRn. Now apply Lemma 4.4. 2

Our proof strategy will be to provide a cut I, such that, EA+-verifiably, we have
2Rn ↔ 2SI . Then we may apply Lemma 4.6. To get the desired result, we
need a reflection principle.

Lemma 4.7 Let U := 〈U,M〉 be any sequential theory. Let 2 be U-provability
and let 2n be U-n-provability. For any n, we can find an U-cut J such that
EA ` ∀A∈Γcl

n 2(2J
nA → A).

Proof

This is Fact 2.4.5(ii) of [Vis93]. The idea is that, in U , we can define a satisfac-
tion predicate for Γn and prove Γn-reflection by replacing induction over proof
length by the use of a definable cut. 2

The next lemma is nearly the theorem we are aiming to prove. The only defect
is that I is still dependent on ρ(S).

Lemma 4.8 Let T := 〈T,N〉 be a finitely axiomatized, sequential theory. We
write 2 := 2T . For any Σ0

1-sentence S, there is a T -cut I such that, EA+ `
(S∨2⊥) ↔ 2SI , or equivalently, EA++con(T ) ` S ↔ 2SI . The cut I depends
only on ρ(S).
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Proof

Take n and Rn as in Lemma 4.6. Let R := Rn. We have, by Lemma 4.6, (a)
EA+ ` (S ∨ 2⊥) ↔ 2R. Choose a reflecting T -cut I for 2n as in Lemma 4.7.
By Fact 2.2(2), we can choose I in such a way that it verifies ∆0-induction.
Note that I will only depend on ρ(S).

The left-to-right direction is immediate by the obis-principle. We treat the other
direction. By (a), it is sufficient to show that EA+ ` 2SI → 2R.

Reason in EA+. Suppose 2SI . Since we have ∆0-induction in I, it follows that
2(S ≤ 2nR ∨ 2nR < S)I and so 2((S ≤ 2nR)I ∨ (2nR < S)I). The first
disjunct is equivalent to RI , which implies R. To the second disjunct we apply
the reflection principle from Lemma 4.7 to infer R. Thus, we obtain 2R. 2

We want to make the cut I independent of the Σ0
1-sentence S. The problem is

that Σ0
1-sentences may have arbitrarily large ρ-complexities. If we would have

N : T � EA, there would be no problem, since we have EA ` S ↔ trueΣ(#S),
where trueΣ is the ordinary Σ0

1-truth predicate, which is itself given by a Σ0
1-

formula. All sentences of the form trueΣ(#S) have some complexity below a
fixed finite n. We can use the idea even in the absence of EA by making our cut
smaller. Here is another lemma.

Lemma 4.9 Let S = ∃xS0(x), where S0 ∈ ∆0. Let the truth predicate be of
the form ∃y trueΣ,0(y, z), where (trueΣ,0(y, z)) ∈ ∆0. There is a fixed standard
k, such that S1

2 ` (S0(x) ∧ 2xk ↓) → ∃y≤2xk

trueΣ,0(y, #S).

Proof

The proof is by inspecting the usual EA-proof of S → trueΣ(#S). See e.g.
[HP91], part C, chapter 5(b), for a detailed presentation. 2

Here is the proof of Theorem 4.1.

Proof

Let J be the cut provided by Lemma 4.8 for the complexity of the Σ-truth-
predicate. Let I a shorter cut, such that T ` ∀x∈I 2x ∈ J .

Let a Σ0
1-sentence S be given. The left-to-right direction is immediate, us-

ing the obis-principle. We treat the direction from right-to-left. Take S∗ :=
trueΣ(S). By Lemma 4.8, we get EA+ ` (S∗ ∨2⊥) ↔ 2SJ

∗ . By Lemma 4.9, we
find T ` SI → SJ

∗ . Thus, we have:

EA+ ` 2SI → 2SJ
∗

→ S∗ ∨2⊥
→ S ∨2⊥

So we are done. 2
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Open Question 4.10 Can one find a numerized, non-sequential, finitely ax-
iomatized theory for which there is a false Σ0

1-sentence which is provable on
every definable cut?

We draw an obvious corollary.

Corollary 4.11 Suppose T is consistent, finitely axiomatized and sequential.
Then there are a T -cut I and a model M of T such that, in M, witnesses of
Σ0

1-sentences are either in the initial segment of the T -numbers isomorphic to
ω or not in I.

Proof

Choose I as in Theorem 4.1. Clearly, U := T + {¬SI | N 6|= S} is consistent.
Take M a model of U . 2

Note that Corollary 4.11, in its turn, directly implies Theorem 4.1. Another
immediate corollary is as follows. This corollary is about the limes inferior of
a sequential theory T . The notion of limes inferior of a sequential theory T or
li(T ) was introduced in remark 2.3.

Corollary 4.12 Let T be a consistent, sequential, finitely axiomatized theory.
Then li(T ) is Σ0

1-sound.

We can extend Lemma 4.8 partly to a wider formula class.

Definition 4.13 Consider any numerized theory T . Let B := ∃x B0(x) be a
formula of the language of T . Let I be a T -cut. We write B[I] for ∃x∈I B0(x)
(or: B < ∃xx 6∈ I).

Theorem 4.14 Let T := 〈T,N〉 be a finitely axiomatized, sequential theory.
We write 2 := 2T . For any ∃∀∆0-sentence A, there is a T -cut I such that,
EA+ + BΣ1 ` 2A[I] → (A ∨2⊥), or equivalently,

EA+ + BΣ1 + con(T ) ` 2A[I] → A.

The cut I depends only on ρ(A).

Proof

Take R as in Theorem 3.4, with 2n, for a suitably large n, substituted for 2.
We find, using cut elimination, from Theorem 3.4:

EA+ + BΣ1 ` 2R → (A ∨2⊥).

Let I be an n-reflecting T -cut satisfying I∆0. It is sufficient to show in EA+ +
BΣ1 that 2A[I] implies 2R.
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Reason in EA+ + BΣ1. Suppose 2A[I]. Since

2(2nR → 2nR ≤ 2nR)I ,

it follows, by Fact 2.5(7), that 2(A[I] ≤ 2I
nR ∨ 2I

nR < A[I]).9 Clearly, the
first disjunct is T -equivalent to R[I], and, thus, implies in T that R. Moreover,
the second disjunct implies in T that 2I

nR. Hence, since I is n-reflecting, the
second disjunct implies R in T . Thus, we find (outside of T ): 2R. 2

We can extend Theorem 4.1 to a larger class of theories.

Theorem 4.15 Let T be a consistent, sequential, finitely axiomatized theory.
Suppose that T and U are mutually interpretable. Then there is a Σ0

1-sound
numerization U = 〈U,P〉 of U .

Note that U need not be sequential! Before proving the theorem we need a
lemma, which is a strengthening of Löb’s Theorem.

Lemma 4.16 Let T = 〈T,N〉 be a numerized, consistent, sequential, finitely
axiomatized theory. . Let I be a T -cut and let A be a sentence of the language
of T . Then there is a k such that

I∆0 + Ω1 ` 2T (2I
T ,kA → A) → 2T A.

The number k depends only on the complexities of the axioms of T , the com-
plexity of N , the complexity of I and the complexity of A. Our complexity
measure here is ρ, i.e. depth of quantifier changes.

The lemma is a special case of Theorem 4.2 of [Vis93]. We turn to the proof of
Theorem 4.15.

Proof

Suppose K : T�U andM : U�T . Note thatN ′ := NMK is an interpretation of
F in T . (We write composition in the order of application here.) By Fact 2.2(3),
there is a T -cut J that is T -provably isomorphic with a T -cut J ′ of N ′. By
Fact 2.2(2), we may assume that J satisfies I∆0+Ω1. Let K be the ρ-complexity
of the Σ0

1-truth predicate. By the external form of Lemma 4.16, we can find a
k such that, for any A ∈ ΓK+n, if T ` 2J

T ,kA → A, then T ` A. Here n is a
sufficiently large number.

By Lemma 4.7, we can find a T -cut I∗ such that T ` 2I∗

T ,kB → B, for any
B ∈ Γk. Let I be a subcut of I∗ such that T ` ∀x∈I 2x ∈ I∗. By Fact 2.2(2),
we may choose I∗ and I such that they satisfy I∆0 + Ω1. Consider any Σ0

1-
sentence S. Let S0 := trueΣ(#S). We have, by Lemma 4.9, T ` SI → SI∗

0 .

9Note that, to apply the verbatim statement of Fact 2.5(7) we have to shift to the theory
〈T, I〉 first and, then, shift back to T . Alternatively, we can just run through the proof again
for the modified statement.
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Let R be such that F ` R ↔ S0 ≤ 2T ,kR. We have:

T ` SI → SI∗

0

→ (R ∨ (2T ,kR < S0))I∗

→ R ∨2I∗

T ,kR

→ R

We take P := IM. Suppose, for any Σ0
1-sentence S, that U ` S. This tells

us that M : U � (T + SI). Ergo M : U � (T + RN ). We may conclude that
T ` RNMK, i.o.w. T ` RN

′
. It now follows that

T ` 2J
T ,kR → RN

′
∧2J′

T ,kR

→ RJ′

→ RJ

→ R

Applying Löb’s Rule, we have T ` R. By cutelimination, we find T `k R.
Hence, by the external version of the proof of the FGH Theorem, we find that
S0 is true and, thus, that S is true. 2

5 On the Manufacture of Faith

We repeat the definition of trustworthiness here.

Definition 5.1 A theory V is trustworthy if every U interpretable in V is also
faithfully interpretable in V .

In this section, we will provide a characterization of trustworthy theories. Fried-
man’s result that consistent, finitely axiomatized, sequential theories are trust-
worthy, will follow from this characterization in combination with Theorem 4.1.
Our treatment in this section can be viewed as generalizing some of Per Lind-
ström’s work on faithful interpretability. See [Lin97], chapter 6, §2. The meth-
ods used are for a great part those developed by Per Lindström and Viteslav
Švejdar.

5.1 An Upper Bound

In this subsection we prove an upper bound result. We need two lemmas.

Lemma 5.2 Let T = 〈T,N〉 be a numerized theory. Let Γ be any class of T -
sentences for which T contains a definable truth predicate, say TRUE. We only
need that TRUE satisfies Tarski’s convention. Suppose that the set of codes of
elements of Γ has a fixed binumeration in T . Then, there is a unary predicate
of numbers A(x), such that T ` (A(x) ∧A(y)) → x = y, and such that, for any
n, T + A(n) is Γ-conservative over T . We may consider A as representing a
closed partial numerical term τ , writing ‘τ ' x’ for ‘A(x).
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We give the proof in appendix B.

Lemma 5.3 Let T = 〈T,N〉 be a numerized theory. Let L be a language of
finite signature σ for predicate logic. We call predicate logic of signature σ:
FOLσ. Let α(x) be any formula in the language of T such that T proves that
all elements of {x | α(x)} are codes of L-sentences. We write 2α for provability
from the sentences coded by the elements of {x | α(x)}. We write con(α) for
¬2α⊥.

There is an interpretation H : (T + con(α)) � FOLσ such that, for any L-
sentence A, we have T + con(α) + 2αA ` AH. We say that H is a Henkin
interpretation of α.

Proof

We can see this by inspection of the usual proof of the Interpretation Existence
Lemma. The basic idea is that we formalize the Henkin construction, employing
definable cuts whenever we would have used induction in PA. See e.g. [Vis91] or
[Vis92]. 2

We proceed with our, somewhat technical, upperbound result. The bit with the
sentence A is present, because we want our result to be applicable also to some
theories that are not numerizable.

Lemma 5.4 Let T be any theory. Suppose K : T � U . Let A be any T -
sentence. SupposeW = 〈T+A,N〉 is numerized. Then there is an interpretation
M : T � U such that, for any U -sentence B, T ` BM ⇒W ` 2UB.

Proof

ConsiderW. We can, by Fact 2.2(1) and Lemma 4.9, shortenN to aW-definable
cut J such that Z := 〈T +A, J〉 contains a truth predicate for the Σ0

1-sentences
of Z. (Remember that the meaning of ‘Σ0

1’ shifts with the numerization.) Note
that Z ` 2UB ⇒W ` 2UB. It follows that it is sufficient to prove our theorem
for Z. Thus, we may, without loss of generality, assume that W contains a truth
predicate, say true, for the Σ0

1-sentences. Moreover, we may, by Fact 2.2(2),
assume that W proves I∆0 + Ω1.

Let τ be the partial closed term promised by Lemma 5.2 for W and Σ0
1.

We fix some standard enumeration Cx of the U -sentences in such a way that W
verifies its elementary properties. We specify M, in T , by cases. In case we have
¬A, we take M equal to K. Suppose we have A. We may now work in W. Let
U∗ := U + {Cx | τ ' x}. Note that (i) U∗ is not ∆b

1-axiomatized, and that (ii)
in talking about U∗ we are really talking about the formula defining the axiom
set and that (iii) the definition of U∗ only makes sense in the presence of A. In
case incon(U∗), we take M again equal to K. If con(U∗), we take M equal to
the Henkin-interpretation H of U∗. We give the clauses for M, for the cases of
the domain of the interpretation and the translation of a binary predicate:
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• δM(x) :↔ ((¬A ∨ (A ∧ inconN (U∗))) ∧ δK(x)) ∨ (A ∧ conN (U∗) ∧ δH(x)),

• PM(x, y) :↔ ((¬A ∨ (A ∧ inconN (U∗))) ∧ PK(x, y)) ∨
(A ∧ conN (U∗) ∧ PH(x, y)).

(In writing e.g. ‘inconN (U∗)’, we intend no relativization of the formula defining
the axiom set.)

Clearly, M : T � U . Suppose T ` BM. Let ¬B = Cn. We have:

W + τ ' n ` “(U + ¬B) = U∗”.

Hence, W + (τ = n) + con(U + ¬B) ` ¬BM. Thus, W ` (τ ' n) → 2UB. By
the Σ0

1-conservativity of τ ' n, we find W ` 2UB. 2

5.2 The Characterization

In this subsection, we provide the promised characterization of trustworthiness
and prove Friedman’s result as a corollary.

Theorem 5.5 Let T be any ∆b
1-axiomatized theory. The following are equiva-

lent.

1. T is trustworthy.

2. T has a (finite) extension which has a Σ0
1-sound numerization.

3. T has a (finite) extension on which there is Σ0
1-sound interpretation of Q.

4. There is a faithful interpretation of predicate logic with one binary relation
symbol into T .10

Proof

“(1) ⇒ (2)”. Suppose T is trustworthy. Say the (relational) signature of number
theory is σ. Trivially, the predicate logic FOLσ is interpretable in T . Hence,
there is a faithful interpretation, say K, of FOLσ in T . It is easily seen that
〈T + (

∧
F)K,K〉 is a Σ0

1-sound numerization of an extension of T .

“(2) ⇒ (1)”. Suppose T has a (finite) extension which has a Σ0
1-sound numer-

ization, say W. It follows, by Σ0
1-soundness, that W ` 2UB implies U ` B.

Suppose K : T �U . By Lemma 5.4, we may conclude that there is a faithful
interpretation M : T � U .

“(1) ⇒ (4)”. This is immediate.

10We might want to insist that predicate logic contains identity. In this case it is only
necessary that the interpretation is faithful w.r.t. the fragment of the formulas containing
only R.
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“(4) ⇒ (2)”. Suppose P is a faithful interpretation of predicate logic with one
binary relation symbol into T . There is a finitely axiomatized set theory, say S,
in the language with just one binary relation symbol into which F is faithfully
interpretable, say via Q. See e.g. [MM94]. Hence, 〈T + (

∧
S)P ,QP〉 is a Σ0

1-
sound numerization of an extension of T .

“(3) ⇔ (2)”. This is immediate, by the fact that F can be interpreted in Q on
a cut I. Cuts are downwards closed under ≤. So we can always convert a Σ0

1

sound interpretation of Q into a Σ0
1-sound interpretation of F. 2

The definition of trustworthiness is ‘neutral’ w.r.t. arithmetical theories and the
like, in that it does not mention the presence of any device allowing coding. It
does not even mention specific signatures. Thus it is remarkable that a the-
ory involving coding is connected via (2) of the theorem to trustworthiness. In
appendix C, we will discuss a nice alternative formulation of (2) of the theo-
rem. From Theorem 5.5 combined with Theorem 4.1, we may now immediately
conclude to Friedman’s Theorem.

Corollary 5.6 [Friedman’s Theorem] Finitely axiomatized, sequential, con-
sistent theories are trustworthy.

Remark 5.7 We have proved Friedman’s Theorem from Theorem 4.1. It is
easily seen that, conversely, the existence of a Σ0

1-sound cut again follows from
Corollary 5.6. Consider a finitely axiomatized, numerized, sequential and con-
sistent theory T = 〈T,N〉. By Corollary 5.6, there is a faithful interpretation
M of F in T . Clearly, 〈T,M〉 is Σ0

1-sound. Ergo, by Fact 2.2(3) and the upwards
persistence of Σ0

1-sentences, we can find a T -cut I such that 〈T, I〉 is Σ0
1-sound.

Example 5.8 PA+incon(PA) is not trustworthy. This can be seen e.g. by noting
that PA + incon(PA) � PA. Since any interpretation of PA in PA + incon(PA) is
verifiably an end-extension of the identity interpretation, it will, by the upwards
persistence of Σ0

1-sentences, satisfy incon(PA). Hence no faithful interpretation
of PA in PA + incon(PA) is possible.

In contrast, ACA0 + incon(ACA0) is trustworthy.

We may use Theorem 4.15 to get a modest strengthening of Friedman’s Theo-
rem.

Corollary 5.9 Suppose T is consistent, finitely axiomatized and sequential.
Suppose T and U are mutually interpretable. Then U is trustworthy.

Open Question 5.10 We could say that a theory T is solid if every U that is
mutually interpretable with T is trustworthy. Is there a perspicuous character-
ization of solid theories?

Note that PA and PA + incon(PA) are mutually interpretable. So, by Exam-
ple 5.8, PA is trustworthy but not solid.
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We proceed with some further corollaries of Theorem 5.5. The following corol-
lary of is easy.

Corollary 5.11 Any subtheory of a trustworthy theory is trustworthy.

Corollary 5.12 Consider Group Theory groupc, where we allow an extra con-
stant c in the language. The theory groupc is trustworthy.

Proof

Tarski constructs, in [TMR53], a model G of groupc that has as definable inner
model the natural numbers with plus and times. In other words, he constructs
an interpretation K with K : Th(G)�Th(N). It follows that 〈groupc+(

∧
F)K,K〉

is Σ0
1-sound. Ergo, by Theorem 5.5, groupc is trustworthy. 2

Corollary 5.13 Any trustworthy theory is of degree 0′.

Proof

This is immediate by Theorem 3.6. 2

Open Question 5.14 What is the complexity of trustworthiness? Our char-
acterization shows that this complexity is at most Σ0

3. I conjecture that it is
complete Σ0

3.

6 On the Nature of Trustworthiness

The notion of trustworthiness may, at first sight, seem to be somewhat artificial.
Thus, one may wonder what structure is ‘the natural home’ of the notion. I am
not sure this question has a unique answer. However, the answer given below
is a good candidate. The answer will be that the relevant ‘structure’ is the
embedding functor of two preorders.

Consider the preorder PFI of consistent theories ordered by the relation �f ,
where U �f V if U is faithfully interpretable in V . We write U ≡f V for: U �f V
and V �f U . Consider also the preorder PI of consistent theories ordered by the
relation �, where U � V if U is interpretable in V . We write U ≡ V for: U � V
and V � U .

These preorders can be viewed as categories in the usual way. If we divide out
isomorphisms, we get the partial orderings of degrees of faithful interpretability
and of degrees of interpretability.

Let emb be the identical embedding functor from PFI to PI. We will show that
emb has a right adjoint, (̃·), i.e. a mapping from theories to theories satisfying
the magical equation11:

U �f Ṽ ⇔ emb(U) � V.

11See [Mac71], for the basic facts on adjunctions.
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From this equation, the following facts are immediate consequences.

1. (̃·) is a functor.

2. Ṽ is trustworthy.

3. V ≡ Ṽ . So every degree of interpretability has a trustworthy element.

4. V is trustworthy iff V ≡f Ṽ .

We specify (̃·). Consider a theory T . We expand the signature of T with a
unary predicate P and with a binary predicate R. The theory T̃ is the theory
axiomatized by the axioms of T where we relativize the quantifiers to P . No
non-logical principles concerning R are added. (The logical axioms concerning
identity belong to predicate logic and are left unrelativized.) It is easily seen
that (a) T ≡ T̃ . By a simple model-theoretical argument, we may show that
T̃ is conservative over predicate logic with just the binary relation symbol R.
Hence, by translating R as R(x, y), the theory T̃ faithfully interprets predicate
logic with just the binary relation symbol R. By Theorem 5.5(4), it follows that
(b) T̃ is trustworthy. From (a) and (b), it is immediate that (̃·) is right adjoint
to emb.

In case T has an infinite model, we can skip the relativization to P in the
construction of T̃ . Thus we only need to expand the signature with R. Note that
sequential theories are not closed under relativization of the domain. However,
sequential theories are closed under adding predicate symbols. By the preceding
observation, the mapping add a binary relation symbol will be right adjoint of
the embedding functor, if we restrict both preorders to consistent sequential
theories.

In case a numerization 〈T,N〉 satisfies full induction, we can also take for T̃ ,
the theory PA+ {conn(T ) | n ∈ ω}, where conn(T ) means consistency of the set
of axioms of T with Gödel number less than or equal to n. It follows that we
can find an appropriate right adjoint, if we restrict both preorders to consistent
extensions of PA in the arithmetical language.

By Theorem 5.9, consistent, finitely axiomatized, sequential theories T have the
further property that if T ≡ U , then T ≡f U . It is easy to see that this property
is equivalent to the property of solidity introduced in Question 5.10.
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A A Notational Convention

In this appendix we make the convention for the use of two kinds of variables
and of boxes precise. Let T = 〈T,N〉, T ′ = 〈T ′,N〉, . . . , be numerized theories
and let U,U ′, . . . , be arbitrary theories. We assume that each theory comes
equipped with a ∆b

1-formula defining the axiom set. We treat the case, where
we just have ordinary boxes in the language. Addition of e.g. 2T ,n and 2U,n is
entirely analogous.

We assume the language LT of T has variables ξ, ξ′, . . .. We enrich LT to a
language LT with a second kind of variables x, x′, . . . and with unary operators
2U and 2T ′ , for various U and T ′. The terms of the extended language are the
smallest set containing both sets of variables and closed under the term-forming
operations of LT . The set of formulas of LT is the smallest set F such that:

• P (t0, · · · , tn−1) is in F , if the ti are terms of the extended language and
P is an n-ary predicate symbol of LT ;

• F is closed under the propositional connectives and under the quantifiers
∀x, ∃x, ∀ξ, ∃ξ, for all variables x and ξ;

• If A is a sentence of LU , then 2UA is in F ;

• If A is a formula of LT ′ with only free variables in x, x′, y, . . ., then 2T ′A
is in F .

We can give the formulas of LT their desired translations into LT via the trans-
lation (·)T . We arrange it so that we have infinitely many variables η, η′, . . .
available in LT distinct from the variables ξ, ξ′, . . .. We translate the terms by
replacing x by η, x′ by η′, etcetera.

• (P (t0, · · · , tn−1))T := P (tT0 , · · · , tTn−1);

• (·)T commutes with the propositional connectives and with ∀ξ, ∃ξ;

• (∀x A)T := ∀η (δN (η) → AT );

• (∃x A)T := ∃η (δN (η) ∧AT );

• (2UA)T := provU (#A);

• (2T ′A)T := provT ′(#(AT
′
)).

(The numerical variables in A are treated in the usual way.)
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B Conservativity

In this appendix, we prove Lemma 5.2. Let T = 〈T,N〉 be a numerized the-
ory. Let Γ be any class of T -sentences for which T contains a definable truth
predicate, say TRUE. We only need that TRUE satisfies Tarski’s convention.
We assume that the set of codes of elements of Γ has a fixed binumeration
in T . We show that there is a unary predicate of numbers A(x), such that
T ` (A(x) ∧ A(y)) → x = y, such that, for any n, T + A(n) is Γ-conservative
over T .

We define, in T , using the Gödel Fixed Point Lemma, the formula A(x) as
follows.

A(x) ↔ ∃p ∃C∈Γ ( proofT (p, A(x) → C) ∧ ¬TRUE(C) ∧
∀q < p ∀D∈Γ ∀y ( proofT (q, A(y) → D) → TRUE(D) ) )

We assume that the formalization of proof is standard, so that every proof has
a single conclusion C with C < p, etc. We first prove the uniqueness clause.
Reason in T . Suppose that x 6= y and A(x) and A(y). Let p be a witness
for A(x) and let q be a witness of A(y). By our assumption about the proof
predicate, it follows that p 6= q. since in F, we have the linearity of <, it follows
that p < q or q < p. By the specification of A, it follows that this is impossible.

We move to the metatheory again. We prove our theorem by induction on T -
proofs. Suppose, that for all T -proofs q < p, we have, if q : T ` A(m) → D, for
some m and for some D ∈ Γ, then T ` D. (‘r : T ` E’ means: r is a T -proof of
E.) Suppose further that p : T ` A(n) → C, for C ∈ Γ. We show T ` C. From
our assumptions, we have the following propositions.

T ` (C ∈ Γ) (1)

p : T ` A(n) → C (2)

It follows that:
T + ¬C ` ¬A(n) (3)

T + ¬C ` C ∈ Γ ∧ proofT (p,A(n) → C) ∧ ¬TRUE(C) (4)

Using (3), (4) and the specification of A, we may conclude that:

T + ¬C ` ∃q < p ∃D∈Γ ∃y ( proofT (q, A(y) → D) ∧ ¬TRUE(D) ) (5)

It follows that:

T + ¬C `
∨

q<p,D<p,D∈Γ,m<p

( proofT (q,A(m) → D) ∧ ¬D ) (6)

Consider any q < p, D < p with D ∈ Γ, and m < p. In case we have:
q : T ` A(m) → D, it follows, by the minimality of p, that T ` D. In this
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case the disjunct corresponding to q in (6) is T -provably equivalent to absurdity
and may be omitted. Suppose that q does not witness T ` A(m) → D, then,
by Σ-completeness, T ` ¬ProofT (q,A(m) → D). So again we may omit the
disjunct corresponding to q. Thus the whole disjunction of (6) reduces to ⊥.
We may conclude: T ` C. Quod erat demonstrandum.

Remark B.1 Let’s assume that Γ is closed under disjunction. Let W be the
theory axiomatized by the axioms of T , plus the negations of false Γ-sentences.
We use the obvious formula for the axiom set of W in T . We write 2∗ for
provability in W. Suppose B is of the form ∃y B0. We write ∃∃x B, for ∃y ∃x B0.
Under these conventions we can rewrite the specification of A as follows.

T ` A(x) ↔ 2∗¬A(x) ≤ ∃∃y 2∗¬A(y).

It would be interesting to see a modal treatment of our argument.

C Derivable Consequence

In this appendix, we provide reformulations of some of our results in terms of
derivable consequence. Let T be a theory and let τ be a signature. We define
some consequence relations for signature τ . Let Γ and ∆ be sets of sentences of
the language of signature τ and let A be a sentence of the language of signature
τ .

• Γ | ∆ �∗
T A :⇔ ∀K (T ` ΓK ⇒ T + ∆K ` AK).

• ∆ �T A :⇔ ∅ | ∆ �∗
T A.

• Γ ∼T A :⇔ Γ | ∅ �∗
T A.

• Λτ
T := {A | ∅ �T A}.

Here it is implicitely assumed that the ‘K’ are interpretations for τ . (If τ is not
clear from the context, we will exhibit it as superscript.) � is the relation of
T -derivable consequence and ∼ is the relation of T -admissible consequence. Λτ

T

is the predicate logic of T (for signature τ). For some remarks on admissible
consequence, see [Vis99] appendix A. For some information about derivable
consequence, see [Vis98], subsection 12.3. For a study of predicate logics of
classical theories, see [Yav97]. Here are some elementary facts about these
notions.

Fact C.1 1. Γ �T A ⇔ ∀U ⊇ T Γ ∼U A.
Here ‘U ’ ranges over theories with arbitrarily complex axiom sets.

2. A �τ
T B ⇔ Λτ

T ` (A → B).

3. If T �τ A and A ∼τ
T B, then A �τ

T B.

4. We can find T,A, B, such that A ∼τ
T B, but not A �τ

T B.
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Proof

Ad (3). Suppose K : T �τ A and A ∼τ
T B. Consider any interpretation M for

τ . We construct a new interpretation P as follows: P is K if ¬AM and P is M
if AM. Clearly, P : T �τ A. By A ∼τ

T B, it follows that P : T �τ B. Ergo:
T ` (AM → BM).

Ad (4). Let σ be the signature of arithmetic. We have
∧

F∧ con(T ) ∼σ
T ⊥, for

any T . This is, in fact, Pudlák’s strong version of the Second Incompleteness
Theorem. On the other hand, if we take T e.g. PA, clearly

∧
F∧ con(T ) 6�σ

T ⊥.
2

A T -model N of signature τ , is a model for signature τ that is isomorphic to an
internal model of a model M of T . Internal models are given by interpretations
K. We could call the internal model of M given by K: KM. Thus, N is a
T -model iff, for some model M |= T and for some interpretation for signature
τ , N is isomorphic to KM. We can understand � in terms of T -models, as
follows.

Fact C.2 ∆ �T A :⇔ for all T -models N , (N |= ∆ ⇒ N |= A).

Here is an example illustrating the non-compactness of ∼.

Example C.3 Let σ be the signature of arithmetic. Let T be a finitely axiom-
atized, consistent, sequential theory. Let U := F + {conn(T ) | n ∈ ω}. (Here,
we can use either the complexity measure ‘depth of connectives’ or the mea-
sure ‘depth of quantifier changes’.) Then, since U is locally, but not globally
interpretable in T , we find that ∼ is not compact.

To provide an example to illustrate the non-compactness of �, we need a result
of Jan Kraj́ıček.

Theorem C.4 Let T = 〈T,N〉 be I∆0 or let T be finitely axiomatized, con-
sistent and sequential. There is a mapping I 7→ kI , from T -cuts to natural
numbers, such that the theory

kraj(T ) := T + {inconI
kI

(T ) | I is a T -cut}

is locally interpretable in T , and, hence, consistent.12 Here the complexity mea-
sure used is depth of connectives. We can, however, also use depth of quantifier
changes.

For a proof, see [Kra87], section 3. The functionality suggested by our notation
‘kraj(T )’ is par abus de langage, since the theory does not seem to be uniquely
determined by the data. In fact, I have the following conjecture.

12By inspecting the argument, it becomes clear that Kraj́ıček’s theory is recursively enu-
merable. I did not check that the axioms are indeed p-time decidable. However, we can always
apply Craig’s trick to obtain a p-time decidable axiomatization. Note that the verification of
Craig’s trick demands a metatheory containing Σ0

1-collection.
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Open Question C.5 Prove or refute the following conjecture. There are in-
finitely many theories satisfying the description of kraj(T ) that are pairwise not
mutually interpretable.

By construction, the theory kraj(T ) is not trustworthy. It follows from Theo-
rem 5.9 that kraj(T ) is not globally interpretable in T . We can now present the
promised example for the non-compactness of �.

Example C.6 Let T = 〈T,N〉 be I∆0 or let T be finitely axiomatized, consis-
tent and sequential. Let U := F + {conn(T ) | n ∈ ω}. Now it is easy to see that
U �kraj(T ) ⊥, but that, for no finite subtheory U0 of U , we have U0 �kraj(T ) ⊥.
Hence, � is not compact.

Our notions have at most complexity Π0
2. The following theorem shows that

the worst may happen.

Theorem C.7 There is a theory W such that Λσ
W is complete Π0

2. Here σ is the
signature of arithmetic. It follows that �∗, �, ∼ and Λ assume their maximal
possible complexities

Proof

Let T = 〈T,N〉 be I∆0 or finitely axiomatized, consistent and sequential. Let
W = 〈W,N〉 := kraj(T ) as inTheorem C.4. We show that Λσ

W is complete Π0
2.

Consider the sentence A := ∀x∃y A0(x, y), where A0 ∈ ∆0. Let Sx :=
∃y A0(x, y). Let Rx the FGH-sentence for W and Sx. We define:

Q := ∀x (conx(T ) → Rx).

We show that A iff Λσ
W `

∧
F → Q.

Suppose that A. Let K be any interpretation for the signature σ. Consider the
interpretation M such that, in T , M is K if (

∧
F)K and N , otherwise. Clearly,

M : T � F. By Fact 2.2(3), there is a T -cut I of N , such that I ≤T M.
By the construction of W , we have 2W inconI

n(T ), for some n. It follows that
2W inconMn (T ). We may conclude that 2W ((

∧
F)K → inconKn (T )). It follows

that (a):
2W ((

∧
F)K → (∀x (conx(T ) → x < n))K).

From A we can infer, for any k, that Sk. Hence Rk ∨ R⊥k . From Rk, we have,
by Σ0

1-completeness, 2W ((
∧

F)K → RKk ). In case, R⊥k , we have 2WRk, by the
definition of Rk, and 2WR⊥k , by Σ0

1-completeness. Hence 2W⊥, quod non. Ergo
we find: 2W ((

∧
F)K → (

∧
k<n Rk)K). Thus, we get (b):

2W ((
∧

F)K → (∀x < n Rx)K).
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We may conclude, combining (a) and (b), that 2W ((
∧

F)K → QK). Thus,
Λσ

W `
∧

F → Q.

For the converse, suppose that Λσ
W `

∧
F → Q. Consider any n. Pick a T -cut

I such that 2W conI
n(T ). By our assumption, we have 2W QI . Hence, 2W RI

n

and, so, 2WRn. By the FGH-Theorem, we may conclude that Sn. 2

We show how various notions of this paper can be formulated in a natural way
in terms of derivable and admissible consequence. Let σ be the signature of
arithmetic. We need the following definitions.

• Let Tn be {0 = 0} if n = 0 and the set of true Π0
n-sentences otherwise.

• Suppose F ⊆ Γ. We define: Γ �n
T A :⇔ Γ,Tn �T A.

• Suppose F ⊆ Γ. We define: Γ ∼n
T A :⇔ Γ | Tn �∗

T A.

• T, n-conadm(U) iff not U ∼n
T ⊥.

• T, n-con(U) iff not U �n
T ⊥.

We now have:

Fact C.8 1. T, n-conadm(U) implies T, n-con(U).

2. T, n-con(U) iff there is a Σ0
n-sound T -model of U .

3. A theory T is consistent and numerizable iff T, 0-conadm(F).

4. If T, 0-con(Q), then T is undecidable.

(This follows from Tarski’s Theorem that if an essentially undecidable
theory is interpretable in a consistent extension of a given theory T , then
T is undecidable. In fact T, 0-con(U) iff U is weakly interpretable in T .)

5. Let T be finitely axiomatized, consistent and sequential. Then, we have
T, 1-conadm(Q). (This follows from Theorem 4.1.)

6. T is trustworthy iff T, 1-con(Q). (This follows from Theorem 5.5.)

We may conclude that T, 1-con(Q) implies T, n-con(Q), for all n.

Note that Q in the above statements can be replaced by F or S1
2 or I∆0, by the

fact that these stronger theories are interpretable on a cut in Q.

Remark C.9 Consider a ∆b
1-axiomatizable theory T satisfying T, 0-con(Q). By

Theorem 3.6, T is in Turing degree 0′. William Hanf showed that there are
finitely axiomatized T in any recursively enumerable Turing degree. (Even that
there are essentially undecidable, finitely axiomatized theories of any recursively
enumerable degree of unsolvability.) See [Han65]. Ergo, there are finitely ax-
iomatized, undecidable theories T such that T, 0-incon(Q).
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D On the Existential Axioms of Q

In this appendix, we discuss a detail of the proof of Wilkie’s Theorem that I∆0

is interpretable on an initial segment in Q. An initial segment, is a definable set
of numbers Q-provably closed under S and downwards closed under ≤.13

Our presentation is directly dependent on the presentation of Petr Hájek
and Pavel Pudlák in their book [HP91] on pp. 369, 370. The reader is advised
to first look at Hájek and Pudlák’s proof. The axioms of Q are the following.

Q1 ` Sx 6= 0,

Q2 ` Sx = Sy → x = y,

Q3 ` x 6= 0 → ∃y x = Sy,

Q4 ` x + 0 = x,

Q5 ` x + Sy = S(x + y),

Q6 ` x× 0 = 0,

Q7 ` x× Sy = (x× y) + x,

Q8 ` x ≤ y ↔ ∃z z + x = y.

To prove Wilkie’s Theorem, it is convenient to take ≤ a primitive symbol. If we
would take it as defined by ∃z z+x = y, then we would have to state explicitely
that on an initial segment I, the meaning of ≤ is preserved, i.e. that ≤I is equal
to ≤ � I. This sameness of meaning is important, since we want downwards
preservation of Π0

1-sentences to the initial segment and upwards preservation of
Σ0

1-sentences from the segment. These preservation results are e.g. used to get
initial segments with more and more ∆0-induction.

Hájek and Pudlák wisely choose to treat ≤ as a primitive symbol. However,
on p369, in their proof of Wilkie’s Theorem, they stumble in the last step. They
write: “. . . we can trivially interpret Q by eliminating ≤ from the language and
deleting Q8.” In other words, they redefine ≤. This argument won’t wash, since
they need the new ≤ on the initial segment to be the restriction of the old ≤ to
the inital segment. Otherwise, the central argument does not go through.

Fortunately the gap in the argument of Hájek and Pudlák is easily closed
by proceeding analogously to their verification of Q3 on the initial segment I:
prove, by induction on x, that ∀y≤ x∃z≤x z + y = x. (We need some auxiliary
inductions to show e.g. that x ≤ x and x ≤ Sx.)

However, the problem to verify the existential axioms Q3 and Q8 also occurs
in the case of the interpretation of Hájek and Pudlák’s theory Q+ in Q. For this
reason, I prefer another strategy to settle the problem of these axioms for once
and for all, right from the start.

13Our initial segment is Hájek and Pudlák’s cut.
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We work in Q. We use the easily verifiable theorem that x+y = 0 → x = y = 0.
A number x is L-successive iff ∀y ∀z (y + z = x → Sy + z = Sx). We show
that 0 is L-successive. Suppose that y + z = 0. Then y = z = 0. Moreover,
Sy + z = S0 + 0 = S0. Next we show that the L-successive numbers are closed
under successor. Suppose x is L-successive and suppose y + z = Sx. We want
to show that Sy + z = SSx. In case z = 0, we have y = Sx and, hence,
Sy+0 = Sy = SSx. In case y = Su, we have y+Su = Sx. So, S(y+u) = Sx. Ergo
y+u = x. Since x is L-successive, we have Sy+u = Sx and, so, S(Sy+u) = SSx.
We may conclude that Sy + Su = SSx.

A number x is a commutator iff ∀y ∀z (y + z = x → z + y = x). We say that x
is a strong commutator iff x is L-successive and x is a commutator. We already
know that 0 is L-successive. Moreover, if y + z = 0, then y = z = 0, and, hence,
z + y = 0. So 0 is a strong commutator. We show that the strong commutators
are closed under successor. Suppose x is a strong commutator. By the above
argument, Sx is L-successive. Suppose y + z = Sx. To show: z + y = Sx. First
suppose z = 0. We have y = y + 0 = Sx. So we need to show that 0 + Sx = Sx.
We have x + 0 = x. So, since x is a commutator, we find 0 + x = x and, hence
0 + Sx = Sx.. Next, suppose z = Su. We have y + Su = Sx. Then, y + u = x.
Hence, since x is a commutator, we have u+y = x. Ergo, since x is L-successive,
Su + y = Sx.

Theorem D.1 (in Q) Suppose, that the elements of an initial segment I are
all commutators. Then, the segment I verifies Q3 and Q8.

Proof

Reason in Q. Suppose Sx is in I. We have x + S0 = Sx. Since, Sx is a
commutator, we find S0 + x = Sx. Ergo x ≤ Sx. Hence x ∈ I. Thus any
non-zero number in I has a predecessor in I.

Suppose x ≤ y, for y ∈ I. Then, for some z, z+x = y. Since, y is a commutator,
we find x + z = y, and so z ≤ y. Hence z ∈ I. 2

Now we execute the remaining part of the proof of Wilkie’s Theorem inside the
strong commutators, without worries about Q3 and Q8. We need closure of the
strong commutors under successor to construct the appropriate initial segments.
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