Algebras for Boolean Presuppositions*

Kees Vermeulen kees. vermeulen@phil.uu.nl
Els Wolters ewolters@worldaccess.nl
Albert Visser albert.visser@phil.uu.nl

October 29, 1998

Abstract

We present an algebraic approach to the semantics of presuppositions in
dynamic semantics: preconditions are introduced explicitly as separate
components in the semantic algebra. The approach is worked out for
a propositional language that is interpreted in a Boolean setting. We
provide several (meta-)mathematical results about the example —some
completeness issues are discussed and a decision method is presented—
and we compare the approach with the presupposition-as-preconditions
approach, the major alternative treatment of presuppositions in dynamic
semantics. It turns out that our way of introducing presuppositions into
a presuppositionless semantics gives satisfactory results for the examples
inside its range.

Key words: Dynamic Semantics, Algebraic Semantics, Presuppositions, Natural Language,
Residuation Lattices

MSC codes: 03B50, 03B60, 03B65, 03G05, 03G10, 68505

*The first author wishes to acknowledge the financial support of the Netherlands Organi-
sation for Scientific Research (NWO), project 300-75-306.

Contents

1

Introduction
1.1 Two Approaches

The Algebraic Approach: Residuation Lattices of Pairs

2.1 Two Perspectives on Information
2.2 Natural Language Implication in Residuation Lattices
2.3 Partiality as Unsaturatedness
2.4 The Residuation Lattice of Pairs
2.5 Simplification: Going Boolean
2.6 Reduced Signatures.o

Applications: Boolean Presuppositions

3.1 Examples
3.2 Presuppositions as Preconditions
3.3 Three Valued Logics

Results about the System

4.1 Expressive Completeness
4.2 Three Valued Representation Theorem
4.3 Functional Completeness oL
4.4 A Decision Method Lo
4.5 Some Remarks on Axiomatisation

Conclusion

15
15
19
24

25
26
31
32
33
34

36

1 Introduction

Counsider a sentence such as (John is a bachelor) What does this sentence mean?
Surely, it can only be true if John is not married. But, somehow, it is also
required that John has some additional properties: it seems that, for the sen-
tence to be, true John should also be male and adult. Still, it is clear that
these additional requirements on John are of a different kind than the demand
that John should be unmarried. It is felt that, if John is not a male adult,
the sentence is not simply false: it should never have been uttered in the first
place. So if John turns out to be a little girl, the sentence will not be judged
to be false, but inappropriate in another way. The technical term for this kind
of inappropriateness is presupposition failure: we say that the sentence asserts
that John is not married and presupposes that John is male and adult.

There are many examples in which a similar distinction between the asser-
tion and the presupposition of an expression can be made. In the above example
the presupposition is triggered by the word bachelor. Other examples of lexical
presupposition triggers are: dead —presupposes animate— ... We call a presup-
position that is triggered by such a word a lexical presupposition. But there are
also other kinds of presupposition triggers. For example, in (the king of France
is bold) it seems to be presupposed that France has a (unique) king. Here the
definite article the triggers the presupposition. And in the sentence (Sue regrets
that it rains) the factive verb to regret induces the presupposition that it actually
rains.! For a purely truth conditional approach to semantics, presuppositions
have always been a bit of a nuisance: after all the idea of a presupposition is pre-
cisely that it is not simply a truth condition. In dynamic semantics the concept
of meaning is more fundamental than the concept of truth: truth is (only?) a
derived notion. Therefore we can hope that in a dynamic approach to semantics
a natural and elegant treatment of presuppositions becomes available.

There have been several attempts to provide such a dynamic account of the
semantics of presuppositions.? In this paper we focus on one such attempt. The
approach, due to Visser [17], proposes an algebraic model of the creation of
presuppositions. In his algebraic model, Visser implements the basic intuition
that a presupposition gives negative information, while the assertion counts
as positive information. He works with information states which consist of
two components: one component for the positive information and a separate
one for the negative information. The construction of such pairs is similar
to the construction of the (positive and negative) integers from the naturals.
Below we will see in detail how the approach works out when it is applied
in a simple propositional setting. In addition we compare our example with
a major dynamic alternative account of presuppositions: the presuppositions-
as-preconditions account. We will then provide several (meta-)mathematical
results about the system.

Our main conclusion will be that, in the cases considered, the algebraic
framework provides a good format for the systematic introduction of presup-

1See [1] for a thorough introduction to the subject.
2See for example [13] or [1] for discussion and references.

positions into a presuppositionless setting. This encourages us to develop the
approach further to include more involved examples in more expressive for-
malisms.

1.1 Two Approaches

In dynamic semantics it is held that the meaning of expressions is, for a large
part, determined by their information change potential. In each situation or
information state the interpretation of a sentence will bring about some change:
the information in the sentence is combined with the information that is already
available and the result is a new information state. If we can characterise this
potential of the sentence to change information states, we will have captured a
lot —if not all— of its meaning.? Although dynamic semantics is a fairly young
field of research, there are already two ‘schools’ of dynamic semantics.* Each
school uses a different format for the formal description of information change
potentials. One school of dynamic semantics describes meanings as relations
between information states: by interpreting a sentence ¢ in an input state Z an
output state O can arise iff the pair (Z, O) stands in the relation Ry. In such a
relational approach to dynamic semantics the semantic universe will consist of
(binary) relations.> A second school associates a date base with each sentence.
The data base will have a slot for each aspect of the meaning of the sentence.
Two data bases can be merged into one larger data base, by an operation e
which we shall call the merger. Then the information change potential can be
described in terms of the merger of data bases: if our initial information is
correctly described by database Z and ¢ itself corresponds to the data base
74, then interpreting ¢ in state Z results in 7 ¢ Z,. In a data base approach
to dynamic semantics the semantic universe contains data bases and a merger
operation to combine them.

The first school of dynamic semantics naturally finds inspiration in relational
algebra and the (operational) semantics of programming languages. The second
approach leads to a different style of formalisation: algebras® of the form (X, e)
become the main topic of investigation where X is the set of data bases and e
the merger operation. The crucial question now is how the appropriate algebra
(X, e) —which contains a slot for each aspect of the meaning of a sentence—
can be constructed systematically from several simpler algebras (X;,e;), each
of which describes only one aspect of the meaning of a sentence. We regard
Groenendijk and Stokhof [3] and Veltman [16] as crucial examples of the first
approach and consider Kamp [9], Heim [7] and Kamp and Reyle [10] as examples
of the second approach. Groenendijk and Stokhof [4] compare different formu-
lations of the first approach and also Groeneveld [5] is useful in this respect.

3See [14] for an introduction and references.

4Fortunately in practice the different schools as well as their results turn out to be extremely
compatible.

5 Alternatively one could use (update) functions: interpreting ¢ in state Z results in state
O iff f4(T) = O. In such a functional set up of dynamic semantics the semantic universe will
consist of (update) functions. (Cf. Veltman [16]).

60r categories: cf. [19].

Zeevat [20] provides the algebraic formulation of the data base approach and
Visser and Vermeulen [19] develop this idea further.

Thus we obtain two main styles of formalisation in dynamic semantics: one
describes meanings as programs, the other describes meanings as data bases. In
both schools quite some thought has been given to the treatment of presuppo-
sitions. We will see the basics of the ideas of both theories below, illustrated in
the case of a simple propositional language. However, our main concern will be
with the meanings-as-data-bases approach to dynamics.

The remainder of this paper will be organised as follows. In section 2 we
present, the technical apparatus of the algebraic approach to presuppositions.
This section also contains some philosophical motivation for the choices made in
designing this apparatus. Still, the reader who is not interested in generalities
may want to jump to subsection 2.5 immediately, where we summarise the
technicalities that will be used in the rest of the paper. Then, in section 3, we
present, some applications of the algebraic techniques. We discuss examples and
compare the results with other approaches in the literature. In section 4, we
prove some metamathematical results about the algebras that we use in section
3.

2 The Algebraic Approach: Residuation Lat-
tices of Pairs

In this section we present the formal apparatus that was developed in Visser
[17] for the treatment of actions under presuppositions. In the next section we
will use a simplified instance of this approach for the analysis of simple cases of
presuppositions. This simplified version is presented in subsection 2.5. Perhaps
the reader will want to skip the more general subsections 2.1, 2.3 and 2.4 at
first reading.

To give you a clear picture of the apparatus we present it in several steps.
First we discuss the distinction between the synchronic and the diachronic per-
spective on information. To capture both perspectives in our model we will
use the notion of a residuation lattice. Then we discuss the issue of partiality
involved in the analysis of presuppositions. We regard presupposed information
as missing information and develop the formalism accordingly: this leads to
the introduction of algebras of pairs with a ‘positive’ and a ‘negative’ compo-
nent. Then interaction of these two ideas is established in residuation lattices
of pairs. We present these in full generality: they are our general proposal for
the formalisation of the behaviour of presuppositions.

Finally, we present the instances of such lattices that we will see in this paper.
As we will mainly be concerned with Boolean presuppositions and assertions, we
only need consider pair algebras where both components come from a Boolean
algebra. In Boolean algebras some of the computations are easier than in the
general case and it will be convenient for reference later on to have a separate
description of this simple case.

2.1 Two Perspectives on Information

The apparatus that we will present is part of dynamic semantics: the tradition
in formal semantics that tries to model the exchange of information as it takes
place in discourse interpretation. This means that we have in mind a situation
in which an agent tries to process the information that another agent makes
available in —written or spoken— discourse. Our agent will have some initial
information available and will process the new information in the light of this
initial information. This will lead to a new state of information.

In a realistic model of this situation the order in which the information is
presented will play an important role. Clearly it can make a big difference
which information comes first. Typical examples of this are simple anaphors as
in (John comes in. He is smiling). Here the pronoun he in the second sentence
depends on information from the first sentence for its interpretation: it requires
John as an antecedent. Also presuppositions are a typical example of cases
where order matters. Consider (at that time France was a monarchy. The king
of France was rich). Here the information presupposed by the second sentence
is provided by the first sentence. As a result the discourse as a whole does not
carry a presupposition.

These examples indicate why we need to consider information as it is given
in time. We call this the diachronic perspective on information.

Still, in a realistic model of information exchange we also want to compare
information that is not ordered in time. This hardly needs an argument, but
let’s look at an example to fix our thoughts. Consider an agent ready and
waiting for new information. Now we have two options: we can either tell him:
(John had a drink last night) or (John drank some wine last night). Now these
sentences are not to be compared in some temporal order: they are alternative
bits information at one and the same point in time. Clearly the second sentence
is more informative. We will want to include in our model a way of comparing
information is this sense. We call this the synchronic view on information. Our
model of discourse interpretation will have to embody these two perspectives on
information: the synchronic and the diachronic perspective.

The starting point for our formalisation is a set of information states A,
the things we called data bases above. We obtain a diachronic perspective on
these states by including a monoidal operation that we will call the merger. For
the merger we will use the notation e. So e will be a binary operation that
is sensitive to order —not, in general, a ® a’ = a’ ® a— but not to bracketing
—ae(a'ea”) = (aea')ea"— and we assume that a unit element 1 is available
such that 1ea = ae1 = a. 1 stands for the tabula rasa state of information: it
has no information content and is completely harmless.

For the synchronic perspective on A we introduce a lattice ordering <. This
means that < is a partial order along which finite suprema and infima exist.
We will use the usual notation v and A for the suprema and the infima.

We also introduce a way of relating the two perspectives: we assume that two
residuals of e are present, called — and <. The defining property for residuals

is:
apeazx<az & a1 < (az < az2) & ay < (a; — az)

One can check that in cases where e is not order sensitive, the operations —
and ¢« will co-incide. In this case the property defines only one operation.
Examples are: Boolean algebra, Heyting algebra, linear logic. In all these cases
the property simply defines the implication of the logic. Hence, one way to
think about residuals is as order sensitive forms of implication. There are also
several examples of residuals in the literature where order sensitivity does play
a role, e.g. categorial grammar and relation algebra. In general, the way to
read the defining property is as follows: it states that (as « a2) is the largest
element x such that = e ax < az. Similarly (a; — a3) is the largest element x
such that a; e z < as. By introducing the residuals in our model we introduce
the assumption that such largest elements are always available in A. Hence we
introduce an assumption on the relation between e and <, over and above the
assumptions that we have made for each of them separately.

The following definition summarises the discussion so far.

Definition 2.1 A residuation lattice is an algebra
A = <'A7 \/, A7 T7 07 .7]‘7 _>7 <_>

which satisfies the following extra requirements. Define a < b:= avb=>5b. We
have:

e (A ,v,A,T,0)is a lattice, with top T and bottom 0;

(A, e, 1) is a monoid;
egeh<c <= a<c+b<—= b<a—ec

<+ is left residuation or post-implication. — is right residuation or pre-implica-
tion. a

In some applications we do not really need all the operations present in a resid-
uation lattice. For example, we do not always care about the top and bottom
of the lattice ordering. Then we can work with a somewhat reduced signature.
We will say a bit more about that in section 2.6. But first we start with the
‘full’ signature. Our notation T, for top, is standard. The notation for the
bottom can be explained by the fact that in a residuation lattice the bottom of
the lattice ordering, will always be a zero element or annihilator of the monoid:
Oea=ae0=0/"

2.2 Natural Language Implication in Residuation Lattices

The operation e in a residuation lattice is supposed to represent order depen-
dence: « e 3 stands for the the information «a followed by the information 3.

"For this fact, and several other facts about residuation lattices, we refer to [17] p.205.

Evidently, we cannot expect in general that a e 5 = 3 e a. A similar remark
applies to the use of implications in natural language. Let’s consider an exam-
ple: If John owns a donkey, then he feeds it. Here we will need information from
the antecedent of the implication to be able to process the consequent. A lot
can be said —and has been said— about such examples. For us it means that
the following informal characterisation of so-called dynamic implication makes
sense:

¢ = 1) means:

if we add information ¢, we reach a state of information in which
the interpretation of 1) does not lead to an essential increase of in-
formation.

Note how the order in which we process the different information items is crucial
here: starting in our current state, s say, we first add the information from ¢ to
reach a new information state, s’ say. Then we add ¢ in state s’. After that we
will have reached a state, s’ say, which contains no more information than s’.
In terms of residuation lattices this notion of implication can be approximated
as follows:

(a=p) = (e f < q)

This ensures that 1 < (a =) iff @ < « e and, hence, we will know that,
in each state o, c e#a < o e a e 3.8 This means that the enrichment of a state
o with information « will already be at least as informative (synchronically
speaking) as the enrichment of o with « e 3, as required.

Note that in the final comparison we use the synchronic ordering of informa-
tion <: it is clear from the natural language examples above that diachronically
speaking a lot of things will happen if we add 8 to cea: 8 may bring new topics
to our attention explicitly which will thereby become available for (anaphoric)
reference. But this kind of enrichment does not seem to matter for the evalua-
tion —i.e. ‘truth’— of natural language implications.

2.3 Partiality as Unsaturatedness

Apart from the diachronic/synchronic distinction there is another ingredient
that is crucial to any realistic model of information exchange: partiality. Here
we are interested in partiality in the following sense. An agent who interprets
discourse will do this in the light of the information that is already available
to him/her. The current information state has to support the interpretation.
As examples of required support we can look again at the cases of anaphora
and presupposition indicated above. The state of information of the agent after
interpretation of the first sentence has to provide an antecedent for the anaphor
he in the first example. In the second example the information state has to
provide the information that is presupposed by the second sentence. Hence in
both examples there is some information ‘missing’ in the second sentence. The

8This follows, since monotonicity of e in both arguments holds in any residuation lattice
(cf. [17]).

information state that we associate with the second sentence will have to reflect
this unsaturatedness. This requires a distinction between states of information
that are saturated, or: complete, and states of information that are unsaturated,
or: partial. We will call the set of saturated states of information S and will
assume that we know which subset S C A is.

In line with the remarks about the order sensitivity of discourse interpre-
tation above, also this notion of unsaturatedness is sensitive to order: we are
interested in unsaturatedness towards the past and assume that it cannot be
made up for in the future. In other words, unsaturatedness will persist:

aeaeS = a' €S (OTAT)

Visser [17] calls this the OTAT principle: Once a Thief, Always a Thief. So we
model partiality by having a set S C A that contains the saturated information
states. S will satisfy the OTAT principle. From this point on we will assume
that our residuation lattice satisfies OTAT.

Let’s think a bit about the right choice of S in our particular case. As indicated
by the example above, we will consider expressions that carry presuppositions
as unsaturated. The presupposed information is regarded as information that
is missing. In contrast the asserted information is regarded as information that
is given by the expression. Now if we assign an information state a € A to
some expression then a stronger presupposition means that more information
is missing. Hence stronger presupposition makes the state less informative.
Conversely, a stronger assertion means that more information is given. Hence
a stronger assertion will make the state more informative. We intend 1 as a
completely harmless bit of information: ae 1 = q for all @ € A. Hence 1 cannot
carry a presupposition. But for the same reason it cannot make much of an
assertion either: 1 is a point of no presupposition and no assertion. So 1 will
form a point of division between the unsaturated and the saturated. Thereby
it makes sense to set S = {a € A| a < 1}. We will opt for this choice of S in
what follows.

Note that, using our new characterisation of S, OTAT becomes equivalent
to: (1 4+ a) <1

Incorporating partiality in the way sketched above is quite general and quite
elegant. Still it may be a bit puzzling to work with a total operation e to model
partiality of information. Perhaps the reader would expect the partiality of
information to correspond to partiality of operations. Fortunately the set up
with a set A of (partial) states and a set S C A of saturated states gives us
a natural way of generating partial functions that transform states into states.
We will call such functions update functions. So an update function is a partial
function® F : S — S. Before we show how to generate such update functions
we make a little excursion.

9We will find it convenient to use postfix notation for update functions: we will write
sF for the result of applying F' to s. We will use the notation |} and {} for definedness and
undefinedness respectively of partial functions.

We can regard the update functions themselves as items of information:
applying the update function is like adding the information that the update
function stands for. Then, if we try to order update functions according to our
considerations about partiality, the following definition makes sense:

F <G & dom(G) Cdom(F) & Vs € dom(G) : sF < sG.

Here the first condition displays the point about the relation between unsatu-
ratedness, partiality and missing information: dom(G) C dom(F') says that G
misses more information than F'. The second clause simply says that on their
common domain —i.e. dom(G)— the result sF is more informative than the
result sG.

Within the class of all such updates there is a natural subclass that can be
generated in an elegant way from the underlying algebra A. This class fits nicely
with our ideas about presuppositions and therefore is our candidate for the anal-
ysis of presuppositions in natural language. Recall that we regard presupposed
information as missing information: it is in a negative place. Asserted infor-
mation on the other hand is in a positive place: it is information that is added
by the expression. Now let’s consider the situation where both the presupposi-
tion and the assertion are elements of A: say a’ € A is the presupposition and
a € A the assertion. Given the presupposition the assertion should not produce
unsaturatedness, i.e. a’ e a € S. By OTAT this implies ¢’ € S. Now we can
associate with such a pair o = {a’,a) an update function ¥, as follows:'°

s¥, = seafor s <da andis s¥, {} otherwise

The update function ¥, as defined here can be understood as follows. First
¥, tests whether s < o/, i.e. it tests whether the presupposed material o' is
provided by s. If so, ¥ adds the asserted information a to s and we obtain s ea.
If the presupposed material is not provided by s, the update is unsuccessful.

Note that the function ¥, is completely fixed by the pair a = (a', a). Below
we will confuse the set {U, : a = (d',a) & o' ea € S} with {{d',a): a' ea €
S}.ll

2.4 The Residuation Lattice of Pairs

Now we have introduced two ingredients that we find essential for a realistic
model of the information exchange involved in discourse interpretation: the
synchronic-diachronic distinction and the notion of unsaturatedness of informa-
tion. The next step is to get the two ingredients to live together. For this

10Note that this definition requires that: s < a’ = sea € S. This holds by monotonicity of
e in its left argument —this property holds in any residuation lattice— and downward closure
of S.

' There also is another, smaller class of natural update functions, which are called ®, (a €
A) in [17]. These updates are defined as follows:

s®, = seaif sea € S and is s®, {} otherwise

Given the choices made above, we see that ®, can be obtained as ¥ (1, 4),a)-

10

purpose we need a residuation lattice consisting of the update functions that
we discussed above. So let’s try to transform the set {(a’,a) : o' e a € S}
into a residuation lattice. To make this construction work, we have to add the
following additional assumption, Q, on A:

sea<s eb&s<s = sea<seb (Q)

This property has no intuitive content: it is simply the weakest condition that
makes things work. However, we will see later on that several more natural
conditions are around that imply Q2. As we will have intuitive grounds for these
stronger assumptions, we cannot be accused of doing ‘funny business’.

First we look at the ordering of the pairs. A natural candidate for ordering
update functions was given above, so let’s try to use this ordering. One can

show, using), that in terms of the pairs this ordering reads as:'2

(a,a) <{H,b) © b <d &bea<beb

Next we consider the merger of the pairs. Again a natural candidate for the
merger is available: composition of (partial) functions. If we write this down in
terms of the pairs this leads to the following definition:!?

(a',a) o (',b) = (a'A(b <+ a),aeb)

This is simply the way the composition of W .y and ¥ 4 looks in terms
of the pairs, so we need no further motivation for this funny expression. Still
some remarks about the merger of pairs may be helpful. First note that on the
presupposition side we find a’ A (b’ < a). This shows how the presupposition of
(a’,a) is inherited by (a',a) e (b',b). Furthermore, we see that the presupposition
of (', b) also re-occurs, but in a weakened form: (b’ <— a). This stands for what is
left of b’ after a will have been asserted. Hence the temporal order of the merger
—first ¥ 4 4y, then ¥ 3y— is reflected. On the assertion side we simply find
that first a will be asserted and then b, as expected.

Now the question is whether this choice for < and e gives rise to a residuation
lattice of pairs. It can be shown that it almost works: to make everything work
smoothly we only have to add a few artificial elements to the set of pairs: if we
look at the ordering < on the pairs we see that we have to add a new 0. We
will not go into the details here and simply quote Visser’s result:

Proposition 2.2 Let A be a residuation lattice that satisfies (2. Then there is
a unique residuation lattice U(A) = (Y,v,A, T,0,e,1,—,) such that:

12There is a subtlety here: < was a partial order on the update functions ¥,,. But different
pairs (a’,a) and (b, b) may generate the same update function. Hence on the pairs the ordering
< is only a preorder. We can correct this by dividing out the following equivalence:

(a',ay = (b',b) & b/ =a &b ea=1V eb

So strictly speaking we should be talking about equivalence classes of pairs instead of pairs
simpliciter. We will ignore this in most of what follows.
13Compare with Fact 12.2 in [17].

11

e Y ={0} U {{a',a)|a’ ea € S}

e on the pairs {a’,a) the operations of the residuation lattice agree with
function composition and the ordering of update functions discussed above
Q

The proof simply is the definition of the required connectives. Lengthy compu-
tations lead to the following definitions:

T 0,0)
(a';a)v{',b) = {(a'Ab avb)
(a,a)a(t),b)y = {(a'vb, (a = a ea)a(t — b eb))
(d',a)e(),a e b)

b, (0 = ad YA — (b eb < a)))
b0 — (a' A(b ob< a)))
b ea,bea— b eb)if ' <a', :=0 otherwise

2
S
~ - -

I
/\/\/\/@\/\/\/\
>
—~~
S
S

(a',a) — (b',b) :=

We see that for a residuation lattice A that satisfies Q@ we can construct the
algebra of pairs U(A). U(A) is a residuation lattice: hence it incorporates the
synchronic-diachronic distinction. Moreover, the pairs correspond in a natu-
ral way to update functions that, in turn, embody the view of partiality-as-
unsaturatedness that we want for our analysis of presuppositions. So we now
have developed a general apparatus for the dynamic analysis of presupposi-
tions. Of course this general apparatus has to be tested. Apart from more
philosophical motivation, along the lines that we have followed above, testing
the apparatus means two things: the first test is in the application to real ex-
amples of presuppositions in natural language. An important second test is in
an investigation of the formal properties of the apparatus.

Below we will follow both lines of testing, but only for a simplified case: the
case where the base algebra A is a Boolean algebra. In the next subsection we
will see that for Boolean base algebras some of the constructions work out a bit
nicer than in the general case.

2.5 Simplification: Going Boolean

Below we will apply the apparatus to cases where both the presupposed and
the asserted information come from a Boolean algebra 4. As an example one
can think of the case where A = p(W) for a set of possible worlds W. In this
subsection we summarise how the construction simplifies in such a case.

Fact 2.3 A Boolean algebra A = (4,N,U,—, T, L) ‘is’ a residuation lattice
A= (A,v,A,0,1,0,— <) if we read the connectives in the residuation lattice
as follows.

12

Residuation Algebra | Boolean Algebra | Boolean Algebra of Sets

> 4 4 F> <
cCcoOmesSDC

T 1l e 4—o> <

Note that in a Boolean algebra A the canonical choice for S turns out to be A
itself! 1]

We assume that the base algebra A is Boolean. It does not follow that now
also U(A) will be a Boolean algebra. Still the computations in /(A) simplify
considerably. First we note that already a much weaker assumption on A leads
to a simplification:

Fact 2.4 Assume that for all s € S C A4 we have: ses = s. We call this
property S-idempotency. Now the following holds:'4

e S-idempotency implies 2

e S-idempotency implies: Va',b3la < a': Wiy = Wiy o 2
Hence, for S-idempotent residuation lattices, the pair construction will work.
Furthermore we only have to look at pairs (a',a) where a’ < a. Below we
will always assume that our pairs have this ‘normalised’ form. Note that any
Boolean algebra is S-idempotent!

Finally we look at the definitions of the connectives for Boolean base al-
gebras. These definitions simplify quite a bit, as we can simply calculate the
Boolean way in each of the components of the pairs. In our notation we will
sometimes interchange the Boolean notation and the notation from the residu-
ation lattices. This should not lead to confusion.

Fact 2.5
T = (L1)
1 = <T)T>
0 is the new 0 that we add in the construction
(a';a) v (U',b) = (' Ab,(avb)and Ab)
(a',a) A (U',0) = (d'vb,(a'v)Aa(a = a)a (b — b))
(a’',a) o (b',0) = (a'A(a—1),anb)
(a',a) < (b',0) = (d',d" Ab A(b— a))
(a';a) — (b',0) = (b ra,bra)ifd <a',= 0o.w.

14 Cf. Visser [17], subsection 12.5.1, for additional details.

13

In the Boolean case the relationship between the original algebra 4 and the
corresponding pair algebra becomes particularly easy. We define the standard
embedding function emb 4 from A to the states of U (A) by: emb 4(a) := (1,a).'®
We have:

Fact 2.6 1. emby is a bijection between the elements of A and Sy 4) \ {0},
i.e. the states of U(A) except 0.

2. emby commutes with 1, v, A, ® and «.16

3. emby4 does not commute with T, since

emba(T4) = (1,1) # (0,0) = Tya)-

It does not commute with L, since:
emba(La)=(1,0) #0 = Lya.

Finally it does not commute with —.
Q

From this point on the reader will only encounter Boolean pair lattices. So she
may forget about the whole of section 2 and just remember that we will be
working with pairs (a’, a) where a’ < a € A for some Boolean algebra .4, where
special operations on these pairs are defined as in fact 2.5. To make things even
simpler, the reader may take A = (W), for some set of worlds W.

2.6 Reduced Signatures

In the construction of a residuation lattice of pairs from a residuation lattice we
do not get a bottom element for free: we have to add a new bottom element 0
by hand. Sometimes we will not be interested in this artificial element: we will
just look at the real pairs. In the Boolean case this will cause no problems, for
most of the operations in the constructed residuation lattice, except for —, only
generate non-zero elements from non-zero elements (cf. definition 2.2). We call
the set of real pairs U°(A) and use U°(.A) as notation for the algebra

(U°(A),v, 7, T, 0,1,4).

Thus, we obtain U°(A) from U(A), be removing 0 from the domain and by
taking 0 and — from the signature.

In other cases we will disregard some further operations that are automat-
ically available on pairs. It will be convenient also to have a notation for such
situations. As a rule we will write the operations that remain in the sub-

script: Z/I[(oozzl opn](A) will be the algebra /(°)(A) with the reduced signature
[op1, ..., 0p,]. To summarise:

5Remember that in the Boolean case 1 < a = 1.
16 Remember that the Boolean e is just A.

14

e U°(A)isU(A) without 0 in the domain and without 0, — in the signature.

. Z/{[(O‘21 Opn](A) is the reduct of 2(°)(A) to the signature [op1, . . ., opn].
In addition we will employ the following syntactical convention. We use the
notation Tjop, ... 0p.](P) for the set of terms of signature [op1,...,op,] on the
set of propositional atoms P.

3 Applications: Boolean Presuppositions

In this section we are concerned with the application of the general theory
outlined above to concrete examples of presuppositions in natural language.
Then we will evaluate our results by a comparison with other approaches in the
literature, in particular the presuppositions-as-preconditions approach of Van
Eijck [2] and the three valued logic of Kracht [12].

In the applications we will simplify matters in two ways: first we use a propo-
sitional language to represent the natural language examples. This means that
we ignore the process by which a presupposition trigger occurring somewhere
inside a proposition produces the presupposition of the proposition as a whole.
It also means that the presuppositions we predict for expressions will always be
propositions, thereby ignoring other presuppositional effects. The second sim-
plification we make is in the choice of the base algebra. Below we will assume
that a Boolean base algebra A is given.!” These simplifications of the general
situation will surely help to see through some of the technical details involved
in the general case. Furthermore, it is precisely the fact that already this sim-
plified situation gives such nice results, that shows the potential of the general
construction.

3.1 Examples

Let’s consider a few simple sentences:

John is male.
John is adult.
John is unmarried.
John is smiling.
John is a bachelor.

If we want to represent such simple sentences in a propositional language, it
makes sense to just represent them as atomic propositions, say m, a, u, s and
b respectively. Normally we would then go on to interpret such atomic propo-
sitions straightforwardly in a truth conditional way. For example, we would
assume some set of possible worlds W to be given and we would have each
atomic proposition denote those possible worlds where the atomic proposition

ITRecall that this does not imply in general that also U(.A), the pair algebra over A is a
Boolean algebra!

15

is true. In this way (John is male) would denote the set of worlds where John is
male, etc.

As long as we only consider sentences such as (John is male), this is prob-
ably all we want to do. But there is a more interesting example in our list
which makes us think again: John is a bachelor. This simple sentence carries
a presupposition: it is presupposed that John is a male adult. In addition the
sentence asserts that John is unmarried. So the atomic proposition b seems to
have the proposition m Aa as a presupposition and in addition asserts only .
This means that already the atomic propositions require a complex denotation:
an atomic proposition p does not simply stand for an element [p] € (W), but
each atomic proposition comes with two such elements: one for its presupposi-
tion and one for its assertion. These two elements jointly will give an inhabitant
of U(p(W)), the pair algebra over base algebra o(W). This gives the basic idea
for the representation of simple sentences in the algebraic setting. We can now
go on to interpret more complex examples such as:

John is adult. He is smiling.

John is male. He is a bachelor.

If John is adult, then he is a bachelor.

If John is a bachelor, then he is smiling.

If John is a bachelor, then he is unmarried.

The interpretations of these complex sentences will be produced from the in-
terpretations of the simple sentences using only the operations of the lattice of
pairs. This way we will predict the presuppositions of the complex sentences
based on the information about the presuppositions of the simple sentences: the
so-called projection problem. These predictions can then be compared with our
intuitions as natural language users, thus providing a first test of the construc-
tion.

Let’s make this precise. First we define a propositional representation language
L. Let a set of propositional variables P be given. p will range over P. Define:

Lo ¢pz=plLl]o-o](¢=9)

We see that £ will contain some atomic propositions to represent simple sen-
tences. Let’s assume that P includes representations of the simple sentences
above, say m,a,u,s,b € P, where m represents (John is male), etc. L will be
used as falsum: a proposition that is false in all situations. The connectives cor-
respond in the expected way to ways of building complex sentences in natural
language. - stands for natural language concatenation (or: conjunction), = for
implication. We have no connectives for disjunction and negation yet, but these
will be discussed later on.

Next we consider the interpretation of this propositional language in a Bool-
ean pair lattice U/(A).'® We already discussed the interpretation of the atoms
in P: each atom will denote the pair consisting of a presupposition and an

1830 A could be p(W) for some set of possible worlds.

16

assertion. We will assume that the information of the presupposition is always
included in the assertion of a proposition. This will be inessential.!® Let’s
assume in addition that the base algebra A contains elements m, a, u, s € A
that stand for the assertions of the corresponding propositions.?? Then we can

set:

[m] =

[a]

[u])
[s1 = (Ls)
These simple sentences do not really carry a presupposition, so we get 1 as a
first component.?! The second component simply is the associated element in A.
For b the situation is more interesting: b should behave as (John is a bachelor).
As was discussed above, b does carry a real presupposition. We get:

[l
o~~~
=
£ &3

[b] = (maa,mnranu)

For L the following interpretation is available: L is a proposition that is false in
all situations. So it should not carry a presupposition and has as an assertion
1L € A, the falsum of the base algebra.

[= 4o

Note that L is not the bottom of U(p(WW)). Next we turn to the interpretation
of the connectives. We use - for natural language concatenation and conjunction.
So - stands for the combination of information in time. This is exactly what the
operation e in U/(A) should represent. So we set:

[¢-v1 = 1l¢] « [¥]
Recall that on Boolean pairs e behaves as follows:
(a',a) o (b, by = (a'A(a—DV),anb)

So if we concatenate ¢ and 1 with interpretation {a’, a) and (b, b) respectively,
the result is predicted to have presupposition a’ A (@ — b'). This means that
the presupposition of ¢ carries over to ¢ - ¢, while the presupposition of v is
weighed against the assertion of ¢ first: the result, a — b', is then added to the
presupposition of ¢ - 1. For the first two examples this means that we predict:

[a-s] = (1,ans)
[m - b] ((m = a),mnranru)

We see in the second example that b occurs in a context where part of the
presupposition of b is given. By the operation e on the pairs this part disappears
from the presupposition component, as required.

197t corresponds directly to only having pairs {(a, a) where a < a’. This move is just a matter
of choosing a uniquely determined representative from an equivalence class. (Cf. section 2.5.)

20Note the overloading of the notation!

2IRecall that 1 € A co-incides with T € A, as A is a Boolean algebra!

17

Next we turn to =, the connective corresponding to natural language im-
plication. Above we have argued that in a residuation lattice (o @ 8 « «) is
a promising candidate for the representation of natural language implication in
residuation lattices. So here we set:

[(¢=¥] = T[] e[¥] « [4]

From now on we use (a = f) as shorthand for (« e 8 < «). Let’s look at the
consequences for our examples:

[(la=b] = {((a—m),(a—> mau))
[(b=s)] (maa,maran(u—s))
[(b=u)] (maa,mna)

Again we can compare the projection behaviour that we obtain with our intu-
itions. For example, in (if John is an adult, then he is a bachelor), we predict the
required weakening of the presupposition of b. Looking at the assertion sides
of the examples, we have to take into account that we assume a < a’ for any
(a’,a). We discuss some other connectives, U and ~, later, when we compare
our results with the presupposition-as-precondition approach of Van Eijck [2].

Presupposition production Above we assigned presuppositions to atomic
propositions directly. We simply set [b] = (maa,mnranu). Surely, this is
the obvious way of proceeding: b is an atomic proposition, so we may assume
direct access to its meaning. There is, however, the lingering feeling that or-
dinary Boolean propositions are in a sense more fundamental. We want our
propositions under presuppositions to be defined from ordinary propositions.
Fortunately our framework is rich enough to implement this intuition. This
insight derives from the following fact.

Fact 3.1
Let ¢,c’ € A be given (for some Boolean algebra A). Then
(¢end) = ((L,¢) = (1,¢)) 0
Thus, we can ‘add’ the presupposition ¢’ € A to the assertion ¢ € A by the
residuation operation —. It is reasonable to require ¢ < ¢’. But if this require-
ment is not satisfied, our definition of — sets things right automatically, since
intersection with ¢’ is built-in for the second component.

We may conclude that — can be used as a presupposition operator. Sug-
gestions for the use of such operators can also be found in the literature: for
example in Beaver [1] or Kracht [12]. In our setting the algebraic framework
provides such an operator ‘spontaneously’.

To satisfy the intuition that ordinary Boolean propositions are primary, we
may now set up things as follows. We enrich our language £ with the connective
—. We interpret all propositional atoms by pure Boolean propositions, i.e. all
interpretations will be of the form (1,c¢), where ¢ € A. Propositions under

18

presuppositions are to be defined using —. For example: b:= (m - a — u), will
be a definition introducing the abbreviation b.

Note that Ty (4) is (L, La). It can be defined in the extended language
by (L — L1). Similarly Oy 4y can be defined by ((L — 1) — L).

If we do not add — but e.g. < to our language, we cannot make the tran-
sition from purely Boolean propositions to propositions under presuppositions.
This is immediate from fact 2.6: we simply cannot leave the non-zero states
using only <. We will see in subsection 4.1 that the combination of < and a
symbol for T4y does suffice to introduce that transition!

3.2 Presuppositions as Preconditions

Above we have applied the pair construction on residuation lattices to anal-
yse Boolean presuppositions. In the literature on dynamic semantics we find
another popular formal model of presupposition behaviour: we can treat pre-
suppositions as preconditions of programs. This idea was suggested already in
Van Benthem [15]. Here we consider the way it is worked out for the case of
Boolean presuppositions by Van Eijck in [2].22

The starting point for the model of presuppositions-as-programs is the pop-
ular dynamic analogy between the interpretation of natural language and the
execution of programs. Starting from a certain initial state of information the
execution of a program leads to an output state. In a similar way the inter-
pretation of a natural language expression in a certain state of information will
lead the interpreter to a new state of information. This analogy leads to formal
models of natural language interpretation in which the representation language
is a programming language to which an operational semantics is assigned.

In operational semantics the notion of (weakest) preconditions plays an im-
portant role. The preconditions of some program are the conditions that an
input state has to satisfy to enable the program to be executed. This is closely
analogous to the concept of a presupposition of a natural language expression:
presuppositions are the conditions that are required for the evaluation of an
expression. This is the basic idea of the analysis of presuppositions as precon-
ditions.

So when the preconditions of an expression are met, we can evaluate the ex-
pression. But of course this evaluation still can have two results: the expression
may be true or it may be false. This way we get a three way distinction on the
information states:

e states in which the presuppositions are not met
e states in which the expression is true

e states in which the expression is false

2219] already points out that for Boolean presuppositions his predictions agree with Kart-
tunen and Peters [11].

19

Van Eijck [2] introduces such a three way distinction in the operational semantics
of PUL, the Partial Update Logic that he uses for the analysis of Boolean
presuppositions.

PUL: 7 u=p|l|mn|r=>7

The intended interpretation of these programs is roughly as follows. p ranges
over a set of propositional variables, P say. The program p simply checks
whether the current information state supports p. L is the program that al-
ways fails. The intended interpretation of the connectives ; and = is as usual:
m; 7' stands for concatenation of programs 7w and «'. m = 7' is the dynamic
implication of the programs 7w and «'. This is a test that checks whether each
successful run of = can be continued with a successful run of 7'.

In the operational semantics for this language an element of partiality is
introduced: we start by assigning, to each p € P, two information states: [p]™
and [p]~. [p|t is the largest information state that supports or asserts the
information p. Dually [p]~ is the largest information state that rejects or denies
the information p. In a total semantics it is taken for granted that a state rejects
p iff it does not support p, but here things are different. We will assume that
[p]* Alp]” = L (consistency), but it is not taken for granted that [p]* v [p]” =
T. This element of partiality allows Van Eijck to represent the behaviour of
presuppositions. For an atomic test p we know that we have to be in state [p]™
to be able to safely assert p. When we have at least information [p]~, then we
can safely deny p. Hence if we have at least the information that [p]™ v [p]~, we
can be sure that we can evaluate p. In this way we get for each atomic test p
the following three information states:

ass(p) = [p]*, the assertion of p
den(p) = [p]~, the denial of p
pre(p) = ass(p) v den(p), the presupposition of p

A suitable generalisation of these concepts to arbitrary programs produces the
required analyses of presuppositions of complex programs. This generalisation
is obtained by the following partial version of operational semantics for the
programs in PUL:??

Definition 3.2 Let a Boolean algebra A be given. Assume that for each p € P,
[pI", [p]- € A are given such that [p]|T A[p]- = L. Then we assign to each

23Tn this presentation of Van Eijck [2] we make some harmless changes in the details. For
example, in [2] -7 is the basic connective and = and L are abbreviations. Also [2] only
considers the case where A is the power set of some set W of possible worlds.

20

program 7 € PUL mappings [7]t, [7]~ € A4 as follows:

alp]” = an[pl*
alp]” anlp]”

alL]t =1
all]7 =T
almy ']t = (a[x]")[x'T+
alr;w']” = a[r]” U (a[x]")[x']”
alr = 'I* = a[r]” U (a[r]")[']"
alr = a']7 = (a[x]")[r']~

a

Here A is the algebra of information states. In the operational semantics we
assign to each input state a € A an output state a[r]T, as usual. In addition we
also define a[x]~. This can be understood in two ways. First we can see a[r]~
simply as an auxiliary notion that we need as a consequence of the partiality in
the semantics. But we can also make intuitive sense of a[7]~. [p]~ is the largest
—i.e. least informative— state where p is rejected. Then a[p]~ is the largest
state below a where p is rejected. This way the idea of denial (and assertion) is
relativised to any input state a € A. Now the next step is the generalisation to
arbitrary programs m € PUL: we get a[n]~ as the generalised concept of denial
for arbitrary programs.?* So now we have the following generalisation of the
three concepts discussed above.

Definition 3.3 Let a € A and 7 € PUL be given. Then:

o ass(a,m) = a[n]"

e den(a,m) = aln]

e pre(a,m) = ass(a,n) v den(a,n) 0

It is easy to see that for an atomic test p we simply get ass(T,p) = [p]*,
den(T,p) = [p]~ and pre(T,p) = [p]* v [p]~- So we get what we want for atomic
tests.

Actually it is mainly the case where a = T that we are interested in. But

the extra parameter a € A is used in the computation of the presupposition
behaviour of complex programs. It can be shown that:

Fact 3.4 Let 7 € PUL, a € A be given. Then:
e ass(a,m) = anass(T,m)

e den(a,) = a A den(T,n) .

24To analyse this partial update logic Van Eijck follows the Hoare-logic approach: an asser-
tion language APUL is introduced to describe the input-output behaviour of the programs
in PUL. We will not discuss the details of this formalisation. Instead we make a shortcut to
get quickly to the resulting analysis of presupposition.

21

Now we can compute the presupposition and the assertion of programs of PUL.
We restrict ourselves to the case where ¢ = T and suppress T in the notation.
The result is:

program | presupposition pre(m) | assertion ass(m)

p [Pl v [p]~ [p]*

1 T 1

m pre(m) A (ass(w) — pre(w’)) | ass(m) A ass(7')

= pre(m) A (ass(w) — pre(n’)) | den(w) v (ass(w) A ass(n'))

This way Van Eijck [2] obtains predictions about the presupposition behaviour
of complex programs.

We can compare these results with our own predictions. Recall that our predic-
tions are a direct consequence of the principled choice for residuation lattices in
the analysis of presuppositions. For the comparison we translate each program
m € PUL into a formula ¢, of £. Then we can compare [¢-] € U(A) and
pre(m) and ass(w) as given above: hoping that [¢.] = (pre(rw),ass(w)).

There are obvious candidates for the translation of ; and =. We translate ;
by - as both connectives stand for combination in time. And also the translation
of = by = is an obvious choice. So the translation is given in the following
schema.:

™| ¢x
p|p
1| L
T | Gr b
(m=7") | (¢x = én)

It is straightforward to check that this indeed produces the required goods:
assuming that [¢r,] = (pre(m;),ass(m;)) (for i = 1,2), we get:

[fr, - dro] = (pre(mi;ma),ass(mi;ma))
[(¢r1 = ¢nx)] = (pre(m = m2),ass(m = m2))

We conclude that in the Boolean case the choice for residuation lattices of pairs
in the analysis of presuppositions produces the same results as Van Eijck’s [2]
presuppositions-as-preconditions approach. However: the arguments for the use
of residuation lattices of pairs were quite general and we can hope for gener-
alisations and extensions along these lines. Van Eijck’s result were more ad
hoc: they were produced by a careful implementation of intuitions about the
meaning of specific program constructs. We could say that we have obtained a
rational reconstruction of his results.

Excursion: other connectives Van Eijck [2] discusses several extensions

of PUL with other connectives. He introduces strong negation =, choice U
and disjunction Ll of programs to capture several examples of presupposition

22

behaviour in natural language.?® The relevant presuppositional properties of

these additional connectives are as follows:2°
program | presupposition | assertion
T T —ass(m)
rur (ass(7') v pre(m)) A ass(m) v ass(7')
(ass(m) v pre(n'))
mur pre(m) A (—mass(m) — pre(n')) | ass(w) v (den(w) A ass(n'))

We see that the strong negation of 7 can always be processed: it has presupposi-
tion T. The assertion of 7 is the negation of the assertion of 7. It is sometimes
argued that there are cases of negation in natural language that display this
behaviour. Here (it is not true that the king of France is bald) could count as
an example. Such an explicit negation could easily be followed by, for example:
(there simply is no king of France) indicating that the first sentence can be uttered
whether France has a king or not. Van Eijck’s strong negation approximates
this effect: 7 has no presupposition.

The behaviour of natural language disjunction is a notoriously hard problem
both for dynamic semantics in general and for the semantics of presuppositions
in general. It is no surprise that the problem is particularly hard for a dynamic
treatment of presuppositions. Several proposals have been made in dynamic
semantics for the formal representation of natural language disjunction. Van
Eijck [2] discusses two such proposals: U and L. 7 U7’ stand for the choice of
programs: when running 7= U 7’ the processor may choose whether it wants to
run 7 or w'. This construction is not sensitive to the order of the programs in
wUn'. It is often argued that order sensitivity is an essential property of natural
language disjunction. As evidence we find for example the sentence:

Either the chicken has escaped or it is in a funny place.

The occurrence of it in the second disjunct depends on the first disjunct for its
interpretation: it has the chicken as an antecedent. This is why the construction
m U 7' is proposed as a more promising candidate for the representation of
natural language ‘or’. We see that m U 7’ is order sensitive: it first checks for
the presupposition of w. Then it tries to assert ass(w). Only if this fails the
program 7' is activated. We see in the table above that only if ass(7) does not
hold we check for the presupposition of 7' and then process the assertion of 7.

Van Eijck [2] already notices that 7 U7’ can be defined as 7 U ((7 = L); 7).
So we can also regard Ll as an abbreviation for this complex expression contain-
ing U.

25We have no room here to summarise the discussion on the behaviour of presuppositions
under negation and disjunction. Consult Van Eijck [2] and Beaver [1] for more details. Below
we just give one or two examples to indicate the problems involved.

26For completeness we also give the semantic clauses for U and ~: a[r U 7']T = (a[r]t U
a[]t), a[r U]~ = (a[r]~ N a[n']7), a[7]t = an-(a[n]t), a[7]~ = a[r]t. The
abbreviation given below will produce the operational semantics of LI.

23

The language £ is not rich enough to express these additional connectives.?” So
we will have to extend £ if we want to capture the proposals of Van Eijck [2]
for the representation of natural language negation and disjunction. Of course
we have a strong preference for connectives that fall within the paradigm of
residuation lattices: if residuation lattices are indeed the right paradigm for the
study of natural language presuppositions, then the connectives of residuation
lattices should suffice in the representation language L.

Fortunately, the residuations indeed do the trick. If we extend £ with the
other residuation lattice connectives we can write:

~

o= (p—= (0 T))nl
pUP = (pvih)n(p—= @) n (¢ = 1)

Here we use the connectives —, <, A, v and the constants T and 1. This seems
to be a bit much. It is only natural to wonder how many of the connectives of a
residuation lattice we really need for the treatment of the simple examples that
we have been looking at so far. We will see in subsection 4.1 that we can in fact
do all the constructions that we have seen so far using only L, T, < and e.

Note that Van Eijck first introduces U to the language and then goes on
to discuss how Ul is probably a better representation of natural language dis-
junction. We have seen now that we can represent U in the full language of
residuation lattices using a rather complicated expression. But if it is really U
that we are after, we can do much better. We find that:

~

Y (¢ﬂ '¢7r’)

also works.

3.3 Three Valued Logics

In this subsection we discuss connections with three valued logic. We will show
how one can see our system as a three valued logic. Then we will see that our
dynamic implication = corresponds to a proposal by Kracht [12] for a treatment
of presuppositions in three valued logics.

In order to read our proposal as a three valued logic, we first have to provide
the truth values. Starting from the Boolean truth values, we can construct three
suitable pairs: (L, 1), (1, 1) and (1,1). We can see these as truth values: (1, L)
gives an update function which is always defined and has the assertion L. It is
the natural candidate for falsum in our setting. We denote it by 0. Similarly
(1,1) is the natural candidate for verum. We denote it by 1. (L, 1) then is
the third ‘truth value’. It has the property that it both presupposes and asserts
everything. So the corresponding update function is never defined, but if it were

27A quick argument involving some of the abbreviations of the next subsection: set 2 C 0
and 2 [C 1, the definedness ordering on the truth values. The connectives of £ are monotonous
along the definedness ordering. Hence all expressions of £ are monotonous along the defined-

ness ordering. But we find 2= 1 Z1=0.

24

defined it would be extremely informative. We denote it by 2. Note that in the
ordering on the pairs 0 <1 < 2.

In section 4 we will discuss in more detail how this idea of a correspondence
with three valued logic works out formally: we will give a three valued repre-
sentation theorem and prove a functional completeness theorem. Here we give
the truth tables for the most interesting connectives.

|0 1 2 0 1 32
0 (111 0|0 0 0
1[0 12 1|0 1 2
3|2 23 32 2 2

These connectives are not new in the literature on three valued logic:?® they
correspond to the connectives = and A of Kracht. He arrives at these con-
nectives by informal considerations regarding the direction and the economy
of computation: the > indicates that the intended direction of computation is
from left to right. By the principle of economy of computation, Kracht assigns
a truth value as soon as the left-to-right computation allows us to predict the
outcome of the procedure as a whole.

The fact that we have produced a familiar three valued logic is encouraging.
The systematic and general considerations of Visser [17] agree with the specific
considerations of Kracht about directed connectives. So we can hope that also
when we apply the techniques of [17] in more general situations the results will
keep making sense.

4 Results about the System

An important question for the algebraic approach is: which signature should
our algebras have? Here we have chosen for residuation lattices. Residuation
lattices have a synchronic component —a lattice— and a diachronic component
—a monoid— that are related by the residuations. We have argued informally
for the presence of both a synchronic and a diachronic component in the analysis
of information flow. But are the residuation lattices really the proper way to
substantiate these intuitions? Similarly we have to test the implementation of
the ideas concerning partiality that we have discussed above.

It is our opinion that the answer to such questions should consist of further
philosophical considerations (as in section 2), test applications (as in section 3)
and —last but not least— a careful investigation of the formal properties of the
system. In this section we discuss four results about the formal properties of the
system that we have seen in section 3. There we used a simple Boolean algebra

28We already pointed out that in the literature on presupposition our Boolean system
corresponds to Karttunen and Peters [11] approach. For details on the connection with Kracht
consider p.95 of [12]. Kracht traces the origin of 2 back to Hayes [6]. Kracht’s truth values
correspond with our truth values as follows: T= 1, F= 0, U= 2. Note that in Kracht’s ordering
relation, the definedness ordering, T and F are incomparable, where we obtain 0 < 1 < 2.

25

to construct an algebra of pairs in the way discussed in section 2. The resulting
algebra was used for the interpretation of a simple propositional language with
presuppositions. The results that we will prove are:

1. expressive completeness

2. a representation theorem for Boolean pair algebras

3. functional completeness

4. a decision method for the valid equations of Boolean pair algebras

These results are presented in the subsections below. Each subsection starts
with a statement of the result of that subsection. This makes it possible for the
impatient reader to skip the details of the proofs at first reading.

We end the section with some remarks and questions about the axiomatisa-
tion of valid equations and sequents for Boolean pair algebras.

4.1 Expressive Completeness

In this subsection we prove an expressive completeness result. The question
that we consider is as follows: in section 3 we have assumed that the notion of
information content is represented by a Boolean algebra A: the elements of A
are the things we wish to talk ‘about’. Then we went on to construct the pair
algebra over this Boolean algebra to capture the idea of negative information.
In principle there is no restriction on the way positive (or negative) information
can be combined: if ¢ and b both occur as positive (or negative) information,
then also the Boolean combinations —a A b, avb, (a — b),...— can be expected.
So we would like to be able to express all these Boolean combinations of the
components. This is an expressivity requirement. Here we will discuss how the
requirement can be met. To be able to present our results in a nice way, we first
introduce some standard operations on products and disjoint unions.?’

Definition 4.1 Let Ay, As, B,C, D1, Dy be sets. Consider the Cartesian prod-
uct A; X As. 71, mo are the usual projection functions on A; x As:

o mi(ar,az) = a;

Suppose f; : B — A;. Then (f1, f2) : B = (A1 x As) is the function with
o (f1, f2)(b) := (f1(D), f2(D))

We write o for composition of functions, reading g o h as: first h, then g. Then:
o fi=mio(fi,f2)

The disjoint union A; ® Ay of A; and A, is the set ({1} x A1) U ({2} x 4»).
t1 and t5 are the usual embedding functions to A; & As:

29 Also the notation conventions from subsection 2.6 will be used abundantly.

26

o @) = (i,a)
Suppose g; : A; = C. Then [g1,g2] : A1 ® A2 — C is the function with:

* [91,9:]((i,a)) := gi(a)

We have: g; = [g1,92] 0 ¢;. Finally, if h; : A; — D;, then hy X hy : A} X Ay —
D; x D5 is the function with:

o hy X ha({a1,a2)) = (hi(a1), ha(asz)) Q

Let’s fix a Boolean algebra A. We will not work in the full structure /(A),
but in the reduced structure U 1, <_](.A), where we leave out 0 and reduce the
signature to 1, T, e and «+. We will be working with [1, T, e, +] for most of
this subsection, so it will be convenient to write W(A) for U 5, . (A) here.
Let a set of propositional variables P be given. p will range over P. Define T

as follows:

T: ¢u=p|LT|¢-¢](d9)
An assignment o is a function from P to the elements of W(A). We interpret
the formulas of 7 in W(A) as follows:

o [plo:=o(p), o :=(1,1), [T]o:=(0,0),
o [¢p-ylo:=[s]oe [¥]o,
o [(¢ = Po:=([dlo « [¥]o).

We consider [¢] as a function from assignments to the elements of WW(A). We
can interpret the language £ into T via, say, (.)* as follows:

epti=p 1*:=(1«T), T*:=1,
o (¢) == 9" -9,
° (=)" 1= (9" - " < ¢%)

In the notation system provided by 7 we stay close to the notation in residuation
algebras: we use 1 for the unit of the e-operation and reserve T for the top
element of the pair algebra. Our choice of connectives and notation in £ was
based on natural language considerations. The translation shows how the two
languages are connected: this way 7 can be considered as an extension of L.
We will also use a language V to speak about the original structure A. V
will be the standard language for ordinary propositional logic with, as set of
propositional atoms, P™ := P @ P and with connectives T, 1, A and —. We
will write p for (i,p). V is interpreted in the standard way into A. Say this
interpretation function is [.]p : ¥V — A. Now we have three languages:

o L, asintroduced before. £ is the language we use for representing ordinary
reasoning with presuppositions. It contains the ‘dynamic implication’ = .
An atomic formula p € £ has a presupposition and an assertion, but these
remain implicit in the notation, just as in natural language.

27

e V), the language of ordinary propositional logic, but we have doubled up
the number of atomic propositions: for each p € P there will be two
atomic propositions p' and p? in V, corresponding intuitively to the pre-
supposition and assertion of p € £. V is interpreted in the Boolean algebra

A.

e 7, the language that is closest to the pair algebras. Both 7 and L are
interpreted in the pair algebra W(A). The main difference is in the im-
plications: we have (¢ =) in £ corresponding to (¢ - ¢ + ¢) in T.

We map assignments o for 7 to assigments & for V as follows: &(p?) := m;(a(p)).
Let’s say that & =: ©(c).3° Let us return for a moment to the specification of
the meaning function for 7. E.g. consider the clause

o [¢-Y]lo:=[¢]oe [¢]o
When we spell this out, we get:

e Suppose [g] o = (a’,a) and [{]o = (V',b). Then:
[¢-¥]o:=(a"r(a—b),anb).

The specification of [¢ -] o employs Boolean terms in the metalanguage. We
could have specified [.] in a different way, employing rather the Boolean terms
of our object language V: first translate T-terms to pairs of V-terms and then
interpret the components of these pairs via [.],. Here is the way this works.
We define the translation function (.)™ : 7 — V x V as follows.

o pT = (p!,p?), 17 :=(T,T), T":= (L, 1),
¢ -)" = (w1 (¢7) A (m2(97) = T (7)), (m2(d7) Am2(407))),
¢)7 = (m(97), m(¢7) AT (P7) A (m2(97) = M (7))
Suppose ¢ = (¢1, ¢p2). It is easy to see that we have:

[¢]o = ([¢1] 65, [$2]b5)-
In other words: [¢] = ([¢1]b, [¢2]b) 0 ©.%

30@ is in fact the standard isomorphism between (A x A) and AP®P. We have: O(c) =
[71 0 0,m2 00]. Tt’s inverse ©~ 1 is given by ©71(7) = (7 0 11,7 0 t2). We have e.g.

* (
* (

([rioo,m200]0t1,[r100,m200]0t2) = (mioo,m00)

= ag

31We can write this in an even more fancy way by considering [.] as a binary function
taking formulas and assignments as arguments:

[= ([1p x [1p) 0 (w1 x id, 72 x id) o ()7 x ©).

28

Note that we will have: [¢1]pd < [¢2]pbo. We are going to prove the
converse of the above observation: consider any pair of V-formulas ¢, ¢>. We
will produce a T-term ¢ := T'(¢1, p2) such that

[0 = ([P1] b0, [P1] b0 A [¢2] o)

Note that in case [¢1]pF < [@2] b7, this reduces to

[6] = ([¢1] b, [#2]b) 0 ©.

Thus, for suitable pairs, T will be the inverse of (.)".

Summarising, if we make up a new assertion and a new presupposition as a
Boolean combination of a old assertions and presuppositions, then there will be a
term in 7 that produces exactly this new assertion and this new presupposition.
We will call this property: expressive completeness, or, in our specific case where
the underlying algebra is Boolean, Boolean completeness.

We have already met the projection functions m;. These functions bring us
from elements of WW(A) to elements of A. It is quite convenient to ‘lift’ these
functions to functions from W(A) to W(A). Thus we are led to the following
definition.

Definition 4.2 We consider the following projections.

* pi((a1,a2)) = (1,a:).

If we put emb(a) := emb 4(a) = (1, a), we can rewrite our definition as:
pi = emb o ;. a

At this point it is a good idea to acquire some experience in computing in W(A).

1. As pointed out in fact 2.6, we have:
(a) (1,a) e (1,b) = (1,anb),
(b) ((1,6) < (1,a)) = (1,(a = b)).
2. (1« T)=(,1).
3. (14 (d',a)) = (1,a’). This means that p; is definable.

4. (1,a’ye{a',ay = (1,a). Lo.w. pi (&) e & = p2(§). Since we already saw that
p1 is definable, this tells us that p» is definable.

5. (1,a) « T = (—a, L). Note that ((1, L) < (1,a)) = (1, —a). Ergo:
((1,L) « (1,a)) ¢ T = {(a,L). So the mapping | : (1,a) — {(a,Ll) is
definable.

6. (a,L) + (b, L) = (a,anb).
We see that:
W1,0) < W(1,B) = (a,anb),

29

In this exercise in computing with pairs we show a few important tricks. So it
really is worth your while to look at the ‘exercise’ in some detail. Next we are
ready for some definitions. Let ¢, ¢' be T-terms.

e pi(d) := (1 « ¢). Note that p; maps syntax to syntax. We have:
[p1(#)] o = p1([¢] o). In a more elegant notation, this tells us: [p1(4)] =

p1o [4].
® p2() :=p1(9) - . We find: [p2(¢)] =p20 [¢].
e Define 1 := (1« T). So [L]o = (1, L).

o Define |(¢) :== (L + ¢) - T.
We find: [4(¢)] = 4o [¢].

We translate V via, say, (.)° into 7 in the following way.
o (P)°:=pulp)

(p*)° := Ppa(p)

e |°:=

(pA1)° :=¢° - 4p°

(620 = (0° & 6°)

Lemma 4.3 Let 1) be a term of V. We have: [¢°]o = (1, [¢)]). In other
words: [¢°] =embo [¢], 0 ©. Q

[] []
=2

The proof is a simple induction on v, using fact 2.6.

The lemma shows that for a Boolean combination of p*’s —let’s call it 1)—, we
can give a term 1° € T such that the assertion of ¥° is exactly 4. This is an
important step towards proving expressive completeness: if we can do something
similar for presuppositions, then we are done!

Fortunately we do not have to do all the work again for the presupposition
side. We can simply use the same translation (.)° in combination with the
operation | that was introduced earlier. Consider two V-terms ¢ and ¢5. We
have:

[(L(g7) L))o = ([o1]5, [¢1] oA [¢2])

We may conclude that the formula T'(¢41, ¢2) that we were looking for is:

T (1, p2) := (H(97) < L(3))-

This gives us our expressive completeness result.

Another way of looking at our result is as follows: we have shown that in the pair
algebra over a Boolean algebra the Boolean connectives A, v can be introduced

30

as abbreviations! For, the connectives on pairs are defined in terms of Boolean
combinations of their presuppositions and assertions and here we have shown
that such Boolean combinations can already be defined using the connective in
T. For — we have a slightly weaker result: — makes essential use of the artificial
bottom element in the pair algebra. Therefore there is no hope to define — in
T. But we can define a function that coincides with — on the inputs where —
does not give 0.

4.2 Three Valued Representation Theorem

For Boolean algebras we have the famous Stone representation theorem. This
theorem says that any Boolean algebra is (isomorphic to) a subalgebra of a
power set algebra. Or, equivalently, any Boolean algebra is a subalgebra of
an algebra 2M for a suitable M. Here 2 is the Boolean algebra of truth values
{1,T}.22

For the pair algebras we obtain a similar result, but this time we have to
use three truth values. Let’s use the notation 2 := (1, 1), 1 := (1,1) and
0:=(1,L). Note that 0 <1 < 2 and

0 ifi=0
iej=¢ j ifi=1
2 ifi=2

Lo.w.iej =min(i-(i+j—1),2). We define 3 = 1/°(2). So 3 is the unique
reduced residuation algebra on {0, 1,2}, with signature [v, A, T, e, 1, <], where
< and e are as specified above.

Proposition 4.4 Let A be a Boolean algebra. Then U°(A) is a subalgebra of
3M for a suitable M. Q

Proof

We start by observing that A is a subalgebra of 2. This means that each a € A
can also be considered as a mapping [a] € 2M. Given any (a’,a) € U°(A), we
define fiqr 4) € 3M by

fraray(m) = ([a](m), [a](m))

Remember that we assume that a < o', hence ([a’](m), [a](m)) will be indeed in
3. Now it is easy to check that everything commutes with the operators. For
example:

Faraye@r 5y (M) = frara(asbr),ansy (M) =

(la"n(a@ = V)](m),[anb](m)) =

(min([a'](m), max(1 — [a](m), [b'|(m))), min([a](m), [b](m))) =
(la'](m), [a](m)) o ([b'](m), [b](m)) = frar.ay(m) ® frir py(m)

321n fact for any Boolean algebra A we can use M = Maxfil(A), the set of maximal filters

of A.

31

and

flataye v vy (M) = frar ar nb A (b—a)y (M) =
([@’](m), [a’ Ab" A (b— a)](m)) =

([a'](m), min([a'](m), [b'](m), max(1 — [b](m), [a](m)))) =
ftar,ay (M) < frr py(m)

and

fatm) = ({1](m),[L](m)) = (1,1) =0

So we really do obtain a subalgebra, as required. Q

The representation theorem shows us that on Boolean algebras the pair con-
struction simply gives a three valued logic. This shows again that in the simple
case of Boolean algebras the pair construction makes sense. We already came
to that conclusion in section 3, where we noticed that for simple examples we
obtained ‘the expected results’.

4.3 Functional Completeness

In this subsection we show functional completeness of our semantics in three
valued logic. Let T := 71 7 e.](P), where P = {p1,...,pm}. Each term
7 € L defines a truth function f, € 337), viz. f, = A\ge3F.[r] ¢ Now it is only
natural to wonder which f € 33%) can be obtained as the truth function fr of
some term 7. We will answer this question by proving functional completeness.

Proposition 4.5 [Functional completeness] Let f : 37 — 3 be given. We prove
that there is a 7 € T such that [r]o = f(0). Q

We will give two different proofs of this proposition, providing rather different
terms. The first proof uses our result of subsection 4.1.

Proof

(“via Boolean Completeness”) Let v : P& P — 2. We can send v to =(v) :=
o : P — 3, by setting: o(p) := (v(p'),v(p*) Av(p?)). It is easy to see that
if 2(©(0)) = o, where © is as given in subsection 4.1. Moreover, if for all p,
v(p?) < v(p'), then O(Z(v)) = v.

Consider f: 3 — 3. Define ®;(f) : 2P9F — 2, as follows.

®;(f)(v) == mi(f(EW®)))-

Lo.w. ®,(f) = m; 0 foE. Ordinary two valued functional completeness provides
t; that generate these mappings ®;(f), i.e., for all v, ®;(f)(v) = [ti] pv- We
find that f(o) = ([t1] ©(0), [t2] ©(¢)), where O is defined as in subsection 4.1.
We may apply the result of subsection 4.1 to obtain the desired term 7. Q

32

So we see that functional completeness is a consequence of Boolean complete-
ness. Still, it would be nice to have a proof that is more analogous to the usual
one for ordinary propositional logic, generalising the use of disjunctive normal
forms. Such a construction is given by the following proof.

Proof

(“construction of Disjunctive Normal Forms”) In this proof we will use the
connectives A and v. We have already seen that these are definable in section 4.1.

Our technique for proving functional completeness is a generalisation of the
idea of disjunctive normal forms. The 7, that we introduce below generalise
the idea of a literal (STEP 1). Then conjunctions of literals describe valuations
(STEP 2). Disjunctions of such terms describe sets of valuations, i.e. proposi-
tions (STEP 2).

STEP 0: n = 0: obvious: 2 and 1 are constants of the language and 0 can be
defined as (1 + 2).

STEP 1: n = 1. First we consider the basic functions.

pl|5=0<p m=pp) m=0«pp) %2 72 752
0 1 0 0 3 0 0
1 0 1 0 5 3 0
2 0 0 1 0 0 2

This table gives us the basic truth functions in one variable. We can now use v
to get an arbitrary truth function in one variable.

STEP 2: other n. Again we create the basic functions first. So let f and o € 37
be given such that f(o) =1 and f(v) = 0 for all other inputs v. In STEP 1 we
have provided 7, (p) for all v € 3. Then:

Tf = T,,(pl)(pl)/\ /\T,,(pn)(pn)

works. Next we can produce g such that g(c) = 2 and g(v) = 0 for all other
inputs v by stipulating: 7, = 77-2. The other functions in 3(3") can be obtained
from the basic ones using v. Q

4.4 A Decision Method

We present a decision method for the equational theory of Boolean pair algebras.
We indicate how to decide whether an equation 7 = 7' in the language T :=
Ti1,T,0,1(P) of Boolean pair algebras, W(A) := Uf +, . (A), is valid, ie.
whether it has the property that, for all Boolean algebras A and all 0 € W(A)¥,

[7] W(A)OT = [[T']] W(A)O-

33

We consider only terms of signature [1, T,e,«]. There are two ways to justify
this choice: one is the fact that this set is Boolean complete. So all other
connectives can be introduced as abbreviations. This is a fairly convincing, but
purely technical argument: for example, it will no longer hold if our applications
require more than Boolean algebras to start with. There also is a less technical
reason for the choice: we regard these connectives as the dynamic kernel of a
residuation algebra. Clearly e and 1 are truly dynamic connectives: they are
about addition of information in time. The other two, + and T, are not purely
diachronic (for example we use < to define <) but it seems that they are a
natural and indispensable choice when we want to give the formalism the sort
of expressivity required for the dynamic analysis of natural language (cf. section

We employ the translation (-)™ from subsection 4.1. Say 77 = (1, 2) and
'™ = (r{,75). Remember that the 7;, 7/ are in the language V. The following
theorem follows directly from our definitions.

Theorem 4.6 7 = 7' is valid iff (1) {p> = p'|p € P}F (11 < 1)) A (12 & T3).
Here & is derivability in ordinary propositional logic.

So it is sufficient to apply the familiar decision method for propositional logic

to (1)-

4.5 Some Remarks on Axiomatisation

In this subsection, we make a few remarks and we pose a few questions con-
cerning axiomatisation. By our previous results the axioms of the following four
groups are valid in all Boolean pair algebras.

pairing T = UG < 1Emm)
projection (1) = 1 = pa(1)
pi(T) = L = px(T)
pi(a-B8) = pi(a)- (p1(B) < p2(a))
pala-B) = p2(e)-p2(B)
pi(a < B) = pi(e)
P2l B) = pi(a) pi(B) - (p2(a) < p2(B))
boolean | Boolean algebra applies to expressions built up from p;(p)
normal form | 51(p) - p2(0)_= _ Pa(0)
When, in specifying the axiom ‘boolean’, we say Boolean algebra applies ... we

mean with 1 in the role of T, - in the role of A, < in the role of —.

Suppose 7 = 7' is valid. We employ the translation (-)° of subsection 4.1.
We use an auxiliary translation (-)# defined just like (-)™ of subsection 4.1 with
the exception that we translate p to (p',p' Ap?). Let 77 = (11, 72) and 7/* =
(11, 73). Clearly 7 = 7{ and 75 = 73 hold in all Boolean algebras. It follows, by
the completeness theorem for ordinary propositional logic and by the boolean
axioms above, that: F 77 = 7/;. Hence, by the normal form axioms and the

34

projection axioms, - (J(51(7)) 4(B2(r))) = (4(F1(r")) < H(F2(r"))). We may
conclude, by the pairing axiom, that -7 = 7',

We can also see that the Boolean pair algebras form a variety, i.e. that every
structure satisfying the equations of Boolean pair algebras is isomorphic to a
Boolean pair algebra. Given any structure that satisfies the above equations, we
can extract a Boolean algebra, say B, by restricting ourselves to the elements of
the form p;(a). (Every such element can both be written in the form p;(c) and
p2(d).) The mapping (by,bs) — (Ib1 < Jb2) gives us an isomorphism between
W(B) and A. E.g. the injectivity of the mapping follows from:

pi((pji (a1)) = L bz (a2))) = pji (ai).

We admit that the above axiomatisation is not very satisfactory. So we pose
the following question.

Open Question 4.7 Is there a satisfactory axiomatisation of the valid identi-
ties for Boolean pair algebras for the signature [1, T, e, +]? a

Axiomatising the equational theory of Boolean pair algebras for the given sig-
nature is but one of the tasks at hand. Here is another.

Open Question 4.8 Is there a satisfactory axiomatisation of the valid identi-
ties for Boolean pair algebras for the signature [1, L, e,=]? 0

Remember that L stands for the pair (1, L) and not for 0. Our question 4.8
seems even more salient than question 4.7, since it asks for an axiomatisation of
the part of our language that really is concerned with presuppositional reason-
ing. A brief inspection shows that the equational principles valid for [1, L, e, =]
are markedly different from the principles valid in ‘the propositional logic of
DPL’. See [8] and [18]. Thus, presuppositional reasoning is truly a distinct
branch of dynamics from relational resetting. (In fact in the classical system
DPL of Groenendijk en Stokhof the presuppositional aspect is fully eliminated
by their use of total assignments on a fized set of variables.).

In dynamic approaches to logic there are several notions of valid inference,
each of which deserves to be axiomatised. We briefly discuss one alternative
that is crucial to the semantics of natural language. It is closely related to the
dynamic notion of implication that we saw in section 3. For «, 3 € W (A):

Definition 4.9 a F f & a<aef<1 Q

The idea behind this notion is that, in the context a, [provides no new infor-
mation (synchronically speaking): a < e 8. So it gives a natural combination
of the two ways of looking at information: we consider 3 in context, which is a
typically diachronic move. But the ordering of information that we use in this
context simply is the synchronic ordering <.33

33 Alternatively |= can be obtained by setting U = {2} and D = {1} in the setting of Kracht
[12] p.94.

35

Now the definition of = results from one additional requirement: we demand
that the context « is a state. Note that in Boolean algebras this is an empty
requirement: all a € A are states. But still, in the Boolean pair algebra U(A)
it is not an empty requirement at all. For Boolean pairs we have chosen as the
set of states S = {a | @ < 1} and 1 = (1,1) is not the top of the pair algebra!®*

It will be clear to the reader that a decision procedure for this notion of
inference follows immediately from the decision procedure for the equational
theory. We end with a last pair of questions.

Open Question 4.10 Give a sequent system axiomatising = for each of the
signatures [1, T, e,] and [1, L,e,=]. Q

5 Conclusion

Above we have presented an algebraic approach to the semantics of presup-
positions. Presuppositions are regarded as negative information and a general
construction is given that captures this intuition. To test the construction we
have worked it out for the special case of Boolean presuppositions. We have dis-
cussed the representation of examples, compared our representation with other
approaches to Boolean presuppositions and discussed formal properties of the
system.

We conclude that the results are encouraging. The applications are in agree-
ment with our basic intuitions about the examples we discuss; the system that
the general construction produces agrees with systems known from the linguistic
literature; and the system we arrive at has rather nice formal characteristics.
This encourages us to try to apply the construction also to more complicated
examples in future research.

It should be pointed out that what we have proposed is a general construc-
tion. This is why the points of agreement with what-was-already-known are
encouraging and not disappointing. The generality of our approach suggests
that we will be able to extend satisfactory results for simple cases in a system-
atic way to other cases. And we may hope that these extensions will be equally
satisfactorily.

Of course, the generalisations still have to be carried out. And we have to
admit that the most naive extensions have already proved problematic. But
there are many less naive options left open that we intend to explore in further
research.

34We recommend for example [5] for further discussion of dynamic notions of inference.

36

References

[1] D. Beaver. Presupposition. In J. van Benthem and A. ter Meulen, editors,
Handbook of logic and Language, pages 939-1008. Elsevier, 1997.

[2] J. van Benthem. General dynamics. Theoretical Linguistics, 17:159-201,
1991.

[3] J. van Eijck. Presupposition failure — a comedy of errors. Aspects of Com-
puting, 6A:766-787, 1994.

[4] J. Groenendijk and M. Stokhof. Dynamic predicate logic. Linguistics and
Philosophy, 14:39-100, 1991.

[5] J. Groenendijk and M. Stokhof. Two theories of dynamic semantics. In J.
van Eijck, editor, Logics in AI — European Workshop JELIA ’90, Springer
Lecture Notes in Artificial Intelligence, pages 55—64, Berlin, 1991. Springer.

[6] W. Groeneveld. Logical investigations into dynamic semantics. PhD thesis,
University of Amsterdam, 1995.

[7] P Hayes. Three-valued logic and computer science. Technical Report CSM-
6, University of Essex, 1975.

[8] I. Heim. File change semantics and the familiarity theory of definiteness.
In R. Béauerle, C. Schwarze, and A. von Stechow, editors, Meaning, Use
and Interpretation of Language, pages 164—189. De Gruyter, Berlin, 1983.

[9] M.J. Hollenberg. An equational axiomatisation of dynamic negation and
relational composition. Journal of Language, Logic and Information,
6(4):381-401, 1997.

[10] H. Kamp. A theory of truth and semantic representation. In J. Groenendijk
et al., editor, Truth, Interpretation and Information, pages 1-41. Foris,
Dordrecht, 1981.

[11] H. Kamp and U. Reyle. From Discourse to Logic, volume I, II. Kluwer,
Dordrecht, 1993.

[12] L. Karttunen and S. Peters. Conventional implicature. In Oh C.-K. and
D. Dinneen, editors, Syntaz and semantics (11): Presupposition, pages 1—
56. Academic Press, 1979.

[13] M.A. Kracht. Logic and control: How they determine the behaviour of pre-
suppositions. In J. van Eijck and A. Visser, editors, Logic and Information
Flow. MIT Press, Cambridge, Mass., 1994.

[14] E. Krahmer. Discourse and Presupposition. PhD thesis, Tilburg University,
1995.

37

[15]

[16]

[17]

[18]

[19]

[20]

R. Muskens, J. van Benthem, and A. Visser. Dynamics. In J. van Benthem
and A. ter Meulen, editors, Handbook of Logic and Language. Elsevier,
Amsterdam & MIT Press, Cambridge, 1997.

F. Veltman. Defaults in update semantics. In H. Kamp, editor, Condition-
als, Defaults and Belief Revision. Dyana Deliverable R2.5A, Edinburgh,
1991.

A. Visser. Actions under presuppositions. In J. van Eijck and A. Visser, ed-
itors, Logic and Information Flow, pages 196-233. MIT Press, Cambridge,
Mass., 1994.

A. Visser. Dynamic Relation Logic is the logic of DPL-relations. Journal
of Language, Logic and Information, 6(4):441-452, 1997.

A. Visser and C. Vermeulen. Dynamic bracketing and discourse represen-
tation. Notre Dame Journal of Formal Logic, 37:321-365, 1996.

H. Zeevat. A compositional approach to DRT. Linguistics and Philosophy,
12:95-131, 1991.

Kees Vermeulen
Els Wolters
Albert Visser

Department of Philosophy
Utrecht University
Heidelberglaan 8

3584 CS Utrecht

The Netherlands

38

