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Abstract

We consider the variety of Dynamic Relation Algebras V(DRA). We show
that the monoid of an algebra in this variety determines dynamic negation
uniquely.
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1 Introduction

A Dynamic Relation Algebra or DRA is the algebra of all relations on a given
domain D with operations id, the identity or diagonal relation, 1, the empty
relation, ;, composition (in the order of application), and dynamic negation ~.
Here:

e a(~R)b:< a = b and, for no ¢, aRc.

Subsets of the given domain D can be represented as relations via the standard
embedding diag, where diag(X) = {(z,z) |2z € X}. The elements of the range
of diag are subrelations of the diagonal id. These subrelations are called tests or
conditions. If we write dom(R) for the domain of R and (.)° for complementation
in D, we have: ~R = diag((dom(R))¢).

The study of DRA’s is motivated by Dynamic Predicate Logic (DPL, see
[1]), a variant of classical predicate logic tailored to deal with such dynamic
aspects of natural language semantics as anaphora. In DPL, formulas are not
interpreted by a set of assignments (i.e., those that make them true), but by a
binary relation between such assignments. DRA focusses on the propositional
connectives of DPL, and generalizes the setting from relations on assignments
to arbitrary binary relations.

DRA’s where studied by the first author in his paper [2] and by the second
author in his paper [6]. Hollenberg gives a finite axiomatization of the equations
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AO: ~1l=id (identity definition)
Al: ~zjz =1 (negation elimination)
A2: z; 1 =1 (falsum right)

A3: idjz == (identity left)

Ad: z;(y;2) = (z39); 2 (associativity)

A5 ~xp e~y =~y ~T (test permutation)
A6: x=(~~x);x (domain test)

AT:  ~~(~zp~y) =~z e~y (test composition)
A8 ~(z;y);x = (~(;9);2);~y (modus ponens)

A9 ~(z;~(~y;~2)) = ~~(~(x3y);~(2;2))  (distribution)

Table 1: AX.

valid in all DRA’s. Visser shows that the equations valid in all DRA’s are pre-
cisely the schematic equations valid in all DPL-models, thus firmly establishing
that ‘DRA is the propositional logic of DPL’.

In table 1 we give the finite axiomatization, AX, of equational validity in
DRA’s. We write - t; = to if this equation is derivable from the equations in
AX and the rules of equational logic. So completeness means: |= t; = to iff
Fit =ts.

We repeat a few useful consequences of AX that are proved in [2].

o Identity right: x;id = z.
e Triple negation law: ~~~z = ~uz.

e Test idempotency: ~x;~x = ~x.

Range test: ~(z;y) = ~(z;~~y).

Double negation law for falsum: ~~1 = 1.
e Falsum left: 1;z = 1.

The following equations are invalid: x;x = ¢ and z;~x = L.

In [2] it is shown that a product of DRA’s is (isomorphic to) a subalgebra
of a DRA. However Hollenberg produces an example to show that there are
algebras in V(DRA), i.e. algebras satisfying the equations of AX, that are still
not sub-DRA’s. We will call in this paper an algebra that satisfies AX a Dynamic
Negation Monoid or DNM.

An annihilator monoid is a monoid with an element L or 0 such that
1l;xz = x; 1L = 1. The reducts of DNM’s obtained by omitting ~ are anni-
hilator monoids. We show in section 2 that not every annihilator monoid can
be extended to a DNM. In section 3 we show that all extensions of a given
monoid to a DNM are the same. Our result is analogous to the well known
result described in the example below.
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Example 1.1 This example, which we learned from [3], inspired the questions
we answer in this paper.

Consider a domain D and suppose on D we have a monoid with operator ;
and an upper semi-lattice with operator v. Residuations over this structure are
binary operations — and ¢« satisfying:

M ony<z o r<(z«y) © y<(v—2).

One can show that the ‘pseudo identities’ used in formulating " can be replaced
by identities.

The presence of residuations implies distributivity of ; over v. Hence, not
every combination of monoid and upper semilattice can be extended with resid-
uations. On the other hand, it is immediate from "X that if one can define
residuations, then these are uniquely determined. This example subsumes sim-
ilar results in Boolean Algebra and Heyting Algebra. 1]

There is a philosophical reason to be interested in our result. In dynamic se-
mantics we would like to view the merge, the operation of ‘adding up’ items of
information, as fundamental. In the relational semantics the merge takes the
form of relation composition ;. What is the relationship of other operations to
the merge? It is clear that it cannot be expected that these operations can be
explicitly defined in terms of the merge. One strategy to answer this question is
simply to eliminate all other operations in favour of the merge. See [4] and [5]
for a first attempt in this direction. Another route would be to show that other
operations are implicitly definable in terms of the merge. We think no such
result is to be expected for generalized quantifiers and the like. However, our
present, result shows that at least dynamic negation is implicitly equationally
definable.

2 A Non Extendable Annihilator Monoid

We show that not every annihilator monoid can be extended to a DNM. Consider
the annihilator monoid M with domain {0, 1,2} with, as binary operation,
multiplication modulo 4. It is easy to verify that we have indeed specified an
annihilator monoid with 1 in the role of id, 0 in the role of L and - in the role
of ;.
Suppose M were extendable to a DNM. By Al, ~1-1 =0, so ~1 = 0. By
A6, ~0=~0-1=~~1-1=1. By A8 we have:

2=n0-2=r~(2:2)-2=(~(2:2)-2)-~2=~0-2-~2=2-~2

So ~2 must be 1. This would make ~~2 = 0, but then 2 = ~~2;2 = 0. Quod
non.
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3 Dynamic Negation Is Unique

We give the argument that negation in a DNM is fixed by the underlying
monoid.! Suppose we have a non-empty set M with associative operation ;.
Suppose further that we have elements idy, idy, L1, 1o and unary operations
~1 and ~y such that both ;, id;, L;, ~1 and ;, ida, Lo, ~o satisfy AX.

It is easy to see that id; = ids and 1; = 15. We will write: id := id; = ids
and 1 := 1; = 15. To increase readability we will write ~ := ~; and — := ~s.
We prove that these negations must be equal. If we want to stress that an axiom
is used for the operations of kind 7, we add a subscript ¢ to the axiom name.

step 1 We show that ~xz; -z = ~z. By symmetry we also have: —x; ~z = —z.
In other words: the first negation prevails. Here is the argument:

~T

-l ~z
~(~w;3); v
2~ @) ~vw; o
-l ~z; o

~T; T

step 2 We show that ~~z; -z = L. We have:

step 3 We show that: ~—-x =
prevails). Define (yv z) :=

facts:

1. ~yvy =id,
2. Lvy =r~n~y.

Here is the proof:

~r = ~

L

A3, AO,
Al
A8,
Al
A3, AO,

step 1, twice
Abs
Aly A2

~~yg (another case where the first negation
~(~y;~z). We will use the following obvious

A3
obvious fact 1
(range test);
A5,

( )V (~w; o)) A5y

(range test);
steps 2,1

obvious fact 2
(triple negation),

IThe proof for DRA’s was discovered by Albert Visser. It was generalized to cover all

DNM’s by Marco Hollenberg.
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step 4 We have:

ar = ~~oT; T A6,
= ~~~z;or  step 3
= ~z;T (triple negation),
= ~x step 1

This ends our proof: negation, if it exists, is unique.
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