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Abstract

We present an algebraic approach to the semantics of presuppositions in
dynamic semantics� preconditions are introduced explicitly as separate
components in the semantic algebra� The approach is worked out for
a propositional language that is interpreted in a Boolean setting� We
provide several �meta��mathematical results about the example �some
completeness issues are discussed and a decision method is presented�
and we compare the approach with the presupposition�as�preconditions
approach� the major alternative treatment of presuppositions in dynamic
semantics� It turns out that our way of introducing presuppositions into
a presuppositionless semantics gives satisfactory results for the examples
inside its range�
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� Introduction

Consider a sentence such as �John is a bachelor� What does this sentence mean�
Surely� it can only be true if John is not married� But� somehow� it is also
required that John has some additional properties� it seems that� for the sen�
tence to be� true John should also be male and adult� Still� it is clear that
these additional requirements on John are of a di�erent kind than the demand
that John should be unmarried� It is felt that� if John is not a male adult�
the sentence is not simply false� it should never have been uttered in the �rst
place� So if John turns out to be a little girl� the sentence will not be judged
to be false� but inappropriate in another way� The technical term for this kind
of inappropriateness is presupposition failure� we say that the sentence asserts
that John is not married and presupposes that John is male and adult�

There are many examples in which a similar distinction between the asser�
tion and the presupposition of an expression can be made� In the above example
the presupposition is triggered by the word bachelor� Other examples of lexical
presupposition triggers are� dead �presupposes animate� ��� We call a presup�
position that is triggered by such a word a lexical presupposition� But there are
also other kinds of presupposition triggers� For example� in �the king of France

is bold� it seems to be presupposed that France has a �unique� king� Here the
de�nite article the triggers the presupposition� And in the sentence �Sue regrets

that it rains� the factive verb to regret induces the presupposition that it actually
rains�� For a purely truth conditional approach to semantics� presuppositions
have always been a bit of a nuisance� after all the idea of a presupposition is pre�
cisely that it is not simply a truth condition� In dynamic semantics the concept
of meaning is more fundamental than the concept of truth� truth is �only�� a
derived notion� Therefore we can hope that in a dynamic approach to semantics
a natural and elegant treatment of presuppositions becomes available�

There have been several attempts to provide such a dynamic account of the
semantics of presuppositions�� In this paper we focus on one such attempt� The
approach� due to Visser ����� proposes an algebraic model of the creation of
presuppositions� In his algebraic model� Visser implements the basic intuition
that a presupposition gives negative information� while the assertion counts
as positive information� He works with information states which consist of
two components� one component for the positive information and a separate
one for the negative information� The construction of such pairs is similar
to the construction of the �positive and negative� integers from the naturals�
Below we will see in detail how the approach works out when it is applied
in a simple propositional setting� In addition we compare our example with
a major dynamic alternative account of presuppositions� the presuppositions�
as�preconditions account� We will then provide several �meta��mathematical
results about the system�

Our main conclusion will be that� in the cases considered� the algebraic
framework provides a good format for the systematic introduction of presup�

�See ��� for a thorough introduction to the subject�
�See for example ���� or ��� for discussion and references�
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positions into a presuppositionless setting� This encourages us to develop the
approach further to include more involved examples in more expressive for�
malisms�

��� Two Approaches

In dynamic semantics it is held that the meaning of expressions is� for a large
part� determined by their information change potential� In each situation or
information state the interpretation of a sentence will bring about some change�
the information in the sentence is combined with the information that is already
available and the result is a new information state� If we can characterise this
potential of the sentence to change information states� we will have captured a
lot �if not all� of its meaning�� Although dynamic semantics is a fairly young
�eld of research� there are already two �schools� of dynamic semantics�� Each
school uses a di�erent format for the formal description of information change
potentials� One school of dynamic semantics describes meanings as relations
between information states� by interpreting a sentence � in an input state I an
output state O can arise i� the pair hI�Oi stands in the relation R�� In such a
relational approach to dynamic semantics the semantic universe will consist of
�binary� relations�� A second school associates a date base with each sentence�
The data base will have a slot for each aspect of the meaning of the sentence�
Two data bases can be merged into one larger data base� by an operation �
which we shall call the merger� Then the information change potential can be
described in terms of the merger of data bases� if our initial information is
correctly described by database I and � itself corresponds to the data base
I�� then interpreting � in state I results in I � I�� In a data base approach
to dynamic semantics the semantic universe contains data bases and a merger
operation to combine them�

The �rst school of dynamic semantics naturally �nds inspiration in relational
algebra and the �operational� semantics of programming languages� The second
approach leads to a di�erent style of formalisation� algebras� of the form hX� �i
become the main topic of investigation where X is the set of data bases and �
the merger operation� The crucial question now is how the appropriate algebra
hX� �i �which contains a slot for each aspect of the meaning of a sentence�
can be constructed systematically from several simpler algebras hXi� �ii� each
of which describes only one aspect of the meaning of a sentence� We regard
Groenendijk and Stokhof ��� and Veltman ���� as crucial examples of the �rst
approach and consider Kamp �
�� Heim ��� and Kamp and Reyle ��	� as examples
of the second approach� Groenendijk and Stokhof ��� compare di�erent formu�
lations of the �rst approach and also Groeneveld �
� is useful in this respect�

�See ���� for an introduction and references�
�Fortunately in practice the di�erent schools as well as their results turn out to be extremely

compatible�
�Alternatively one could use �update� functions� interpreting � in state I results in state

O i� f��I� � O� In such a functional set up of dynamic semantics the semantic universe will
consist of �update� functions� �Cf� Veltman ������

�Or categories� cf� �����
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Zeevat ��	� provides the algebraic formulation of the data base approach and
Visser and Vermeulen ��
� develop this idea further�

Thus we obtain two main styles of formalisation in dynamic semantics� one
describes meanings as programs� the other describes meanings as data bases� In
both schools quite some thought has been given to the treatment of presuppo�
sitions� We will see the basics of the ideas of both theories below� illustrated in
the case of a simple propositional language� However� our main concern will be
with the meanings�as�data�bases approach to dynamics�

The remainder of this paper will be organised as follows� In section � we
present the technical apparatus of the algebraic approach to presuppositions�
This section also contains some philosophical motivation for the choices made in
designing this apparatus� Still� the reader who is not interested in generalities
may want to jump to subsection ��
 immediately� where we summarise the
technicalities that will be used in the rest of the paper� Then� in section �� we
present some applications of the algebraic techniques� We discuss examples and
compare the results with other approaches in the literature� In section �� we
prove some metamathematical results about the algebras that we use in section
��

� The Algebraic Approach� Residuation Lat�

tices of Pairs

In this section we present the formal apparatus that was developed in Visser
���� for the treatment of actions under presuppositions� In the next section we
will use a simpli�ed instance of this approach for the analysis of simple cases of
presuppositions� This simpli�ed version is presented in subsection ��
� Perhaps
the reader will want to skip the more general subsections ���� ��� and ��� at
�rst reading�

To give you a clear picture of the apparatus we present it in several steps�
First we discuss the distinction between the synchronic and the diachronic per�
spective on information� To capture both perspectives in our model we will
use the notion of a residuation lattice� Then we discuss the issue of partiality
involved in the analysis of presuppositions� We regard presupposed information
as missing information and develop the formalism accordingly� this leads to
the introduction of algebras of pairs with a �positive� and a �negative� compo�
nent� Then interaction of these two ideas is established in residuation lattices
of pairs� We present these in full generality� they are our general proposal for
the formalisation of the behaviour of presuppositions�

Finally� we present the instances of such lattices that we will see in this paper�
As we will mainly be concerned with Boolean presuppositions and assertions� we
only need consider pair algebras where both components come from a Boolean
algebra� In Boolean algebras some of the computations are easier than in the
general case and it will be convenient for reference later on to have a separate
description of this simple case�






��� Two Perspectives on Information

The apparatus that we will present is part of dynamic semantics� the tradition
in formal semantics that tries to model the exchange of information as it takes
place in discourse interpretation� This means that we have in mind a situation
in which an agent tries to process the information that another agent makes
available in �written or spoken� discourse� Our agent will have some initial
information available and will process the new information in the light of this
initial information� This will lead to a new state of information�

In a realistic model of this situation the order in which the information is
presented will play an important role� Clearly it can make a big di�erence
which information comes �rst� Typical examples of this are simple anaphors as
in �John comes in� He is smiling�� Here the pronoun he in the second sentence
depends on information from the �rst sentence for its interpretation� it requires
John as an antecedent� Also presuppositions are a typical example of cases
where order matters� Consider �at that time France was a monarchy� The king

of France was rich�� Here the information presupposed by the second sentence
is provided by the �rst sentence� As a result the discourse as a whole does not
carry a presupposition�

These examples indicate why we need to consider information as it is given
in time� We call this the diachronic perspective on information�

Still� in a realistic model of information exchange we also want to compare
information that is not ordered in time� This hardly needs an argument� but
let�s look at an example to �x our thoughts� Consider an agent ready and
waiting for new information� Now we have two options� we can either tell him�
�John had a drink last night� or �John drank some wine last night�� Now these
sentences are not to be compared in some temporal order� they are alternative
bits information at one and the same point in time� Clearly the second sentence
is more informative� We will want to include in our model a way of comparing
information is this sense� We call this the synchronic view on information� Our
model of discourse interpretation will have to embody these two perspectives on
information� the synchronic and the diachronic perspective�

The starting point for our formalisation is a set of information states A�
the things we called data bases above� We obtain a diachronic perspective on
these states by including a monoidal operation that we will call the merger� For
the merger we will use the notation �� So � will be a binary operation that
is sensitive to order �not� in general� a � a� � a� � a� but not to bracketing
�a � �a� � a��� � �a � a�� � a��� and we assume that a unit element � is available
such that � � a � a � � � a� � stands for the tabula rasa state of information� it
has no information content and is completely harmless�

For the synchronic perspective on A we introduce a lattice ordering �� This
means that � is a partial order along which �nite suprema and in�ma exist�
We will use the usual notation � and � for the suprema and the in�ma�

We also introduce a way of relating the two perspectives� we assume that two
residuals of � are present� called � and �� The de�ning property for residuals

�



is�
a� � a� � a� � a� � �a� � a�� � a� � �a� � a��

One can check that in cases where � is not order sensitive� the operations �
and � will co�incide� In this case the property de�nes only one operation�
Examples are� Boolean algebra� Heyting algebra� linear logic� In all these cases
the property simply de�nes the implication of the logic� Hence� one way to
think about residuals is as order sensitive forms of implication� There are also
several examples of residuals in the literature where order sensitivity does play
a role� e�g� categorial grammar and relation algebra� In general� the way to
read the de�ning property is as follows� it states that �a� � a�� is the largest
element x such that x � a� � a�� Similarly �a� � a�� is the largest element x
such that a� � x � a�� By introducing the residuals in our model we introduce
the assumption that such largest elements are always available in A� Hence we
introduce an assumption on the relation between � and �� over and above the
assumptions that we have made for each of them separately�

The following de�nition summarises the discussion so far�

De�nition �	� A residuation lattice is an algebra

A � hA� �� ����
� �� �����i

which satis�es the following extra requirements� De�ne a � b �� a � b � b� We
have�

� hA� �� ���� 	i is a lattice� with top � and bottom 	�

� hA� �� �i is a monoid�

� a � b � c �	 a � c� b �	 b � a� c�

� is left residuation or post�implication� � is right residuation or pre�implica�
tion�

In some applications we do not really need all the operations present in a resid�
uation lattice� For example� we do not always care about the top and bottom
of the lattice ordering� Then we can work with a somewhat reduced signature�
We will say a bit more about that in section ���� But �rst we start with the
�full� signature� Our notation �� for top� is standard� The notation for the
bottom can be explained by the fact that in a residuation lattice the bottom of
the lattice ordering� will always be a zero element or annihilator of the monoid�
	 � a � a � 	 � 	��

��� Natural Language Implication in Residuation Lattices

The operation � in a residuation lattice is supposed to represent order depen�
dence� � � � stands for the the information � followed by the information ��

�For this fact� and several other facts about residuation lattices� we refer to ��
� p�����
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Evidently� we cannot expect in general that � � � � � � �� A similar remark
applies to the use of implications in natural language� Let�s consider an exam�
ple� If John owns a donkey� then he feeds it� Here we will need information from
the antecedent of the implication to be able to process the consequent� A lot
can be said �and has been said� about such examples� For us it means that
the following informal characterisation of so�called dynamic implication makes
sense�

�	 � means�
if we add information �� we reach a state of information in which
the interpretation of � does not lead to an essential increase of in�
formation�

Note how the order in which we process the di�erent information items is crucial
here� starting in our current state� s say� we �rst add the information from � to
reach a new information state� s� say� Then we add � in state s�� After that we
will have reached a state� s�� say� which contains no more information than s��
In terms of residuation lattices this notion of implication can be approximated
as follows�

��	 �� � �� � � � ��

This ensures that � � �� 	 �� i� � � � � � and� hence� we will know that�
in each state �� � � � � � � � � ��� This means that the enrichment of a state
� with information � will already be at least as informative �synchronically
speaking� as the enrichment of � with � � �� as required�

Note that in the �nal comparison we use the synchronic ordering of informa�
tion �� it is clear from the natural language examples above that diachronically
speaking a lot of things will happen if we add � to ���� � may bring new topics
to our attention explicitly which will thereby become available for �anaphoric�
reference� But this kind of enrichment does not seem to matter for the evalua�
tion �i�e� �truth�� of natural language implications�

��� Partiality as Unsaturatedness

Apart from the diachronic�synchronic distinction there is another ingredient
that is crucial to any realistic model of information exchange� partiality� Here
we are interested in partiality in the following sense� An agent who interprets
discourse will do this in the light of the information that is already available
to him�her� The current information state has to support the interpretation�
As examples of required support we can look again at the cases of anaphora
and presupposition indicated above� The state of information of the agent after
interpretation of the �rst sentence has to provide an antecedent for the anaphor
he in the �rst example� In the second example the information state has to
provide the information that is presupposed by the second sentence� Hence in
both examples there is some information �missing� in the second sentence� The

�This follows� since monotonicity of � in both arguments holds in any residuation lattice
�cf� ��
���
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information state that we associate with the second sentence will have to re�ect
this unsaturatedness� This requires a distinction between states of information
that are saturated� or� complete� and states of information that are unsaturated�
or� partial� We will call the set of saturated states of information S and will
assume that we know which subset S 
 A is�

In line with the remarks about the order sensitivity of discourse interpre�
tation above� also this notion of unsaturatedness is sensitive to order� we are
interested in unsaturatedness towards the past and assume that it cannot be
made up for in the future� In other words� unsaturatedness will persist�

a� � a � S 	 a� � S �OTAT�

Visser ���� calls this the OTAT principle� Once a Thief� Always a Thief� So we
model partiality by having a set S 
 A that contains the saturated information
states� S will satisfy the OTAT principle� From this point on we will assume
that our residuation lattice satis�es OTAT�

Let�s think a bit about the right choice of S in our particular case� As indicated
by the example above� we will consider expressions that carry presuppositions
as unsaturated� The presupposed information is regarded as information that
is missing� In contrast the asserted information is regarded as information that
is given by the expression� Now if we assign an information state a � A to
some expression then a stronger presupposition means that more information
is missing� Hence stronger presupposition makes the state less informative�
Conversely� a stronger assertion means that more information is given� Hence
a stronger assertion will make the state more informative� We intend � as a
completely harmless bit of information� a � � � a for all a � A� Hence � cannot
carry a presupposition� But for the same reason it cannot make much of an
assertion either� � is a point of no presupposition and no assertion� So � will
form a point of division between the unsaturated and the saturated� Thereby
it makes sense to set S � fa � Aj a � �g� We will opt for this choice of S in
what follows�

Note that� using our new characterisation of S� OTAT becomes equivalent
to� �� � a� � ��

Incorporating partiality in the way sketched above is quite general and quite
elegant� Still it may be a bit puzzling to work with a total operation � to model
partiality of information� Perhaps the reader would expect the partiality of
information to correspond to partiality of operations� Fortunately the set up
with a set A of �partial� states and a set S 
 A of saturated states gives us
a natural way of generating partial functions that transform states into states�
We will call such functions update functions� So an update function is a partial
function	 F � S � S� Before we show how to generate such update functions
we make a little excursion�

	We will 	nd it convenient to use post	x notation for update functions� we will write
sF for the result of applying F to s� We will use the notation � and � for de	nedness and
unde	nedness respectively of partial functions�






We can regard the update functions themselves as items of information�
applying the update function is like adding the information that the update
function stands for� Then� if we try to order update functions according to our
considerations about partiality� the following de�nition makes sense�

F � G � dom�G� 
 dom�F � � �s � dom�G� � sF � sG�

Here the �rst condition displays the point about the relation between unsatu�
ratedness� partiality and missing information� dom�G� 
 dom�F � says that G
misses more information than F � The second clause simply says that on their
common domain �i�e� dom�G�� the result sF is more informative than the
result sG�

Within the class of all such updates there is a natural subclass that can be
generated in an elegant way from the underlying algebra A� This class �ts nicely
with our ideas about presuppositions and therefore is our candidate for the anal�
ysis of presuppositions in natural language� Recall that we regard presupposed
information as missing information� it is in a negative place� Asserted infor�
mation on the other hand is in a positive place� it is information that is added
by the expression� Now let�s consider the situation where both the presupposi�
tion and the assertion are elements of A� say a� � A is the presupposition and
a � A the assertion� Given the presupposition the assertion should not produce
unsaturatedness� i�e� a� � a � S� By OTAT this implies a� � S� Now we can
associate with such a pair � � ha�� ai an update function �� as follows��


s�� � s � a for s � a� and is s�� 
 otherwise

The update function �� as de�ned here can be understood as follows� First
�� tests whether s � a�� i�e� it tests whether the presupposed material a� is
provided by s� If so� � adds the asserted information a to s and we obtain s�a�
If the presupposed material is not provided by s� the update is unsuccessful�

Note that the function �� is completely �xed by the pair � � ha�� ai� Below
we will confuse the set f�� � � � ha�� ai � a� � a � Sg with fha�� ai � a� � a �
Sg���

��� The Residuation Lattice of Pairs

Now we have introduced two ingredients that we �nd essential for a realistic
model of the information exchange involved in discourse interpretation� the
synchronic�diachronic distinction and the notion of unsaturatedness of informa�
tion� The next step is to get the two ingredients to live together� For this

�
Note that this de	nition requires that� s � a� � s�a � S� This holds by monotonicity of
� in its left argument �this property holds in any residuation lattice� and downward closure
of S�

��There also is another� smaller class of natural update functions� which are called �a �a �
A� in ��
�� These updates are de	ned as follows�

s�a � s � a if s � a � S and is s�a � otherwise

Given the choices made above� we see that �a can be obtained as �h���a��ai�

�	



purpose we need a residuation lattice consisting of the update functions that
we discussed above� So let�s try to transform the set fha�� ai � a� � a � Sg
into a residuation lattice� To make this construction work� we have to add the
following additional assumption� �� on A�

s� � a � s� � b � s � s� 	 s � a � s � b ���

This property has no intuitive content� it is simply the weakest condition that
makes things work� However� we will see later on that several more natural
conditions are around that imply �� As we will have intuitive grounds for these
stronger assumptions� we cannot be accused of doing �funny business��

First we look at the ordering of the pairs� A natural candidate for ordering
update functions was given above� so let�s try to use this ordering� One can
show� using �� that in terms of the pairs this ordering reads as���

ha�� ai � hb�� bi � b� � a� � b� � a � b� � b

Next we consider the merger of the pairs� Again a natural candidate for the
merger is available� composition of �partial� functions� If we write this down in
terms of the pairs this leads to the following de�nition���

ha�� ai � hb�� bi � ha� � �b� � a�� a � bi

This is simply the way the composition of �ha��ai and �hb��bi looks in terms
of the pairs� so we need no further motivation for this funny expression� Still
some remarks about the merger of pairs may be helpful� First note that on the
presupposition side we �nd a� � �b� � a�� This shows how the presupposition of
ha�� ai is inherited by ha�� ai�hb�� bi� Furthermore� we see that the presupposition
of hb�� bi also re�occurs� but in a weakened form� �b� � a�� This stands for what is
left of b� after a will have been asserted� Hence the temporal order of the merger
��rst �ha��ai� then �hb��bi� is re�ected� On the assertion side we simply �nd
that �rst a will be asserted and then b� as expected�

Now the question is whether this choice for � and � gives rise to a residuation
lattice of pairs� It can be shown that it almost works� to make everything work
smoothly we only have to add a few arti�cial elements to the set of pairs� if we
look at the ordering � on the pairs we see that we have to add a new 	� We
will not go into the details here and simply quote Visser�s result�

Proposition �	� Let A be a residuation lattice that satis�es �� Then there is
a unique residuation lattice U�A� � hY� �� ���� 	� �� �����i such that�

��There is a subtlety here� � was a partial order on the update functions ��� But di�erent
pairs ha�� ai and hb�� bimay generate the same update function� Hence on the pairs the ordering
� is only a preorder� We can correct this by dividing out the following equivalence�

ha�� ai � hb�� bi 	 b� � a� � b� � a � b� � b

So strictly speaking we should be talking about equivalence classes of pairs instead of pairs
simpliciter� We will ignore this in most of what follows�

��Compare with Fact ���� in ��
��
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� Y � f	g � fha�� ai j a� � a � Sg

� on the pairs ha�� ai the operations of the residuation lattice agree with
function composition and the ordering of update functions discussed above

The proof simply is the de�nition of the required connectives� Lengthy compu�
tations lead to the following de�nitions�

� �� h	� 	i

ha�� ai � hb�� bi �� ha� � b�� a � bi

ha�� ai � hb�� bi �� ha� � b�� �a� � a� � a� � �b� � b� � b�i

ha�� ai � hb�� bi �� ha� � �b� � a�� a � bi

hb�� bi � ha�� ai �� hb�� �b� � a�� � �b� � �b� � b� a��i

� hb�� b� � �a� � �b� � b� a��i

ha�� ai � hb�� bi �� hb� � a� b� � a� b� � bi if b� � a�� �� 	 otherwise

We see that for a residuation lattice A that satis�es � we can construct the
algebra of pairs U�A�� U�A� is a residuation lattice� hence it incorporates the
synchronic�diachronic distinction� Moreover� the pairs correspond in a natu�
ral way to update functions that� in turn� embody the view of partiality�as�
unsaturatedness that we want for our analysis of presuppositions� So we now
have developed a general apparatus for the dynamic analysis of presupposi�
tions� Of course this general apparatus has to be tested� Apart from more
philosophical motivation� along the lines that we have followed above� testing
the apparatus means two things� the �rst test is in the application to real ex�
amples of presuppositions in natural language� An important second test is in
an investigation of the formal properties of the apparatus�

Below we will follow both lines of testing� but only for a simpli�ed case� the
case where the base algebra A is a Boolean algebra� In the next subsection we
will see that for Boolean base algebras some of the constructions work out a bit
nicer than in the general case�

��� Simpli�cation� Going Boolean

Below we will apply the apparatus to cases where both the presupposed and
the asserted information come from a Boolean algebra A� As an example one
can think of the case where A � ��W � for a set of possible worlds W � In this
subsection we summarise how the construction simpli�es in such a case�

Fact �	� A Boolean algebra A � hA����������i �is� a residuation lattice
A � hA� �� �� 	� �� �����i if we read the connectives in the residuation lattice
as follows�
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Residuation Algebra Boolean Algebra Boolean Algebra of Sets
� � �
� � �
	 � �
� � A

� � A

� � �
� ���� � ��� ���� � ���
� ���� � ��� ���� � ���

Note that in a Boolean algebra A the canonical choice for S turns out to be A
itself 

We assume that the base algebra A is Boolean� It does not follow that now
also U�A� will be a Boolean algebra� Still the computations in U�A� simplify
considerably� First we note that already a much weaker assumption on A leads
to a simpli�cation�

Fact �	� Assume that for all s � S 
 A we have� s � s � s� We call this
property S�idempotency� Now the following holds���

� S�idempotency implies �

� S�idempotency implies� �a�� b � a � a� � �ha��bi � �ha��ai

Hence� for S�idempotent residuation lattices� the pair construction will work�
Furthermore we only have to look at pairs ha�� ai where a� � a� Below we
will always assume that our pairs have this �normalised� form� Note that any
Boolean algebra is S�idempotent 

Finally we look at the de�nitions of the connectives for Boolean base al�
gebras� These de�nitions simplify quite a bit� as we can simply calculate the
Boolean way in each of the components of the pairs� In our notation we will
sometimes interchange the Boolean notation and the notation from the residu�
ation lattices� This should not lead to confusion�

Fact �	�
� � h���i
� � h���i
	 is the new 	 that we add in the construction

ha�� ai � hb�� bi � ha� � b�� �a � b� �a� � b�i
ha�� ai � hb�� bi � ha� � b�� �a� � b�� � �a� � a� � �b� � b�i
ha�� ai � hb�� bi � ha� � �a� b��� a � bi
ha�� ai � hb�� bi � ha�� a� � b� � �b� a�i
ha�� ai � hb�� bi � hb� �a� b �ai if b� � a�� � 	 o�w�

��Cf� Visser ��
�� subsection ������� for additional details�
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In the Boolean case the relationship between the original algebra A and the
corresponding pair algebra becomes particularly easy� We de�ne the standard
embedding function embA from A to the states of U�A� by� embA�a� �� h�� ai���

We have�

Fact �	� �� embA is a bijection between the elements of A and SU�A� n f	g�
i�e� the states of U�A� except 	�

�� embA commutes with �� �� �� � and ����

�� embA does not commute with �� since

embA��A� � h�� �i �� h	� 	i � �U�A��

It does not commute with �� since�

embA��A� � h�� 	i �� 	 � �U�A��

Finally it does not commute with ��

From this point on the reader will only encounter Boolean pair lattices� So she
may forget about the whole of section � and just remember that we will be
working with pairs ha�� ai where a� � a � A for some Boolean algebra A� where
special operations on these pairs are de�ned as in fact ��
� To make things even
simpler� the reader may take A � ��W �� for some set of worlds W �

��	 Reduced Signatures

In the construction of a residuation lattice of pairs from a residuation lattice we
do not get a bottom element for free� we have to add a new bottom element 	
by hand� Sometimes we will not be interested in this arti�cial element� we will
just look at the real pairs� In the Boolean case this will cause no problems� for
most of the operations in the constructed residuation lattice� except for �� only
generate non�zero elements from non�zero elements �cf� de�nition ����� We call
the set of real pairs Uo�A� and use Uo�A� as notation for the algebra

hUo�A�� �� ���� �� ���i�

Thus� we obtain Uo�A� from U�A�� be removing 	 from the domain and by
taking 	 and � from the signature�

In other cases we will disregard some further operations that are automat�
ically available on pairs� It will be convenient also to have a notation for such
situations� As a rule we will write the operations that remain in the sub�

script� U
�o�

op������opn�

�A� will be the algebra U �o��A� with the reduced signature

�op�� � � � � opn�� To summarise�

��Remember that in the Boolean case �
 a � ��
��Remember that the Boolean � is just ��
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� Uo�A� is U�A� without 	 in the domain and without 	� � in the signature�

� U
�o�

op������opn�

�A� is the reduct of U �o��A� to the signature �op�� � � � � opn��

In addition we will employ the following syntactical convention� We use the
notation T
op������opn��P � for the set of terms of signature �op�� � � � � opn� on the
set of propositional atoms P �

� Applications� Boolean Presuppositions

In this section we are concerned with the application of the general theory
outlined above to concrete examples of presuppositions in natural language�
Then we will evaluate our results by a comparison with other approaches in the
literature� in particular the presuppositions�as�preconditions approach of Van
Eijck ��� and the three valued logic of Kracht �����

In the applications we will simplify matters in two ways� �rst we use a propo�
sitional language to represent the natural language examples� This means that
we ignore the process by which a presupposition trigger occurring somewhere
inside a proposition produces the presupposition of the proposition as a whole�
It also means that the presuppositions we predict for expressions will always be
propositions� thereby ignoring other presuppositional e�ects� The second sim�
pli�cation we make is in the choice of the base algebra� Below we will assume
that a Boolean base algebra A is given��� These simpli�cations of the general
situation will surely help to see through some of the technical details involved
in the general case� Furthermore� it is precisely the fact that already this sim�
pli�ed situation gives such nice results� that shows the potential of the general
construction�

��� Examples

Let�s consider a few simple sentences�

John is male�

John is adult�

John is unmarried�

John is smiling�

John is a bachelor�

If we want to represent such simple sentences in a propositional language� it
makes sense to just represent them as atomic propositions� say m� a� u� s and
b respectively� Normally we would then go on to interpret such atomic propo�
sitions straightforwardly in a truth conditional way� For example� we would
assume some set of possible worlds W to be given and we would have each
atomic proposition denote those possible worlds where the atomic proposition

��Recall that this does not imply in general that also U�A�� the pair algebra over A is a
Boolean algebra�
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is true� In this way �John is male� would denote the set of worlds where John is
male� etc�

As long as we only consider sentences such as �John is male�� this is prob�
ably all we want to do� But there is a more interesting example in our list
which makes us think again� John is a bachelor� This simple sentence carries
a presupposition� it is presupposed that John is a male adult� In addition the
sentence asserts that John is unmarried� So the atomic proposition b seems to
have the proposition m �a as a presupposition and in addition asserts only u�
This means that already the atomic propositions require a complex denotation�
an atomic proposition p does not simply stand for an element ��p�� � ��W �� but
each atomic proposition comes with two such elements� one for its presupposi�
tion and one for its assertion� These two elements jointly will give an inhabitant
of U���W ��� the pair algebra over base algebra ��W �� This gives the basic idea
for the representation of simple sentences in the algebraic setting� We can now
go on to interpret more complex examples such as�

John is adult� He is smiling�

John is male� He is a bachelor�

If John is adult� then he is a bachelor�

If John is a bachelor� then he is smiling�

If John is a bachelor� then he is unmarried�

The interpretations of these complex sentences will be produced from the in�
terpretations of the simple sentences using only the operations of the lattice of
pairs� This way we will predict the presuppositions of the complex sentences
based on the information about the presuppositions of the simple sentences� the
so�called projection problem� These predictions can then be compared with our
intuitions as natural language users� thus providing a �rst test of the construc�
tion�

Let�s make this precise� First we de�ne a propositional representation language
L� Let a set of propositional variables P be given� p will range over P � De�ne�

L � � ��� p j � j � � � j ��	 ���

We see that L will contain some atomic propositions to represent simple sen�
tences� Let�s assume that P includes representations of the simple sentences
above� say m� a� u� s� b � P � where m represents �John is male�� etc� � will be
used as falsum� a proposition that is false in all situations� The connectives cor�
respond in the expected way to ways of building complex sentences in natural
language� � stands for natural language concatenation �or� conjunction�� 	 for
implication� We have no connectives for disjunction and negation yet� but these
will be discussed later on�

Next we consider the interpretation of this propositional language in a Bool�
ean pair lattice U�A���� We already discussed the interpretation of the atoms
in P � each atom will denote the pair consisting of a presupposition and an

��So A could be ��W � for some set of possible worlds�
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assertion� We will assume that the information of the presupposition is always
included in the assertion of a proposition� This will be inessential��	 Let�s
assume in addition that the base algebra A contains elements m� a� u� s � A
that stand for the assertions of the corresponding propositions��
 Then we can
set�

��m�� � h��mi
��a�� � h�� ai
��u�� � h�� ui
��s�� � h�� si

These simple sentences do not really carry a presupposition� so we get � as a
�rst component��� The second component simply is the associated element in A�
For b the situation is more interesting� b should behave as �John is a bachelor��
As was discussed above� b does carry a real presupposition� We get�

��b�� � hm �a�m � a �ui

For � the following interpretation is available� � is a proposition that is false in
all situations� So it should not carry a presupposition and has as an assertion
� � A� the falsum of the base algebra�

����� � h���i

Note that � is not the bottom of U���W ��� Next we turn to the interpretation
of the connectives� We use � for natural language concatenation and conjunction�
So � stands for the combination of information in time� This is exactly what the
operation � in U�A� should represent� So we set�

��� � ��� � ����� � �����

Recall that on Boolean pairs � behaves as follows�

ha�� ai � hb�� bi � ha� � �a� b��� a � bi

So if we concatenate � and � with interpretation ha�� ai and hb�� bi respectively�
the result is predicted to have presupposition a� � �a � b��� This means that
the presupposition of � carries over to � � �� while the presupposition of � is
weighed against the assertion of � �rst� the result� a� b�� is then added to the
presupposition of � � �� For the �rst two examples this means that we predict�

��a � s�� � h�� a � si
��m � b�� � h�m� a��m � a �ui

We see in the second example that b occurs in a context where part of the
presupposition of b is given� By the operation � on the pairs this part disappears
from the presupposition component� as required�

�	It corresponds directly to only having pairs ha�� ai where a � a�� This move is just a matter
of choosing a uniquely determined representative from an equivalence class� �Cf� section �����

�
Note the overloading of the notation�
��Recall that � � A co
incides with � � A� as A is a Boolean algebra�
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Next we turn to 	� the connective corresponding to natural language im�
plication� Above we have argued that in a residuation lattice �� � � � �� is
a promising candidate for the representation of natural language implication in
residuation lattices� So here we set�

���� 	 ���� � ����� � ����� � �����

From now on we use �� 	 �� as shorthand for �� � � � ��� Let�s look at the
consequences for our examples�

���a	 b��� � h�a� m�� �a� m �u�i
���b	 s��� � hm � a�m �a � �u� s�i
���b	 u��� � hm � a�m �ai

Again we can compare the projection behaviour that we obtain with our intu�
itions� For example� in �if John is an adult� then he is a bachelor�� we predict the
required weakening of the presupposition of b� Looking at the assertion sides
of the examples� we have to take into account that we assume a � a� for any
ha�� ai� We discuss some other connectives� � and �� later� when we compare
our results with the presupposition�as�precondition approach of Van Eijck ����

Presupposition production Above we assigned presuppositions to atomic
propositions directly� We simply set ��b�� � hm �a�m �a �ui� Surely� this is
the obvious way of proceeding� b is an atomic proposition� so we may assume
direct access to its meaning� There is� however� the lingering feeling that or�
dinary Boolean propositions are in a sense more fundamental� We want our
propositions under presuppositions to be de�ned from ordinary propositions�
Fortunately our framework is rich enough to implement this intuition� This
insight derives from the following fact�

Fact �	�

Let c� c� � A be given �for some Boolean algebra A�� Then

hc�� c � c�i � �h�� c�i � h�� ci�

Thus� we can �add� the presupposition c� � A to the assertion c � A by the
residuation operation �� It is reasonable to require c � c�� But if this require�
ment is not satis�ed� our de�nition of � sets things right automatically� since
intersection with c� is built�in for the second component�

We may conclude that � can be used as a presupposition operator� Sug�
gestions for the use of such operators can also be found in the literature� for
example in Beaver ��� or Kracht ����� In our setting the algebraic framework
provides such an operator �spontaneously��

To satisfy the intuition that ordinary Boolean propositions are primary� we
may now set up things as follows� We enrich our language L with the connective
�� We interpret all propositional atoms by pure Boolean propositions� i�e� all
interpretations will be of the form h�� ci� where c � A� Propositions under
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presuppositions are to be de�ned using �� For example� b �� �m � a� u�� will
be a de�nition introducing the abbreviation b�

Note that �U�A� is h�A��Ai� It can be de�ned in the extended language
by �� � ��� Similarly 	U�A� can be de�ned by ��� � �� � ���

If we do not add � but e�g� � to our language� we cannot make the tran�
sition from purely Boolean propositions to propositions under presuppositions�
This is immediate from fact ���� we simply cannot leave the non�zero states
using only �� We will see in subsection ��� that the combination of � and a
symbol for �U�A� does su!ce to introduce that transition 

��� Presuppositions as Preconditions

Above we have applied the pair construction on residuation lattices to anal�
yse Boolean presuppositions� In the literature on dynamic semantics we �nd
another popular formal model of presupposition behaviour� we can treat pre�
suppositions as preconditions of programs� This idea was suggested already in
Van Benthem ��
�� Here we consider the way it is worked out for the case of
Boolean presuppositions by Van Eijck in ������

The starting point for the model of presuppositions�as�programs is the pop�
ular dynamic analogy between the interpretation of natural language and the
execution of programs� Starting from a certain initial state of information the
execution of a program leads to an output state� In a similar way the inter�
pretation of a natural language expression in a certain state of information will
lead the interpreter to a new state of information� This analogy leads to formal
models of natural language interpretation in which the representation language
is a programming language to which an operational semantics is assigned�

In operational semantics the notion of �weakest	 preconditions plays an im�
portant role� The preconditions of some program are the conditions that an
input state has to satisfy to enable the program to be executed� This is closely
analogous to the concept of a presupposition of a natural language expression�
presuppositions are the conditions that are required for the evaluation of an
expression� This is the basic idea of the analysis of presuppositions as precon�
ditions�

So when the preconditions of an expression are met� we can evaluate the ex�
pression� But of course this evaluation still can have two results� the expression
may be true or it may be false� This way we get a three way distinction on the
information states�

� states in which the presuppositions are not met

� states in which the expression is true

� states in which the expression is false

����� already points out that for Boolean presuppositions his predictions agree with Kart

tunen and Peters �����
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Van Eijck ��� introduces such a three way distinction in the operational semantics
of PUL� the Partial Update Logic that he uses for the analysis of Boolean
presuppositions�

PUL � 	 ��� p j � j 	�	 j 	 	 	

The intended interpretation of these programs is roughly as follows� p ranges
over a set of propositional variables� P say� The program p simply checks
whether the current information state supports p� � is the program that al�
ways fails� The intended interpretation of the connectives � and 	 is as usual�
	�	� stands for concatenation of programs 	 and 	�� 	 	 	� is the dynamic
implication of the programs 	 and 	�� This is a test that checks whether each
successful run of 	 can be continued with a successful run of 	��

In the operational semantics for this language an element of partiality is
introduced� we start by assigning� to each p � P � two information states� �p��

and �p��� �p�� is the largest information state that supports or asserts the
information p� Dually �p�� is the largest information state that rejects or denies
the information p� In a total semantics it is taken for granted that a state rejects
p i� it does not support p� but here things are di�erent� We will assume that
�p�� � �p�� � � �consistency�� but it is not taken for granted that �p�� � �p�� �
�� This element of partiality allows Van Eijck to represent the behaviour of
presuppositions� For an atomic test p we know that we have to be in state �p��

to be able to safely assert p� When we have at least information �p��� then we
can safely deny p� Hence if we have at least the information that �p�� � �p��� we
can be sure that we can evaluate p� In this way we get for each atomic test p
the following three information states�

ass�p� � �p��� the assertion of p
den�p� � �p��� the denial of p
pre�p� � ass�p� � den�p�� the presupposition of p

A suitable generalisation of these concepts to arbitrary programs produces the
required analyses of presuppositions of complex programs� This generalisation
is obtained by the following partial version of operational semantics for the
programs in PUL���

De�nition �	� Let a Boolean algebra A be given� Assume that for each p � P �
�p��� �p�� � A are given such that �p�� � �p�� � �� Then we assign to each

��In this presentation of Van Eijck ��� we make some harmless changes in the details� For
example� in ��� �� is the basic connective and � and 
 are abbreviations� Also ��� only
considers the case where A is the power set of some set W of possible worlds�
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program 	 � PUL mappings �	��� �	�� � AA as follows�

a�p�� � a � �p��

a�p�� � a � �p��

a���� � �
a���� � �

a�	�	��� � �a�	����	���

a�	�	��� � a�	�� � �a�	����	���

a�	 	 	��� � a�	�� � �a�	����	���

a�	 	 	��� � �a�	����	���

Here A is the algebra of information states� In the operational semantics we
assign to each input state a � A an output state a�	��� as usual� In addition we
also de�ne a�	��� This can be understood in two ways� First we can see a�	��

simply as an auxiliary notion that we need as a consequence of the partiality in
the semantics� But we can also make intuitive sense of a�	��� �p�� is the largest
�i�e� least informative� state where p is rejected� Then a�p�� is the largest
state below a where p is rejected� This way the idea of denial �and assertion� is
relativised to any input state a � A� Now the next step is the generalisation to
arbitrary programs 	 � PUL� we get a�	�� as the generalised concept of denial
for arbitrary programs��� So now we have the following generalisation of the
three concepts discussed above�

De�nition �	� Let a � A and 	 � PUL be given� Then�

� ass�a� 	� � a�	��

� den�a� 	� � a�	��

� pre�a� 	� � ass�a� 	� � den�a� 	�

It is easy to see that for an atomic test p we simply get ass��� p� � �p���
den��� p� � �p�� and pre��� p� � �p�� � �p��� So we get what we want for atomic
tests�

Actually it is mainly the case where a � � that we are interested in� But
the extra parameter a � A is used in the computation of the presupposition
behaviour of complex programs� It can be shown that�

Fact �	� Let 	 � PUL� a � A be given� Then�

� ass�a� 	� � a � ass��� 	�

� den�a� 	� � a � den��� 	�

��To analyse this partial update logic Van Eijck follows the Hoare
logic approach� an asser�
tion language APUL is introduced to describe the input
output behaviour of the programs
in PUL� We will not discuss the details of this formalisation� Instead we make a shortcut to
get quickly to the resulting analysis of presupposition�
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Now we can compute the presupposition and the assertion of programs of PUL�
We restrict ourselves to the case where a � � and suppress � in the notation�
The result is�

program 	 presupposition pre�	� assertion ass�	�

p �p�� � �p�� �p��

� � �
	�	� pre�	� � �ass�	� � pre�	��� ass�	� � ass�	��
	 	 	� pre�	� � �ass�	� � pre�	��� den�	� � �ass�	� � ass�	���

This way Van Eijck ��� obtains predictions about the presupposition behaviour
of complex programs�

We can compare these results with our own predictions� Recall that our predic�
tions are a direct consequence of the principled choice for residuation lattices in
the analysis of presuppositions� For the comparison we translate each program
	 � PUL into a formula �� of L� Then we can compare ���� �� � U�A� and
pre�	� and ass�	� as given above� hoping that ���� �� � hpre�	�� ass�	�i�

There are obvious candidates for the translation of � and 	� We translate �
by � as both connectives stand for combination in time� And also the translation
of 	 by 	 is an obvious choice� So the translation is given in the following
schema�

	 ��
p p

� �
	�	� �� � ���

�	 	 	�� ��� 	 ����

It is straightforward to check that this indeed produces the required goods�
assuming that ����i �� � hpre�	i�� ass�	i�i �for i � �� ��� we get�

����� � ��� �� � hpre�	��	��� ass�	��	��i
������ 	 ������ � hpre�	� 	 	��� ass�	� 	 	��i

We conclude that in the Boolean case the choice for residuation lattices of pairs
in the analysis of presuppositions produces the same results as Van Eijck�s ���
presuppositions�as�preconditions approach� However� the arguments for the use
of residuation lattices of pairs were quite general and we can hope for gener�
alisations and extensions along these lines� Van Eijck�s result were more ad
hoc� they were produced by a careful implementation of intuitions about the
meaning of speci�c program constructs� We could say that we have obtained a
rational reconstruction of his results�

Excursion� other connectives Van Eijck ��� discusses several extensions

of PUL with other connectives� He introduces strong negation
�
	� choice �

and disjunction t of programs to capture several examples of presupposition
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behaviour in natural language��� The relevant presuppositional properties of
these additional connectives are as follows���

program presupposition assertion

�
	 � �ass�	�
	 � 	� �ass�	�� � pre�	�� � ass�	� � ass�	��

�ass�	� � pre�	���
	 t 	� pre�	� � ��ass�	� � pre�	��� ass�	� � �den�	� � ass�	���

We see that the strong negation of 	 can always be processed� it has presupposi�

tion �� The assertion of
�
	 is the negation of the assertion of 	� It is sometimes

argued that there are cases of negation in natural language that display this
behaviour� Here �it is not true that the king of France is bald � could count as
an example� Such an explicit negation could easily be followed by� for example�
�there simply is no king of France� indicating that the �rst sentence can be uttered
whether France has a king or not� Van Eijck�s strong negation approximates

this e�ect�
�
	 has no presupposition�

The behaviour of natural language disjunction is a notoriously hard problem
both for dynamic semantics in general and for the semantics of presuppositions
in general� It is no surprise that the problem is particularly hard for a dynamic
treatment of presuppositions� Several proposals have been made in dynamic
semantics for the formal representation of natural language disjunction� Van
Eijck ��� discusses two such proposals� � and t� 	 � 	� stand for the choice of
programs� when running 	 � 	� the processor may choose whether it wants to
run 	 or 	�� This construction is not sensitive to the order of the programs in
	�	�� It is often argued that order sensitivity is an essential property of natural
language disjunction� As evidence we �nd for example the sentence�

Either the chicken has escaped or it is in a funny place�

The occurrence of it in the second disjunct depends on the �rst disjunct for its
interpretation� it has the chicken as an antecedent� This is why the construction
	 t 	� is proposed as a more promising candidate for the representation of
natural language �or�� We see that 	 t 	� is order sensitive� it �rst checks for
the presupposition of 	� Then it tries to assert ass�	�� Only if this fails the
program 	� is activated� We see in the table above that only if ass�	� does not
hold we check for the presupposition of 	� and then process the assertion of 	��

Van Eijck ��� already notices that 	t	� can be de�ned as 	� ��	 	 ���	���
So we can also regard t as an abbreviation for this complex expression contain�
ing ��

��We have no room here to summarise the discussion on the behaviour of presuppositions
under negation and disjunction� Consult Van Eijck ��� and Beaver ��� for more details� Below
we just give one or two examples to indicate the problems involved�

��For completeness we also give the semantic clauses for � and �� a�� � ���
 � �a���
 �

a����
�� a�� � ���� � �a���� � a������� a�
�
��
 � a � ��a���
�� a�

�
��� � a���
� The

abbreviation given below will produce the operational semantics of t�

��



The language L is not rich enough to express these additional connectives��� So
we will have to extend L if we want to capture the proposals of Van Eijck ���
for the representation of natural language negation and disjunction� Of course
we have a strong preference for connectives that fall within the paradigm of
residuation lattices� if residuation lattices are indeed the right paradigm for the
study of natural language presuppositions� then the connectives of residuation
lattices should su!ce in the representation language L�

Fortunately� the residuations indeed do the trick� If we extend L with the
other residuation lattice connectives we can write�

�

� � ��� ��� ��� � �
� � �� � �� ��� � ��� �� � �� � ��

Here we use the connectives �� �� �� � and the constants � and �� This seems
to be a bit much� It is only natural to wonder how many of the connectives of a
residuation lattice we really need for the treatment of the simple examples that
we have been looking at so far� We will see in subsection ��� that we can in fact
do all the constructions that we have seen so far using only �� �� � and ��

Note that Van Eijck �rst introduces � to the language and then goes on
to discuss how t is probably a better representation of natural language dis�
junction� We have seen now that we can represent � in the full language of
residuation lattices using a rather complicated expression� But if it is really t
that we are after� we can do much better� We �nd that�

��t�� � �� � �
�

�� �����

also works�

��� Three Valued Logics

In this subsection we discuss connections with three valued logic� We will show
how one can see our system as a three valued logic� Then we will see that our
dynamic implication 	 corresponds to a proposal by Kracht ���� for a treatment
of presuppositions in three valued logics�

In order to read our proposal as a three valued logic� we �rst have to provide
the truth values� Starting from the Boolean truth values� we can construct three
suitable pairs� h���i� h���i and h�� �i� We can see these as truth values� h���i
gives an update function which is always de�ned and has the assertion �� It is
the natural candidate for falsum in our setting� We denote it by 	� Similarly
h�� �i is the natural candidate for verum� We denote it by �� h���i then is
the third �truth value�� It has the property that it both presupposes and asserts
everything� So the corresponding update function is never de�ned� but if it were

��A quick argument involving some of the abbreviations of the next subsection� set � � �
and � � �� the de	nedness ordering on the truth values� The connectives of L are monotonous
along the de	nedness ordering� Hence all expressions of L are monotonous along the de	ned


ness ordering� But we 	nd
�

�� � �v
�

�� ��

��



de�ned it would be extremely informative� We denote it by �� Note that in the
ordering on the pairs 	 � � � ��

In section � we will discuss in more detail how this idea of a correspondence
with three valued logic works out formally� we will give a three valued repre�
sentation theorem and prove a functional completeness theorem� Here we give
the truth tables for the most interesting connectives�

	 	 � �

	 � � �
� 	 � �
� � � �

� 	 � �

	 	 	 	
� 	 � �
� � � �

These connectives are not new in the literature on three valued logic��� they

correspond to the connectives
�
� and

�
� of Kracht� He arrives at these con�

nectives by informal considerations regarding the direction and the economy
of computation� the 
 indicates that the intended direction of computation is
from left to right� By the principle of economy of computation� Kracht assigns
a truth value as soon as the left�to�right computation allows us to predict the
outcome of the procedure as a whole�

The fact that we have produced a familiar three valued logic is encouraging�
The systematic and general considerations of Visser ���� agree with the speci�c
considerations of Kracht about directed connectives� So we can hope that also
when we apply the techniques of ���� in more general situations the results will
keep making sense�

� Results about the System

An important question for the algebraic approach is� which signature should
our algebras have� Here we have chosen for residuation lattices� Residuation
lattices have a synchronic component �a lattice� and a diachronic component
�a monoid� that are related by the residuations� We have argued informally
for the presence of both a synchronic and a diachronic component in the analysis
of information �ow� But are the residuation lattices really the proper way to
substantiate these intuitions� Similarly we have to test the implementation of
the ideas concerning partiality that we have discussed above�

It is our opinion that the answer to such questions should consist of further
philosophical considerations �as in section ��� test applications �as in section ��
and �last but not least� a careful investigation of the formal properties of the
system� In this section we discuss four results about the formal properties of the
system that we have seen in section �� There we used a simple Boolean algebra

��We already pointed out that in the literature on presupposition our Boolean system
corresponds to Karttunen and Peters ���� approach� For details on the connection with Kracht

consider p��� of ����� Kracht traces the origin of
�
� back to Hayes ���� Kracht�s truth values

correspond with our truth values as follows� T� �� F� �� U� �� Note that in Kracht�s ordering
relation� the de	nedness ordering� T and F are incomparable� where we obtain � � � � ��

�




to construct an algebra of pairs in the way discussed in section �� The resulting
algebra was used for the interpretation of a simple propositional language with
presuppositions� The results that we will prove are�

�� expressive completeness

�� a representation theorem for Boolean pair algebras

�� functional completeness

�� a decision method for the valid equations of Boolean pair algebras

These results are presented in the subsections below� Each subsection starts
with a statement of the result of that subsection� This makes it possible for the
impatient reader to skip the details of the proofs at �rst reading�

We end the section with some remarks and questions about the axiomatisa�
tion of valid equations and sequents for Boolean pair algebras�

��� Expressive Completeness

In this subsection we prove an expressive completeness result� The question
that we consider is as follows� in section � we have assumed that the notion of
information content is represented by a Boolean algebra A� the elements of A
are the things we wish to talk �about�� Then we went on to construct the pair
algebra over this Boolean algebra to capture the idea of negative information�
In principle there is no restriction on the way positive �or negative� information
can be combined� if a and b both occur as positive �or negative� information�
then also the Boolean combinations �a � b� a � b� �a� b��� � � � can be expected�
So we would like to be able to express all these Boolean combinations of the
components� This is an expressivity requirement� Here we will discuss how the
requirement can be met� To be able to present our results in a nice way� we �rst
introduce some standard operations on products and disjoint unions��	

De�nition �	� Let A�� A�� B� C�D�� D� be sets� Consider the Cartesian prod�
uct A� �A�� 	�� 	� are the usual projection functions on A� �A��

� 	i�a�� a�� � ai

Suppose fi � B � Ai� Then �f�� f�� � B � �A� �A�� is the function with

� �f�� f���b� �� hf��b�� f��b�i

We write � for composition of functions� reading g � h as� �rst h� then g� Then�

� fi � 	i � �f�� f��

The disjoint union A� �A� of A� and A� is the set �f�g � A�� � �f�g � A���
�� and �� are the usual embedding functions to A� �A��

�	Also the notation conventions from subsection ��� will be used abundantly�

��



� �i�a� �� hi� ai

Suppose gi � Ai � C� Then �g�� g�� � A� �A� � C is the function with�

� �g�� g���hi� ai� �� gi�a�

We have� gi � �g�� g�� � �i� Finally� if hi � Ai � Di� then h� � h� � A� � A� �
D� �D� is the function with�

� h� � h��ha�� a��i � hh��a��� h��a��i

Let�s �x a Boolean algebra A� We will not work in the full structure U�A��
but in the reduced structure Uo


���������A�� where we leave out 	 and reduce the

signature to �� �� � and �� We will be working with ����� ���� for most of
this subsection� so it will be convenient to write W�A� for Uo


���������A� here�
Let a set of propositional variables P be given� p will range over P � De�ne T
as follows�

T � � ��� p j � j� j � � � j ��� ���

An assignment � is a function from P to the elements of W�A�� We interpret
the formulas of T in W�A� as follows�

� ��p��� �� ��p�� ������ �� h�� �i� ������ �� h	� 	i�

� ��� � ���� �� ������ � �������

� ����� ����� �� � ������ � ��������

We consider ����� as a function from assignments to the elements of W�A�� We
can interpret the language L into T via� say� ���	 as follows�

� p	 �� p� �	 �� �� � ��� �	 �� ��

� �� � ��	 �� �	 � �	�

� ��	 ��	 �� ��	 � �	 � �	�

In the notation system provided by T we stay close to the notation in residuation
algebras� we use � for the unit of the ��operation and reserve � for the top
element of the pair algebra� Our choice of connectives and notation in L was
based on natural language considerations� The translation shows how the two
languages are connected� this way T can be considered as an extension of L�

We will also use a language V to speak about the original structure A� V
will be the standard language for ordinary propositional logic with� as set of
propositional atoms� P� �� P � P and with connectives �� �� � and �� We
will write pi for hi� pi� V is interpreted in the standard way into A� Say this
interpretation function is ����� b � V � A� Now we have three languages�

� L� as introduced before� L is the language we use for representing ordinary
reasoning with presuppositions� It contains the �dynamic implication� 	�
An atomic formula p � L has a presupposition and an assertion� but these
remain implicit in the notation� just as in natural language�

��



� V � the language of ordinary propositional logic� but we have doubled up
the number of atomic propositions� for each p � P there will be two
atomic propositions p� and p� in V � corresponding intuitively to the pre�
supposition and assertion of p � L� V is interpreted in the Boolean algebra
A�

� T � the language that is closest to the pair algebras� Both T and L are
interpreted in the pair algebra W�A�� The main di�erence is in the im�
plications� we have ��	 �� in L corresponding to �� � � � �� in T �

We map assignments � for T to assigments "� for V as follows� "��pi� �� 	i���p���
Let�s say that "� �� #�����
 Let us return for a moment to the speci�cation of
the meaning function for T � E�g� consider the clause

� ��� � ���� �� ������ � ������

When we spell this out� we get�

� Suppose ������ � ha�� ai and ������ � hb�� bi� Then�
��� � ���� �� ha� � �a� b��� a � bi�

The speci�cation of ��� � ���� employs Boolean terms in the metalanguage� We
could have speci�ed ����� in a di�erent way� employing rather the Boolean terms
of our object language V � �rst translate T �terms to pairs of V�terms and then
interpret the components of these pairs via ����� b� Here is the way this works�
We de�ne the translation function ���� � T � V � V as follows�

� p� �� hp�� p�i� �� �� h���i� �� �� h���i�

� �� � ��� �� h	����� � �	����� � 	������� �	����� �	������i�

� ��� ��� �� h	������ 	����� �	����� � �	����� � 	������i�

Suppose �� � h��� ��i� It is easy to see that we have�

������ � h ������ b"�� ������ b"�i�

In other words� ����� � � ������ b� ������ b� �#���

�
� is in fact the standard isomorphism between �A � A�P and AP�P � We have� ���� �
��� � �� �� � ��� It�s inverse ��� is given by ������ � �� � ��� � � ���� We have e�g�

���� � �� �� � �� � ��� ��� � �� �� � �� � ��� � ��� � �� �� � ��

� �

��We can write this in an even more fancy way by considering ��	�� as a binary function
taking formulas and assignments as arguments�

��	�� � � ��	�� b � ��	�� b� � ��� � id� �� � id� � ��	�� ���	

��



Note that we will have� ������ b"� � ������ b"�� We are going to prove the
converse of the above observation� consider any pair of V�formulas ��� ��� We
will produce a T �term � �� T ���� ��� such that

������ � � ������ b"�� ������ b"� � ������ b"��

Note that in case ������ b"� � ������ b"�� this reduces to

����� � � ������ b� ������ b� �#�

Thus� for suitable pairs� T will be the inverse of �����

Summarising� if we make up a new assertion and a new presupposition as a
Boolean combination of a old assertions and presuppositions� then there will be a
term in T that produces exactly this new assertion and this new presupposition�
We will call this property� expressive completeness� or� in our speci�c case where
the underlying algebra is Boolean� Boolean completeness�

We have already met the projection functions 	i� These functions bring us
from elements of W�A� to elements of A� It is quite convenient to �lift� these
functions to functions from W�A� to W�A�� Thus we are led to the following
de�nition�

De�nition �	� We consider the following projections�

� pi�ha�� a�i� � h�� aii�

If we put emb�a� �� embA�a� � h�� ai� we can rewrite our de�nition as�
pi �� emb � 	i�

At this point it is a good idea to acquire some experience in computing in W�A��

�� As pointed out in fact ���� we have�

�a� h�� ai � h�� bi � h�� a � bi�

�b� �h�� bi � h�� ai� � h�� �a� b�i�

�� �� � �� � h���i�

�� �� � ha�� ai� � h�� a�i� This means that p� is de�nable�

�� h�� a�i � ha�� ai � h�� ai� I�o�w� p���� � � � p����� Since we already saw that
p� is de�nable� this tells us that p� is de�nable�


� h�� ai � � � h�a��i� Note that �h���i � h�� ai� � h���ai� Ergo�
�h���i � h�� ai� � � � ha��i� So the mapping � � h�� ai �� ha��i is
de�nable�

�� ha��i � hb��i � ha� a � bi�
We see that�
�h�� ai � �h�� bi � ha� a � bi�

�




In this exercise in computing with pairs we show a few important tricks� So it
really is worth your while to look at the �exercise� in some detail� Next we are
ready for some de�nitions� Let �� �� be T �terms�

� $p���� �� �� � ��� Note that $p� maps syntax to syntax� We have�
��$p������� � p�� �������� In a more elegant notation� this tells us� ��$p������ �
p� � ����� �

� $p���� �� $p���� � �� We �nd� ��$p������ � p� � ����� �

� De�ne $� �� �� � ��� So �� $���� � h���i�

� De�ne ���� �� � $� � �� � ��
We �nd� �������� � � � ����� �

We translate V via� say� ���
 into T in the following way�

� �p��
 �� $p��p�

� �p��
 �� $p��p�

� �
 �� $�

� �� ���
 �� �
 � �


� ��� ��
 �� ��
 � �
�

Lemma �	� Let � be a term of V � We have� ���
��� � h�� ����� b"�i� In other
words� ���
�� � emb � ����� b �#�

The proof is a simple induction on �� using fact ����

The lemma shows that for a Boolean combination of pi�s �let�s call it ��� we
can give a term �
 � T such that the assertion of �
 is exactly �� This is an
important step towards proving expressive completeness� if we can do something
similar for presuppositions� then we are done 

Fortunately we do not have to do all the work again for the presupposition
side� We can simply use the same translation ���
 in combination with the
operation � that was introduced earlier� Consider two V�terms �� and ��� We
have�

������
�� � ���
������ � h ������ "�� ������ "� � ������ "�i

We may conclude that the formula T ���� ��� that we were looking for is�

T ���� ��� �� ����
�� � ���
����

This gives us our expressive completeness result�

Another way of looking at our result is as follows� we have shown that in the pair
algebra over a Boolean algebra the Boolean connectives �� � can be introduced

�	



as abbreviations For� the connectives on pairs are de�ned in terms of Boolean
combinations of their presuppositions and assertions and here we have shown
that such Boolean combinations can already be de�ned using the connective in
T � For � we have a slightly weaker result� � makes essential use of the arti�cial
bottom element in the pair algebra� Therefore there is no hope to de�ne � in
T � But we can de�ne a function that coincides with � on the inputs where �
does not give 	�

��� Three Valued Representation Theorem

For Boolean algebras we have the famous Stone representation theorem� This
theorem says that any Boolean algebra is �isomorphic to� a subalgebra of a
power set algebra� Or� equivalently� any Boolean algebra is a subalgebra of
an algebra �M for a suitable M� Here � is the Boolean algebra of truth values
f���g���

For the pair algebras we obtain a similar result� but this time we have to
use three truth values� Let�s use the notation � �� h���i� � �� h�� �i and
	 �� h���i� Note that 	 
 � 
 � and

i � j �

��
�

	 if i � 	
j if i � �
� if i � �

I�o�w� i � j � min�i � �i % j � ��� ��� We de�ne � � Uo���� So � is the unique
reduced residuation algebra on f	� �� �g� with signature ��� ���� �� ����� where
� and � are as speci�ed above�

Proposition �	� Let A be a Boolean algebra� Then Uo�A� is a subalgebra of
�M for a suitable M �

Proof

We start by observing that A is a subalgebra of �M � This means that each a � A
can also be considered as a mapping �a� � �M � Given any ha�� ai � Uo�A�� we
de�ne fha��ai � �M by

fha��ai�m� � h�a���m�� �a��m�i

Remember that we assume that a � a�� hence h�a���m�� �a��m�i will be indeed in
�� Now it is easy to check that everything commutes with the operators� For
example�

fha��ai�hb��bi�m� � fha���a�b���a�bi�m� �
h�a� � �a� b����m�� �a � b��m�i �
hmin��a���m��max��� �a��m�� �b���m����min��a��m�� �b��m��i �
h�a���m�� �a��m�i � h�b���m�� �b��m�i � fha��ai�m� � fhb��bi�m�

��In fact for any Boolean algebra A we can use M � Max�l�A�� the set of maximal 	lters
of A�

��



and

fha��ai�hb��bi�m� � fha��a� � b� � �b�a�i�m� �
h�a���m�� �a� � b� � �b� a���m�i �
h�a���m��min��a���m�� �b���m��max��� �b��m�� �a��m���i �
fha��ai�m� � fhb��bi�m�

and

f
�m� � h����m�� ����m�i � h���i � 	

So we really do obtain a subalgebra� as required� �

The representation theorem shows us that on Boolean algebras the pair con�
struction simply gives a three valued logic� This shows again that in the simple
case of Boolean algebras the pair construction makes sense� We already came
to that conclusion in section �� where we noticed that for simple examples we
obtained �the expected results��

��� Functional Completeness

In this subsection we show functional completeness of our semantics in three
valued logic� Let T �� T
���������P �� where P � fp�� � � � � pmg� Each term

� � L de�nes a truth function f� � ���
P �� viz� f� � ����P � ��� ��� Now it is only

natural to wonder which f � ���
P � can be obtained as the truth function f� of

some term � � We will answer this question by proving functional completeness�

Proposition �	� �Functional completeness� Let f � �P � � be given� We prove
that there is a � � T such that ��� ��� � f����

We will give two di�erent proofs of this proposition� providing rather di�erent
terms� The �rst proof uses our result of subsection ����

Proof

�&via Boolean Completeness'� Let � � P � P � �� We can send � to (��� ��
� � P � �� by setting� ��p� �� h��p��� ��p�� � ��p��i� It is easy to see that
if (�#���� � �� where # is as given in subsection ���� Moreover� if for all p�
��p�� � ��p��� then #�(���� � ��

Consider f � �P � �� De�ne )i�f� � �P�P � �� as follows�

)i�f���� �� 	i�f�(������

I�o�w� )i�f� � 	i � f �(� Ordinary two valued functional completeness provides
ti that generate these mappings )i�f�� i�e�� for all �� )i�f���� � ��ti�� b�� We
�nd that f��� � h ��t��� #���� ��t��� #���i� where # is de�ned as in subsection ����
We may apply the result of subsection ��� to obtain the desired term � � �

��



So we see that functional completeness is a consequence of Boolean complete�
ness� Still� it would be nice to have a proof that is more analogous to the usual
one for ordinary propositional logic� generalising the use of disjunctive normal
forms� Such a construction is given by the following proof�

Proof

�&construction of Disjunctive Normal Forms'� In this proof we will use the
connectives � and �� We have already seen that these are de�nable in section ����

Our technique for proving functional completeness is a generalisation of the
idea of disjunctive normal forms� The �p that we introduce below generalise
the idea of a literal �Step ��� Then conjunctions of literals describe valuations
�Step ��� Disjunctions of such terms describe sets of valuations� i�e� proposi�
tions �Step ���

Step 	� n � 	� obvious� � and � are constants of the language and 	 can be
de�ned as �� � ���

Step �� n � �� First we consider the basic functions�

p �
 � �	 � p� �� � $p��p� �� � �	 � $p��p�� �
 � � �� � � �� � �

	 � 	 	 � 	 	
� 	 � 	 	 � 	
� 	 	 � 	 	 �

This table gives us the basic truth functions in one variable� We can now use �

to get an arbitrary truth function in one variable�

Step �� other n� Again we create the basic functions �rst� So let f and � � �P

be given such that f��� � � and f��� � 	 for all other inputs �� In step � we
have provided �v�p� for all v � �� Then�

�f � ���p���p�� � � � � � ���pn��pn�

works� Next we can produce g such that g��� � � and g��� � 	 for all other

inputs � by stipulating� �g � �f ��� The other functions in ���
P � can be obtained

from the basic ones using �� �

��� A Decision Method

We present a decision method for the equational theory of Boolean pair algebras�
We indicate how to decide whether an equation � � � � in the language T ��
T
���������P � of Boolean pair algebras� W�A� �� Uo


���������A�� is valid� i�e�

whether it has the property that� for all Boolean algebrasA and all � � W �A�P �

��� ��W�A�� � ��� ���W�A���

��



We consider only terms of signature ����� ����� There are two ways to justify
this choice� one is the fact that this set is Boolean complete� So all other
connectives can be introduced as abbreviations� This is a fairly convincing� but
purely technical argument� for example� it will no longer hold if our applications
require more than Boolean algebras to start with� There also is a less technical
reason for the choice� we regard these connectives as the dynamic kernel of a
residuation algebra� Clearly � and � are truly dynamic connectives� they are
about addition of information in time� The other two� � and �� are not purely
diachronic �for example we use � to de�ne �� but it seems that they are a
natural and indispensable choice when we want to give the formalism the sort
of expressivity required for the dynamic analysis of natural language �cf� section
���

We employ the translation ���� from subsection ���� Say �� � h��� ��i and
� �
�

� h� ��� �
�
�i� Remember that the �i� �

�
i are in the language V � The following

theorem follows directly from our de�nitions�

Theorem �	� � � � � is valid i
 �y� fp� � p� j p � Pg � ��� � � ��� � ��� � � ����
Here � is derivability in ordinary propositional logic�

So it is su!cient to apply the familiar decision method for propositional logic
to �y��

��� Some Remarks on Axiomatisation

In this subsection� we make a few remarks and we pose a few questions con�
cerning axiomatisation� By our previous results the axioms of the following four
groups are valid in all Boolean pair algebras�

pairing � � ���$p����� � ��$p������
projection $p���� � � � $p����

$p���� � $� � $p����
$p��� � �� � $p���� � �$p���� � $p�����
$p��� � �� � $p���� � $p����

$p���� �� � $p����
$p���� �� � $p���� � $p���� � �$p���� � $p�����

boolean Boolean algebra applies to expressions built up from $pi�p�
normal form $p��p� � $p��p� � $p��p�

When� in specifying the axiom �boolean�� we say Boolean algebra applies � � � we
mean with � in the role of �� � in the role of �� � in the role of ��

Suppose � � � � is valid� We employ the translation ���
 of subsection ����
We use an auxiliary translation ���	 de�ned just like ���� of subsection ��� with
the exception that we translate p to hp�� p� � p�i� Let �	 � h��� ��i and � �

	
�

h� ��� �
�
�i� Clearly �� � � �� and �� � � �� hold in all Boolean algebras� It follows� by

the completeness theorem for ordinary propositional logic and by the boolean
axioms above� that� � �
i � � �



i � Hence� by the normal form axioms and the

��



projection axioms� � ���$p����� � ��$p������ � ���$p��� ��� � ��$p��� ����� We may
conclude� by the pairing axiom� that � � � � ��

We can also see that the Boolean pair algebras form a variety� i�e� that every
structure satisfying the equations of Boolean pair algebras is isomorphic to a
Boolean pair algebra� Given any structure that satis�es the above equations� we
can extract a Boolean algebra� say B� by restricting ourselves to the elements of
the form $pi�a�� �Every such element can both be written in the form $p��c� and
$p��d��� The mapping hb�� b�i �� ��b� � �b�� gives us an isomorphism between
W�B� and A� E�g� the injectivity of the mapping follows from�

$pi���$pj��a��� � �� $pj��a��� � � $pji�ai��

We admit that the above axiomatisation is not very satisfactory� So we pose
the following question�

Open Question �	� Is there a satisfactory axiomatisation of the valid identi�
ties for Boolean pair algebras for the signature ����� �����

Axiomatising the equational theory of Boolean pair algebras for the given sig�
nature is but one of the tasks at hand� Here is another�

Open Question �	� Is there a satisfactory axiomatisation of the valid identi�
ties for Boolean pair algebras for the signature ����� ��	��

Remember that � stands for the pair h���i and not for 	� Our question ���
seems even more salient than question ���� since it asks for an axiomatisation of
the part of our language that really is concerned with presuppositional reason�
ing� A brief inspection shows that the equational principles valid for ����� ��	�
are markedly di�erent from the principles valid in �the propositional logic of
DPL�� See ��� and ����� Thus� presuppositional reasoning is truly a distinct
branch of dynamics from relational resetting� �In fact in the classical system
DPL of Groenendijk en Stokhof the presuppositional aspect is fully eliminated
by their use of total assignments on a �xed set of variables���

In dynamic approaches to logic there are several notions of valid inference�
each of which deserves to be axiomatised� We brie�y discuss one alternative
that is crucial to the semantics of natural language� It is closely related to the
dynamic notion of implication that we saw in section �� For �� � � W �A��

De�nition �	
 � j� � � � � � � � � �

The idea behind this notion is that� in the context �� � provides no new infor�
mation �synchronically speaking�� � � � � �� So it gives a natural combination
of the two ways of looking at information� we consider � in context� which is a
typically diachronic move� But the ordering of information that we use in this
context simply is the synchronic ordering ����

��Alternatively j� can be obtained by setting U � f�g and D � f�g in the setting of Kracht
���� p����

�




Now the de�nition of j� results from one additional requirement� we demand
that the context � is a state� Note that in Boolean algebras this is an empty
requirement� all a � A are states� But still� in the Boolean pair algebra U�A�
it is not an empty requirement at all� For Boolean pairs we have chosen as the
set of states S � f� j � � �g and � � h�� �i is not the top of the pair algebra ��

It will be clear to the reader that a decision procedure for this notion of
inference follows immediately from the decision procedure for the equational
theory� We end with a last pair of questions�

Open Question �	�
 Give a sequent system axiomatising j� for each of the
signatures ����� ���� and ����� ��	��

� Conclusion

Above we have presented an algebraic approach to the semantics of presup�
positions� Presuppositions are regarded as negative information and a general
construction is given that captures this intuition� To test the construction we
have worked it out for the special case of Boolean presuppositions� We have dis�
cussed the representation of examples� compared our representation with other
approaches to Boolean presuppositions and discussed formal properties of the
system�

We conclude that the results are encouraging� The applications are in agree�
ment with our basic intuitions about the examples we discuss� the system that
the general construction produces agrees with systems known from the linguistic
literature� and the system we arrive at has rather nice formal characteristics�
This encourages us to try to apply the construction also to more complicated
examples in future research�

It should be pointed out that what we have proposed is a general construc�
tion� This is why the points of agreement with what�was�already�known are
encouraging and not disappointing� The generality of our approach suggests
that we will be able to extend satisfactory results for simple cases in a system�
atic way to other cases� And we may hope that these extensions will be equally
satisfactorily�

Of course� the generalisations still have to be carried out� And we have to
admit that the most naive extensions have already proved problematic� But
there are many less naive options left open that we intend to explore in further
research�

��We recommend for example ��� for further discussion of dynamic notions of inference�

��
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