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Abstract

This paper is concerned with the �logical structure� of arithmetical the�

ories� We survey results concerning logics and admissible rules of con�

structive arithmetical theories� We prove a new theorem� the admissible

propositional rules of Heyting Arithmetic are the same as the admissible

propositional rules of Intuitionistic Propositional Logic� We provide some

further insights concerning predicate logical admissible rules for arithmeti�

cal theories�
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� Introduction

Can we say anything interesting about the logical structure of constructive arith

metical theories� We might ask for example what the �logic� of such a theory is�
A question with an even more informative answer is� what are the admissible
rules of a given arithmetical theory�

This paper is� in a sense� two papers in one� Firstly we survey results
concerning logics and admissible rules of arithmetical theories� Secondly� we
�ll some gaps in our total picture�

� We show that the propositional admissible rules of Heyting Arithmetic�
HA� are the same ones as those of Intuitionistic Propositional Logic� IPC�
itself� This characterization will follow from a general lemma�

� In subsection ��� we present a particularly simple proof that the predi

cate logical admissible rules of a wide range of constructive theories are
complete ��

��

� In the appendix we provide some Orey
H�ajek
Friedman style characteri

zations of predicate logical admissibility for classical arithmetical theories�

The structure of the paper is as follows� In section �� we review what is known
about the �logics� of constructive theories� Speci�cally� we will be interested in
the case where the logic of a theory is precisely IPC� Some of the results discussed
here will be used as lemmas later on in the paper� Section � will introduce the
basics on admissible rules of arithmetical theories� Section � contains the proof
of our result concerning the admissible rules of HA� Finally� in an appendix� we
brie�y consider what can be said about the predicate logical admissible rules of
classical arithmetical theories�

Prerequisites

The paper presupposes some knowledge of the Kripke semantics for constructive
theories� See e�g� ���� or ��
�� In appendix A we employ some results concerning
de�nable cuts� restricted proof predicates and the like� A good reference for the
material in the appendix is ����� See also ���� and �����

� Theories and Logics

Let T be any theory formulated in either intuitionistic predicate logic or intu

itionistic propositional logic� Let the language of T be LT � For LHA� the usual
language of arithmetic with 
� successor� plus and times� we reserve the special
name R�

It is a natural question to ask ourselves� what are the schematic principles
�valid� in T � The answer to this question will depend on our notion of scheme�
Do we mean scheme in the language of propositional logic� in the language of
predicate logic� in a modal language as in provability logic�
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Suppose T is a theory in classical logic� Then the propositional schemes valid
in a consistent theory T with classical logic are� trivially� precisely the classical
tautologies� The question becomes much more interesting if we consider classical
theories and predicate logical schemes �see ������ or if we enrich the propositional
language with a modal predicate for provability �see ��� or ������

If we consider constructive theories� already the purely propositional case
has some interest� If a theory is �purely constructive�� one would surely expect
the valid propositional schemes to be precisely the theorems of intuitionistic
propositional logic IPC� This turns out to be often the case� However� the
proofs are surprisingly non
trivial�

In this section we will survey what is known about propositional and predi

cate logics of arithmetical theories�

��� Propositional Logics of Theories

Below I present the necessary de�nitions to speak a bit more precisely about
substitutitions� propositional schemes and the like�

Let P be a countable set of propositional variables� The language LIPC�P is
the language of IPC for the variables P � We will denote IPC with this language
by� IPC�P�� By our earlier convention� we have� LIPC�P� � LIPC�P A P
scheme
is simply a formula in LIPC�P � A scheme is �valid� in T if all of its substitution
instances are T �provable� In most cases we will consider a �nite set P � We will
use �p� �q as notation for such �nite sets�

Let L be any language of propositional or of predicate logic� A P
substitution
� for L is a function from P to the set of sentences of L� The set of P

substitutions for L will be called subP�L� In case L � LT � we will also write
subP�T � We extend � � subP�L in the usual way to LIPC�P by making it commute
with the propositional connectives including � and �� We will use ���� for �the
extension of � applied to ���

A P
logic � is a set of LIPC�P 
formulas� that extends the set of IPC�P�

tautologies� is closed under modus ponens and under P
substitutions for LIPC�P ��

So for � � subP�IPC�P�� we have� � � �� ���� � �� Here are some de�nitions�

� Let � �� S � subP�T � De�ne�
�P�T �S� �� f��LIPC�P j 	��S T 
 ����g
In case S is obtained by restricting the range of the substitutions to a class
of formulas �� we will� par abus de langage� write �P�T ��� for �P�T �S��

� Let � � subP�T � Omitting singleton brackets� we write�
�P�T ��� �� �P�T �f�g�
We call �P�T ��� the exact P�theory of � for T �

� We will omitt the set of substitutions� when we are considering all substi�
tutions of the relevant kind�

�I feel that this usage of logic is slightly perverse
 The correct notion of logic should
obviously explicitely contain the machinery for obtaining theorems
 The current usage should
be viewed as a convenient way of speaking in the present context
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�P�T �� �P�T �subP�T ��

It is easy to see that �P�T is a P
logic and that� for any P
logic �� we have
�P�� � �� We will identify IPC�P� with �P�IPC� Note that �P�T �S� need not
generally be a logic�

It is easy to see that if jPj � jQj� then �P�IPC�Q� � IPC�P�� We show�

Theorem ��� If jPj � jQj� then �P�IPC�Q� � IPC�P��

Proof

Suppose jPj � jQj� Remember that we assumed P and Q to be countable�
So Q must be �nite� Take �p � P � with jQj � j�pj� Let C be the set of all
conjunctions of formulas of the form p and �p� where for any p � �p precisely
one of p� �p is a conjunct� Take � ��

W
f�� j � � Cg� Clearly� IPC�P� � ��

Suppose � � subP�IPC�Q�� If we did have IPC�Q� � ����� then there would be a
�nite rooted Q
model K� with root b such that b � ����� For every � � C� there
would be a top node k above b such that k � ����� Thus� there must be at least
�j�pj topnodes with essentially di�erent forcing relation� Since� K is a Q
model
there could be at most �jQj such nodes� A contradiction� So� � � �P�IPC�Q��

�

Note also that if T is any consistent classical theory� whether in propositional
or in predicate logic� we have �P�T � CPC�P�� Here CPC is the classical propo

sitional calculus�

��� Predicate Logics of Theories

Let L be a language of predicate logic� Let T be a theory� An L
scheme is
simply a sentence in L� A scheme is �valid� in T if all of its interpretations
are T �provable� An interpretation M assigns to a relation symbol R of L for

mulas of LT with designated variables corresponding to the argument places
of R� We usually assume that M�R� contains no other variables than those
representing the argument places� In case L contains function symbols we treat
f�x�	 
 
 
 	 xn� � y as a relation symbol� M sends an arbitrary formula � of
L to the result of replacing all its relation symbols R by M�R�� changing the
variables representing the argument places into the variables following a given
occurrence of R in �� In case � contains function symbols� we �rst apply the
well
known procedure for reducing the nesting degree of function symbols to �
and than run the procedure we just described� In case we eliminate function
symbols� we demand that the interpreting theory veri�es the translations of
the statements expressing the fact that f�x�	 
 
 
 	 xn� � y represents the graph
of a function� Thus being an interpretation becomes dependent not only on
the interpreting language� but on the interpreting theory� We call the class of
interpretations of L in T � intL�T �

We often do not want simple interpretations but relative interpretations�
A relative interpretation is like an interpretation with the following additional
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feature� There is an associated special formula 
�x� representing the domain of
the interpretation� In relative interpetations we replace 	x � � � by 	x�
�x� �
� � �� and we replace �x � � � by �x�
�x� � � � ��� We demand that the interpreting
theory proves �x 
�x�� Thus� whether something is a relative interpretation
or not will depend on the interpreting theory even in the absence of function
symbols� We call the class of relative interpretations of L in T � relintL�T �

For more details on interpretations� see e�g� ��	� or ���� or ����� Here are the
relevant de�nitions�

� Let � �� S � relintL�T � De�ne�
�rel
L�T �S� �� f��sentL j 	M�S T 
 M���g

In case S is obtained by restricting the range of the substitutions to a class
of formulas �� we will� par abus de langage� write �rel

L�T ��� for �rel
L�T �S��

� We will omitt the set of relative interpretations� when we are considering
all interpretations of the relevant kind�
�rel
L�T �� �rel

L�T �relintP�T �� It is easy to see that the unrelativized interpreta

tions can be viewed as a subclass of the relativized interpretations� When
we consider unrelativized interpretations� we simply drop the superscript
rel� So�
�L�T �� �rel

L�T �intP�T ��

It is clear that� when we view P and L as signatures� our de�nitions for propo

sitional logic are simply special cases of the ones for predicate logic� Here are a
few further convenient notations�

� M � T � � �� T	M 
 � �� T 
 M����

� T � � �� �M�relintL�T T	M� ��
We say that � is relatively interpretable in T or that T interprets ��

We note in passing that Tarski�s notion of weak interpretability is reducible to
�rel
L�T � A sentence � of L is weakly interpretable in T if there is a relative L	 T 


interpretation M such that T �M��� is consistent� We easily see that � is
weakly interpretable in T i� �rel

L�T � � is consistent� If we consider a classical

theory T we can regain �rel
L�T from the � that are weakly interpretable in T � The

notion of weak interpretability is important because of the following theorem�
Let Q be Robinson�s Arithmetic�

Theorem ��� �Tarski	 If Q is weakly interpretable in T � i�e� if �rel
R�T � Q is

consistent� then T is undecidable�

Tarski uses the theorem in his proof of the undecidability of Group Theory�
See ��	�� Note that it follows that for decidable theories� like the theory of
Abelean Groups� we have� �rel

R�T 
 �Q� For results concerning the �L�T for
classical theories T � the reader is referred to Vladimir Rybakov�s book ���� and
to Rotislav Yavorsky�s paper ����� See also appendix A of the present paper�
Here are three of Yavorsky�s results�
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� �L�PA � CQC�L�� Here CQC�L� is classical predicate logic for the language
L��

� �L�GROUP�
class

� CQC�L�� Here GROUP�class is the classical theory of groups

with one extra constant�

� �L�Pre �� CQC�L�� Here Pre is classical Presburger Arithmetic�

��� A Brief History of de Jongh�s Theorem

We present a brief survey of the development of our present knowledge of con

structive arithmetical theories and classes of substitutions that give us precisely
constructive logic�

�
�
 Dick de Jongh shows in an unpublished paper that �P�HA � IPC�P�� He
uses substitutions of formulas of a complicated form� In fact he proves a
much stronger result� viz� that the logic of relative interpretations in HA
is Intuitionistic Predicate Logic� i�o�w� �rel

L�HA � IQC�L�� See the extended
abstract ���� De Jongh�s argument uses an ingenious combination of Kripke
models and realizability�

�
�� Harvey Friedman in his paper ��� shows that �P�HA���� � IPC�P�� In
fact� Friedman provides a single substitution � mapping P to ��
sentences
such that �P�HA��� � IPC�P�� We will say that IPC is uniformely com

plete for ��
substitutions in HA� Uniform Completeness tells us� in this
case� that the free Heyting algebra on countably many generators can be
embedded in the Lindenbaum Algebra of HA� Friedman employs slash

theoretic methods�

�
�� Craig Smory�nski strengthens and extends de Jongh�s work in a number
of respects in his very readable paper ����� To state his results we need a
few de�nitions� We write D�� for the set of disjunctions of ��
sentences�
Boole���� for Boolean combinations of ��
sentences� MP is Markov�s
Principle� RFNHA is the formalized uniform re�ection principle for HA�
TI��� is the trans�nite induction scheme for a primitive recursive well

ordering �� We have

�P�T � �P�T ���� � �P�T �D��� � IPC�P�	

for the following theories T � HA� HA�RFN�HA�� HA�TI���� We have
�P�HA�MP�Boole����� � IPC�P�� Smory�nski uses Kripke models in combi

nation with the G odel
Rosser
Mostowski
Kripke
Myhill theorem to prove
his results�

�
�� Daniel Leivant in his PhD Thesis ���� shows that the predicate logic of
interpretations of predicate logic in HA is precisely intuitionistic predicate
logic� Leivant�s method is proof theoretical� In fact Leivant shows that

�In appendix A we will prove a result that immediately implies this fact
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one can use as interpretation a �xed sequence of ��
predicates� So Leivant
proves that �L�HA�M� � IQC�L�� for some ��
interpretationM� Leivant�s
results yield another proof of Friedman�s results described above�

�
�� De Jongh and Smory�nski in their paper ��� show that ��p�HAS���� �
IPC��p�� They also show that there is a � � P � ��� such that �P�HAS��� �
IPC�P��

�
�� Yu� V� Gavrilenko in ��� shows that ��p�HA�ECT����� � IPC��p�� Here ECT�
is Extended Church�s Thesis� Gavrilenko proves this result as a corollary
of the similar result of Smory�nski for HA�

�
�� Albert Visser in his Ph�D� thesis ���� provides an alternative proof of de
Jongh�s theorem for HA� HA�DNS� HA�ECT� for ��
substitutions adapt

ing the method of Solovay�s proof of the arithmetical completeness of L ob�s
logic for substitutions in PA� Here DNS is the principle Double Negation
shift� In fact his proof extends to these theories with appropriate refection
principles or trans�nite induction over primitive recursive well
orderings
added�

�
�� In his ����� Albert Visser provides an alternative proof of de Jongh�s
uniform completeness theorem employing a single ��
substitution� The
proof is veri�able in HA�Con�HA�� �Note that de Jongh�s theorem implies
Con�HA�� so the result is� in a sense� optimal�� The proof uses the NNIL

algorithm� an algorithm that is used to characterize the admissible rules
for ��
substitutions� See below�

�

� Jaap van Oosten in his paper ���� provides a more perspicuous version of
de Jongh�s semantical proof of de Jongh�s theorem for �non
relativized�
interpretations of predicate logic� Van Oosten uses Beth models and real

izability� See also �����

�

� Using the methods developed by Visser in ���� and by de Jongh and
Visser in ��� one can prove uniform completeness w�r�t� ��
substitutions
for HA�ECT�� HA�ECT��RFN�HA�ECT��� HA�TI����ECT��

Open Question ��� Here are some open questions in this area�

�� What is the predicate logic of HA�MP�

�� What is the predicate logic of HA� ECT��

We end this section by providing a necessary condition for arithmetical theories
to satisfy de Jongh�s theorem�� Consider a theory T � Suppose N � intR�T �
Suppose we have�

�The argument is inspired by G�odel�s observation that the completeness theorem for ordi�
nary models of predicate logic constructively implies Markov�s Principle
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�� T	N 
 iEA� where iEA is the intuitionistic version of Elementary Arith

metic� also know as iI!� � Exp"

�� T is locally essentially re�exive w�r�t� N � This means that T proves the full
sentential re�ection principle for IQC�LT �� where provability is formalized
�in N �" i�o�w� for any sentence � of LT � T 
 N ��IQC�LT ���� ��

All extensions of HA in R are locally essentially re�exive� Let Q be the single
axiom of �the intuitionistic variant of� Robinson�s Arithmetic�

Theorem ��� Let T be as above� Suppose �R�T � IQC�R�� Then T is ��
��

sound w�r�t� N � Moreover� T is closed under the Primitive Recursive Markov�s
Rule w�r�t� N � i�e�� for any ��

��sentence �� T	N 
 ��� � T	N 
 �� Our
two claims together are� clearly� equivalent to the following principle� for any
��
��sentence �� T	N 
 ��� � N j� �

Proof

Suppose T	N 
 ���� Then� T	N 
 ���IQC�R��Q � ��� since iEA proves �

completeness for Q� Consider any K � relintR�T � Given the fact that we just
have �nitely many function symbols in R� we only need a �nite subtheory of
T to verify the fact that K is an interpretation� Suppose � axiomatizes such
a �nite subtheory� We �nd� T	N 
 ���IQC�LT ��� � K�Q � ���� Since T

is locally essentially re�exive w�r�t� N � we �nd T 
 ��K�Q � ��� Hence�
T 
 K�Q � ����� Since K was arbitrary� we �nd �Q � ���� � �R�T � So�
by our assumption� IQC�R� 
 Q � ���� Since Q is classically true� we may
conclude that N j� �� �

��� Markov�s Principle and Church�s Thesis

In this subsection� we brie�y consider cases� where the logics of a theory are
not precisely intuitionistic logic� We have seen that �P�HA�MP � �P�HA�ECT� �
IPC�P�� Remarkably� �P�HA�MP�ECT� � for jPj � �� turns out to be a proper
extension of IPC�P��

Consider the formulas � and 
� which are de�ned as follows�

� � �� ��p ��q��

� 
 �� ������ ��� ���� ������ ���� ����

Clearly� 
 is IPC�p	 q�
invalid� We use r for Kleene realizability� In his classical
paper ����� G�F� Rose showed that� �e 	��subP�HA N j� e r��
�� Thus� Rose
refuted a conjecture of Kleene that a propositional formula is IPC
provable if
all it�s arithmetical instances are �truly and classically� realizable� Note the
remarkable fact that one and the same realizer realizes all instances# Inspecting
the proof one sees that only a small part of classical logic is involved in the

	



veri�cation of realizability� Markov�s Principle� See David McCarthy�s paper
���� for a detailed analysis� Thus we obtain�

�e 	��subP�HA HA�MP 
 e r��
��

Hence� a fortiori� 
 � �fp�qg�HA�MP�ECT� �

Open Question ��� The precise characterization of any of the following sets
is an open problem�

�� �P�HA�MP�ECT� �

�� f��LIPC�P j �e 	��subP�HA HA 
 e r����g�

�� f��LIPC�P j 	��subP�HA �e N j� e r����g�

�� f��LIPC�P j �e 	��subP�HA N j� e r����g�

One could well imagine that it would be possible to prove the sets ��� and ���
to be equal without having a characterization� Similarly for ��� and ����

The situation for substitutions in predicate logic is even more spectacular� In
a series of papers� ����� ��	�� ��
�� V�E� Plisko shows that the set of uniformly
realizable principles of predicate logic is complete ��

�� In other words he shows
that� for an appropriate L� f��sentL j �e 	K � intL�Th�N� N j� e rK���g is
complete ��

�� ����� provides a related result for modi�ed realizability�� In two
subsequent papers ����� ����� Plisko shows that �L�HA�MP�ECT�

is complete ��
��
	

��� Exactness and Extension

An exact theory is the theory of a single interpretation� If U � �P�T ���� or�
analogously� for the predicate logical case� U � �L�T �M�� one says that � or
M is a faithful interpretation of U in T � For example� the Beltrami
Poincar�e
interpretation of hyperbolic geometry in Euclidean geometry is faithful� the
usual interpretation of PA in ZF is not�

We will show that exact theories inherit a salient property� viz� the extension
property� from their interpreting theories� To set the stage� we �rst introduce
the idea of E
preservation� Consider a class K of models �of whatever kind��
Let R be a binary relation on K � A class $ of formulas �with a semantics in
K � is E�preserved �in K � by R if� for all K � K � whenever K � $� then� for
some N with KRN � N � $� In a similar way we can de�ne A
preservation� by
demanding that then� for all N with KRN � N � $�

Here is an example of a characterization of a class of formulas employing E

preservation� a characterization of formula classes with the disjunction property�
due to Dick de Jong� See his ����

�Both qua content and qua methodology Plisko�s result is similar to Vardanyan�s result
that the predicate provability logic of PA is complete 
�

�
 See ��� for an exposition and further
references
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Theorem ��� �De Jongh	 Let K be the class of 	not necessarily rooted
 Krip�
ke P�models� De�ne�

� K � N i� K is a generated 	i�e� upwards closed
 submodel of N and N is
rooted�

Suppose $ � LIPC�P � Then $ has the disjunction property i� $ is E�preserved
by ��

Let L be a language of either intuitionistic propositional logic or of intuitionistic
predicate logic� Let K be the class of Kripke L
models� We de�ne�

� K lN i� N is rooted and K is the result of omitting the root of N �

We say that $ � L has the extension property i� $ is E
preserved by l� Al

ternatively� we say that $ is extendible� So $ has the extension property if any
�non rooted� model of $ can be extended with a new root preserving the validity
of $� We start with a triviality�

Theorem ��� Every extendible theory has the disjunction property�

The theorem is immediate by theorem ��� and the fact that l is a subrela

tion of �� The next theorem establishes a connection between exactness and
extendibility�

Theorem ��� Let T be an extendible theory with language LT and let � �
subP�T � Then� �P�T ��� has the extension property�

Proof

Say E �� �P�T ���� Consider any non
rooted Kripke P
model K� Suppose that
K � E � Let � �� Th�K�� Clearly� E � �� Consider � � LIPC�P n �� We claim
that ���� �
T �����

Suppose that ���� 
T ����� Then� for some � � �� T 
 ��� � ��� Hence�
�� � �� � E � It follows that � 
 �� Quod non�

We can �nd a non
rooted Kripke model M of T such that

����Th�M�� �� f��LIPC�P j M � ����g � ��

Since T has the extension property� we can extend M to a new model M�

satisfying T by adding a new bottom b� We extend K to K� with a new bottom
c� stipulating that c � p �� b � ��p�� We show that c � � �� b � ���� by
induction on LIPC��p�

The cases of atoms� conjunction and disjunction are trivial� Suppose c �

� � �� It follows that K � � � � and� hence� �� � �� � �� Consider m � b�
Suppose m � ����� In case m is in M� we have� by the fact that M � �����
m � ��� � �� and� hence� m � ����� In case m � b� we have� by the Induction
Hypothesis� c � �� So� by assumption� c � � and� hence� again by the Induction
Hypothesis� m � b � ����� The converse is similar� �

��



Consider � � sub�p�IPC�P�� Dick de Jongh and Albert Visser prove the following
theorem� See ����

Theorem ��
 ��p�IPC�P���� is �nitely axiomatizable�

The proof uses Pitts� Uniform Interpolation Theorem� See ����� �	�� ��
�� Par
abus de langage� we call an axiom of ��p�IPC�P����� �� � Note that �� is only
determined up to provable equivalence� We call a formula � axiomatizing some
��p�IPC�P���� a �p	P�exact formula� The set of �p	P
exact formulas is exact�p�P �

Silvio Ghilardi proved that for substitutions in IPC we have a converse of
theorem ���� See his ����

Theorem ���
 �Ghilardi	 Suppose that � � LIPC��p has the extension property�
Then� for some � � sub�p�IPC��p�� we have � � ���

Note that Ghilardi�s theorem� as stated here� implies that if � � LIPC��q and � is
�p	P
exact� then � is �q	 �q
exact� Ghilardi�s theorem will be used as a lemma in
the characterization of the admissible rules of HA�

� Admissible Rules

��� Finitary Admissible Rules

Let T be a theory and let S � subP�T � A hP 	 T	Si
admissible rule is a pair of
LIPC�P 
formulas h�	 �i such that� for all � � S� T 
 ���� � T 
 ����� We say
that h�	 �i is P 	 T 
admissible if it is hP 	 T	 subP�T i
admissible� De�ne�

� AP�T �S� is the set of hP 	 T	Si
admissible rules�
AP�T � AP�T �subP�T ��

� � �
S
P�T � �� h�	 �i � AP�T �S��

� �P�T � �� h�	 �i � AP�T �

Note that �P�T �S� is completely determined by AP�T �S�� since � � �P�T �S� i�
h�	 �i � AP�T �S�� We de�ne one more set of rules� the implications of a theory�

� �� �� fh�	 �i j ��� �� � �g�

It is well known that e�g� Afp�q�rg�IPC�p�q�r� �� �IPC�p�q�r�� since� for example�

�p� �q � r� �fp�q�rg�IPC�p�q�r� ��p� q� � ��p� r�	

but �p� �q � r� �IPC�p�q�r� ��p� q� � ��p� r��
Here is the simplest possible result on admissible rules�

Theorem ��� The implications of the logic of a theory T are admissible for T �
Moreover� every admissible rule of T is also admisible for the logic of T � To be
precise� let � �� �P�T � We have� �� � AP�T � AP���

��



Proof

The �rst inclusion is obvious� Suppose that � �P�T �� We prove � �P�� ��
Consider any � � subP�IPC�P� and suppose � 
 ����� It follows that� for all
� � subP�T � T 
 �� � ������ Ergo� for all � � subP�T � T 
 �� � ������ We may
conclude � 
 ����� �

In this paper we will show that A�p�HA � A�p�IPC� where ��p�HA � IPC��p�� This
shows that the �upperbound� in theorem ��� can be assumed� In their paper ����
de Jongh and Visser show that A�p�HA� � �IPC��p�� where ��p�HA� � IPC��p�� Here
HA� is the theory HA � f� � �HA�� j � � Rg� the minimal extension of HA
that believes that what is true is provable in it� This theory is studied in �����
����� ��	� �a rewrite of ����� and ���� The result shows that the �lowerbound� in
theorem ��� can be assumed�

We end this section by a brief survey of some theorems about admissible
rules�

Theorem ��� �Rybakov	 The admissible rules of IPC are decidable� I�o�w��
for any �p� �q� A�p�IPC��q� is decidable�

For the proof we refer the reader to Vladimir Rybakov�s book �����

Theorem ��� �Ghilardi	 The embedding 
IPC��p� �� ��p�IPC��p� has a left ad�

joint� say ���
� So� �
 
IPC��p� � � � ��p�IPC��p� �� �A�
 is the �projective

approximation� of A� ���
 is a disjunction of LIPC��p�formulas with the extension
property� ���
 is computable�

Note that ���
 considered as an operation of the free Heyting algebra on gen

erators �p is an interior operation� This operation is fully determined by its
�xed points� These �xed points are precisely given by the disjunctions of for

mulas with the extension property� Ghilardi�s theorem provides a new proof
of Rybakov�s theorem ���� For the proof the reader is referred to Ghilardi�s
paper ����

In the next few theorems� we present some results on ��
substitutions over
HA� Why are ��
substitutions interesting� One motivation is the fact that
they play an important role in the study of the provability logic of HA� The
characterization of the closed fragment of HA in ����� ��	� essentially uses the
results described below� The material has some clear analogies to the results
described above on substitutions over IPC�

A NNIL�P�
formula is a P
formula with no nestings of implications to the
left� We take �p to be an abbreviation of �p � ��� So �p � �q ��q�� and �p
are NNIL
formulas� and ��p� q�� q� is not a NNIL
formula�

Theorem ��� �Van Benthem� Visser	 The NNIL�P��formulas are precisely
the L�P��formulas A�preserved under taking sub Kripke models 	modulo provable
equivalence
� Here a submodel is a full submodel given by an arbitrary subset of
the nodes�

��



For the proof we refer the reader to ����� ��	�� ����� Note that the theorem makes
the NNIL
formulas the analogue of universal formulas in ordinary model theory�
For more on the analogy� see �����

Theorem ��� �Visser	 Let � � sub�p��� � Then� ��p�HA��� is �nitely axiomati�
zable� say by ��� The ��� for � � sub�p��� � are precisely the NNIL��p��formulas
with the disjunction property�

So �NNIL
formula with the disjunction property� is analogous to �formula with
the extension property� in the case of substitutions over IPC� For the proof see
����� ��	��

Theorem ��� �Visser	 The embedding


IPC��p� �� �

��
�p�HA

has a left adjoint� say ����� So� �� 
IPC��p� � � � �
��
�p�HA �� ���� is a NNIL��p��

formula� ���� is computable�

���� is completely determined by its �xed points� which are precisely given by
the NNIL
formulas� For the proof see ����� ��	��

Finally� we remark that the theorem on HA� saying that the admissible rules
for arbitrary arithmetical substitutions over HA� are precisely the implications
of IPC also �ts the pattern exhibited above� here the left adjoint simply is the
identity and the formula class is LIPC��p�

theory substit� logic adm� rules adjoint form� class

IPC��p� �p� LIPC��p IPC��p� A�p�IPC��p� ���
 D�extens�p�

HA �p� R IPC��p� A�p�IPC��p� ���
 D�extens�p�
HA �p� �� IPC��p� A�p�HA���� ���� NNIL��p�
HA�ECT� �p� R IPC��p� � � �
HA�MP �p� R IPC��p� � � �
HA�MP�ECT� �p� R � � � �
HA� �p� R IPC��p� �IPC��p� idIPC��p� LIPC��p
PA �p� R CPC��p� �CPC��p� idCPC��p� LIPC��p

��� In	nitary Admissible Rules

In this subsection� we give an example to the e�ect that the in�nitary proposi

tional admissible rules of IPC and HA di�er��

Let T be a theory and let S � subP�T � A hP 	 T	Si
admissible in�nitary rule
is a pair h$	 �i� where $ � LIPC�P and � � LIPC�P � such that� for all � � S�
T 
 ��$� � T 
 ����� Here ��$� � f���� j � � $g� We say that h$	 �i is
P 	 T 
admissible if it is hP 	 T	 subP�T i
admissible� De�ne�

�The example is an adaptation of example �
� of ���


��



� A�P�T �S� is the set of hP 	 T	Si
admissible in�nitary rules�
A�P�T � A�P�T �subP�T ��

� $ �
S��
P�T � �� h�	 �i � A�P�T �S��

$ �
�
P�T � �� h�	 �i � A�P�T �

We compare �

�
P�T to validity for �nite models� Suppose $ � LIPC��p� � � LIPC��p�

De�ne�

� $ j��n
�p � �� for all �nite Kripke �p
models K� K � $� K � ��

Theorem ��� $ j��n
�p � � $ �

�
�p�IPC��p� ��

Proof

Suppose $ j��n
�p �� Consider any � � sub�p�IPC��p� and suppose IPC��p� 
 ��$��

We have to show� IPC��p� 
 ����� By theorem ��	� it is su%cient to show
�� 
IPC��p� �� Consider any �nite Kripke �p
model K and suppose K � ���
Since� by ��	� �� 
 $� we �nd K � $� By assumption� K � �� Since� for �nite
premiss sets� we have Kripke completeness with �nite models� we may conclude�
�� 
IPC��p� �� Ergo IPC��p� 
 ����� �

Consider two propositional variables p	 q� Let

� �� f�� q j � � LIPC�p and IPC�p� � �g�

It is easy to see that � j��n
p�q q� Hence� by theorem ���� � �

�
�p�IPC��p� q� We now

apply the following lemma due to de Jongh & Visser� See ����

Lemma ��� �de Jongh� Visser� There is an arithmetical sentence � with the
following property� Suppose that ! � LIPC�P is recursively enumerable and has
the disjunction property� Then there is a � � subP��� with ! 
IPC�P� � �

HA�� 
 �����

Clearly� � is recursive� Moreover� an simple Kripke model argument shows
that � has the disjunction property� Let � be as given in lemma ���� Since
� �IPC�p�q� q� we have� HA � � 
 ���� and HA � � � ��q�� Consider � with
��p� � ��p� and ��q� �� �� � ��q��� By elementary propositional reasoning�
we �nd HA 
 ���� and HA � ��q��

��� Admissible Rules in the Predicate Logical Language

To get our discussion o� the ground� we need to �x a basic arithmetical theory�
We take� in this section� as our theory iEA� iEA is the constructive version of
EA� elementary arithmetic also known as I!� � Exp� The theory consists of
intuitionistic predicate logic� the usual universal axioms for successor� plus and
times� !�
induction and an axiom expressing the totality of exponentiation� iEA

��



is �nitely axiomatizable� We will use 'E( to denote a single axiom axiomatizing
iEA�


We present some results about admissible rules for arithmetical theories�
Here is an example of a principle that holds for any RE theory T � whether it
contains any arithmetic or not�

� E �Con�T � �
rel

R ��

In fact� � is just a reformulation of the Second Incompleteness Theorem�
We show that for a wide class of constructive theories T with a modicum

of arithmetic we have that� for a suitable L� AL�T is complete ��� Consider an
RE theory T � Suppose N is a relative interpretation of iEA in T with domain
�� We remind the reader of Friedman�s amazing theorem that the disjunction
property implies the existence property�

Theorem ��
 �Friedman	 Let T be as described above� Suppose T has the
disjunction property� Then� T has the N �numerical existence property� i�e� for
any ��x�� with only x free� if T 
 �x���x� � ��x��� then� for some natural number
n� T 
 �x� ��x� �N �x � n� ���x� �� 	We could also write T 
 ��n�� as long as
we keep in mind that we are dealing with the numeral according to N �


Proof

The proof is word for word Friedman�s original proof� just keeping an eye open
to see whether everything can be done using just iEA� Note that we need things
like the provable decidability of the proof
predicate and the presence of the
��
minimum principle� �

The business of the interpretation helps us to apply Friedman�s theorem e�g� to
a theory like iZF in which the numerical language is only present via interpreta

tion� Since� the numerical existence property in its turn implies the disjunction
property� Friedman�s theorem tells us that the numerical existence property is
�invariant�� i�e� independent of the choice of the interpretation of iEA�

Here is an alternative formulation of Friedman�s theorem� Let�s extend R
to a language L by adding a unary predicate symbol P � Let N �P �� �� extend
N by interpreting P by �� We demand that � has at most x free� Suppose T
has the disjunction property� Then� we have�

T	N �P �� �� 
 �x Px� �n � � T	N �P �� �� 
 Pn�

We can now prove our theorem�

Theorem ���
 Let T be as described above� Suppose T has the disjunction
property� Then� Arel

L�T is complete ���

�I am sure that we can do better and work with a suitably large �nite fragment of iI������
the constructive version of Wilkie and Paris� I�� ���
 See �	��


��



Proof

Let e be an index of a partial recursive function� We show how to reduce the
problem of the totality of �n�fegn to Arel

L�T � We claim�

	n fegn � � �E ��xPx �
rel

L�T �x �Px � �y T �e	 x	 y� �

Here T �u	 v	 w� stands for Kleene�s T
predicate� We verify our claim�

'�( Assume the lhs� of the claim� Consider any natural number n� Clearly�

T	N �P �� �x � n�� 
 E ��xPx�

�Here n is the N 
numeral�� Ergo� by assumption�

T	N �P �� �x � n�� 
 �x �Px � �y T �e	 x	 y� ��

I�o�w� T	N 
 �y T �e	 n	 y�� Since T is consistent and has the numerical existence
property� T satis�es ��
re�ection� We may conclude that fegn ��

'�( Assume 	n fegn �� Consider any relative interpretation M and suppose
T	M 
 E ��xPx� By Friedman�s theorem� for some n� T	M 
 Pn� By as

sumption� fegn �� Hence� by ��
completeness� T	M 
 �y T �e	 n	 y�� We may
conclude T	M
 �x �Px � �y T �e	 x	 y� �� �

Certainly not all arithmetical theories give rise to ��
complete sets of admissible
rules� For example AL�PA is not complete ��� This is immediate from the
characterization of AL�PA given in appendix A�

� What Extendability Means for Admissibility

In this section we will show a�o� that the admissible rules of HA are the same
as the admissible rules of IPC� This result follows from the main lemma of this
section�

��� The Main Lemma

Lemma ��� Suppose T has the extension property and suppose ��p�T � IPC��p��
Then� the �p
admissible rules of T are the same as those of IPC��p�� I�o�w�� we
have� A�p�T � A�p�IPC��p��

We will prove the main lemma from two lemmas� These lemmas are stated and
proved in the next two subsubsections�

��



����� The Disjunction Property

The lemma of this subsubsection tells us that certain restrictions of sets of
formulas with the disjunction property inherit the disjuction property�

Lemma ��� Let ! � LIPC�P be any deductively closed propositional theory
with the disjunction property� Let X be any adequate set� i�e� let X be closed
under subformulas� !X �� ! �X � Then !X has the disjunction property�

Proof

Suppose !X 
 �� ��� and !X �
 �i for i � �	 �� For i � �	 �� let Ki be a
P
model such that Ki � !X and Ki �� �i� We can construct a model K� such
that ! � Th�K��� Let K be the disjoint union of the Ki for i � �	 �	 �� Clearly
K � !X and K �� �i� for i � �	 �� We construct a new model K� by adding a
new root b under the K� Put b � p �� p � !X � We show by induction on X �
� � !X � b � �� The cases of atoms and conjunction are trivial�

Suppose �� � 
� � !X � Then � � ! or 
 � !� Suppose e�g� � � !� Since
� � X � it follows that � � !X � Hence� by the Induction Hypothesis� b � � and�
thus� b � � � 
�

Suppose �� � 
� � !X � Consider any node k and suppose k � �� If k � K�
we are done� since K � � � 
� If k � b� we have� by persistence� K � � and
hence K � 
� By the Induction Hypothesis b � 
�

We �nd b � !X � b �� �� ���� A contradiction� �

����� e�Compactness

We prove a kind of compactness result� We state the lemma in the in�nitary
version� where in fact we will use only the �nitary one�

De�nition ��� � Let extensP be the set of LIPC�P 
formulas with the exten

sion property�

� A set of LIPC�P
formulas $ is e�compact if
$ 
 � � ���extensP $ 
 � and � 
 ��

� In��q� is the set of LIPC��q
formulas of which the nesting degree of implica

tions is smaller or equal than n�

Theorem ��� $ has the extension property i� $ is e�compact�

Proof

Suppose $ has the extension property� We show that $ is e
compact� Consider
�q � P � De�ne $n��q� �� f��In��q� j $ 
 �g� Clearly� $n��q� is �nitely axiomati

zable� Moreover� whenever $ 
 � there are n and �q � P such that $n��q� 
 ��

��



Without loss of generality we may restrict ourselves to n � �� So it is su%cient
to show that $n��q� has the extension property� for n � ��

Consider any non
rooted P
model K with K � $n��q�� Let

� �� Th�q�n���K� �� Th�K� � In����q��

We show that� for � � In����q�� $	� 
 � � � 
 �� i�o�w� that $ � � is
In����q�
conservative over ��

Suppose $	� 
 �� Then� for some � � �� $ 
 �� � ��� We have� clearly�
that �� � �� � In��q�� and� hence� �� � �� � $n��q�� We �nd K � �� since � � ��
and K � �� � ��� since �� � �� � $n��q�� So K � �� Moreover � � In����q�� so
� � ��

Consider any P
model M such that Th�M� � dc�$ � ��� �Here dc stands
for� deductive closure�� Note that

Th�q�n���K� � � � Th�q�n���M��

LetM� be a downwards extension ofM with a new bottom b such thatM�
� $�

We extend K to K� by adding a new bottom c� with c � p �� b � p�
It is easy to show� by induction� that�

for any � � In����q�	 c � � �� b � ��

We show that c � $n��q�� $ has the extension property and� hence� the dis

junction property� So� by lemma ���� $n��q� has the disjunction property� Our
proof is by induction on � � $n��q�� The cases of atoms and conjunction are
trivial� The case of disjunction is immediate by the fact that $n��q� has the
disjunction property� Suppose that � � �� � 
� � $n��q�� We want to show
that c � �� � 
�� Clearly b � �� � 
� and �	 
 � In����q�� Consider any k � c

and suppose k � �� To show k � 
� In case k �� c� we are done by the fact that
k is in K and K � $n��q�� Suppose k � c� Then it follows that b � � and� hence�
b � 
 and� thus� c � 
�

We prove the converse� Suppose $ is e
compact� It is our standing assumption
that P is countable� Say� P � fp�	 p�	 
 
 
g� Let �pi �� fp�	 
 
 
 	 pig� Take �� �� �
and let �n�� be the formula with the extension property such that�

�� $ 
 �n���

�� �n�� 
 �n �
V
$n��pn�

�� �n�� is the �rst in a suitable enumeration of formulas satisfying ��������

We prove by induction that �n is de�ned and that $ 
 �n� It is immediate
that $ is axiomatized by the �n� Consider any P
model K of $� For each n

we can add a new root bn to K such that bn � �n� Let Tree be the set of 
��
sequences � such that � � Tree i�� for in�nitely many n� for all i � length����
bn � pi � �i � �� It is easy to see that Tree has an in�nite path �� Add a new
root c to K� setting c � pi � �i � �� It is immediate that c � $� �

�	



����� Proof of the Main Lemma

Suppose T has the extension property and suppose ��p�T � IPC��p�� We will
show that the admissible rules of T are the same as those of IPC� I�o�w�� we
have� A�p�T � A�p�IPC��p��

Proof

Theorem ��� tells us that A�p�T � A�p�IPC��p�� We prove the converse direction�

Suppose that � ��p�IPC��p� � and suppose� for � � sub�p�T � that T 
 ����� It
follows that ��p�T ��� 
 �� Since T has the extension property� we may conclude�
by theorem ���� that ��p�T ��� has the extension property� Hence� by lemma ����
there is an � � extens�p with ��p�T ��� 
 � and � 
 �� By theorem ���
� we can
�nd a � � sub�p�IPC��p�� such that � � �� � Ergo� IPC��p� 
 ����� By assumption�
IPC��p� 
 ����� Hence� �� 
 � and� so� ��p�T ��� 
 �� We may conclude�
T 
 ����� �

Remark ��� There are a few alternative ways to set up the machinery leading
to the main lemma� If you think about the extension property� it is easy to
see that the forcing in the new bottom just depends on the atomic forcing in
the new bottom and the theory of the original model� This shows that we can
think of the extension property in a purely syntactical way� Thus we could
set up things using slash theoretic methods rather than Kripke models� This
alternative is very close to our present set
up� My choice for Kripke models is
purely a matter of taste�

A second alternative approach� is just in the other direction� rather less
than more syntactical� It is to use bounded bisimulations in the way Silvio
Ghilardi uses them in ���� This approach has the advantage of connecting to
more theory� It is� perhaps� in the end more beautiful and� again perhaps� more
open to generalization� However� it would take a bit more work to set it up�

��� Applications of the Main Lemma

����� Intended Consequences

It was our intention in proving the main lemma� to characterize the admissible
rules of HA� Here is the argument� Every Kripke Model of HA is extendible by �
preserving the validity of HA in the model� Adding root � is called Smory
nski�s
operation� So� HA has the extension property� We already know that HA satis�es
de Jongh�s Theorem� By the main lemma� we may conclude that the admissible
rules of HA are the admissible rules of IPC�

Note that if S � T � subP�L� then AP�T �T � � AP�T �S�� Since we have
de Jongh�s Theorem for ��
substitutions� it is clear that we should be able to
restrict the substitutions leading to the characterization of the admissible rules�
Inspection of the proof gives us� A�p�HA�Boole����� � A�p�IPC��p��

�




The use of Boolean combinations is essential here� It is easy to see� that

A�p�HA���� strictly extends A�p�IPC��p�� since ��p �
��
�p�HA p �Markov�s Rule�� but

not ��p �p�IPC p �substitute �p ��p� for p��
The same considerations show that the admissible rules of HA�RFN�HA��

HA�TI��� and HA�DNS are the same as those of IPC� Since �fp�qg�HA�MP�ECT�

strictly extends IPC�p	 q�� clearly� the admissible rules of HA �MP� ECT� are
not those of IPC�p	 q��

Open Question ��� � What are the admissible rules of HA� ECT��

� What are the admissible rules of HA�MP�

����� Random Applications

In this subsubsection we provide a few more or less randomly chosen examples�
the theory of groups and the theory of �elds� For information about these
theories� see e�g� van Dalen en Troelstra�s book �����

The basic theory of apartness APP is given by the following axioms�

ID The usual axioms for identity

AP� �x) y � x � y

AP� x) y � y)x

AP� x) y � �x) z � y) z�

Note that AP� follows from the other axioms� If the language has an n
ary
function symbol f � we will often insist that the corresponding function is strictly
extensional�

SE�f	 f�x�	 
 
 
 	 xn�) f�x��	 
 
 
 	 x
�
n��

Wn

i�� xi)x�i

The constructive theory of groups with apartness GROUPap is formulated in the
language with symbols �� )� 
� ��� e� Its axioms are the apartness axioms plus
the usual universal axioms of group theory and� �nally� two axioms expressing
the strict extensionality of 
 and ���

We show that �P�GROUPap
� IPC�P�� Consider any formula � � LIPC�P such

that IPC�P� � �� Suppose that the propositional variables of � are among
�p � fp�	 
 
 
 	 pn��g� Let K be a rooted �p
countermodel to ��

We convert K to a model K� for GROUPap� First� K� has the same ordering
as K� Let � be an injective mapping of n � f
	 
 
 
 	 n��g to the prime numbers�
Let Zi be the additive group of the integers modulo i� Z� is the trivial group�
De�ne a mapping � � K � n� � as follows�

� ��k	 i� ��

�
��i� if k � pi
� otherwise

��



We assign to the node k the group
Qn��

i�� Z��k�i�� We stipulate that in a given
node two elements are apart whenever they di�er� The further details are obvi

ous� De�ne�

� ��pi� �� �x �x��i� � � �
V��i���
j�� xj )��

It is easy to see that k �K � � k �K� ����� Ergo� K� � �����
GROUPap has the extension property� since we can always add the triv


ial group as root preserving GROUPap� We may conclude that A�p�GROUPap
�

A�p�IPC��p��

The weak constructive theory of �elds FIELD� has a language with the
following symbols� �� ) � 
� �� �� 
� �� FIELD� has as axioms the apartness
axioms� the usual universal axioms of the theory of commutative rings� axioms
expressing the strong extensionality of � and 
� plus the following axioms�

INTEGRAL x)
 � y)
� x 
 y)


INVERSE x)
� �y x 
 y � �

The full theory of �elds FIELD is obtained by adding the following axiom to
FIELD��

NONTRIV 
)�

Note that in FIELD the axiom integral becomes derivable from the other ax

ioms� Note also that FIELD does not have the disjunction property� since e�g�
�)
 ��)� is derivable� We obtain FIELDchar��� the theory of �elds of charac

teristic 
� by adding the following axioms to FIELD��

CHAR�
 
)n��� where n�� ��

n��z �� �
� � 
 
 
� �

Note that in FIELDchar�� we can derive of any two di�erent elements of Q that
they are apart� We can easily prove de Jongh�s theorem for FIELDchar��� We
simply proceed as in the case of groups� only now we assign to the node k the
structure Q�f

p
��k	 i� j i � ng�� We take ��pi� �� ��x x� � ��i� �� Note that we

automatically obtain de Jongh�s theorem for FIELD� and FIELD too�
FIELD� has the extension property� We can always add Z as root� preserving

FIELD�� Here we arrange it so that no two di�erent elements of Z are apart
at the root� FIELD does not have the extension property� FIELDchar��� on
the other hand� does have the extension property� We can always add Q as a
root� preserving FIELDchar��� Here we stipulate that whenever two rationals are
di�erent then they are apart at the root� We may conclude that A�p�FIELD� �
A�p�FIELDchar��

� A�p�IPC��p��

Open Question ��� Characterize A�p�FIELD�

��
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A The Predicate Logical Admissible Rules of PA

In this appendix we provide characterizations for predicate logical admissibil

ity in arithmetical theories in the style of the Orey
H�ajek and the Friedman
characterizations for interpretability� The appendix uses some machinery not
presupposed in the rest of the paper� See e�g� ����� ����� �����

Let Q be Robinson�s Arithmetic� We work with a slightly stronger theory
Q� in which the methodology of de�nable cuts works smoothly� Q� is Q plus
the axioms expressing that the usual ordering on the natural numbers is a linear
ordering� It is well known that Q interprets Q�� We will call T arithmetical or
an arithmetic if Q� is interpretable in T �� We �x some notations and introduce
some conventions�

� R is the arithmetical language� with 
	 S	�	 
�

� We write ! for the formalization of cut
free or tableaux provability� See
e�g� ���� for a description of tableaux provability� We write r for cut
free
or tableaux consistency� so r is �!��

� � stands for ordinary provability and � �� ���� i�o�w� � means ordinary
consistency�

� �n stands for provability with a proof in which all �non
logical� axioms
used have G odelnumbers smaller than n and in which only formulas occur
of complexity smaller than n� �n �� ��n��

� Unless in these cases where it is stipulated otherwise� our theories are RE�

In our �rst few theorems� we connect admissibility for substitutions in an arbi

trary language with admissibility for substitutions in the arithmetical language�

Theorem A�� Let T be any classical theory� T could be complete ��
�� T could

have just a proposititonal language with only ��ary predicate symbols or T could
be even inconsistent� We have

� �
rel

L�T � � �Q�
�rCQC�L��� �

rel

R�T !CQC�L���� ���

�Alternatively� we could demand that an appropriate weak set theory is interpretable
 See
Montagna and Mancini�s ����


��



Proof

Assume the antecedent of the theorem� Consider anyN in relintL�T and suppose
T	N 
 Q�

�rCQC�L��� In the theory Q�
�rCQC�L��� we can construct an

interpretation K� such that

�� Q�
�rCQC�L��	K 
 ��

�� Q�
�rCQC�L��� ����	K 
 � ����

One uses the formalized model
construction for tableaux in combination with
the methodology of shortening cuts� developed by Solovay� Pudl�ak and Wilkie
& Paris� A detailed veri�cation of the construction can be found in Marianne
Kalsbeek�s masters thesis ������ One uses the de�nable cuts to compensate for
the lack of induction� The disjunctive e�ect can be obtained e�g� by constructing
two interpretations K� and K�� coresponding to ��� resp� ��� �rst� and taking
e�g�

� K�P � �� � �K��P � �!CQC�L���� ����� � �K��P � �rCQC�L��� ����� ��

Taking M �� N �K� we �nd T	M
 �� Hence� by assumption� T	M 
 �� But�
then� T	N 
 ��Q�

�rCQC�L��� ������ Since� by assumption� T	N 
 Q�� we

may conclude� T	N 
 !CQC�L���� ���� �

A theory T is sequential if there is an interpretation N of Q� for which we have
a good theory sequences of all objects of the theory in T and where we can
�nd elements of the sequences by projecting using the N 
numbers� See �����
The relevant feature of sequential theories here is the possibility of constructing
partial truth
predicates in such theories� This allows us to prove things like
cut
free consistency of �nite subtheory on a de�nable cut�

Theorem A�� Let T be a classical� sequential theory� Then�

�Q�
�rCQC�L��� �

rel

R�T !CQC�L���� �� � � �
rel

L�T ��

Proof

Suppose thatN provides the numbers involved in the sequentiality of T � Assume
the antecedent of the theorem� Suppose that T	K 
 �� for some K � relintL�T �
Since our theory is sequential� we can produce a de�nable N 
cut� I� such that

�� T 
 N � I�!CPC�L���� �� K�����

	Another way to obtain the same result is as follows
 First we prove that� for a suitable
de�nable cut I� Q
 �rCQC�L��� I � �CQC�L��n�
 This uses the fact that cut�elimination for
an n�proof is only multi�exponential
 Then we construct a relative interpretation O� such that
Q
 ��CQC�L��n��O � �
 We obtain this O by the ordinary formalized Henkin construction
applied to formulas of complexity below n
 See ����
 Take K �� I � O



We work with a version of tableaux provability in which the transformation from a
tableaux proof of ������� to a tableaux proof of to �� � �� is easy� perhaps even sim�
ply de�nitional


��



�� T 
 N � I�!CPC�L���� ��� �� K��� ���

The proof of this fact employs the construction of a partial truth predicate and
a variant of the standard proof of the re�ection principle� using the transition
to a de�nable cut to compensate for the lack of induction� See� for details� e�g�
����� Let M �� N � I� We have� T	M 
 Q�� From T	K 
 � and ���� we �nd
that T	M 
 Q�

�rCQC�L��� Ergo� by assumption� T	M 
 !CQC�L��� � ���
By ��� and the de�nition of M� we get� T	K 
 � � �� We may conclude that
T	K 
 �� �

Combining theorems A�� and A��� we �nd�

Theorem A�� Let T be a classical� sequential theory� Then�

� �
rel

L�T � � �Q�
�rCQC�L�� �

rel

R�T !CQC�L���� ���

Let arithT �� fM�relintR j T	M 
 Q�g� The characterization of the predicate
logic of T provided by theorem A�� is as follows�

Corollary A�� Let T be a classical� sequential theory� We have�

�� � � �L�T � Q�
�

rel

R�T !IPC�L�� � �R�T �arithT � 
 !IPC�L���

�� T �L �� T �R �Q�
�rCQC�L����

Proof

��� is immediate� We prove ���� In case T is inconsistent� we are immediately

done� Suppose T is consistent� Then T �L � � � �� �
rel

L�T ��� The desired

result is now immediate� �

A theory T is weakly ���sound� if� for all ��
sentences �� Q
�
�

rel

R�T � � N j� ��
i�o�w� of �R�T �arithT � � sent�� � Th�N�� Note that a weakly ��
sound theory
is automatically an arithmetic� A theory T is ��	N �sound� for N � relintR�T �
if T	N 
 Q� and� for all � � sent�� � T	N 
 � � N j� �� Finally� T is strongly
���sound� if T is ��	N 
sound� for some N �

Theorem A�� Let T be a sequential theory that is weakly ���sound� Then�

� �
rel

L�T � � �T �L �� CQC�L� 
 �� � �

��



Proof

Suppose �a� � �
rel

L�T � and T �L �� By corollary A��� we can �nd an N �
relintR�T � such that �b� T	N 
 Q�

�rCQC�L��� By weak ��
soundness� it is
su%cient to show that� for every M � arithT � T	M 
 !L�T �� � ��� Consider
any M � arithT � We can �nd de�nable cuts I and J of resp� N and M that
are T 
provably isomorphic� See ���� or ���� or ����� By downwards persistence
of ��
sentences� we �nd T	N � I 
 Q�

�rCQCL�� By isomorphism� we obtain
T	M�J 
 Q�

�rCQCL�� Applying theorem A�� to �a� and �b�� we get T	M�
J 
 !L�T �� � ��� By upwards persistence of ��
sentences� we �nd� T	M 

!L�T ��� ��� The converse is trivial� �

An alternative formulation of our theorem is AL�T � �INTc
L�T �sentL��ICQC�L��

Here INTc
L�T � sentL n INTL�T �

Corollary A�� Let T be a sequential theory that is weakly ��
sound� Then�
�L�T � CQC�L��

Proof

Obvious� �

Corollary ��� of ����� tells us that a consistent �nitely axiomatized sequential
theory T is weakly ��
sound� From theorem ��	 of ����� we can even show
that such a T is strongly ��
sound� The result is somewhat delicate in that
the theorem may be veri�able in T itself� for some M	N � arithT � and for all
� � sent�� �

T	M
 ��T� ��TN ���� � ��

Familiar G odelean results do not yield a contradiction� but only the observation
that M and N cannot be the same� The above results lead us immediately to
the following corollary�

Corollary A�� Every consistent �nitely axiomatized sequential theory T sat

is�es�

� �
rel

L�T � � �T �L �� CQC�L� 
 �� � �

Proof

If T is inconsistent� we are immediately done� If T is consistent� we may apply
the results quoted above� �

�	



Note that for the case of �nitely axiomatized theories �INTc
L�T �sentL��ICQC�L�

becomes the union of a ��
set with a ��
set� Examples of theories to which the
corollary may be applied are GB� ACA�� I�n� I!� � Exp� Q�� To each of these
theories we may add �nitely many axioms without invalidating the result +as
long as we preserve consistency�

The situation for theories satisfying full induction is rather di�erent�

Theorem A�� Suppose there is an N with domain �� such that T	N 
 Q� and
such that T proves full induction w�r�t� the whole language for the N �numbers�
So T proves�

� �x ���x� �N �x � 
� ���x�� �
	x ����x� � ��x�� � �y ���y� �N �Sx � y� ���y��� � � 	x ���x� � ��x���

Then we have�

� �
rel

L�T � � �T	N 
 �CQC�L��� T	N 
 �CQC�L���� �� ��

Proof

'�( Assume the lhs� of the theorem� Suppose T	N 
 �CQC�L��� If we
have full induction� we can prove Supexp� the axiom stating the that the su

perexponentiation function is total� If we have superexponentiation� we can
prove cut
elimination� Hence� � will be provably equivalent to r� We may
apply theorem A�� to obtain� T	N 
 !CQC�L��� � ��� Hence� a fortiori�
T	N 
 �CQC�L���� ���

'�( Assume the rhs� of the theorem� Consider any arithmetical interpretation
K� Suppose T	K 
 rCQC�L��� Since N satis�es full induction� the N 
numbers
will be veri�ably an initial segment of the K
numbers� By downwards persistence
of ��
sentences� it follows that T	N 
 rCQC�L��� Hence� T	N 
 �CQC�L��� By
assumption� we get T	N 
 �CQC�L��� � ��� Hence� T	N 
 !CQC�L��� � ���
By upwards persistence of ��
sentences� we �nd T	K 
 !CQC�L��� � ��� We

may apply theorem A��� to obtain the desired conclusion� �

Note that the present theorem makes AL�T a union of a ��
set and a ��
set� Ex

amples of theories to which the theorem can be applied are PA and ZF� Note that

we cannot drop the �T 
 � � �� in the conclusion� since� e�g�� Q�
�

rel

PA��PA��PA�
and� even� �R�PA��PA� 
 Q� � �PA��

Corollary A�
 Suppose there is anN with domain �� such that T	N 
 Q� and
such that T proves full induction w�r�t� the whole language for the N 
numbers�
Then�

�� � � �L�T � T	N 
 �CQC�L���

�� T �L �� T	N 
 �L�CQC�L���

�




We can strengthen the above result by considering re�exive and �locally� essen

tially re�exive theories� Consider a theory T and an N � arithT � De�ne�

� T is N 
re�exive� if for all n � �� T	N 
 �T�n��

� T is locally essentially N 
re�exive� if for all n � � and for all � � sentLT �
T 
 N ��T�n��� ��

Theorem A��
 Suppose T is locally essentially N �re�exive� We have�

� �
rel

L�T � � �n�� �T	N 
 �CQC�L��n�� T	N 
 �CQC�L��n��� �� ��

Proof

'�( This part of the proof is fully analogous to the proof of theorem A��� '�(
Assume the rhs� of the theorem� Let n be the promised number� Suppose that
K is a relative L	 T 
interpretation such that T	K 
 �� It follows that� for some
k� we have T	N 
 �T�kK����

Reason in T	N � Suppose �CQC�L��n��� Then� certainly� for an appropriate
standard number m� �T�mK����� Taking q �� max�k	m�� we �nd �T�q�� Quod
non� by N 
re�exivity� We may conclude� �CQC�L��n��

Leaving T	N � we see that T	N 
 �CQC�L��� By our assumption� we �nd�
T	N 
 �CQC�L��n�� � ��� Hence� for some r� we have T	N 
 �T�rK�� � ���
Combining this with T	N 
 �T�k�K����� we �nd that T	N 
 �T�sK���� where
s � max�n	 r�� By re�ection� we obtain� T 
 K���� �

Theorem A��
 substantially extends theorem A��� since local essential re�ec

tiveness is much weaker than full induction� Our theorems still give no informa

tion about Primitive Recursive Arithmetic� PRA� PRA is re�exive and ��
sound
w�r�t� the identity interpretation� The following theorem does the trick�

Theorem A��� Suppose T is N �re�exive and ��	N �sound� Then We have�

� �
rel

L�T � �� �n�� �T	N 
 �CQC�L��� CQC�L� 
 �� � ��

Proof

The proof is a trivial variation of the proof of theorem A��
� �

��


