
Clausi�cation in Coq

Marc Bezem

Utrecht University �

Dimitri Hendriks

Utrecht University y

Abstract

Clausi�cation is an essential step in the so�called resolution method� one of

the most successful procedures for automated theorem proving� Anticipating

the use of resolution in proof construction systems based on type theory� we

elaborate the clausi�cation procedure in Coq and illustrate its usefulness� The

results presented in this paper also constitute the formal veri�cation of the

correctness of clausi�cation� The complete clausi�cation program and the

correctness proof can be found on the following Internet address�

http���www�phil�uu�nl��bezem�Coq�clausification�v

� Introduction

The proof generation capabilities of proof construction systems such as Coq ����
based on type theory� could still be improved� Resolution based theorem provers
such as Otter ��� are more powerful in this respect� but have the drawback that
they work with normal forms of formulas� so�called clausal forms� Clauses are
	universally closed
 disjunctions of literals� and a literal is either an atom or the
negation of an atom� The clausal form of a formula is essentially its prenex�Skolem�
conjunctive normal form� which need not be exactly logically equivalent to the
original formula� This makes resolution proofs hard to read and understand� and
makes the navigation of the theorem prover through the search space very di�cult�
Type theory� with its highly expressive language� is much better in this respect� but
the proof generation capabilities su�er from the small granularity of the inference
steps and the corresponding astronomic size of the search space� Typically� one
hyperresolution step requires a few dozens of inference steps in type theory� The
idea of the present project is to combine the best of both worlds�

The ideal procedure would be as follows� Identify a non�trivial step in a Coq

session that amounts to a 
rst order tautology� Export this tautology to Otter�
and delegate its proof to the Otter inference engine with all its clever handles such
as strategies� weights� the hot�list� and so on� Convert the resolution proof to type
theoretic format and import the result back in Coq�

Most of the necessary metatheory is already known� The prenex and conjunctive
normal form transformations can be axiomatized by classical logic� Skolemization
can be axiomatized by so�called Skolem Axioms� which can be viewed as speci
c
instances of the Axiom of Choice� Higher order logic is particularly suited for this
axiomatization� we get logical equivalence modulo classical logic plus the Axiom of
Choice� instead of awkward invariants as equiconsistency or equisatis
ability in the

rst�order case�

�Department of Philosophy� P�O� Box ������ 	
�� TC Utrecht� The Netherlands� e�mail
bezem�phil�uu�nl�

ye�mail hendriks�phil�uu�nl�

�



The automation of the clausi
cation part of the project has been carried out
and will be described in the sequel� Converting resolution proofs to lambda terms is
a parsing and code generation problem of manageable di�culty� This is planned as
the next step in the project� Furthermore� by adapting a result of Kleene� Skolem
functions and �axioms can be eliminated from resolution proofs� which allows one
to obtain directly a proof of the original formula� This will be the third and 
nal
step in the project�

Of course application has to be limited to mathematics that is compatible with
classical logic 	plus� as yet� the Axiom of Choice
� This is the price to be paid for the
automated theorem proving procedure that we propose� it may invoke unnecessary
applications of classical logic� In particular it is possible that the automated proofs
of intuitionistic tautologies are not optimal in the sense that they use classical logic�

The paper is organised as follows� In the next section we introduce the Drinker�s
Principle as running example� In Section � we set up a formal representation of

rst�order formulae� In Section � we give a schematic overview of the clausi
cation
procedure� which is applied to prove the Drinker�s Principle in Section �� In Sec�
tions � and � we give some more details of the clausi
cation procedure and of its
correctness proof� respectively� In the last Section � we describe future research�

� Example� the Drinker�s Principle

As running example we use a well�known classical tautology called the Drinker�s
Principle� in every non�empty group of people there is somebody such that if 	s
he
is drunk� then everybody is drunk�

Otter ��� refutes almost instantaneously the negation of the Drinker�s Principle�

��exists x �drunk�x� �� �all y �drunk�y�����

after 
rst clausifying this into�

� �� drunk�x�	

� �� �drunk�
f��x��	

where 
f� is a Skolem function� by the following refutation� with 
F for false�

� �� drunk�x�	

� �� �drunk�
f��x��	


 �binary��	���	�� 
F	

The example illustrates well that the clausal form is quite di�erent from the original
formulation of the problem� We leave it as an exercise to the reader to make
the relation between the original formulation of the problem and the clausal form
precise�

In type theory� and in particular in Coq� the typing relation is expressed by t�T�
to be interpreted as �t belongs to T� when T�Set 	�T is a set�
� and as �t is a proof
of T� when T�Prop 	�T is a proposition�
� Furthermore� �x�T� denotes universal
quanti
cation� �x�T� lambda abstraction� and �M N� well typed application� Coq

uses �� for implication between propositions as well as for function spaces� � for
negation and EX for existential quanti
cation� Now the Drinker�s Principle can be
formulated as follows�

Lemma Drinker�s�Principle�

��p�Prop��p���p�����S�Set��drunk�S��Prop��s�S�

�EX x�S � �drunk x����y�S��drunk y��	

�



In order to prove the Drinker�s Principle in Coq a dozen of tactic commands
have to be entered by the user� generating a proof term of about half a page�

The example illustrates the di�erences in style� Otter is real automated theorem
proving� The Otter proof is a refutation of the clausal form of the negation of the
Drinker�s Principle� As it stands� the proof is incomplete with respect to the original
statement� In fact� due to the Skolem function 
f�� the signature of the language has
been extended and a di�erent statement has been proved� On the other hand� Coq is
interactive� the proof is detailed and fully explicit as lambda term� It clearly shows
the use of classical logic in the assumption �p�Prop��p���p� and the polymorphism
in �S�Set� and �drunk�S��Prop�� Moreover� the assumption that the domain is
not empty is made explicit by �s�S� in the formulation of the lemma�

� Propositions as formal objects

The universe Prop of all propositions in Coq includes higher order propositions�
in fact full impredicative type theory� and is as such too large for our purposes�
Moreover� Coq supplies only limited computational power on Prop� In order to
manipulate 
rst�order propositions as syntactic objects on one hand� and re�ect
upon them on the other hand� we adopt a two�level approach� with higher 	meta�

level Prop and lower 	object�� formal
 level prop� On both levels objects will be
called �propositions�� and it should be clear from the context which level applies�

We found it necessary to de
ne prop as an inductive set in which 
rst�order
propositions can be represented formally� Objects in prop will be interpreted in
Prop� As every inductive set� prop is equipped with higher order primitive recursion
as powerful computational device� To begin with� we need a domain of discourse D
and de
ne the inductive set prop depending on D�

Parameter D� Set	

Inductive prop � Set ��

f�atom � D �� prop

� f�not � prop �� prop

� f�and � prop �� prop �� prop

� f�or � prop �� prop �� prop

� f�impl � prop �� prop �� prop

� f�ex � �D �� prop� �� prop

� f�all � �D �� prop� �� prop	

In order to accomodate Skolemization the formal language is extended with a
higher order existential quanti
er� Therefore we de
ne prop� with one constructor
f�Ex� Here SKF is the type of Skolem functions� A Skolem function has two argu�
ments� an index and a list of D�elements� and maps these to D� The reason for this
speci
c way of representing Skolem functions will be explained later�

Inductive prop� � Set ��

f�Ex � �SKF �� prop� �� prop�	

We proceed by de
ning E and E�� canonical homomorphisms� that interpret

�E �as well as E�
 can be viewed as a truth predicate� The classical complications entailed by
such a predicate �diagonalization� paradoxes� and worse
 are properly avoided by Coq� For example�
we cannot take prop for D in the inductive de�nition of prop above� as D occurs negatively in the
argument types of the constructors f ex and f all� Furthermore� after abstraction from D as
parameter of the inductive de�nition� we get prop�Set��Set and we cannot apply prop to itself
for simple typing reasons�

�



prop� resp� prop��objects in Prop� by primitive recursion� We declare a unary
predicate symbol drunk to form atoms�

Parameter drunk � D��Prop	

Fixpoint E �phi�prop� � Prop ��

Cases phi of

�f�atom d� �� �drunk d�

� �f�not p� �� ��E p�

� �f�and p q� �� �E p����E q�

� �f�or p q� �� �E p����E q�

� �f�impl p q� �� �E p����E q�

� �f�ex dp� �� �EX x�D � �E �dp x���

� �f�all dp� �� �x�D��E �dp x��

end	

Definition E� � prop���Prop ��

�p�prop�� Cases p of

�f�Ex skfp� �� �EX f�SKF � �E �skfp f���

end	

� Schematic overview of the whole procedure

A given 
rst�order proposition � in Prop will be translated to its corresponding
formal counterpart in prop by a syntax�based translation Quote outside Coq 	as yet�
by hand
� We abbreviate Quote��� by f �� Since objects in prop represent certain
objects in Prop� we have de
ned above the canonical interpretation function E from
prop to Prop� E and Quote should be such that � and the normal form of �E f ��

are identical� whenever Quote applies� Also� Quote�E f �� has to be identical to
f �� The function CLAUS� applied to f ��prop� computes the clausal form of f ��
which is subsequently mapped into Prop by E�� See Figure � for the schema of the
clausi
cation�

Suppose that� during a Coq proof session� a 
rst�order tautology � 	in Prop
 is
to be proved� First� � has to be translated to its corresponding formal counterpart�
f �� Second� the clausi
cation function CLAUS is applied to the negation �f not

f ��� 	Recall that resolution is a refutation procedure�
 Preservation of derivability
modulo the principle of Excluded Middle 	EM
� the Axiom of Choice 	AC
 and the
condition that D is non�empty� is ensured by the following theorem�

Theorem CLAUSeq �

EM��AC��D���p�prop��E p�����E� �CLAUS p��	

The last step is the extraction of clauses from �CLAUS �f not f ���� which is done
by the function MIMPL� Applying the function MIMPL to �CLAUS �f not f ����

yields an implication of the form C� � � � � � Cn � �� where the Ci are the clauses
from the clausal form of ��� These clauses can conveniently be introduced in the
context� Note that MIMPL swaps the polarity of the proposition� so that we are back
to the polarity of ��

If � is indeed a tautology� then the clauses obtained in this way are inconsistent�
By the completeness of resolution� see for example ���� there exists a resolution
refutation of these clauses�

In the next section we illustrate the outlined procedure by an example�

�



�

�

�

� �������������������������������������������������������������������������������������������������������������������������������������

Propprop

CLAUS

prop�

E

E�

f � �E f ��

�

�CLAUS f �� �E� �CLAUS f ���

��EM AC

Quote

Figure �� Schema of the clausi
cation procedure� the proof of the equivalence in
the right box can be generated uniformly in f ��

� Back to the Drinker�s Principle

We phrase the formal counterpart of the discussed Drinker�s Principle as follows�

Definition f�DP ��

�f�ex �x�D��f�impl �f�atom x��f�all �y�D��f�atom y����	

Indeed� applying E and normalizing yields the desired result�

Eval Compute in �E f�DP�	

� �EX x�D � �drunk x����y�D��drunk y�� � Prop

Now we prove the Drinker�s Principle� this time not from scratch but by clausi
�
cation 	automated
 and resolution 	as yet� by hand
� We make use of the following
general lemma�

Lemma Refute �

EM��AC��D���p�prop��MIMPL �CLAUS �f�not p������E p�	

Here comes the Coq session�

Lemma Drinker�s�Principle � EM��AC��D���E f�DP�	

First we introduce the hypotheses into the context�

Intros em ac d	

�



Then Refute is applied� The resulting goal is ����reduced by Simpl� that is� ��
redexes� de
nitions and recursion schemata are maximally unfolded� Thereafter
the Skolem function and the clauses are introduced�

Apply �Refute em ac d�	 Simpl	 Intros f C� C�	

We are now in the following proof state�

em � EM

ac � AC

d � D

f � SKF

C� � �x�D��drunk x�

C� � �x�D���drunk �f O �ml x���

����������������������������������

False

Here and below �ml x� is the list with single element x�D� Until here the proof
procedure has been fully automated� Due to the simplicity of the example� the
proof can now be completed easily by hand�

Apply �C� d�	

Apply C�	

The handcrafted lambda term from Section �� is even larger than the lambda term
constructed above� due to the power of Refute� The normal form of the latter is
of course considerably larger� Interestingly� this normal form does not contain any
occurrence of prop� see Section ��

It is instructive to compare the clauses C� and C� with the ones Otter came up
with�

� �� drunk�x�	

� �� �drunk�
f��x��	

They are essentially the same� The Skolem function f in C� may look more com�
plicated� but the term �f O �ml x�� is� after appropriate renaming� the same as

f��x��

In the next section we discuss some of the programmed conversion steps in the
clausi
cation procedure�

� The program CLAUS

The 
rst function that is applied to the input proposition of the clausi
cation pro�
gram� is the function PNNF� It puts formal propositions into Prenex and Negation

Normal Form in one pass� i�e� the output proposition starts with a quanti
er pre
x
followed by a quanti
er�free matrix containing no implications� and with negations
occurring only at the atomic level� We brie�y explain its working�

First� we have de
ned an inductive set of polarities POL consisting of two con�
stants pos and neg�

Inductive POL � Set �� pos � POL � neg � POL	

Second� the function pnnf is recursively de
ned� which� given a proposition and
its polarity� returns its prenex negation normal form� It makes use of pnf cj and
pnf dj� functions that move quanti
ers outwards of conjunctions and disjunctions�
respectively� according to common logical rules� For instance�

�pnf�cj �f�and �f�all �x�D��dl x���f�all �y�D��dr y����

�



with dl and dr of type D��prop� yields

�f�all �x�D��f�and �dl x��dr x���

relying on

� 	�xF�	x
 � �yF�	y

� �x	F�	x
 � F�	x



The main call will be� �pnnf f pos�� invoked by �PNNF f��

Fixpoint pnnf �f�prop� � POL��prop ��

�p�POL� Cases f p of

�f�atom x� pos �� f

��f�atom x� neg �� �f�not f�

��f�not f�� pos �� �pnnf f� neg�

��f�not f�� neg �� �pnnf f� pos�

��f�and f� f�� pos �� �pnf�cj �pnnf f� p��pnnf f� p��

��f�and f� f�� neg �� �pnf�dj �pnnf f� p��pnnf f� p��

��f�or f� f�� pos �� �pnf�dj �pnnf f� p��pnnf f� p��

��f�or f� f�� neg �� �pnf�cj �pnnf f� p��pnnf f� p��

��f�impl f� f�� pos �� �pnf�dj �pnnf f� neg��pnnf f� p��

��f�impl f� f�� neg �� �pnf�cj �pnnf f� pos��pnnf f� p��

��f�ex df� pos �� �f�ex �x�D��pnnf �df x� p��

��f�ex df� neg �� �f�all �x�D��pnnf �df x� p��

��f�all df� pos �� �f�all �x�D��pnnf �df x� p��

��f�all df� neg �� �f�ex �x�D��pnnf �df x� p��

end	

Definition PNNF �� �p�prop��pnnf p pos�	

Thus a given proposition f is decomposed until the level of literals is reached�
It is at this level that the information carried by polarities results into a positive
or negative literal� In case the input proposition starts with a negation� pnnf

continues recursively with the subproposition and with swapped polarity� Apart
from the f�impl�case� the cases with positive polarity are straightforward� The
elimination of implications appeals to the classical equivalences�

� F� � F� � �F� 	 F�

� �	F� � F�
� F� � �F�

The remaining transformations appeal to the classical De Morgan laws�

� �	F� � F�
� �F� 	 �F�

� �	F� 	 F�
� �F� � �F�

� �
xF 	x
� �x�F 	x


� ��xF 	x
� 
x�F 	x


After application of PNNF� formal propositions are put into Conjunctive Nor�

mal Form� We don�t present this module here� but continue to discuss the next
conversion step� Skolemization� performed by the function SKLM�

Skolemization of a given prenex formula is done as follows� All existential quan�
ti
ers are removed and the variables bound by them are replaced by Skolem func�

tions� The arguments of these Skolem functions are all the universally quanti
ed
variables whose quanti
er had the 	removed
 existential quanti
er in its scope� To

�



preserve logical equivalence� Skolem functions are quanti
ed by higher order existen�
tial quanti
ers� Consider the following example� �x
y�z
u P 	x� y� z� u
 Skolemizes
into 
f
g�x�y P 	x� f	x
� y� g	x� y

� Note the possibility of a ��ary Skolem function�

The most natural way to handle the problem of de
ning a function according
the above speci
cation� would be to introduce an index type� Then� everytime an
existential quanti
er jumps over a universal quanti
er� the type of the correspond�
ing Skolem function gets a higher index� It is possible to compute this index on
beforehand� but� unfortunately� the typing system will not recognize on beforehand
that the type of the Skolem function is correctly indexed in this way�

We chose for a simple and elegant solution� Skolemized formulae will now be
pre
xed by just one higher order existential quanti
er� stating� there exists a family

of Skolem functions such that���� Within the formula the required information can be
found� di�erent family�members get a distinguishing integer and a list of variables
they depend on� Consider for instance the second clause of the negated Drinker�s
Principle� �x�D���drunk �f O �ml x���� Here we have a Skolem function indexed
by O that depends on the list with one element� the universally quanti
ed variable
x�

Since input propositions of SKLM are already in prenex form� the recursive de
�
nition is relatively simple�

Fixpoint sklm �f�SKF�n�nat�L��list D��p�prop� � prop ��

Cases p of

�f�ex dp� �� �� substitute �f n L� for x and increment index n ��

�sklm f �S n� L �dp �f n L���

��f�all dp� �� �� add x to the end of argument list ��

�f�all �x�D��sklm f n �snoc D L x��dp x���

� � �� �� do nothing �� p

end	

Definition SKLM � prop��prop� ��

�p�prop��f�Ex �f�SKF��sklm f O �nil D� p��	

	 Preservation of logical equivalence

The theorem CLAUSeq states that CLAUS preserves equivalence modulo the Excluded
Middle 	EM
� the Axiom of Choice 	AC
 and non�emptiness of D� In this section we
give a sample of the proof of CLAUSeq� We chose to explain the most interesting
lemma SKLMeq� stating the correctness of Skolemization� The proof of this lemma
is rather complicated� and the exposition may be di�cult to follow� The better way
to follow the proof is to process the vernacular 
le clausification	vmentioned in
the abstract� The reader who is not primarily interested in the details of this proof
may skip this section and rely on the fact that the proof has been type checked by
Coq�

Lemma SKLMeq � AC��D���p�prop��E p�����E� �SKLM p��

The Axiom of Choice is de
ned as follows�

Definition AC �� �S�S��Set��P�S��S���Prop�

��x�S��EX y�S� � �P x y���

���EX f�S��S� � �x�S��P x �f x���	

Let us inspect the crucial point at which the Axiom of Choice is applied� Consider
the following subgoal arising in the inductive proof of SKLMeq� 	Case f all� left�to�
right half of ����


�



ac � AC

d � D

dp � D��prop

IH � �d�D��E �dp d������EX f�SKF � �E �sklm f O �nil D��dp d����

H � �x�D��E �dp x��

����������������������������

�EX g�SKF � �x�D��E �sklm g O �ml x��dp x����

From the context �using H and IH� we can infer a proof object H� having type

H� � �x�D��EX f�SKF � �E �sklm f O �nil D� �dp x����

Now� to be able to construct the witnessing Skolem function g for the goal� the
existential quanti
er in H� has to be moved outwards� Now comes the crucial point
where the Axiom of Choice is used� By application of ac to H�� we can construct a
proof term H� having type

H� � �EX F�D��SKF ��x�D���y�D��f�SKF��E �sklm f O �nil D��dp y��� x �F x���

which reduces to

�EX F�D��SKF � �x�D��E �sklm �F x� O �nil D� �dp x����

By performing elimination on H�� we get a function F in type D��SKF and a proof
term H� having type

H� � �x�D��E �sklm �F x� O �nil D� �dp x���

The Skolem function g we are looking for has to be such that�

�x�D��E �sklm g O �ml x� �dp x���

is a logical consequence of H�� This means that for any list L��list D� with head
x� g must behave just like �F x� does on the tail of L� The witnessing g for the goal
is constructed as�

Exists �n�nat��L��list D��Cases L of

nil �� d

��cons h t� �� �F h n t�

end	

We continue to name this function g� As stated informally above� the key property
of g is that

�g n �cons x L�� � ��F x� n L�

for all n�x�L� which can be shown to imply

�E �sklm g O �ml x� �dp x��� ��� �E �sklm �F x� O �nil D� �dp x���

The above equivalence requires considerable e�ort� but thereafter the proof 	of one
half of this inductive case ���
 can be completed by a simple application of H��

�Where D is substituted for S� SKF for S� and �y�D	�f�SKF	
E 
sklm f O 
nil D�
dp y��� for
P in AC�

�




 Future research

��� Good and bad formulas

Recall that the constructors f all� f ex have both type �D��prop���prop� Due to
the power of Coq� there is much freedom in the construction of formal propositions�
in particular every de
nable function of type D��prop can be quanti
ed� This can
lead to objects of type prop that do not represent 
rst�order propositions� so that
the clausi
cation program cannot be expected to give the desired result�

Consider the following example� where we take nat for D� First we de
ne a
function that� given an integer n� iterates the application of f not on �f atom O�

as many as n times�

Fixpoint It�f�not �n�nat�� prop �� Cases n of

O �� �f�atom O� � �S m� �� �f�not �It�f�not m�� end	

Now observe that It f not has type nat��prop� so that �f all It f not� is typed
prop� but it is impossible to make sense of the clausal form of this term� Such an
object of type prop can be quali
ed as a bad formula�

It obviously makes sense to single out objects of type prop that are not bad
formulas� Therefore we de
ne inductively a subset form of prop as follows�

� If x�D is a variable� then �f atom x�� form

� form is closed under f not� f and� f or and f impl�

� If t� form � then �f ex �x�D�t�� form and �f all �x�D�t�� form �

Objects of type prop that are in the subset form will be quali
ed as good formulas�
They can safely be viewed as representing 
rst�order propositions in a language
with one unary predicate symbol� For example� the formal counterpart f DP of
the Drinker�s Principle in Section � is a good formula� There are certainly more
formulas that can be allowed as good� For example� adding a binary predicate
symbol to the language can be represented by allowing also atoms �f atom �P x

y�� form � with x�y�D and P�D��D��D all variables�
Good formulas have a number of interesting properties� For example� we can

prove that the output of CLAUS applied to a good formula is indeed a clausal form�
Interestingly� normal forms of the correctness proof of the clausi
cation of a good
formula 	to be precise� normal forms of terms �CLAUSeq em ac d p� with p a good
formula
 do not contain any reference to prop� and can hence be typed in a much
weaker context� Some of these facts have already been elaborated in ����

��� Elimination of Skolem axioms

By adapting a result of Kleene� Skolem functions and �axioms can be eliminated
from resolution refutations� which allows one to obtain proofs independent of the
Axiom of Choice� We refer to ��� for a modern exposition of Kleene�s result� In
Figure � we show as an example how the elimination procedure works in the case
of the Drinker�s Principle�

The assumptions �x	D	x
 � �D	f	x


 of the upper deduction tree are the
clausal form of the negated Drinker�s Principle� and the existence of the function
f relies on the Axiom of Choice� In the middle and lower deduction trees� we
have replaced every Skolem term t by a fresh free variable vt� It is to be under�
stood that vf�d� does not contain an occurence of d� In the lower deduction tree�
the assumptions �x
y	D	x
 � �D	y

 are the prenex negation normal form of the
negated Drinker�s Principle� The order in which the 
�eliminations take place is of
crucial importance to satisfy the eigenvariable condition� We plan to elaborate the
elimination procedure for resolution refutations more generally�

��



�x	D	x
 � �D	f	x




D	f	d

 � �D	f	f	d



�E

D	f	d


�E

�x	D	x
 � �D	f	x




D	d
 � �D	f	d


�E

�D	f	d


�E

�
� E

�� natural deduction format of the resolution refutation

�D	vf�d�
 � �D	vf�f�d��
�
�

D	vf�d�

�E

�D	vd
 � �D	vf�d�
�
�

�D	vf�d�

�E

�
� E

��� canonical translation of the propositional frame of �

�x
y	D	x
 � �D	y




y	D	vd
 � �D	y


�E

�x
y	D	x
 � �D	y




y	D	vf�d�
 � �D	y


�E

��

�

E�

�

E�

natural deduction format of the proof without Skolem functions

Figure �� Elimation of Skolem functions from a resolution refutation� The indices
connect the discharging of an assumption with the corresponding 
�elimination�

��



Acknowledgements

We thank Mark van der Zwaag for his contribution to the 
rst version of the CLAUS�
program� Erik Barendsen for helpful comments and Gilles Dowek for pointing out
the possibility of the elimination of Skolem functions�

References

��� B� Barras et al� The Coq Proof Assistent Reference Manual� version ���� INRIA�
�����

��� G� Dowek� Automated theorem proving in type theory� Course notes for the
�nd International Summer School in Logic for Computer Science� University
of Chambery� France� �����

��� D� Hendriks� Formal Representation � Correctness of Clausi�cation of First�

Order Formulae in Type Theory� Master Thesis� Utrecht University� �����

��� D�W� Loveland� Automated theorem proving	 a logical basis� Fundamental stud�
ies in computer science� North�Holland� Amsterdam� �����

��� W� McCune� Otter 
�� Reference Manual and Guide� Tech� Report ANL������
Argonne National Laboratory� Argonne� IL� �����

��


