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Abstract

This paper is concerned with the ‘logical structure’ of arithmetical the-
ories. We survey results concerning logics and admissible rules of con-
structive arithmetical theories. We prove a new theorem: the admissible
propositional rules of Heyting Arithmetic are the same as the admissible
propositional rules of Intuitionistic Propositional Logic. We provide some
further insights concerning predicate logical admissible rules for arithmeti-
cal theories.
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1 Introduction

Can we say anything interesting about the logical structure of constructive arith-
metical theories? We might ask for example what the ‘logic’ of such a theory is.
A question with an even more informative answer is: what are the admissible
rules of a given arithmetical theory?

This paper is, in a sense, two papers in one. Firstly we survey results
concerning logics and admissible rules of arithmetical theories. Secondly, we
fill some gaps in our total picture.

e We show that the propositional admissible rules of Heyting Arithmetic,
HA, are the same ones as those of Intuitionistic Propositional Logic, IPC.
itself. This characterization will follow from a general lemma.

e In subsection 3.3 we present a particularly simple proof that the predi-
cate logical admissible rules of a wide range of constructive theories are
complete I19.

e In the appendix we provide some Orey-Hajek-Friedman style characteri-
zations of predicate logical admissibility for classical arithmetical theories.

The structure of the paper is as follows. In section 2, we review what is known
about the ‘logics’ of constructive theories. Specifically, we will be interested in
the case where the logic of a theory is precisely IPC. Some of the results discussed
here will be used as lemmas later on in the paper. Section 3 will introduce the
basics on admissible rules of arithmetical theories. Section 4 contains the proof
of our result concerning the admissible rules of HA. Finally, in an appendix, we
briefly consider what can be said about the predicate logical admissible rules of
classical arithmetical theories.

Prerequisites

The paper presupposes some knowledge of the Kripke semantics for constructive
theories. See e.g. [27] or [30]. In appendix A we employ some results concerning
definable cuts, restricted proof predicates and the like. A good reference for the
material in the appendix is [11]. See also [37] and [38].

2 Theories and Logics

Let T be any theory formulated in either intuitionistic predicate logic or intu-
itionistic propositional logic. Let the language of T be L. For Lya, the usual
language of arithmetic with 0, successor, plus and times, we reserve the special
name R.

It is a natural question to ask ourselves: what are the schematic principles
‘valid’ in T'?7 The answer to this question will depend on our notion of scheme.
Do we mean scheme in the language of propositional logic, in the language of
predicate logic, in a modal language as in provability logic?



Suppose T'is a theory in classical logic. Then the propositional schemes valid
in a consistent theory T with classical logic are, trivially, precisely the classical
tautologies. The question becomes much more interesting if we consider classical
theories and predicate logical schemes (see [44]), or if we enrich the propositional
language with a modal predicate for provaebility (see [1] or [28]).

If we consider constructive theories, already the purely propositional case
has some interest. If a theory is ‘purely constructive’, one would surely expect
the valid propositional schemes to be precisely the theorems of intuitionistic
propositional logic IPC. This turns out to be often the case. However, the
proofs are surprisingly non-trivial.

In this section we will survey what is known about propositional and predi-
cate logics of arithmetical theories.

2.1 Propositional Logics of Theories

Below I present the necessary definitions to speak a bit more precisely about
substitutitions, propositional schemes and the like.

Let P be a countable set of propositional variables. The language Lipc p is
the language of IPC for the variables P. We will denote IPC with this language
by: IPC(P). By our earlier convention, we have: Lipc(p)y = Lipc,p A P-scheme
is simply a formula in Lipcp. A scheme is ‘valid’ in T if all of its substitution
instances are T-provable. In most cases we will consider a finite set P. We will
use p, ¢ as notation for such finite sets.

Let £ be any language of propositional or of predicate logic. A P-substitution
o for L is a function from P to the set of sentences of £. The set of P-
substitutions for £ will be called subp ». In case £L = L, we will also write
subp 7. We extend o € subp . in the usual way to Lipc,» by making it commute
with the propositional connectives including T and L. We will use o(¢) for ‘the
extension of ¢ applied to ¢’.

A P-logic A is a set of Lipc p-formulas, that extends the set of IPC(P)-
tautologies, is closed under modus ponens and under P-substitutions for £|pcy’p.1
So for o € subp ipc(p), we have: ¢ € A = o(¢) € A. Here are some definitions.

o Let | #S C subp p. Define:
AP7T(8) = {¢E£|pc77> | VoeS T F o(9)}
In case S is obtained by restricting the range of the substitutions to a class
of formulas ©, we will, par abus de langage, write Ap 7(0) for Ap 7(S).

e Let 0 € subp 7. Omitting singleton brackets, we write:
Ap (o) == Apr({o})
We call Ap (o) the exact P-theory of o for T.

o We will omitt the set of substitutions, when we are considering all substi-
tutions of the relevant kind:

1T feel that this usage of logic is slightly perverse. The correct notion of logic should
obviously explicitely contain the machinery for obtaining theorems. The current usage should
be viewed as a convenient way of speaking in the present context.



AP,T = Apg“(SUb'pyT).

It is easy to see that Ap r is a P-logic and that, for any P-logic A, we have
Afp7A = A. We will identify |PC('P) with Ap7|PC. Note that Ap7T(8) need not,
generally be a logic.

It is easy to see that if [P| < |Q|, then Ap pc(g) = IPC(P). We show:

Theorem 2.1 If |P| > |Q|, then Ap pc(o) 2 IPC(P).

Proof

Suppose |P| > |Q|. Remember that we assumed P and Q to be countable.
So Q must be finite. Take p C P, with |Q| < |p]. Let C be the set of all
conjunctions of formulas of the form p and —p, where for any p € p precisely
one of p, —p is a conjunct. Take ¢ := \/{—y | v € C}. Clearly, IPC(P) ¥ 9.
Suppose o € subp jpc(g). If we did have IPC(Q) ¥ o(¥9), then there would be a
finite rooted Q-model K, with root b such that b ¥ o (). For every v € C, there
would be a top node k above b such that & I- o(y). Thus, there must be at least
217 topnodes with essentially different forcing relation. Since, K is a Q-model
there could be at most 2!l such nodes. A contradiction. So: ¥ € Apipco)-

(]

Note also that if 7" is any consistent classical theory, whether in propositional
or in predicate logic, we have Ap 7 = CPC(P). Here CPC is the classical propo-
sitional calculus.

2.2 Predicate Logics of Theories

Let £ be a language of predicate logic. Let T be a theory. An L-scheme is
simply a sentence in £. A scheme is ‘valid’ in T if all of its interpretations
are T-provable. An interpretation M assigns to a relation symbol R of £ for-
mulas of L7 with designated variables corresponding to the argument places
of R. We usually assume that M(R) contains no other variables than those
representing the argument places. In case £ contains function symbols we treat
f(zy,---,z,) = y as a relation symbol. M sends an arbitrary formula ¢ of
L to the result of replacing all its relation symbols R by M(R), changing the
variables representing the argument places into the variables following a given
occurrence of R in ¢. In case ¢ contains function symbols, we first apply the
well-known procedure for reducing the nesting degree of function symbols to 1
and than run the procedure we just described. In case we eliminate function
symbols, we demand that the interpreting theory verifies the translations of
the statements expressing the fact that f(z1,---,z,) = y represents the graph
of a function. Thus being an interpretation becomes dependent not only on
the interpreting language, but on the interpreting theory. We call the class of
interpretations of £ in T': intz 7.

We often do not want simple interpretations but relative interpretations.
A relative interpretation is like an interpretation with the following additional



feature. There is an associated special formula d(z) representing the domain of
the interpretation. In relative interpetations we replace Vz ... by Vz(d(z) —
...) and we replace 3z ... by z(6(x) A ...). We demand that the interpreting
theory proves dz 0(z). Thus, whether something is a relative interpretation
or not will depend on the interpreting theory even in the absence of function
symbols. We call the class of relative interpretations of £ in T': relintz 7.

For more details on interpretations, see e.g. [29] or [37] or [41]. Here are the
relevant definitions.

e Let f #S Crelintz 7. Define:
AR (S) = {pesent, | VMeS T+ M(¢)}
In case S is obtained by restricting the range of the substitutions to a class
of formulas ©, we will, par abus de langage, write AEET(G) for Af!T(S).

o We will omitt the set of relative interpretations, when we are considering
all interpretations of the relevant kind:
AR := AR p(relintp 7). Tt is easy to see that the unrelativized interpreta-
tions can be viewed as a subclass of the relativized interpretations. When
we consider unrelativized interpretations, we simply drop the superscript
rel. So,
AQT = A?!T(intpg“).

It is clear that, when we view P and L as signatures, our definitions for propo-
sitional logic are simply special cases of the ones for predicate logic. Here are a
few further convenient notations.

e M:T>¢ & T'MF¢ : & THM(),

o T'>¢ :& IMerelinter T, M ¢
We say that ¢ is relatively interpretable in 7" or that T interprets ¢.

We note in passing that Tarski’s notion of weak interpretability is reducible to
A% .. A sentence ¢ of £ is weakly interpretable in 7' if there is a relative £, T-
interpretation M such that T 4+ M(¢) is consistent. We easily see that ¢ is
weakly interpretable in T iff Af!T + ¢ is consistent. If we consider a classical
theory T we can regain AZ’!T from the ¢ that are weakly interpretable in 7. The
notion of weak interpretability is important because of the following theorem.

Let Q be Robinson’s Arithmetic.

Theorem 2.2 (Tarski) If Q is weakly interpretable in T, i.e. if A% +Q is
consistent, then T is undecidable.

Tarski uses the theorem in his proof of the undecidability of Group Theory.
See [29]. Note that it follows that for decidable theories, like the theory of
Abelean Groups, we have: A;%T F —=Q. For results concerning the A, ¢ for
classical theories T, the reader is referred to Vladimir Rybakov’s book [26] and
to Rotislav Yavorsky’s paper [44]. See also appendix A of the present paper.
Here are three of Yavorsky’s results.



o Azpa = CQC(L). Here CQC(L) is classical predicate logic for the language
L2

class

o A, GROUPT = CQC(L). Here GROUPY . is the classical theory of groups
with one extra constant.

o Arzpre 7 CQC(L). Here Pre is classical Presburger Arithmetic.

2.3 A Brief History of de Jongh’s Theorem

We present a brief survey of the development of our present knowledge of con-
structive arithmetical theories and classes of substitutions that give us precisely
constructive logic.

1969 Dick de Jongh shows in an unpublished paper that Ap ua = IPC(P). He
uses substitutions of formulas of a complicated form. In fact he proves a
much stronger result, viz. that the logic of relative interpretations in HA
is Intuitionistic Predicate Logic, i.0.w. Ay, =1QC(L). See the extended
abstract [3]. De Jongh’s argument uses an ingenious combination of Kripke
models and realizability.

1973 Harvey Friedman in his paper [6] shows that Ap pa(Il2) = IPC(P). In
fact, Friedman provides a single substitution ¢ mapping P to Ils-sentences
such that Ap pa(o) = IPC(P). We will say that IPC is uniformely com-
plete for Ils-substitutions in HA. Uniform Completeness tells us, in this
case, that the free Heyting algebra on countably many generators can be
embedded in the Lindenbaum Algebra of HA. Friedman employs slash-
theoretic methods.

1973 Craig Smorynski strengthens and extends de Jongh’s work in a number
of respects in his very readable paper [27]. To state his results we need a
few definitions. We write DII; for the set of disjunctions of II;-sentences,
Boole(X;) for Boolean combinations of ¥;-sentences. MP is Markov’s
Principle, RFNya is the formalized uniform reflection principle for HA,
TI(<) is the transfinite induction scheme for a primitive recursive well-
ordering <. We have

Ap.r=Ap (1) = Ap r(DII}) = IPC(P),

for the following theories T: HA, HA+RFN(HA), HA+TI(<). We have
Ap natmp(Boole(X1)) = IPC(P). Smoryriski uses Kripke models in combi-
nation with the Godel-Rosser-Mostowski-Kripke-Myhill theorem to prove
his results.

1975 Daniel Leivant in his PhD Thesis [14] shows that the predicate logic of
interpretations of predicate logic in HA is precisely intuitionistic predicate
logic. Leivant’s method is proof theoretical. In fact Leivant shows that

2In appendix A we will prove a result that immediately implies this fact.



one can use as interpretation a fixed sequence of II-predicates. So Leivant
proves that Az ua(M) = 1QC(L), for some II,-interpretation M. Leivant’s
results yield another proof of Friedman’s results described above.

1976 De Jongh and Smoryniski in their paper [4] show that Appas(Zi) =
IPC(p). They also show that there is a o : P — I, such that Ap pas(o) =
IPC(P).

1981 Yu. V. Gavrilenko in [7] shows that Az patect,(X1) = IPC(p). Here ECT
is Extended Church’s Thesis. Gavrilenko proves this result as a corollary
of the similar result of Smorynski for HA.

1981 Albert Visser in his Ph.D. thesis [34] provides an alternative proof of de
Jongh’s theorem for HA, HA4+DNS, HA+ECT, for X;-substitutions adapt-
ing the method of Solovay’s proof of the arithmetical completeness of Lob’s
logic for substitutions in PA. Here DNS is the principle Double Negation
shift. In fact his proof extends to these theories with appropriate refection
principles or transfinite induction over primitive recursive well-orderings
added.

1985 In his [36], Albert Visser provides an alternative proof of de Jongh’s
uniform completeness theorem employing a single ¥;-substitution. The
proof is verifiable in HA+Con(HA). (Note that de Jongh’s theorem implies
Con(HA), so the result is, in a sense, optimal.) The proof uses the NNIL-
algorithm, an algorithm that is used to characterize the admissible rules
for ¥;-substitutions. See below.

1991 Jaap van Oosten in his paper [33] provides a more perspicuous version of
de Jongh’s semantical proof of de Jongh’s theorem for (non-relativized)
interpretations of predicate logic. Van Oosten uses Beth models and real-
izability. See also [32].

1996 Using the methods developed by Visser in [35] and by de Jongh and
Visser in [5] one can prove uniform completeness w.r.t. X;-substitutions
for HA+ECTy, HA+ECTo+RFN(HA+ECTy), HA+TI(<)+ECT,.

Open Question 2.3 Here are some open questions in this area.
1. What is the predicate logic of HA+MP?
2. What is the predicate logic of HA + ECTy?

Q

We end this section by providing a necessary condition for arithmetical theories
to satisfy de Jongh’s theorem.®> Consider a theory T. Suppose N € intg 7.
Suppose we have:

3The argument is inspired by Gédel’s observation that the completeness theorem for ordi-
nary models of predicate logic constructively implies Markov’s Principle.



1. T,N F iEA, where iEA is the intuitionistic version of Elementary Arith-
metic, also know as iIAg + Exp;

2. T is locally essentially reflexive w.r.t. N'. This means that T proves the full
sentential reflection principle for IQC(Lr), where provability is formalized
‘in N’; i.o.w. for any sentence ¢ of L, T'F N (Diqc(z,)9) = ¢-

All extensions of HA in R are locally essentially reflexive. Let Q be the single
axiom of (the intuitionistic variant of) Robinson’s Arithmetic.

Theorem 2.4 Let T be as above. Suppose Ar v = IQC(R). Then T is X9-
sound w.r.t. N'. Moreover, T is closed under the Primitive Recursive Markov’s
Rule w.r.t. N, i.e., for any X9-sentence o, T,N' + =—0 = T,N F 0. Our
two claims together are, clearly, equivalent to the following principle: for any
¥0-sentence o, T,N' - —-—0 = N0

Proof

Suppose T, N F ==o. Then, T,N + ==Oqc(r)(Q — o), since iEA proves X-
completeness for Q. Consider any K € relintg r. Given the fact that we just
have finitely many function symbols in R, we only need a finite subtheory of
T to verify the fact that I is an interpretation. Suppose ¢ axiomatizes such
a finite subtheory. We find: T,V F ==Oq¢c(z,)(¢ = K(Q — 0)). Since T
is locally essentially reflexive w.r.t. N, we find T - —-—K(Q — o). Hence,
T F K(Q — —=0). Since K was arbitrary, we find (Q - —=—0) € Ag 7. So,
by our assumption, IQC(R) F Q — ——o. Since Q is classically true, we may
conclude that N = o. Q

2.4 Markov’s Principle and Church’s Thesis

In this subsection, we briefly consider cases, where the logics of a theory are
not precisely intuitionistic logic. We have seen that Ap Hatmp = Ap HatECT, =
IPC(P). Remarkably, Ap natmpiecT,, for |[P| > 1, turns out to be a proper
extension of IPC(P).

Consider the formulas y and p, which are defined as follows.

e x:=(-pvg),
e p:=[(==x = x) = (=xv-x)] = (=xVv-X)

Clearly, p is IPC(p, g)-invalid. We use r for Kleene realizability. In his classical
paper [25], G.F. Rose showed that: Je Yoesubp ya N | ero(p). Thus, Rose
refuted a conjecture of Kleene that a propositional formula is IPC-provable if
all it’s arithmetical instances are (truly and classically) realizable. Note the
remarkable fact that one and the same realizer realizes all instances! Inspecting
the proof one sees that only a small part of classical logic is involved in the



verification of realizability: Markov’s Principle. See David McCarthy’s paper
[15] for a detailed analysis. Thus we obtain:

Jde Voesubp ya HA + MP F ero(p).
Hence, a fOI'tiOI'i, pE A{p,q},HA+MP+ECT0'

Open Question 2.5 The precise characterization of any of the following sets
is an open problem:

1. Ap HA+MP+ECT,,

2. {¢E£|pc77> | de VO’ESprHA HA + era(¢))},
3. {¢E£|pc77> | VO’ESprﬁA de N |: era(¢)},
4. {¢E£|pc77> | de VO’ESprﬁA N |: 61‘0’((]5)}.

One could well imagine that it would be possible to prove the sets (1) and (2)
to be equal without having a characterization. Similarly for (3) and (4). Q

The situation for substitutions in predicate logic is even more spectacular. In
a series of papers, [18], [19], [20], V.E. Plisko shows that the set of uniformly
realizable principles of predicate logic is complete II}. In other words he shows
that, for an appropriate £, {¢€sent; | Je VK € inty aoyy N | erK(¢)} is
complete IT}. ([21] provides a related result for modified realizability.) In two
subsequent papers [22], [23], Plisko shows that Az na+mp+ecT, is complete I19.%

2.5 Exactness and Extension

An exact theory is the theory of a single interpretation. If U = Ap r(0), or,
analogously, for the predicate logical case, U = Az (M), one says that ¢ or
M is a faithful interpretation of U in T. For example, the Beltrami-Poincaré
interpretation of hyperbolic geometry in Euclidean geometry is faithful, the
usual interpretation of PA in ZF is not.

We will show that exact theories inherit a salient property, viz. the extension
property, from their interpreting theories. To set the stage, we first introduce
the idea of E-preservation. Consider a class K of models (of whatever kind).
Let R be a binary relation on K. A class I' of formulas (with a semantics in
K) is E-preserved (in K) by R if, for all £ € K, whenever K I+ T, then, for
some N with K RN, N IF T. In a similar way we can define A-preservation, by
demanding that then, for all N with X RN, N I-T.

Here is an example of a characterization of a class of formulas employing E-
preservation, a characterization of formula classes with the disjunction property,
due to Dick de Jong. See his [2].

4Both qua content and qua methodology Plisko’s result is similar to Vardanyan’s result
that the predicate provability logic of PA is complete Hg. See [1] for an exposition and further
references.

10



Theorem 2.6 (De Jongh) Let K be the class of (not necessarily rooted) Krip-
ke P-models. Define:

o K <N iff K is a generated (i.e. upwards closed) submodel of N' and N is
rooted.

Suppose I' C Lipc,p. Then I' has the disjunction property iff I' is E-preserved
by <.

Let £ be a language of either intuitionistic propositional logic or of intuitionistic
predicate logic. Let K be the class of Kripke £-models. We define:

o K <N iff NV is rooted and K is the result of omitting the root of V.

We say that T' C £ has the extension property iff T' is E-preserved by <. Al-
ternatively, we say that I is extendible. So I' has the extension property if any
(non rooted) model of T' can be extended with a new root preserving the validity
of I'. We start with a triviality.

Theorem 2.7 FEvery extendible theory has the disjunction property.

The theorem is immediate by theorem 2.6 and the fact that < is a subrela-
tion of <. The next theorem establishes a connection between exactness and
extendibility.

Theorem 2.8 Let T be an extendible theory with language L1 and let o €
subp . Then, Ap (o) has the extension property.

Proof

Say € := Ap r(0). Consider any non-rooted Kripke P-model K. Suppose that
K IFE. Let © := Th(K). Clearly, £ C ©. Consider ¢ € Lipc,p \ ©. We claim
that o(©) K o(¢).

Suppose that o(0) 7 (). Then, for some 6 € O, T+ o(8 — ). Hence,
(0 — o) € €. Tt follows that © F ¢. Quod non.

We can find a non-rooted Kripke model M of T such that

o~ (Th(M)) := {¢p€Lipc,p | M IF o(¢)} = O.

Since T has the extension property, we can extend M to a new model M™
satisfying T by adding a new bottom b. We extend K to KT with a new bottom
¢, stipulating that ¢ IF p :< b I+ o(p). We show that ¢ IF ¢ <= b IF o(4) by
induction on Lipc p.

The cases of atoms, conjunction and disjunction are trivial. Suppose ¢ IF
¥ — x. It follows that I IF ¢ — x and, hence, (¢ — x) € ©. Consider m > b.
Suppose m |- o(¢). In case m is in M, we have, by the fact that M IF 0(©),
m |k o(y — x) and, hence, m IF o(x). In case m = b, we have, by the Induction
Hypothesis, ¢ IF 1. So, by assumption, ¢ IF x and, hence, again by the Induction
Hypothesis, m = b IF o(x). The converse is similar. Q

11



Consider o € subg pc(p). Dick de Jongh and Albert Visser prove the following
theorem. See [5].

Theorem 2.9 Aj pc(p)(0) is finitely aziomatizable.

The proof uses Pitts’ Uniform Interpolation Theorem. See [17], [9], [40]. Par
abus de langage, we call an axiom of Az pc(p)(0): €,. Note that e, is only
determined up to provable equivalence. We call a formula ¢ axiomatizing some
Agipcp)(T) a P, P-exact formula. The set of p, P-exact formulas is exactp.

Silvio Ghilardi proved that for substitutions in IPC we have a converse of
theorem 2.8. See his [8].

Theorem 2.10 (Ghilardi) Suppose thate € Lipc ; has the extension property.
Then, for some o € subj pc(p), we have e = ¢, .

Note that Ghilardi’s theorem, as stated here, implies that if € € Lipc 7 and € is
P, P-exact, then € is ¢, g-exact. Ghilardi’s theorem will be used as a lemma in
the characterization of the admissible rules of HA.

3 Admissible Rules

3.1 Finitary Admissible Rules

Let T be a theory and let & C subp 7. A (P,T,S)-admissible rule is a pair of
Lipc,p-formulas (¢, 1) such that, for all o € S, T + o(¢p) = T F o(¢p). We say
that (¢, ) is P, T-admissible if it is (P, T, subp r)-admissible. Define:

o Ap r(S) is the set of (P, T, S)-admissible rules.
Ap 1 = Ap r(subp ).

o bt (B,1) € Ap(S).
¢ bprip e (d,0) € Ap .

Note that Ap 7(S) is completely determined by Ap 7(S), since ¢ € Ap 7(S) iff
(T,¢) € Ap,7(S). We define one more set of rules, the implications of a theory.

o Sa={(0,¥) | (¢ = ) €A}
It is well known that e.g. Ay 4,71, 1PC(p.a,r) 7 SIPC(p,q,r)> Since, for example,
-p— (qu) IN{p,q,r},lPC(p,q,r) (_'p — (I) Vv (_'p — T),

but =p = (¢v7) Fipcip,g,r) (-0 = q) v (mp = 7).
Here is the simplest possible result on admissible rules.

Theorem 3.1 The implications of the logic of a theory T are admissible for T.
Moreover, every admissible rule of T is also admisible for the logic of T. To be
precise: let A := Ap 7. We have: S C Ap 1 C Apa.

12



Proof

The first inclusion is obvious. Suppose that ¢ ~p r1. We prove ¢ ~p 4 9.
Consider any ¢ € subp pc(p) and suppose A F o(4). It follows that, for all
T € subp,r, T F (T 00)(¢). Ergo, for all 7 € subp 7, T F (7 00)(¢p). We may
conclude A F o (). Q

In this paper we will show that Azna = Az ipc, where Azpa = IPC(5). This
shows that the ‘upperbound’ in theorem 3.1 can be assumed. In their paper [5],
de Jongh and Visser show that Az na« = Sipc(z), where Ay ya- = IPC(p). Here
HA* is the theory HA + {¢) — Opa~¢ | ¥ € R}, the minimal extension of HA
that believes that what is true is provable in it. This theory is studied in [35],
[36], [39] (a rewrite of [36]) and [5]. The result shows that the ‘lowerbound’ in
theorem 3.1 can be assumed.

We end this section by a brief survey of some theorems about admissible
rules.

Theorem 3.2 (Rybakov) The admissible rules of IPC are decidable. Io.w.,
for any p, @, Agpc(g) is decidable.

For the proof we refer the reader to Vladimir Rybakov’s book [26].

Theorem 3.3 (Ghilardi) The embedding Fipc(y) = Ppipci) has a left ad-
joint, say ()#. So, ¢* Fiecis) ¥ € ¢ Mpipc) ¥ (A)# is the ‘projective
approzimation’ of A. (\)# is a disjunction of Lipc g-formulas with the extension
property. () is computable.

Note that (.)# considered as an operation of the free Heyting algebra on gen-
erators p is an interior operation. This operation is fully determined by its
fixed points. These fixed points are precisely given by the disjunctions of for-
mulas with the extension property. Ghilardi’s theorem provides a new proof
of Rybakov’s theorem 3.2. For the proof the reader is referred to Ghilardi’s
paper [8].

In the next few theorems, we present some results on X;-substitutions over
HA. Why are ¥;-substitutions interesting? One motivation is the fact that
they play an important role in the study of the provability logic of HA. The
characterization of the closed fragment of HA in [36], [39] essentially uses the
results described below. The material has some clear analogies to the results
described above on substitutions over IPC.

A NNIL(P)-formula is a P-formula with no nestings of implications to the
left. We take —p to be an abbreviation of (p — L1). So (p — (¢v—q)) and —p
are NNIL-formulas, and ((p = ¢) — ¢) is not a NNIL-formula.

Theorem 3.4 (Van Benthem, Visser) The NNIL(P)-formulas are precisely
the L(P)-formulas A-preserved under taking sub Kripke models (modulo provable
equivalence). Here a submodel is a full submodel given by an arbitrary subset of
the nodes.
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For the proof we refer the reader to [36], [39], [42]. Note that the theorem makes
the NNIL-formulas the analogue of universal formulas in ordinary model theory.
For more on the analogy, see [42].

Theorem 3.5 (Visser) Let o € subys,. Then, Ayua(o) is finitely aziomati-
zable, say by v,. The vy, for o € subyx,, are precisely the NNIL(p)-formulas
with the disjunction property.

So ‘NNIL-formula with the disjunction property’ is analogous to ‘formula with
the extension property’ in the case of substitutions over IPC. For the proof see
[36], [39].

Theorem 3.6 (Visser) The embedding

Fircis) = Mpna

has a left adjoint, say (.)*. So, ¢* Fipcp) ¥ & ¢ P?},A . (.)* is a NNIL(p)-
formula. (.)* is computable.

(.)* is completely determined by its fixed points, which are precisely given by
the NNIL-formulas. For the proof see [36], [39].

Finally, we remark that the theorem on HA* saying that the admissible rules
for arbitrary arithmetical substitutions over HA* are precisely the implications
of IPC also fits the pattern exhibited above: here the left adjoint simply is the
identity and the formula class is Lipc, p.

| theory | substit. || logic | adm. rules | adjoint | form. class |

|PC(]3) 7 £|pc7ﬁ |PC(ﬁ) AﬁJpc(ﬁ) ()# D(extensﬁ)
HA =R |PC(ﬁ) AﬁJpc(ﬁ) ()# D(extensﬁ)
HA oS [ PCH) | Apnal0) | (F | NNILG)
HA+ECT, PR IPC(p) ? ? ?
HA+MP P—=R IPC(p) ? ? ?
HA4+MP+ECTy | > R ? ? ? ?

HA* PR IPC(p) Sipc(s) idipc(p) Lipc 5

PA pP—= R CPC(P) | Scrcp | idepcip) Lipc 5

3.2 Infinitary Admissible Rules

In this subsection, we give an example to the effect that the infinitary proposi-
tional admissible rules of IPC and HA differ.

Let T be a theory and let S C subp 7. A (P, T, S)-admissible infinitary rule
is a pair (I',4), where I' C Lipcp and ¢ € Lipc,p, such that, for all ¢ € S,
Ttol)=T*t o). Here o(T') = {o(y) | v € T}. We say that (I',¢) is
P, T-admissible if it is (P, T, subp r)-admissible. Define:

5The example is an adaptation of example 2.2 of [5].
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o AF (S) is the set of (P, T, S)-admissible infinitary rules.
./4%077« = A%O7T(Sub7)’T).

o TRpT 6 (6,0) € A% (S).
r P‘;JO,Ti/’ = (9, 0) € AP p.

We compare P\';T to validity for finite models. Suppose I' C Lipc 5, ¥ € Lipc 3.
Define:

o |:g.n ¥ :& for all finite Kripke p~models K, I IF T = I I+ 4.

Theorem 3.7 I |:g.” =T PV;.?,OIPC(;?) ).

Proof

Suppose I’ |:2J‘ . Consider any o € subgpc(z and suppose IPC(p) F o(T).
We have to show: IPC(p) F o(y). By theorem 2.9, it is sufficient to show
€s Fipc(p) - Consider any finite Kripke p-model K and suppose K IF &,.
Since, by 2.9, ¢, F T', we find £ IF I'. By assumption, K IF ?. Since, for finite
premiss sets, we have Kripke completeness with finite models, we may conclude:
o Fipc(p) ¥ Ergo IPC(pP) F o(v). Q

Consider two propositional variables p, q. Let

©:={x —q|x € Lirc,p and IPC(p) ¥ x}.
It is easy to see that © |:2:‘q q- Hence, by theorem 3.7, © Pv;jpc(ﬁ) q- We now
apply the following lemma due to de Jongh & Visser. See [5].

Lemma 3.8 [de Jongh, Visser] There is an arithmetical sentence U with the
following property. Suppose that A C Lipc p is recursively enumerable and has
the disjunction property. Then there is a o € subp s, with A Fpcp) ¢ &
HA+ U F o(¢). Q

Clearly, © is recursive. Moreover, an simple Kripke model argument shows
that © has the disjunction property. Let o be as given in lemma 3.8. Since
O Fipc(p,g) ¢ We have: HA + U F 0(0) and HA + U ¥ o(q). Consider 7 with
7(p) = o(p) and 7(q) := (U — o(q)). By elementary propositional reasoning,
we find HA F 7(0) and HA ¥ 7(q).

3.3 Admissible Rules in the Predicate Logical Language

To get our discussion off the ground, we need to fix a basic arithmetical theory.
We take, in this section, as our theory iEA. iEA is the constructive version of
EA, elementary arithmetic also known as IAy + Exp. The theory consists of
intuitionistic predicate logic, the usual universal axioms for successor, plus and
times, Ag-induction and an axiom expressing the totality of exponentiation. iEA
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is finitely axiomatizable. We will use “E” to denote a single axiom axiomatizing
iEA.S

We present some results about admissible rules for arithmetical theories.
Here is an example of a principle that holds for any RE theory T, whether it
contains any arithmetic or not.

& EnCon(T) M L.
In fact, & is just a reformulation of the Second Incompleteness Theorem.

We show that for a wide class of constructive theories T' with a modicum
of arithmetic we have that, for a suitable £, A, 7 is complete II,. Consider an
RE theory T. Suppose N is a relative interpretation of iEA in T with domain
v. We remind the reader of Friedman’s amazing theorem that the disjunction
property implies the existence property.

Theorem 3.9 (Friedman) Let T be as described above. Suppose T has the
disjunction property. Then, T has the N -numerical existence property, i.e. for
any ¢(x), with only x free, if T + x(v(x) A p(x)), then, for some natural number
n, TH3z(v(z)aN(x =n)ad(x)). (We could also write T + ¢(n), as long as
we keep in mind that we are dealing with the numeral according to A.)

Proof

The proof is word for word Friedman’s original proof, just keeping an eye open
to see whether everything can be done using just iEA. Note that we need things
like the provable decidability of the proof-predicate and the presence of the
31-minimum principle. Q

The business of the interpretation helps us to apply Friedman’s theorem e.g. to
a theory like iZF in which the numerical language is only present via interpreta-
tion. Since, the numerical existence property in its turn implies the disjunction
property, Friedman’s theorem tells us that the numerical existence property is
‘invariant’, i.e. independent of the choice of the interpretation of iEA.

Here is an alternative formulation of Friedman’s theorem. Let’s extend R
to a language £ by adding a unary predicate symbol P. Let N'[P := ¢] extend
N by interpreting P by ¢. We demand that ¢ has at most x free. Suppose T
has the disjunction property. Then, we have,

T,N[P:=¢|tF 3z Pr=3Inew T,N[P :=¢| - Pn.
We can now prove our theorem.

Theorem 3.10 Let T be as described above. Suppose T has the disjunction

rel

property. Then, AL,T 1s complete I1,.

61 am sure that we can do better and work with a suitably large finite fragment of iT Ag+Qy,
the constructive version of Wilkie and Paris’ IAg + Q1. See [43].
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Proof

Let e be an index of a partial recursive function. We show how to reduce the
problem of the totality of An.{e}n to A . We claim:

Vn{eln| & (Ea3dzPz PvrzlyTElx(Pa:/\Ely T(e,z,y))
Here T'(u,v,w) stands for Kleene’s T-predicate. We verify our claim.

“«<=" Assume the lhs. of the claim. Consider any natural number n. Clearly,
T,N[P := (z = n)| - EA3Jz Pz.
(Here n is the A-numeral.) Ergo, by assumption,
T,N[P:=(x=n)|t 3z (Pzrdy T(e,z,y)).

Low.T,N F 3y T(e,n,y). Since T is consistent and has the numerical existence
property, T satisfies ¥;-reflection. We may conclude that {e}n |.

“<” Assume Vn {e}n |. Consider any relative interpretation M and suppose
T,M F Endz Px. By Friedman’s theorem, for some n, T, M + Pn. By as-
sumption, {e}n |. Hence, by ¥;-completeness, T, M + Jy T'(e,n,y). We may
conclude TyM + 3z (Pz A3dy T'(e, z,y)). a

Certainly not all arithmetical theories give rise to IIs-complete sets of admissible
rules. For example Ag pa is not complete II,. This is immediate from the
characterization of A, pa given in appendix A.

4 What Extendability Means for Admissibility

In this section we will show a.o. that the admissible rules of HA are the same
as the admissible rules of IPC. This result follows from the main lemma of this
section.

4.1 The Main Lemma

Lemma 4.1 Suppose T has the extension property and suppose Az 7 = IPC(p).
Then, the p-admissible rules of T are the same as those of IPC(p). Lo.w., we
have: Az = AI;‘JPC(I;‘). 0

We will prove the main lemma from two lemmas. These lemmas are stated and
proved in the next two subsubsections.
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4.1.1 The Disjunction Property

The lemma of this subsubsection tells us that certain restrictions of sets of
formulas with the disjunction property inherit the disjuction property.

Lemma 4.2 Let A C Lipc,p be any deductively closed propositional theory
with the disjunction property. Let X be any adequate set, i.e. let X be closed
under subformulas. Ax := AN X. Then Ax has the disjunction property. 0

Proof

Suppose Ax F ¢ vy and Ax If ¢; for i = 1,2. For i = 1,2, let K; be a
P-model such that £; IF Ax and IC; I ¢;. We can construct a model K3 such
that A = Th(KC3). Let K be the disjoint union of the K; for i = 1,2, 3. Clearly
K IF Ax and K I ¢;, for i = 1,2. We construct a new model KT by adding a
new root b under the K. Put b IF p :& p € Ax. We show by induction on X:
¥ € Ax = bk . The cases of atoms and conjunction are trivial.

Suppose (vvp) € Ax. Then v € A or p € A. Suppose e.g. v € A. Since
v € X, it follows that ¥ € Ax. Hence, by the Induction Hypothesis, b IF v and,
thus, b IFvvp.

Suppose (v — p) € Ax. Consider any node k and suppose k IFv. If k € K,
we are done, since I IF v — p. If £ = b, we have, by persistence, K IF v and
hence K IF p. By the Induction Hypothesis b I p.

We find b IF Ax, b I ¢1 v . A contradiction. a

4.1.2 e-Compactness

We prove a kind of compactness result. We state the lemma in the infinitary
version, where in fact we will use only the finitary one.

Definition 4.3 e Let extensp be the set of Lipc p-formulas with the exten-
sion property.

o A set of Lipc p-formulas I is e-compact if
I'F¢ = Jecextensp I'-eand € F ¢.

o I,(q) is the set of Lipc j-formulas of which the nesting degree of implica-
tions is smaller or equal than n.
a

Theorem 4.4 T' has the extension property iff I' is e-compact.

Proof

Suppose T" has the extension property. We show that T is e-compact. Consider
qd C P. Define I',(q) := {v€L.(qQ) | T F «v}. Clearly, I',,(q) is finitely axiomati-
zable. Moreover, whenever I' - ¢ there are n and ¢ C P such that I',(§) F ¢.

18



Without loss of generality we may restrict ourselves to n > 1. So it is sufficient
to show that I',,(§) has the extension property, for n > 1.
Consider any non-rooted P-model K with K IF T',,(7). Let

© := Thyn_1(K) := Th(K) N I,_1(d).

We show that, for ¢ € I,_1(q), I',O F ¢ = O F ¢, i.ow. that T U O is
I,_1(g)-conservative over 0.

Suppose I',©  ¢. Then, for some § € O, '+ (§ — ). We have, clearly,
that (8 — ¢) € I,,(q), and, hence, (6 — ¢) € T',(§). We find K I 0, since § € O,
and K IF (8 = 1), since (8 = ¥) € T'n(q). So K Ik . Moreover t € I,,_1(q), so
(ENCH

Consider any P-model M such that Th(M) = dc(I' U ©). (Here dc stands
for: deductive closure.) Note that

Thgn—1(K) =0 = Thg,,—1(M).

Let M* be a downwards extension of M with a new bottom b such that M* IF T,
We extend K to K* by adding a new bottom ¢, with ¢IF p :< b Ik p.
It is easy to show, by induction, that,

for any ¥ € I,,_1(q), clF ¢ = bl .

We show that ¢ IF [',,(¢). T has the extension property and, hence, the dis-
junction property. So, by lemma 4.2, I',,(¢) has the disjunction property. Our
proof is by induction on v € I',(¢). The cases of atoms and conjunction are
trivial. The case of disjunction is immediate by the fact that T',,(7) has the
disjunction property. Suppose that v = (v — p) € T',(§). We want to show
that ¢ IF (v — p). Clearly b IF (v — p) and v, p € I,_1(§). Consider any k > ¢
and suppose k IF v. To show k I+ p. In case k # ¢, we are done by the fact that
kisin K and K IF ', (7). Suppose k = ¢. Then it follows that b IF v and, hence,
b IF p and, thus, ¢ IF p.

We prove the converse. Suppose I is e-compact. It is our standing assumption
that P is countable. Say, P = {p1,p2,---}. Let p; := {p1,---,p:i}. Takeyy :=T
and let 7,41 be the formula with the extension property such that:

1. T+ Yn+1,

2. Y41 E A A0 (D)
3. Yn+1 is the first in a suitable enumeration of formulas satisfying (1),(2).

We prove by induction that +, is defined and that I - ~,. It is immediate
that ' is axiomatized by the ~,. Consider any P-model K of . For each n
we can add a new root b, to K such that b, IF ~,. Let Tree be the set of 0,1
sequences « such that a € Tree iff, for infinitely many n, for all i < length(a),
b, IF p; & a; = 1. It is easy to see that Tree has an infinite path 7. Add a new
root, ¢ to K, setting ¢ Ik p; < m; = 1. It is immediate that ¢ I T. a
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4.1.3 Proof of the Main Lemma

Suppose T has the extension property and suppose Azr = IPC(p). We will
show that the admissible rules of T' are the same as those of IPC. L.o.w., we
have: AI;‘,T = AI;‘JPC(I;‘).

Proof

Theorem 3.1 tells us that Az 7 C A pc(z. We prove the converse direction.

Suppose that ¢~z ipc(z ¥ and suppose, for o € suby g, that T' = o(¢). It
follows that Az (o) F ¢. Since T has the extension property, we may conclude,
by theorem 2.8, that Az 7(o) has the extension property. Hence, by lemma 4.4,
there is an ¢ € extensy with Ay (o) F ¢ and € F ¢. By theorem 2.10, we can
find a 7 € subj pc(p), such that e = e;. Ergo, IPC(p) - 7(¢). By assumption,
IPC(p) F 7(¢). Hence, e, + 9 and, so, Agr(o) F ¢. We may conclude:
T+ o(y). Q

Remark 4.5 There are a few alternative ways to set up the machinery leading
to the main lemma. If you think about the extension property, it is easy to
see that the forcing in the new bottom just depends on the atomic forcing in
the new bottom and the theory of the original model. This shows that we can
think of the extension property in a purely syntactical way. Thus we could
set up things using slash theoretic methods rather than Kripke models. This
alternative is very close to our present set-up. My choice for Kripke models is
purely a matter of taste.

A second alternative approach, is just in the other direction: rather less
than more syntactical. It is to use bounded bisimulations in the way Silvio
Ghilardi uses them in [8]. This approach has the advantage of connecting to
more theory. It is, perhaps, in the end more beautiful and, again perhaps, more
open to generalization. However, it would take a bit more work to set it up. 0

4.2 Applications of the Main Lemma
4.2.1 Intended Consequences

It was our intention in proving the main lemma, to characterize the admissible
rules of HA. Here is the argument. Every Kripke Model of HA is extendible by w
preserving the validity of HA in the model. Adding root w is called Smoryriski’s
operation. So, HA has the extension property. We already know that HA satisfies
de Jongh’s Theorem. By the main lemma, we may conclude that the admissible
rules of HA are the admissible rules of IPC.

Note that if S C T C subp ¢, then Ap 7(T) C Ap r(S). Since we have
de Jongh’s Theorem for ¥;-substitutions, it is clear that we should be able to
restrict the substitutions leading to the characterization of the admissible rules.
Inspection of the proof gives us: Ap na(Boole(X1)) = Az ipc(p)-
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The use of Boolean combinations is essential here. It is easy to see, that
Apna(E1) strictly extends Az pc(z, since =—p P\'?’LAp (Markov’s Rule), but
not =—p b, ipc p (substitute (pv —p) for p).

The same considerations show that the admissible rules of HA+RFN(HA),
HA+TI(<) and HA+DNS are the same as those of IPC. Since Ay, ;1 HatmP+ECT,
strictly extends IPC(p, ¢), clearly, the admissible rules of HA + MP + ECTy are
not those of IPC(p, q).

Open Question 4.6 e What are the admissible rules of HA + ECTq?
e What are the admissible rules of HA + MP?

4.2.2 Random Applications

In this subsubsection we provide a few more or less randomly chosen examples:
the theory of groups and the theory of fields. For information about these
theories, see e.g. van Dalen en Troelstra’s book [31].

The basic theory of apartness APP is given by the following axioms.

ID The usual axioms for identity
APl z#y e x=y
AP2 z#y - y#zx

AP3 z#y— (z#zvy#=z)

Note that AP2 follows from the other axioms. If the language has an n-ary
function symbol f, we will often insist that the corresponding function is strictly
extensional:

SE(f) flxr,-- ) # (2, 2) = Vimg @i # ]

The constructive theory of groups with apartness GROUP,, is formulated in the
language with symbols =, #, -, ~!, e. Its axioms are the apartness axioms plus
the usual universal axioms of group theory and, finally, two axioms expressing
the strict extensionality of - and .

We show that Ap croup,, = IPC(P). Consider any formula ¢ € Lipc p such
that IPC(P) ¥ ¢. Suppose that the propositional variables of ¢ are among
D ={po, ", Pn-1}. Let K be a rooted p-countermodel to ¢.

We convert K to a model K' for GROUP,,. First, X' has the same ordering
as K. Let 7 be an injective mapping of n = {0,---,n— 1} to the prime numbers.
Let Z; be the additive group of the integers modulo i. Z; is the trivial group.
Define a mapping v : K x n — w as follows.

o v(k,i) = { 1 otherwise

21



We assign to the node k£ the group H?;()l Zy(k,i)- We stipulate that in a given
node two elements are apart whenever they differ. The further details are obvi-
ous. Define:

o o(pi) =T (@™ = 1a \TG T ad 1)

It is easy to see that k lFx ¢ < k b o(¢). Ergo: K' W a(¢).

GROUP,, has the extension property, since we can always add the triv-
ial group as root preserving GROUP,,. We may conclude that Az croup,, =
Az ipc)-

The weak constructive theory of fields FIELD™ has a language with the
following symbols: =, # , -, +, —, 0, 1. FIELD™ has as axioms the apartness
axioms, the usual universal axioms of the theory of commutative rings, axioms
expressing the strong extensionality of + and -, plus the following axioms.

INTEGRAL z2#0Ay#0=2 -y#0
INVERSE z2#0—3dy z-y=1

The full theory of fields FIELD is obtained by adding the following axiom to
FIELD™:

NONTRIV 0#1

Note that in FIELD the axiom integral becomes derivable from the other ax-
ioms. Note also that FIELD does not have the disjunction property, since e.g.
3# 0v3# 1 is derivable. We obtain FIELD¢ha—¢, the theory of fields of charac-
teristic 0, by adding the following axioms to FIELD:

n+1
——
CHAR=0 0#n+1, wheren+l:=1+---+1

Note that in FIELDchar—o we can derive of any two different elements of QQ that
they are apart. We can easily prove de Jongh’s theorem for FIELD pa—9. We
simply proceed as in the case of groups, only now we assign to the node k the
structure Q({y/v(k,i) |i € n}). We take o(p;) := (3= 2> = m(i) ). Note that we

automatically obtain de Jongh’s theorem for FIELD ™ and FIELD too.

FIELD™ has the extension property. We can always add Z as root, preserving
FIELD™. Here we arrange it so that no two different elements of Z are apart
at the root. FIELD does not have the extension property. FIELDcpar—o, on
the other hand, does have the extension property. We can always add Q as a
root, preserving FIELDha—o- Here we stipulate that whenever two rationals are
different then they are apart at the root. We may conclude that Aj g p- =

Ap FIELDyu—o = ApIPc(i)-

Open Question 4.7 Characterize Ap rigLp- 1]
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A The Predicate Logical Admissible Rules of PA

In this appendix we provide characterizations for predicate logical admissibil-
ity in arithmetical theories in the style of the Orey-H&jek and the Friedman
characterizations for interpretability. The appendix uses some machinery not
presupposed in the rest of the paper. See e.g. [11], [37], [38].

Let Q be Robinson’s Arithmetic. We work with a slightly stronger theory
Q™" in which the methodology of definable cuts works smoothly. QT is Q plus
the axioms expressing that the usual ordering on the natural numbers is a linear
ordering. Tt is well known that Q interprets Q. We will call T' arithmetical or
an arithmetic if QT is interpretable in 7.7 We fix some notations and introduce
some conventions.

e R is the arithmetical language, with 0,5, +, -.

e We write A for the formalization of cut-free or tableaux provability. See
e.g. [43] for a description of tableaux provability. We write V for cut-free
or tableaux consistency, so V is =A-.

e O stands for ordinary provability and < := —0-, i.0o.w. & means ordinary
consistency.

e 0, stands for provability with a proof in which all (non-logical) axioms
used have Godelnumbers smaller than n and in which only formulas occur
of complexity smaller than n. <, :=-0,-.

e Unless in these cases where it is stipulated otherwise, our theories are RE.

In our first few theorems, we connect admissibility for substitutions in an arbi-
trary language with admissibility for substitutions in the arithmetical language.

Theorem A.1 Let T be any classical theory. T could be complete 11}, T could
have just a proposititonal language with only 0-ary predicate symbols or T could
be even inconsistent! We have

rel

prrry = (Q"AVeacr)9) *V;ezl,T Acac(ey (¢ — ).

7 Alternatively, we could demand that an appropriate weak set theory is interpretable. See
Montagna and Mancini’s [16].
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Proof

Assume the antecedent of the theorem. Consider any N in relintz 7 and suppose
T,N + Q" AVcqc()¢- In the theory QT AVeqe(z)¢, we can construct an
interpretation /C, such that

L Q+ AVCQC(L)QS)K: F o,
2. Q+ AVCQc(ﬁ)((f)/\—I’QZJ),’C F ¢A—|1/}.

One uses the formalized model-construction for tableaux in combination with
the methodology of shortening cuts, developed by Solovay, Pudlik and Wilkie
& Paris. A detailed verification of the construction can be found in Marianne
Kalsbeek’s masters thesis [13].% One uses the definable cuts to compensate for
the lack of induction. The disjunctive effect can be obtained e.g. by constructing
two interpretations K; and Ko, coresponding to (1) resp. (2) first, and taking

e.g.
o K(P) == ((K1(P)aAcqc(e)y=(@r=1)) v (K2(P) A Veqee) (@A) ).
Taking M := N o K, we find T, M F ¢. Hence, by assumption, T', M F 1. But,

then, T, V' = =(Q* A Vcqc(e) (¢ A —¥)). Since, by assumption, TN = QF, we
may conclude: T,N'F Acqcz) (¢ — 1).° Q

A theory T is sequential if there is an interpretation A/ of QT for which we have
a good theory sequences of all objects of the theory in 7" and where we can
find elements of the sequences by projecting using the A-numbers. See [11].
The relevant feature of sequential theories here is the possibility of constructing
partial truth-predicates in such theories. This allows us to prove things like
cut-free consistency of finite subtheory on a definable cut.

Theorem A.2 Let T be a classical, sequential theory. Then,

rel

(Q* AVeaqe(e)9) PV;;I,T Acqcioy(p =) = ¢ b

Proof

Suppose that N provides the numbers involved in the sequentiality of T'. Assume
the antecedent of the theorem. Suppose that T', K - ¢, for some K € relint. 7.
Since our theory is sequential, we can produce a definable N-cut, Z, such that

L. TFN(Z(Acpc(z)—¢) ) = K(=9),

8 Another way to obtain the same result is as follows. First we prove that, for a suitable
definable cut Z, QT A Veace)yXs T = Ocqee),nXx- This uses the fact that cut-elimination for
an n-proof is only multi-exponential. Then we construct a relative interpretation O, such that
Qt A Ocqce(e),nX> O F x- We obtain this O by the ordinary formalized Henkin construction
applied to formulas of complexity below n. See [37]. Take K :=Z o0 O.

9We work with a version of tableaux provability in which the transformation from a
tableaux proof of —(¢ A —1)) to a tableaux proof of to (¢ — ) is easy, perhaps even sim-
ply definitional.
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2. THN(I(Acpcry (@ = ) = K(¢ = o).

The proof of this fact employs the construction of a partial truth predicate and
a variant of the standard proof of the reflection principle, using the transition
to a definable cut to compensate for the lack of induction. See, for details, e.g.
[11]. Let M := N oZ. We have: T,M + Q*. From T,K I ¢ and (1), we find
that T,M F Q+ AVCQC(£)¢- Ergo, by assumption, T,./\/l H ACQC(E) (d) — I/})
By (2) and the definition of M, we get: T, K ¢ — . We may conclude that
T,KF . a

Combining theorems A.1 and A.2, we find:

Theorem A.3 Let T be a classical, sequential theory. Then,

rel

rel
pbrrh o (Q"AVeac(e)d Mrr Acac(e) (@ — ¥)-

Let arithy := {Mé€relintg | T, M F QT }. The characterization of the predicate
logic of T provided by theorem A.3 is as follows.

Corollary A.4 Let T be a classical, sequential theory. We have:

L.yeArr & Q* f‘;ezl,T AIPC(£)¢ & Ag,r(arithr) - Amc(p)?/)-
2.Tordpe Tor(QYAVeae(e)d)-

Proof

(1) is immediate. We prove (2). In case T is inconsistent, we are immediately
rel

done. Suppose 7' is consistent. Then T'> ¢ < = (¢ by L). The desired
result is now immediate. Q
A theory T is weakly X1 -sound, if, for all ¥;-sentences o, Q™ Pv;iT oc=>NEo,
i.o.w. of Ag r(arithy) N senty, C Th(N). Note that a weakly ¥;-sound theory
is automatically an arithmetic. A theory T is £, N -sound, for N € relintg 7,
if T,N'F Q% and, for all ¢ € sents,,, T,N F o = N | o. Finally, T is strongly
Y1 -sound, if T is 1, N -sound, for some N .

Theorem A.5 Let T be a sequential theory that is weakly X1-sound. Then,

rel

dphrry & (Toco=CQCL) o — o)
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Proof
rel

Suppose (a) ¢ by ptp and T >, ¢. By corollary A4, we can find an V' €
relintg 7, such that (b) T,V F QT AVcqc(r)¢- By weak Xi-soundness, it is
sufficient to show that, for every M € arithy, T, M + Az 7(¢ — ). Consider
any M € arithy. We can find definable cuts Z and J of resp. N and M that
are T-provably isomorphic. See [24] or [11] or [38]. By downwards persistence
of TI;-sentences, we find T, o T F QT A Vcqced. By isomorphism, we obtain
T,MoJF QT AVcqcco- Applying theorem A.3 to (a) and (b), we get T, M o
J F Az r(¢p — ). By upwards persistence of ¥;-sentences, we find: T, M F
Az (¢ — ). The converse is trivial. Q

An alternative formulation of our theorem is Az 7 = (INTZ 7 x sent) UZcqc(z) -
Here INTZ 7 = sent. \ INT 7.

Corollary A.6 Let T be a sequential theory that is weakly ¥;-sound. Then,

Az =CQC(L). Q
Proof
Obvious. Q

Corollary 5.3 of [38], tells us that a consistent finitely axiomatized sequential
theory T is weakly ¥;-sound. From theorem 5.9 of [38], we can even show
that such a T is strongly ¥;-sound. The result is somewhat delicate in that
the theorem may be verifiable in T itself: for some M, N € arithy, and for all

o € senty,,
T,ME (OrTAaOrN (o)) = 0.

Familiar Gédelean results do not yield a contradiction, but only the observation
that M and N cannot be the same. The above results lead us immediately to
the following corollary.

Corollary A.7 Every consistent finitely axiomatized sequential theory T sat-

isfies:
rel

phrry & (Toco=CQCL)Fd— )

Proof

If T is inconsistent, we are immediately done. If T is consistent, we may apply
the results quoted above. a
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Note that for the case of finitely axiomatized theories (INT 7 x sentz) UZcqc(r)
becomes the union of a II;-set with a X;-set. Examples of theories to which the
corollary may be applied are GB, ACAy, IX,,, IAg + Exp, Qt. To each of these
theories we may add finitely many axioms without invalidating the result —as
long as we preserve consistency.

The situation for theories satisfying full induction is rather different.

Theorem A.8 Suppose there is an N with domain v, such that T,N + Q1 and
such that T proves full induction w.r.t. the whole language for the N -numbers.
So T proves:

[Tz (v(z) AN (z = 0) Ad(z)) A
Vo ((v(z) nd(x)) = Fy (v(y) AN (ST =y)nd(y)))] — Vo (v(z) = ¢(z)).

Then we have:

rel

pbrrh & (T,NF Ocqeeyd = T, N F Ocqeey (0 — ¥)).

Proof

“=” Assume the lhs. of the theorem. Suppose TN + Ccqer)@- If we
have full induction, we can prove Supexp, the axiom stating the that the su-
perexponentiation function is total. If we have superexponentiation, we can
prove cut-elimination. Hence, & will be provably equivalent to V. We may
apply theorem A.3 to obtain: T,N F Acqc(z)(¢ — ¢). Hence, a fortiori,
T, N+ Ocqcey (¢ — ).

“<" Agsume the rhs. of the theorem. Consider any arithmetical interpretation
K. Suppose T, K F Vcqc(z)¢- Since NV satisfies full induction, the AV-numbers
will be verifiably an initial segment of the X-numbers. By downwards persistence
of II; -sentences, it follows that T, N+ Vcqc(z)¢. Hence, T, N F Ocqe(e)¢- By
assumption, we get T, N F Ocqc(e)(¢ = ). Hence, T, N F Acqc(e)(¢ — ¥).
By upwards persistence of ¥;-sentences, we find T, K F Acqc(z) (¢ — ¥). We
may apply theorem A.3, to obtain the desired conclusion. Q

Note that the present theorem makes A, 1 a union of a II;-set and a ¥;-set. Ex-
amples of theories to which the theorem can be applied are PA and ZF. Note that
we cannot drop the ‘T ..." in the conclusion, since, e.g.: QT PV,ZEAJFDPAL OpaL

and, even, AR,PA—HIIPAL FQt — OpaL.

Corollary A.9 Suppose there is an N with domain v, such that T, V' - Q* and
such that T' proves full induction w.r.t. the whole language for the A-numbers.
Then,

LyelAsr & T,NFOcqce)¥
2. T ¢ T,NFOLcace)d-
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a

We can strengthen the above result by considering reflexive and (locally) essen-
tially reflexive theories. Consider a theory T and an A € arithy. Define:

e T is N-reflexive, if for all n € w, T,N' + 7, T

e T is locally essentially A/-reflexive, if for all n € w and for all ¢ € sent,,.,

T+ N(@@rnd) = ¢.

Theorem A.10 Suppose T is locally essentially N -reflexive. We have:

rel

pbrrt & Inew (T,NF Ocqeey)n® = T, N F Ocqc(e)n(@ — ¥)).

Proof

“=" This part of the proof is fully analogous to the proof of theorem A.1. “«<
Assume the rhs. of the theorem. Let n be the promised number. Suppose that
K is a relative £, T-interpretation such that T, C - ¢. It follows that, for some
k, we have T, N + O, K(¢).

Reason in T, N'. Suppose Ocqc(c),n¢- Then, certainly, for an appropriate
standard number m, O7 ,,K(—¢). Takmg q:= max(k m), we find O7 , 1. Quod
non, by N—reﬁexivity. We may conclude: Ceqeqr),n®-

Leaving T, N, we see that T, N' F Ocqc(r)¢. By our assumption, we find:
T,N + Ocqc(z),n(¢ — 1). Hence, for some 7, we have T, N + O7,.K(d = ¢).
Combining this with T, V't O7 (K (9)), we find that T, N + Or K (1)), where
s = max(n,r). By reflection, we obtain: T'F K(¢). a

Theorem A.10 substantially extends theorem A.8, since local essential reflec-
tiveness is much weaker than full induction. Our theorems still give no informa-
tion about Primitive Recursive Arithmetic, PRA. PRA is reflexive and ¥;-sound
w.r.t. the identity interpretation. The following theorem does the trick.

Theorem A.11 Suppose T is N -reflexive and X1, N -sound. Then We have:

rel

(f)f"LTI/} = Enew(TNl—Och(£¢:>CQC( )"(]5—)1/))

Proof

The proof is a trivial variation of the proof of theorem A.10. Q
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