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1 Introduction

A miracle happens. In one hand we have a class of marvelously complex theories
in predicate logic, theories with ‘sufficient coding potential’, like PA (Peano
Arithmetic) or ZF (Zermelo-Fraenkel Set Theory). In the other we have certain
modal propositional theories of striking simplicity. We translate the modal
operators of the modal theories to certain specific, fixed, defined predicates of
the predicate logical theories. These special predicates generally contain an
astronomical number of symbols. We interpret the propositional variables by
arbitrary predicate logical sentences. And see: the modal theories are sound and
complete for this interpretation. They codify precisely the schematic principles
in their scope. Miracles do happen ....

Our miracle —as any good miracle— involves transsubstantiation. We trans-
late between languages of incomparable signature. The modal languages do not
contain quantifiers, the predicate logical languages do not contain modal opera-
tors. The modal operators can be translated to predicates because we transsub-
stantiate formulas occurring in the scope of a modal operator to closed terms
(numerals) representing codes (gédelnumbers) of formulas of the target theory.

The miracle does not always work —as is to be expected of true miracles— we
get no analogous result if we try to work with modal predicate logical languages.
See [7].

Provability Logic studies formal provability as a modality employing ideas
and methods of modal logic. Interpretability Logic extends Provability Logic by
adding a binary modality. This modality can be given several interpretations.
Relative interpretability and II;-conservativity are the most salient. (We will
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see some others.) Thus, Provability Logic and Interpretability Logic are part of
a branch of Modal Logic where we do not study time, as in Temporal Logic, or
obligation, as in Deontic Logic, but formal theories. An important philosophical
difference is this. Time and obligation are not themselves mathematical objects.
We model certain salient and interesting aspects of the central notions using
classes of structures and study the interplay of the logics and the structures.
Formal theories, in contrast, are themselves mathematical objects. They do not
appear in the role of analysanda. The Kripke structures we employ play the
role of technical auxiliaries, not analysantia.

This paper aims to survey the main results of Interpretability Logic. It
does not pretend to be exhaustive. Below I give some reasons for studying
Interpretability Logic. On a first reading this list of motivations could be very
well skipped.

1.1 Beauty

Of course, there is the matter of beauty. However, beauty should not be adver-
tized. Thus I will further pass it over in silence . ...

1.2 Reasoning in the logics

Some non-trivial reasoning concerning interpretability can be formalized in the
modal logics. The gain here is perspicuity and generality.!

Representing some substantial reasoning in modal terms was the main aim
of Vitéslav Svejdar in his classical paper [45]. Svejdar employs a combination
of interpretability and witness comparisons for certain special formulations of
proof predicates. The true potential of the ideas of Svejdar’s paper is still
not fully explored. It would certainly be benificial, from the didactical point of
view, if some proofs concerning degrees of interpretability and the complexity of
interpretability would be rephrased in Svejdar’s language. For some of Svejdar’s
interpretations no arithmetical completeness results exist .

Another example of non-trivial reasoning in the logics is the alternative proof
of a result of Solovay in [55]. See also section 6 of this paper.

1.3 Other spin-off

Let me first mention an example of spin-off of research into the question whether
there is a ZF-sentence that is interpretable in ZF, but not in GB. Solovay’s work
on this question produced the method of shortening cuts. This method was
e.g. used by Paris & Wilkie, by Pudldk and various others to prove several
metatheorems. See [35],[37], [38]. The method was adapted by Nelson to build
stronger and stronger theories in his predicativist programme. See [34].

LFor the case of provability logic the programme of using the language to represent non-
trivial reasoning was strongly advocated by Craig Smorynnski. See his book [42].



The expertise developed in proving arithmetical completeness theorems for
Interpretability Logic was used with good result by Shavrukov in the study of
the combined logic for provability and a Feferman predicate. See [40].

Dick de Jongh and Duccio Pianigiani, in their[11], used the work of Hajek
and Montagna ([23],[24]) to solve an open problem posed by Guaspari in [22].

1.4 Internal interest

The study of Interpretability has also some internal interest in Provability Logic
considered as a project. It is this. Solovay’s result turned out to be completely
general. Consider any theory into which IAy 4+ EXP is interpretable, say by the
interpretation N. Suppose that we arithmetize ‘in A" and suppose that our
theory is £¢(N)-sound. Then its provability logic is precisely Lob’s Logic. In
case we drop the condition of X¢(N)-soundness, we get only relatively uninter-
esting well understood variants of Lob’s Logic. See [51]. There are only two
ways to escape the stability (keeping modal language and the interpretation of
the box as provability fixed). The first is to go below IAg + EXP, to weaker
theories, where Lob’s Logic is still arithmetically valid, but where we do not
know whether it is complete. See e.g. [6]. The second is to vary the logic. It
is well known that if we consider the provability logic of Heyting Arithmetic?,
HA, we find a new, rich, weird and wonderful landscape of wild and surprising
modal principles. See e.g. [59].

Of course, extending the modal language might also be a way to escape the
stability of Solovay’s result. It turns out that for Interpretability we do get good
modal logics and Solovay style completeness results, but that we do not have the
absolute stability of Provability Logic. There are two major classes of theories
that have quite different interpretability logics. The first class is that of the
sequential, ¥9-sound, finitely axiomatized theories containing IAg + SUPEXP.
Examples are: Ay + SUPEXP, IY,, (n > 0), ACAq, GB. Theories in this class
are sound and complete for the logic ILP. See [55]. The second class is that
of sequential, locally essentially reflexive theories containing I3;. Examples
are PA and ZF. Theories in this class satisfy are sound and complete for the
logic ILM. This result was proved independently by Alessandro Berarducci and
Volodya Shavrukov. See [5] and [39]. Outside of these major classes we know
very little. See section 9 and appendix B.

1.5 Philosophical interest

The philosophical interest of Provability Logic is that it analyzes Gédelian meta-
mathematical reasoning in its bare essence. I think that this, all by itself, con-
stitutes a substantial contribution. However, there is a bonus. The contrast
between provability in some appropriate intuitive sense and formal provability

2Heyting Arithmetic is, in esence, Peano Arithmetic with intuitionistic logic instead of
classical logic.



is shown most strikingly in the comparison of the modal systems S4 and Lob’s
Logic, GL, corresponding to these notions. Specifically, comparison between Re-
flection and Lob’s Principle seems a potent antidote to the misguided impression
that the difference between the notions is one of strength, the impression that
Godel’s Theorem means that Human Mental Powers exceed what formal sys-
tems can do, the Myth of the Mental Muscles. The difference between the two
notions is, I submitt, rather one of kind. Their comparison in terms of strength
is as absurd as comparing the strength of a master of Chess and one of Karate.

Interpretability Logic does not add —as far as I can see— anything along
the lines of the above sources of interest over and above what we already had in
Provability Logic. It does add the expressive power to reflect modally the con-
sequences, not only of Gédelian Incompleteness, but also of Gédelian Complete-
ness in the form of the interpretation version of the Model Existence Lemma.
It seems to me that the results of my paper [57] throw some light on Nelson’s
program for founding predicative mathematics using interpretations, see [34].
Specifically, the result that TAg + EXP is equivalent modulo interpretability
with TAg + Q1 + Con(IAg + 1), seems to show that the insight in the consis-
tency of his own theories must be suspect for the predicativist who rejects the
cogency of the totality of exponentiation. (See also subsection 11.2.)

1.6 Selection of notions (?)

Interpretability Logic studies abstract global properties of certain arithmetical
predicates of independent interest. We could reverse the direction and use prin-
ciples of Interpretability Logic as a check list to see whether a candidate notion,
e.g. for comparing theories, is a reasonable one. I have two tentative examples.
The first is the notion of ¥-preservativity, which is proposed as a metamathe-
matical tool in the study of Heyting’s Arithmetic, HA, and its extensions. See
[52], [59] and subsection 10.4 of this paper. The second is the formula of the
Friedman Characterization of interpretability in sequential, finitely axiomatized
theories applied to infinitely axiomatized theories. This would give us a way
of comparing theories that is sensitive to the ease in which a theory can prove
concrete A9-sentences.?

2 A list of theories and notions

At this point we interpolate a little list of notions and theories. The best reading
strategy is to glance through it and to return to it when needed. A good book
where most of the notions and theories mentioned here are treated is [25].

31 have a sketch of a proof that TAg + {supexp(n)} | n € w} is equivalent w.r.t. this
notion with IAg + EXP. This in spite of the fact that our first theory clearly proves the same
theorems as I'Ag.



The language of arithmetic —unless stated otherwise— is the language
of 0, S (successor), + and x. If T' is a set of arithmetical formulas,
closed under subformulas and substitution of terms, then IT is the theory
containing the basic facts about 0, S, +, x, plus induction restricted to I
Two salient theories are Ay and IYX;. PA is Peano Arithmetic, the theory
of full induction.

We write #A, #t for the gddelnumbers of A, respectively ¢t. For any
number n let n be the numeral of n. In the context of weak theories one
almost always employs numerals that correspond to binary notations. Let
num be the function mapping n to #n. Par abus de langage we also use
‘num’ for the arithmetization of num. We write x both for concatenation
and its arithmetization

Provy is the arithmetization of provability in T. We write OpA for
Provy(#A). We also use the notation O7 A in case A containes free vari-
ables. What we mean here is best explained by example. Orz = y means
Provy (t(z,y)), where t(x,y) is the term num(z) * #= % num(y).

We will write ¢ for -0O-. So e.g. O T will be another way of writing
Con(T).

), is the axiom expressing that the function gentier((*1og(=))®) ig total. Here,
entier(z) is the largerst natural number < z. EXP expresses that expo-
nentiation is total, SUPEXP that superexponentiation is total, etc. One
can show that these axioms can be formulated using IIo-formulas of the
usual arithmetical language.

IAy + §y is studied by Paris and Wilkie in their [35]. It is a natural
theory to do arithmetization in up to the formalization of Gédel’s Second
Incompleteness Theorem. Complicated Rosser arguments —like the proof
of Solovay’s Theorem— may present difficulties.

S} is a theory introduced by Buss in his [8]. It is weaker than IAg+; and
can be consider as the theory of P-TIME. Its provably recursive functions
are precisely the P-TIME computable ones. In S} we can formalize the
Second Incompleteness Theorem.

ITAg + EXP is also known as Elementary Arithmetic or EA. Its provably
recursive functions are precisely the Kalmar elementary functions. All
Rosser style arguments can be formalized in this theory.

In IAy + SUPEXP one can formalize cut-elimination for Predicate Logic.

PRA is usually formulated as a theory with symbols for all primitive re-
cursive functions and as axioms the appropriate defining equations corre-
sponding to these symbols, plus induction for atomic formulas. Since this



formulation of PRA does not quite fit our framework —the set of atomic
symbols of its language being infinite— we will often think of different,
but equivalent formulations. Two such formulations are:

— IAp + EXP + SUPEXP + SUPSUPEXP + . ...

— IA¢+EXP plus the ¥%-induction rule. This rule states that if we have
proved the premiss of ¥%-induction, then we may draw its conclusion.
We will call this theory RX9.4

For an extensive discussion of formulations of PRA and related theories,
see [2].

e Rfny is the local reflection principle for T, i.e. the schema OpA — A, for
the sentences A of L1. RFNy is the global or uniform reflection principle
for T, i.e. the schema VZ (07 A(Z) — A(Z)), for formulas A(Z) of L.

e ZF is Zermelo-Fraenkel Set Theory. GB is Godel-Bernays Set Theory. GB
is finitely axiomatized. ACA( is a finitely axiomatized extension of PA
with classes. In many respects ACAy is to PA as GB is to ZF.

3 What is relative interpretability?

There is no analogue of the Church-Turing Thesis for interpretability. For one
thing interpretations are dependent on the notion of Formal Provability, which is
itself an artifact of the mathematical imagination. For another, the boundaries
of what we count as an interpretation seem to be quite interest dependent.

It is clear that an interpretation of a theory V' in a theory U should at least
deliver a function f, from the sentences of V' to the sentences of U, such that, for
all sentences A of V, V F A= U+ f(A) (*).> Let, for example, U be PA and
let V' be ZFC. PA contains sufficient coding machinery to represent Provzgc(x).
The mapping A — Provzrc(#A) will satisfy *. Nobody however would count
it as an interpretation in any sense. One objection against allowing this as an
interpretation would be that we cannot use this mapping to establish relative
consistency results. This objection, if accepted, would also rule out e.g. the
Friedman Translation as an interpretation.®

Another proposal is to demand that interpretations commute with certain
connectives. This proposal would rule out e.g. forcing, realizability, the double

4One can show that the $9-induction rule is equivalent over IAg+EXP to the II3-induction
rule. Warning: this result does not hold over arbitrary extensions of IAqg + EXP.

5Ironically, our definition of relative interpretation will not even fit this precise format.
However, we can tell a story to explain that we only deviate in an unessential sense, that has
to do with the details of the treatment of variables and thinking modulo a-conversion.

6To demand that interpretations commute with | does not guarantee the possibility of
relative consistency proofs. We could need the insight of relative consistency to show that
* holds. We get an example of this phenomenon by replacing Provzpc in our example by a
predicate representing Feferman provability in ZFC.



negation translation. (The Friedman Translation only fails to commute with
1)

Rather than pursuing the problem of finding a reasonably general notion of
interpretation satisfying certain intuitive constraints, we will study one given
notion of interpretation: relative interpretability. This notion is due to Tarski,
Mostowski and Robinson. See [47]. Roughly we demand that our interpretations
commute with all the propositional connectives (including the all important
1) and with the quantifiers modulo relativization to a domain. Moreover, we
restrict ourselves to theories in classical Predicate Logic. This choice means a
restriction on the generality of the results discussed in this paper. However,
sometimes the results are stable under extension. E.g., in studying finitely
axiomatized extensions of ZF in the language of ZF we could easily extend our
notion to include forcing, without changing the corresponding Interpretability
Logic.

From this point on we will confuse ‘interpretation’ with ‘relative interpreta-
tion’ in the precise sense defined below.

3.1 Defining relative interpretation

An important thing to remember is that we are interested in formalization of
facts concerning interpretability in a wide range of theories. This means that
our definition of interpretation must be relatively simple and managable. More-
over, all kinds of details that we usually abstract away from, like the precise
choice of auxiliary variables, may become relevant. (Indices of such variables
have to be coded too, so unhappy choices may produce codes that are to large
for a weak theory to handle.) The definitions of the translation based on an
interpretation vary across papers. The definition given here is, I think, the
most convenient one. It has the advantage of handling function symbols of the
interpreted language with relative ease.” It sidesteps, by the use of ‘fresh’ aux-
iliary variables and by avoiding substitution the hairy issue of variable clashes.
Since unfortunate choices of auxiliary variables can cause undesirable and ug-
ly growth of the translations, we will firmly regiment the use of the auxiliary
variables by assigning each argument place its unique auxiliary representative,
thus keeping our algorithm within linear time. Consider first order theories U
and V with languages respectively Ly and Ly . We assume that identity occurs
in these languages and that we have only finitely many relation and function
symbols. Constants are treated as 0-ary function symbols. We extend Ly with
new variables aog, - - -, a,, where n is the maximum of the arities of the relation
and function symbols of Ly . The a; will be used to handle the machinery of

"Usually one defines interpretations only for relational languages, justifying this restriction
by the existence of an algorithm to eliminate function symbols. Here we incorporate such an
algorithm in the very definition of the translation.



the argument places in the translation. Say the resulting language is £f;.5 An
interpretation M of V into U is given by two things:

e a function F' mapping the relation symbols R and the function symbols f
of Ly on formulas of ﬁg. We demand:

— if the arity of R is k, then the free variables of F(R) are among
Qal, -+, Qk,

— if the arity of f is ¢, then the free variables of F(f) are among
ag, "+, Q.

(We could allow extra free variables (‘parameters’) in F'(R) and in F(f).
This would only cause some minor changes in the set-up.)

e a formula §, with only ag free, of £?} giving the domain of the interpreta-
tion.

M gives a translation (.)™ of Ly in L]} in the following way. We write A[v],
for v a variable of £} distinct from ag, as an abbreviation of Jag(A A ag = v).
The translation of a formula A will have the same free variables as A itself. The
translation of a term ¢ will have as free variables the free variables of ¢ plus the
auxiliary variable ag, which stands here for the value of t.

o R(t1, -, t)M :=3ay - Jap (F(R) A (t1)M[ar] n- - A (t)M[ax]),

flte, - )™ = 3ay---Fag (F(f) A (t1)M[ar] A+ A (t)M]ae]) (note that
a constant ¢ simply goes to F'(c), a formula containing only ag free),

o M= (ap = 1),
()™ commutes with the propositional constants,

(Vo M .= Va(5[z] — AM), Bz AM := Jz(0[z] A AM).

Note that the usual algorithm for eliminating function symbols, is a special
case of an interpretation in our sense. Simply put: F(R) := R(a1, -, ax) and
F(f) := flay,---,a¢) = ap. We will call this interpretation ID, since it fulfills
the role of the indentity interpretation.

One can avoid the device of using ‘A[t]’ by a slightly more elaborate use of
a larger set of auxiliaries. I leave such variants to the fantasy of the reader. A
more radical alternative is to develop syntax on sharing graphs and code the
(labeled) graphs arithmetically. A more detailed discussion is outside the scope
of this paper.

8The critical reader may object here, that by extending Ly to E?}, we, in effect, extend U
to UT, thus changing the interpreting theory. This line of thought can lead to a fascinating
discussion on theory individuation. Rather than entering into this discussion, let me point
out that the auxiliary variables are easily eliminated by a-conversion from the translation.
The gain of having the auxiliaries is just conceptual perspicuity.



Let 64 := A{0[z] | = free in A}. U interprets V via M if: for all theorems
(not necessarily sentences) A of V, U F 64 — AM. Alternatively, we can
use axioms instead of theorems in the definition. However, we must note two
things here. First, we must include statements expressing the functionality of
the function symbols among the axioms. Secondly in weak theories like TAg,
or even PRA, we do not have ¥;-collection®. This lack blocks the derivation
of the equivalence of ‘theorems-interpretability’ and ‘axioms-interpretability’.
The delicate points concerning formalization in a weak environment are treated
extensively in [56]. We will ignore these subtleties here. We write:

e M:U >V & U interprets V via M,

e U >V:s forsome M, M:U >V,

e U=V UpVandV U,

e ApyB:e (U+ A) > (U+ B). (Wesay: A interprets B over U.)

We can view theories and interpretations as objects and morphisms of a cate-
gory. We did not build in into the notion of interpretation any data concerning
theories. So strictly speaking a morphism in the category of theories and inter-
pretations is a triple (V, M, U), such that M : U 1> V.10

A closely related notion is local interpretability. Let FS(V') be the set of
subtheories of V' which are axiomatized by finitely many axioms of V. We
define local interpretability as follows.

o U o Vi VIHEFS(V) IMy, My : U 1> 14,
e U= Vi U VandV > U,
¢ APy B (U+A) Dloc (U+ B). (A locally interprets B over U.)

If want to emphasize the contrast with local interpretability, we will call ordinary
interpretability global interpretability. It is well known that local and global
interpretability do not coincide. E.g. let Con,,(GB) be the consistency statement
for GB w.r.t. proofs in which no formulas occur of complexity greater than n.
Then:

GB Doc (IA + {Con,(GB) | n € w}),

but not: GB >(IAg+{Con,(GB) | n € w}). An advantage of local interpretabil-
ity is that it is less complex (II9) than global interpretability (X9). Some basic

9% -collection is the principle Vz3y A — Va3bVz<aIy<b A, where A is £; and a,b do not
occur in A.

10We take the morphisms to go from interpreted theory to the interpreting theory, since this
convention is in consonance with the tradition in the study of the degrees of interpretability
to have the stronger theories in the higher degrees. By erasing ‘morphism identity’ we get a
preorder; by dividing out the induced equivalence relation we get the usual partial order of
degrees.



facts on the relationship between local and global interpretability are presented
in appendix C. For a broader discussion on local interpretability and a descrip-
tion of some further notions of reduction, the reader is referred to [33].

3.2 Interpretations as internal models

The construction of a model of two dimensional elliptic geometry on the sphere
can be considered as the construction of a model of two dimensional elliptic
geometry inside a model of three dimensional Euclidean geometry. We will
say that the first model is an internal model of the second. Interpretations
appear in the literature almost always as internal models. The reason for this
preference is clear: an internal model can be visualized. An interpretation gives
a uniform method of assigning internal models.'’ This mapping is described in
some detail below. Relative consistency proofs employing interpretations do not
need to talk about models at all. E.g. the statement that if ZF is consistent,
then PA is consistent can be verified in weak theories like S} and TAg + Q.
For completeness we describe the mapping of models associated with an
interpretation. Consider a model K = (K, I) of U. Suppose M : U > V. We
write [a : k] for ‘the assignment that sends a to k’. (I do not want to be specific
here on the question whether assignments have to defined on all variables or
not. In the first case we need some convention of what happens with the non-
displayed variables.) Define a new model KM := N := (N, J), as follows.

o bk i K, [ar Ky as: K] = Fru(=),

o Ny :={keK | K,[ao : k] = 6p4),

o Let k € No. Then [k] := {k'eNy | k ~ K},
o N:={[K]| ke No},

e Let ¢ be the arity of R.
J(R) = {([kals - [Rel) [ s ar = b,y ae s kel = Fam(R)}

e Let £ be the arity of f.
J(f) = A{l[ka], - [Re]), [Rol) [ K, [ao = Koy a1 = k- - - a0 s kel = Fam(f)}

Clearly N will be a model of V. Tt is rather striking that the examples of
‘models’ that stood at the cradle of modeltheory, the alternative interpretations
of geometry, can all be viewed as interpretations.!? In the next subsection we
provide some salient examples of interpretations.

11See [32] for a paper in which interpretations are studied as operators on models.
126t Mod(U) be the set of models satisfying U. Then, K : U > V yields a function from

Mod(U) to Mod(V'). Considering K as a morphism V' x, U, we see that Mod can be viewed
as a contravariant functor from the category of theories and interpretations to the category of
sets. It is easy to provide examples to show that even if K : U >V is faithful, i.e. if the set of
interpreted theorems coincides with the theorems of V/, still the associated function between
the models sets need not be surjective.

10



3.3 Examples of interpretations

Interpretations are everywhere dense!

1. The interpretation of two-dimensional elliptic geometry in Euclidean ge-
ometry of three dimensions. In this interpretation polar points on the
sphere are identified. Thus the interpretation of identity is a non trivial
equivalence relation. The interpretation employs free parameters, since
we need to choose an abitrary centre and diameter for our sphere.

2. The Poincaré model and the Beltrami-Klein model of hyperbolic geome-
try. In these models the points of two dimensional hyperbolic geometry
are interpreted as the points of the interior of a circle C. The lines are
interpreted in the Poincaré model as diameters and segments of circles
orthogonal to C'. In the Beltrami-Klein model lines are simply segments
of lines. The Poincaré model is faithful with respect to angles. E.g. the
well known theorem that, in hyperbolic geometry, the sum of the angles
of a triangle is strictly less than 180°, can be seen in one glance using
Euclidean intuitions. See e.g. [27], p227. Alternatively, see [21]. In the
Beltrami-Klein model all kinds of facts concerning incidence can be seen
immediately. For example the fact that there alway is a line (asymptot-
ically) parallel to both rays of an angle: in the model this will be the
line connecting the points of intersection of the rays with the circle C.
Thus the Euclidean models of hyperbolic geometry have in addition to
foundational importance, also heuristic value.

3. The interpretation of arithmetic in set theory. This interpretation has
foundational importance: it shows that numbers can be reduced to sets.

4. Godel’s interpretation of ZF+(V=L) in ZF. This interpretation provides a
relative consistency proof of ZF+CH w.r.t. ZF.

5. The interpretation of elementary syntax in arithmetic. This interpretation
plays a central role in the verification of Godel’s First Incompleteness The-
orem and in both statement and proof of Gidel’s Second Incompletenss
Theorem.

6. The interpretation of IAg + Con(ZF) in GB. This interpretation gives us a
metamathematical lemma, from which we may conclude superexponential
speed-up of GB over ZF. See [38].

7. The interpretation of IAg in Robinson’s arithmetic Q. This interpretation
plays an important role in the development of Predicative Arithmetic in
a foundational program worked out by E. Nelson. See [34].

8. Consider a sequential theory U, i.e. a theory containing a sufficient amount
of machinery to handle sequences of arbitrary objects of the theory. Let

11



U contain a modicum of arithmetic (e.g. Robinson’s arithmetic plus the
axioms expressing that the standard ordering on the natural numbers is
linear). Suppose U F Con(V). Then U > V. The interpretation is con-
structed by mimicking the Henkin model construction in U. Where we
lack induction, we employ definable cuts using Solovay’s method of short-
ening cuts to ‘load’ our cuts with some additional desirable properties.
(See [56] or [57] for a careful exposition.)

9. A nonexample: Suppose PA is formalized using 1, treating —A as an
abbreviation of (A — L1). Let PAg be the theory obtained by replacing
1 by 0 =1 in the non-induction axioms. Define a ‘pseudo-interpretation’
M as: replace L by 0 = 1. Then: M : PA; > PA D (PAg + Con(PAy)).
So PAg validates: T > OT, for the extended sense of interpretation where
we allow L to go to some sentence.

Dear reader, undoubtedly you miss your favourite example of an interpretation
in the list. Please add it, ‘in thought’.

3.4 Interpretations and arithmetic

We consider theories U formalized in predicate logic with reasonably simple
axiom sets. A plausible demand is that these axiom sets are ¥¢. We ask that
a suitable weak theory of arithmetic is interpretable in U. A good choice is
IAg + Qy or, alternatively, Buss’ S}. For information about weak theories, see
e.g. [35],[8],[25]. The usual arithmetization of syntax, leading up to Godel’s
Second Incompleteness Theorem, can be formalized in TAg + 2y or Si. We will
always code syntax in the natural numbers of the theory.

Strictly speaking we are considering pairs (U, N}, where A is the designated
interpretation of the natural numbers. The point is important, since one can
always define different systems of natural numbers that are not provably iso-
morphic. z,y, z,u,v always range over these designated natural numbers. Here
is an example of one theory with different designated sets of natural numbers.

Example 3.1 Ay + SUPEXP verifies that GB is conservative over ZF w.r.t.
the language of ZF. So a weak theory knows that GB and ZF are equiconsis-
tent. Let w be the usual interpretation of the natural numbers in GB. Clearly,
(GB,w) F Con(GB) <+ Con(ZF), and, hence, by the Second Incompleteness The-
orem, (GB,w) I/ Con(ZF). On the other hand one can find an interpretation Z,
such that (GB,Z) - IAg + Q1 + Con(ZF). Note that we cannot have, on pain of
contradiction, (GB, Z) - SUPEXP. Closer inspection shows that we cannot even
have (GB, Z) - EXP. Q

The example shows that talk like GB and ZF have the same strength is somewhat
misleading: it depends on how one compares. In practice we will leave the
designated set of natural numbers implicit: they will always be clear from the
context.

12



One of the nice things of interpretability logic is that it will enable us to make
distinctions between certain kinds of theories. We introduce two important no-
tions: sequentiality and reflexivity. A theory is sequential if we can define/code
sequences of arbitrary objects from the domain of the theory in the theory. A
place in a sequence or the length of a sequence is taken in the designated natural
numbers of the theory. For a full discussion see e.g. [25].

e A theory is reflexive if it proves the consistency of each of its finite sub-
theories.

e A theory is locally essentially reflexive if all its finite sentential extensions
are reflexive. Alternatively, a theory is locally essentially reflexive if it
proves the local reflection principle for each of its finite subtheories. So if
T is our theory and if we write Op,, for the arithmetization of provability
from the first n axioms of T', then T is locally essentially reflexive if, for
all sentences ALy and for all n, T+ O7 , A — A.

e A theory is globally essentially reflexive or uniformly essentially reflexive
or, simply, essentially reflexive if it proves the uniform reflexion principle
for all its finite subtheories. So T is essentially reflexive if, for all formulas
A(Z)eLy and for all n, T+ VZ(Or , A(Z) — A(T)).

e A theory is verifiably reflexive , etcetera, if it verifies the formalized state-
ment of its own reflexivity, etcetera. E.g. the formalized version of local
uniform reflexivity for T is: VA€Sent,, Vo Op(Or A — A).

For an extensive discussion of reflection principles, see [1],2],[3]. By the Second
Incompleteness Theorem, locally reflexive theories cannot be finitely axioma-
tizable. If a theory is sequential and satisfies full induction, then it will be
verifiably uniformly essentially reflexive. Conversely, if a uniformly essential-
ly reflexive theory extends IAg + i, then it satisfies full induction. So for
sequential theories extending IAg + Q;:

Induction = uniform essential reflexivity = verifiable uniform essen-
tial reflexivity.

Consider any theory T'. If we extend T with its own local reflection principle,
then the resulting theory, say U, will be locally essentially reflexive. By a result
of Feferman, U will be contained in 7T plus the true H?—sentences. I¥; is not
reflexive. PRA is verifiably reflexive but not essentially so. PA, ZF, ZFC are
verifiably uniformly essentially reflexive.

Let T" be a set of sentences present, possibly via a fixed interpretation, both
in the language of T and U. We say that T is I'-conservative over U iff for all
AinD,UFA=TF A We write:

o T Dr.cons U :& T is I'-conservative over U,

13



® A Procons,t B:& (T'+ A) Dr-cons (T'+ B).

The use of conservativity to compare theories looms large in the literature.

For some kinds of theories we have pleasant characterizations of interpretabil-
ity. We write Con,, (U) for the consistency of all axioms of T' with gédelnumber
smaller or equal than n.

Fact 3.2 Suppose T is reflexive. Then we have the following.
1. ToUST o U
2. T >U<wsforaln Tt Con,(U)

3. Suppose that U is reflexive and satisfies sentential X{-completeness. A
sufficient, condition for full ¥9-completeness is the presence of the axiom
EXP. We have: T > U & T D>ry-con U

4. Suppose that T is T-verifiably locally essentially reflexive and that it
proves full X-completeness. Then:
TEHADPTB < ADjgerB
& A >11,-con, T U
< Ve Or(A— Or,B)

Q

The equivalence 3.2(2) is the important Orey-Hajek characterization. We e-
laborate on the proof in appendix C. Note that the notions of reflexivity, II;-
conservativity and satisfying the Orey-H4jek characterization do depend on the
designated numbers of our theories, but that interpretability and local inter-
pretability do not. For extensions of PA in the arithmetical language we have
a purely model theoretical characterization of interpretability (and ipso facto
IT;-conservativity).

Fact 3.3 Let T, U be extensions of PA in the language of PA. Then:
T > U<« al M with M | T have end-extension N with A" |= U.
Q

We end this section with the Friedman characterization of interpretability for
finitely axiomatized sequential theories. See, for a proof, [55].

Fact 3.4 Let T,U be finitely axiomatized sequential theories. We write A
for cut-free/tableaux/Herbrand provability. Let V := =A-. Remember that
EA =TAp + EXP. We have: EAFT > U ¢ Apa(VrT = VyT). Q

It is an open question to give a characterization of interpretability that works
for all sequential theories that contain a sufficient amount of arithmetic.

14



3.5

Excursion: oreysentences

Hilbert, in one of his more confused stages, suggested that truth is consistency.
One problem with this suggestion is its lack of compliance with the law of non-
contradiction: both A and =A might be consistent. If we replace consistency in
Hilbert’s idea by interpretability, as Nelson seems to do, then the same problem
emerges: for many theories U we can find a sentence O such that T >y O
and T >y —0. Such a sentence O is called an oreysentence. We provide some
examples.

1.

Let A stand for tableaux-provability (a version of cut-free provability).
Then the godelsentence of Ara,+0, is an oreysentence. This was verified
in Marianne Kalsbeeks masters thesis [29].

. Let T be sequential. A rossersentence R of Arp, tableaux provability

in T, is a sentence such that Ay + Q; F R < Ap—R < ArR. Any
rossersentence of Ar is an oreysentence of T'. This is immediate by the
Friedman characterization and the verifiability of Rosser’s Theorem in EA.

. Suppose T is reflexive. We define Feferman provability 07 for 7', as fol-

lows: O%A 4> Jz(0O7 , A A O, T). Here Op, is provabilty from the first
x axioms of T. One can show: T+ O*T and O*A p>pA. The godelsentence
G of O% is an oreysentence of T', by the following reasoning. Argue in T'.
Suppose GG. Then we have -0*@G, and, hence, ¢*—(G. So we can construct
an interpretation K such that (=G)*. On the other hand if =G, then the
identity interpretation ID will give us =G. Let M be the interpretation
that behaves like K if G and like ID if =G. Then we have (=G)™, without
assumptions. Similarly, suppose ~G. Then we find O0}G. Since we have
ORT, it follows that ©4G. This gives us an interpretation A" with GV.
Reasoning as before we can produce an uncoditional interpretation P with
GP.

. Suppose K : T > U. We call K restricted (in T) if it admits a ‘truth-

predicate’ K in T, i.e. a predicate K such that T+ K(#A) < AX for
all sentences A of Ly7.13 We write: K, K : T >res U, etcetera. Suppose
M,M : T s T. Then the liarsentence of M is an oreysentence of T'.
We leave the amusing verification to the reader.

. Let ZF~, be ZF minus the axiom of Foundation Fo. Then Fo is an orey-

sentence of ZF~.

. The Continuum Hypothesis CH is an oreysentence of ZF.

The ordinary rossersentence Rz of ZF is an oreysentence of GB. However,
neither T >zp R, nor T D>z —R.

13To give a fuller description of what such a predicate would involve is both tedious and
laborious. Let’s say it is beyond the scope of this paper.
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It is an open question whether every sequential theory 7" that contains enough
arithemetic has an oreysentence. All theories that occur in the literature as
‘natural’ theories do have oreysentences.

4 The language of interpretability logic

The language of interpretability logic, Lint, is the language of modal proposi-
tional logic extended with a binary modal operator >. We will write ¢ = v as
an abbreviation of (¢ > A1) > ¢).

Let U be any given theory (in the sense of subsection 3.4). An interpretation
(.)* of Lijnt into U maps the atoms on sentences of Ly, commutes with the
propositional connectives and satisfies:

(O¢)" := Oy¢™ and (¢ >¢)" := ¢" Dy Y.

We study the interpretability principles valid in theories U, i.e. we ask ourselves
for which x do we have: for all (.)*: U F x*. We will call the set of these
principles: IL(U).

5 The logic IL

We introduce our basic modal logic IL . The principles of our logic are arith-
metically sound for a wide class of theories and for various interpretations of its
main connective >. The theory is not arithmetically complete for any known
interpretation. The motivation for studying this specific set of axioms comes
from its modal simplicity and elegance. The aim of this section is to introduce
the logic and to convince the reader of its richness and beauty.

5.1 The logic introduced

IL is the smallest logic in L containing the tautologies of propositional logic,
closed under modus ponens and the following rules. (A principle is just a rule
with empty antecedent.)

L1 k¢ =+ O¢
L2 F O(¢p — o) — (Op — O1)
L3 F O¢ — O0¢

L4 F0O(O¢ — ¢) — O
JIFOW@—-Y) > o>y
RE@D>Yay>x)—= 0 DX
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BE@>xAy >x) = (ovY) B> x
A E oo (Op— )
BEOY >

IL is valid in all reasonable theories U (i.e. sequential theories containing enough
arithmetic, see subsection 3.4). L1-4 are the principles of Lob’s Logic. The va-
lidity of J1 is witnessed by the identity interpretation ID. J2 reflects the fact that
interpretations can be composed. J3 is valid, since, given any two interpreta-
tions K and M and any sentence A, we can construct an interpretation A that
behaves like K if A and like M if =A. J4 tells us that relative interpretability
implies relative consistency. Finally J5 is the ‘Interpretation Existence Lemma’.
It is valid because a form of Henkin’s model construction can be formalized in
weak arithmetics like TAg + ;. This construction is discussed in section 3.3,
example 8. Note that we do not have - (¢ > A ¢ > x) = ¢ > (¥ay). This
principle is invalid as is illustrated by the existence of oreysentences.

De Jongh and Visser prove that IL has unique and explicit fized points. See
[13]. No characterization of the closed fragment of IL has been given. (The
counterexample to the finite model property for simplified models in subsec-
tion 5.4 illustrates the richness of the closed fragment.) It is unknown whether
IL satisfies interpolation. De Jongh and Veltman prove a modal completeness
theorem w.r.t. Veltman models. See [12]. Veltman models are explained in
subsection 5.4.

5.2 Consequences of IL

In our representations of reasoning we always suppress the propositional part.
We may reason as follows. We will first prove the principle K3.

K3 F O ~¢ > L

This principle shows that we we have the option to treat the O as a defined
symbol. Some reformulations in this spirit will be discussed in subsection 5.3.

FOp — O(-¢— L) LLL2
- ¢ D> L J1
- Omp—-O0L J4
— 0O¢ L1, L2

Next we show:

KL F ¢ = (pvO0)
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We have:

FO@p—=9)adp>¢p = LIS
FoDopnlod>o = J1
l_

(pv<9) > ¢ J3
F O(p = (pv<oe)) = L
E ¢ > (ovO9) J1

We are now ready and set to prove K2.

K2 ¢ = (pn0g).

First we reason in Lob’s Logic, as follows.

F ((@r8=¢)vO(¢a0=9)) < ((pA0-¢)v=0(0-¢ — =) L1,L2
g (¢AD—-¢)v—-D—|¢) L4

& (ovO9)

By J1,J2, we may conclude:
* F ((0A8=0)vO(¢ab-9)) = (v O9)

Thus, we find:
F(@a0-¢) = ((¢aD-9)vO(pn0=¢)) Kl
= (¢vO9) 9
= ¢ K1

We give a slightly ‘strengthened’ version of K2.

K4 (¢AOx) = (4AOxAO—¢).

We leave the proof of K4 to the reader. An immediate consequence of K2 is
the familiar fact that = T > 0L, which was proved first in Feferman’s classical
‘Arithmetization of Metamathematics’ ([20]). Note that this last principle is one
possible ‘interpretation’ version of the Second Incompleteness Theorem. Any
theory interprets itself plus its own inconsistency and, hence, cannot prove its
own consistency. In the same vein the existence of an oreysentence would be
an interpretation version of Rosser’s Theorem. In locally essentially reflexive
theories, however, oreysentences must have higher complexity than rossersent-
ences.

5.3 Alternative language, alternative axiomatization

In IL we have F O¢ < —¢ > L. So we have the possibility to eliminate O from
the language. Moreover, some axioms are superfluous, so we can give a more
efficient axiomatization. Eliminating the O can be often convenient, e.g. in
proving modal completeness theorems. We present and verify one alternative.
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Let £; . be the language of interpretability logic without 0. We will treat O¢
as an abbreviation of =¢ > L. Thus there is an obvious translation of L;,; to
L;- To spare ourselves the anxiety of carrying scholastic distinctions along, I
will in the following simply confuse the two languages. IL can be axiomatized as
the smallest logic in £, containing the tautologies of propositional logic, closed

under modus ponens and the following rules.
M= =>FodD>Y
2F(>Yay>x)—d>x
13F(p>xAt>x) = (ove)) > x
4 ¢ > (pa(d >1))

Proof

It is easy to see that these principles can be derived from IL. 14 is just a variant of
K2. We prove the usual principles from the alternative ones. Clearly, J2=I2 and
J3=I3. Using I1 and 12 and propositional logic one easily verifies the substitution
principle sub: F ¢ < ¥ =F x[p := ¢] < x[p := x]- Thus we certainly do not
have to worry about replacing subformulas by their equivalents in propositional
logic. E.g., » > L can be interchanged with O—¢. In the verifications below we
will mostly suppress mention of the use of I1, 12, sub and propositional logic.

L1 Suppose F ¢, then - =¢ — L and, hence, - O¢.

J1 Reason inside . Suppose O(¢ — 10). We have (¢pa—)) > L and, a fortiori,
(pa—p) > 4p. Also, ¥ 1> 1), hence, by 13, ((pa—))vep) > . So, finally,
¢ >

L2 Reason inside . Suppose (¢ — ). Then O(—p — —¢), so, by J1,
—p > —¢. Suppose Og, i.e., ¢ > L. By 12, = > L, i.e., Ov.

J4 Reason inside . Suppose O(¢ — ¢). Then, by J1, ¢ > 1. We reason by
contraposition. Suppose O-) and, thus, ¢ > L. By 12, ¢ > L and, thus,
O-g.

L4 Reason inside . By 14, =¢ > (¢ A Og). So, by J4, O=¢p — O(=¢p AOP).
Hence, O(O¢ — ¢) — Og.

J5 Reason inside . We have ¢¢ > (pv<¢@). Moreover, by 14,
(pvOe) > ((pvOP) A (v O9) > L).
Hence, (¢pvOd) > ((pvOp) AO-¢), and so O > ¢.
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L3 As is well known, L3 follows from L1,L2,L4. We give an alternative
derivation. Reason inside F. J5 gives us: O—¢ > —¢. Hence, by J4,
OO = O, Ergo: O¢ — OOg.

a

A variation of our theme is to study the contraposed versions of interpretability,
I1; -conservativity and the like. We write A >.x B for =B >y -A. E.g:

e A i B & 3K O(AY = B),
o A Detycons B & VSEN (O(S — A) - O(S - B)).

I will call contraposed IIi-conservativity: Xj-preservativity. As we will see
in subsection 10.4 ¥;-preservativity in the precise form given above is a more
interesting notion than II;-conservativity as soon as we turn to constructive
logic. For sequential locally essentially reflexive theories that satisfy full X-
completeness, both notions have an Orey-H4jek characterization:

¢ Abcint B & APy pes B & YnO(0,A = B).
The principles of contraposed IL are as follows.

1=y =>Fo >y

R F(@DYaY X)X

B E(XDoAX DY) = x D (PrY)

4 F(Op — @) > o

Here O¢ abbreviates T > ¢. If we rewrite ¢ > as [¢]¢), we see that the [¢]’s are
necessity operators of a normal modal logic. To get some feeling for the logic
the reader might amuse him/herself by deriving contraposed J5, i.e. - ¢ > Og,
from scratch. Note that in contraposed form oreysentences appear as sentences
O with the property: O > L and -0 > L.

5.4 Semantics

A Kripke semantics for IL was discovered by Frank Veltman. An IL-frame (or
Veltman frame) is a tuple (K, R, S), where:

e K is a non-empty set
e R is a transitive, upwards wellfounded relation on K
e S is a ternary relation on K satisfying:

— ySzz = ¢Ry and =Rz
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— xRyRz = yS.z
— S, is transitive and reflexive on {y | 2Ry}

A forcing relation I+ on an IL-frame satisfies the usual clauses, where R is the
accessibility relation for O, plus:

o zlkd >y Vy((xRy Ay Ik @) = F2(ySaz A 2 IF 1))

This makes > into a sort of might-conditional.

An IL-model or Veltman model is a structure (K, R, S,IF), where (K, R, S)
is an IL-frame and IF is a forcing relation on (K, R,S). Veltman & de Jongh
show: IL is sound & complete for finite IL-models. See [12].

For many logics extending IL one can get rid of the subscript in the S relation.
These models are simplified Veltman models, sometimes called Visser models.
Their full definition is as follows.

e K is a non-empty set
e R is a transitive, upwards wellfounded relation on K
e S is a transitive, reflexive relation on K satisfying R C S
We can recover the S, ’s in the new setting by taking:
ySz2z < xRy, tRz and ySz.

The clauses for forcing are as before, now using the defined S;’s. In [53] it
is shown that we can unravel each Veltman model to a bisimulating simplified
one. (The relevant notion of bisimulation is specified below.) So we have also
completeness for IL in simplified models. The following example shows that we
lose the finite model property for IL if we work with simplified models. Consider
the formula:

¢ = OTAT BOOT AO(CT = =(T >OT))
Here is a Veltman model satisfying this formula.

R
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We employ the obvious convention that the model intended is the closure under
the closure rules of IL-models. Thus we will have: ¢Syd, dS,c, but not dSyc. It
is easy to see that a I ¢. Consider an arbitrary simplified model X with a node
a with a IF ¢. We will show that A is not finite.

Proof

Since a lF &T and a lF T > OOT, we can find a b with aRb IF OO T, A fortiori,
bk OT. Because a IF O(OCT — —(T > OT)), there is a d’ with bRd' and, for
no ¢, bRc, d'Sc and ¢ I+ ©T. Let d be a top node of our model such that d = d’
or dRd. Clearly d IF OL. Tt is easy to see that, by the closure conditions of
Veltman models, bRd and, for no ¢, bRec, dSc and ¢ IF OT. We claim that not
dSh. Since b IF OOT, there is a ¢ with bRe IF OT. If we had dSb, it would
follow that dSbSe, and, thus, dSe. Quod non. Since a lF T > OOT, there is a
b" with aRb', dSV and b’ IF OOT.

Thus, we can construct a chain of nodes, by, dy,b2,ds ..., such that aRb; Rd;,
d;Sbi11, not d;Sb;, and d; IF OL. Note that if  occurs in the chain before y,
then zSy. Now assume that our model is finite. It follows that some node e
must occur twice in the chain. Since nodes of the b-type are necessarily distinct
from nodes of the d-type, it follows that we can construct a cycle containing
some pair b;, d;. Clearly any two nodes on the cycle will be S-related, and hence
d;Sb;. A contradiction. a

The study of models for IL leads to a strenghtened notion of bisimulation. Let
two models K and M be given. A relation Z between the nodes of our models
is a bisimulation if it satisfies the following conditions.

at kZm = (k Ik p < m - p), for all atoms p,

zig If kREk' and kZm, then there is a m’ with mRm' and k'Zm/ and, for all
m'" with m'S,,m", there is a k" with k" Zm'" and k'S k",

zag If mRm' and kZm, then there is a k' with kRE' and k' Zm’ and, for all k"
with k'Spk"”, there is a m'" with k" Zm" and m'S,,m"".

Since we can associate a model to a simplified model in the evident way, it makes
sense to speak about bisimulations between models and simplified models and
between simplified models and simplified models. We will see bisimulations in
action is subsection 8.2. We end this subsection with a picture of the zig-clause.
Sm

"
m

=
1
1
1
1
1
1
\
a2

=
cm s
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6 F, W, W* and other principles

In this section we discuss some further principles in interpretability logic. All
the principles discussed in this section are valid in all reasonable arithmetical
theories.

FEOH— (o >Oo)
KW2 ¢ > Oy — o > (ba—g)
WEo¢D>y—¢ > (pal-¢)
KW3 F ¢ > (pvOd) = ¢ >
KW4 ¢ >y — ¢ > (Yad-¢)
Mo F ¢ >t — (Opabx) B> (Pa0x)
W* k¢ ¢ = (Pa0x) > (PaAOxAD=9)

Before discussing the meaning of these principles, let me describe their inter-
relations. It is easily seen that W follows from W*. We prove that Mg follows
from W*.

Foow — o> (Yvog) J1,J2
= ((pvOP)adx) > ((PvOP)aADxAO=p) W™
= (©ona0x) > (naOx) J1,12

Conversely, W* follows from W and My together. The argument is due to Dick
de Jongh.

Fo >y — ¢ > (pabng) w
= (©¢onDx) > (paO-¢nOy) Mo
= ((YAOdAOX)v(YAO=paOY)) > (YaO-gpaOy) J1,J2,13
= (YA0x) B> (YAOxAO-9) J1,)2

W, KW3 and KW4 are interderivable over IL. Most of the arguments are simple.
We show that KW4 follows from W. We leave applications of L1,L2 implicit in
this proof.

> (YA0=9)vOe) = 11

F > (paO=p)vo) = J1,J2,J5,J3

Fo > — 1 > (pa0-g) J1,12,W,J3

Here is the derivation of KW2 from W.
Fo>OYy — ¢ > (OYPaldng) w

— ¢ > O(Wane) L1,L2,J1,J2
- ¢ > (Yrd) J5,J2
= ((Yr=9)ve) > (Pamg)  J1,12,13
= Y D> (Yrno) J1,12
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F easily follows from KW?2.

Our principle KW2 is interderivable with Svejdar’s KW1°. Vitéslav Svejdar
in his [46] established that KW2 (in his paper KW1°) is not derivable from F
over IL. He also shows that W is not derivable from KW2. Mladen Vukovi¢ shows
that W is not derivable from Mg. See his [61]. It is easy to see W* (and, hence,
Mp) does not follow from W —these principles correspond to different classes of
frames. Here is a schema of the dependencies of our principles over IL.

[T [[F[KW2 [ W] KW3 ] KWa | M, [ WMy | W* |
F +] - [-1 - - [ - — —
Kw2 [+ + [ - [ - - | - - -
W + + [+ + + | - — —
KW3 [+ + [ +] + + [ - — —
Kwa |+ + [ +] + + | - — —
M 7 7 | = | — - |+ — —
WMo [+ ] + [+ ] + + [+ + +
W + + [+ + + [+ + +

F, KW2 and W all characterize the same class of Veltman frames: the class of
frames such that for each x, R o S, is upwards wellfounded. Such frames are
called ILW-frames. Thus ILF and IL(KW?2) are incomplete w.r.t. their character-
istic classes. De Jongh and Veltman prove the completeness theorem for ILW
w.r.t. finite ILW-models. Unfortunately, their proof —which is rumoured to be
very beautiful— was never published. Simplified ILW-frames, are, as expected,
simplified IL-frames with the extra property that R o S is upwards wellfound-
ed. In [53] it is shown that for every ILW-model there is a bisimilar simplified
ILW-model. Moreover the construction preserves finiteness. Thus, we have com-
pleteness for ILW in finite, simplified ILW-models.

The characteristic class of both ILMg and ILW* is the class of frames sat-
isfying: zRyRzS,uRv = yRuv. It follows that ILMy is incomplete w.r.t. its
characteristic class. No modal completeness theorem is know for [LW*.

The closed fragment of ILF (and, ipso facto, of all extensions of ILF) has been
characterized by Hajek and Svejdar: it is the same as the one of Lib’s logic.
See [26]. It is unknown whether ILF or ILW satisfies interpolation. We will see
in subsection 8.2 that ILMy and ILW* do not satisfy interpolation.

F can be viewed as an interpretability version of the second incompleteness
theorem. ILW was conjectured to be the interpretability logic of all reasonable
arithmetical theories. This conjecture was refuted in [56]. The current con-
jecture is that ILW* is the interpretability logic of all reasonable arithmetical
theories.

An immediate consequence of KW2 is the Contraposition Principle:

KWL F¢>OT > T g
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We give an application of this principle. Paris & Wilkie show that
EXP Dragro; Cragra, T
(see [35]), ergo by KW1: T >ra,+0, "EXP, i.o.w.:
(IAg + Q1) > (IAp + Q1 + —EXP).

This fact was originally shown by Solovay employing vastly different means.

7 The principle P

P is the Persistence Principle:

PFoép>y—0O0 >y

P characterizes IL-frames with the following property:
yRzS,u = (yRu A zSyu).

We call such frames ILP-frames. De Jongh & Veltman show the completeness
of ILP w.r.t. (finite) ILP-models. See their [12]. Simplified ILP-frames will be
IL-frames with the extra property: yRzSu = yRu. In [53], it is shown that any
ILP-model bisimulates with a simplified ILP-model. Moreover, this construction
preserves finiteness. Thus, we have completeness for ILP in finite, simplified
ILP-models. It is unknown whether ILP satisfies interpolation!

P is valid for interpretations in finitely axiomatized arithmetical theories
extending, say, IAg + Q. To see the arithmetical validity, reason as follows.
Let C be the single axiom of T'. Suppose A >7 B. This means that, for some K,
O7(A = (BRACK)). Tt follows that O707(A — (BXACK)), i.o.w. Or(A > B).
ILP is complete for interpretations in finitely axiomatized sequential theories
with designated natural numbers satisfying IAg + SUPEXP that do not prove
their iterated inconsistency for any finite number of iterations. Examples of
such theories are: Ay + SUPEXP, I¥, for n = 1,2,..., ACAg and GB. The
proof of arithmetical completeness is given in [55]. For a somewhat different
proof, not using simplified Veltman models, see [62]. For a proof of modal and
arithmetical completeness for the closely related ILP“, see [15].

Since ILP is arithmetically complete for some class of reasonable theories, it
must, a fortiori, imply W*, which is valid in all reasonable theories. We verify
directly that ILP extends ILW*.

Foy — O >9) P
= O — OY) Ja
—  O((YAOxAOw) — (YAOxaAO=¢)) L1,L2
= (YADXAO=) D> (PADXAO-9) J1
= (¥a0x) B> (YAOxAO-9) K4,J2
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Note that in fact we proved:

ILEO(¢ > ) = (¥aDx) > (PADxAD-g).

8 Montagna’s Principle M

We exhibit a principle which is arithmetically valid in all verifiably locally es-
sentially reflexive theories, Montagna’s Principle M:

M ¢ >y — (oa0x) > (¥aOx)

M was known before to Lindstrém and to Svejdar (even if not in ‘modal guise’).
M characterizes IL-frames with the following property: yS,zRu = yRu. We call
such frames ILM-frames. De Jongh & Veltman show that ILM is complete w.r.t.
finite ILM-models. See [12], or, alternatively, [5]. A simplified ILM-frame is a
simplified IL-frame with the property that ySzRu = yRu. In [53] it is shown
that every ILM-model bisimulates with a simplified ILM-model. The proof is also
given in the more accessible [5]. Thus we have completeness w.r.t. simplified
ILM-models. However for simplified ILM-models we do not have the finite model
property, as is illustrated by the following formula.

OCOTARCT B (OT AT D) AT B (OT A—(T >p))

Here is an ordinary Veltman model satisfying this formula (in a).
Se
d ep
x /
Sa
b c
x /
a

Suppose there would be a finite simplified ILM-model satisfying our formula.
Then there would be a sequence of nodes, by, ¢y, bs, ca, ..., such that b; and ¢;
are R-above a, b;Sc;, b; IF (OCT AT > p) and ¢; IF (OT A —=(T > p)). Since our
model is finite there must be b;, ¢; with ¢;Sb;. It is however easy to see that in

a simplified ILM model any two nodes that are on an S-cycle and that force the
same atoms must force the same formulas. So we have a contradiction.
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M is arithmetically valid in all verifiably locally essentially reflexive theo-
ries T extending EA (= IAg + EXP). To see this, fix such a theory 7. Re-
member that, by fact 3.2, in 7" we have that interpretability over T exten-
sionally conincides with II;-conservativity over T. So it is sufficient to prove
M for II;-conservativity over 7. Reason in T'. Suppose A >r1,-cons,r B. Let
S be any Y;-sentence and P be any IIj-sentence. Suppose Or((BAS) — P).
Then, O7(B — (~SvP)), hence, since (~SvP) is II;, Op(A — (~SvP)). Ergo,
Or((AAS) — P). Noting that we may replace S by OrC, we are done.

For extensions of PA in the language of arithmetic, we can see M immediately
by reflecting upon the following well-known characterization.

U >V & all M E U have end-extension N = V.

Alessandro Berarducci and Volodya Shavrukov have shown (independently)
that ILM is complete for arithmetical interpretations in extensions 7' of PA in
the language of PA that are X{-sound, or, more precisely, that do not prove
one of their own iterated inconsistency statements, 0% L. See their papers [5]
and [39]. For a proof not using simplified Veltman models, see [62]. Hajek
& Montagna show that ILM is complete for arithmetical interpretations for
IT; -conservativity in extensions of I¥; that do not prove their own iterated
inconsistency statements. See their paper [23]. For a proof that avoids simplified
Veltman models, see [19].

Since in verifiably locally essentially reflexive theories T extending EA, in-
terpretability and II;-conservativity over T' provably coincide (see fact 3.2), the
result by Héjek and Montagna tells us that ILM is complete for arithmetical in-
terpretations in verifiably locally essentially reflexive theories T extending 1Y,
that do not prove one of their own iterated inconsistency statements.'* The
weakest such theory is I¥; + Rfnyy,, where Rfnyy, is the local reflection prin-
ciple for I¥,. This theory is certainly below PA, since, by an observation of
Feferman, it is a subtheory of I3, plus the set of all true II;-sentences.

Clearly, since ILM is complete for some class of interpretations in reasonable
arithmetical theories, W* must be derivable in ILM. We show how to do this.
First we derive W. Reason in ILM. Suppose we have ¢ > 1. By M we may
conclude: (paO-¢) > (YaO-¢). By K2, we have ¢ > (¢a0-¢). Hence, using
J2, ¢ > (YaO=¢). Using W, we may derive KW4. So we find, from ¢ > 1,
Y > (YaO=g). Applying M again, we have (a0x) > (YAOxAO=e).

8.1 Consequences of M

Two consequences of M are:

KML k¢ > Oh — O(¢ — Ov)

147 the proof of the theorem a primitive recursive function is introduced of which it is
shown that it is eventually weakly decreasing. Then one needs to infer that it is eventually
constant. It is precisely at this point that 31-induction is needed.
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KM2 F ¢ >y — (O = Ox) = B¢ = OX))

Clearly, these principles show us what is ‘visible’ of the II;-conservativety of
essentially reflexive theories over theories interpreted in them. It is easily seen
that these principles are interderivable over IL. Both KM1 and KM2 characterize
IL-frames satisfying ¢S, zRu = yRu. Svejdar shows that neither of them implies
M over IL. See his [46].

8.2 Failure of interpolation

Consider any logic 7 between ILMg and ILM. We show that 7 does not satisfy
interpolation. The proof is a minor adaptation of Konstantin Ignatiev’s unpub-
lished argument that ILM does not satisfy interpolation. Note that it follows
that ILW* does not have interpolation and neither has IL(V), the interpretability
logic of all reasonable theories, which is after all firmly in between ILMy and
ILM.

Proof

We have:
ITEO(p+ 0Og) = (r >t— (Orap) > (tAp)).

Suppose, to get a contradiction, that there is a formula I(p) only containing p,
such that:

THO(p<«+ Oq) —» I(p) and ZF I(p) — (r >t — (Orap) > (tAD))-

Consider the following two simplified models for ILM.

pfi P f2 pfi pf
A A A A
R R R R
pdy pdo S e pd e
A A A A A
R R R R R
R
Dby D by c pb c
R
R R R R
a a
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We employ the usual convention that the intended models are what one gets
when one closes off the displayed relations under the appropriate closure rules.
So, for example, in the first model we will have b2Sfo and daRf>. p is only
forced where this is displayed. Let B be the relation between the nodes of the
models that connects fi, fo with f{, f3, di,d> with d', etc. Inspection shows
that B is a bisimulation. The crux is that, for by, b’, we meet the R-move from
b’ to d’ with an R-move from by to di, and that, for a,a’, we meet the R-moves
from a’ to b’ and to d’ with counter moves from a to by, respectively d;. Since
our models are ILM-models, they are, a fortiori, Z-models. Extend the second
model by stipulating that d' IF ¢ and f] IF ¢ (and no other node forces ¢q). We
get: o' IF O(p + Og). Hence, by assumption: a' I I(p). By bisimulation, we
find a IF I(p). Now extend the first model by stipulating that ds IF 7 and e I .
It follows that a IF 7 > . Since a IF I(p), we obtain that a I (Orap) > (tAp)).
Quod non. a

8.3 An overview of systems

We end this section with a schema of salient systems and what is and is not
known about them. The ‘??” in the case of the arithmetical completeness
question signals that we not only do not have an arithmetical completeness
result, but even lack a conjecture on what the appropriate arithmetical semantics
should be.

system || kripke comp | arith comp | interpol | clos frag |

IC i 7 ? ?
ILF = 7 ? ¥
IOW ¥ 7 ? ¥
IOW* ? ? - ¥
ILP ¥ ¥ ? ¥
ILM ¥ n — +

9 Beyond finite and essentially reflexive

This section provides some remarks concerning the interpretability logics of
theories which are not locally essentially reflexive extensions of I'¥; or finitely
axiomatized, sequential extensions of IAy + SUPEXP.

WARNING: To make sense of interpretability in weak theories, which
almost always lack X9-collection, we have to employ the notion of
smooth interpretability. See [56].
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9.1 Weak theories

We know that the provability logics of IAg+; and S} both extend Léb’s Logic.
It is a great open question whether these logics are equal to Lob’s Logic. (See
[48] and [6].) In the light of this great open problem the question what the
interpretability logics of IAg + Q; and S} are, seems to be definitely immodest.
However, you never know. Sometimes it is easier to answer a seemingly more
difficult question.

The interpretability logics of TAg + £y and S are certainly totaliter aliter
compared to the logics we know. Let me just mention two valid principles of
both. We will sketch the arguments for their arithmetical validity in TAg + Q3
in the footnotes.

AL F (¢ 1> O A ¢ 1> OX) = ¢ B> (Ohadx)D
PII F ¢ > Oy — O(¢p > Oh)'6

It is easy to see that the first principle is not provable in ILP, and, hence, not
generally arithmetically valid. The second principle is in the intersection of ILP
and ILM. It is not provable in ILW*. One can show that it is not in IL(PRA).
See subsection 9.3.

9.2 [A,+EXP

In [55] it was shown that the following semantics is sound and complete for
IL(IAg + EXP). Our models are finite strict partial orders, with accessibility
relation, say, R. The clauses for atoms and propositional atoms are as usual.
The accessibility relation for O is R o R. The clause for > is:

k- o >y o VYm((kRm A 3dn(mRn Aanlk¢)) = Ip(mRBRp A pl-)).

Clearly this logic can be viewed as a fragment of Lob’s Logic via the following
translation (.)*. (.)* commutes with atoms and with the propositional con-
nectives, (O¢)* := O0¢* and (¢ > ¢)* = O(CP* — <O¢*). The problem
of axiomatizing this logic in a perspicuous way seems to be remarkably hairy.
Marianne Kalsbeek provides a number of principles in her preprint [30].

9.3 PRA and its kin

We study the interpretability logic of PRA and some related theories. Since
not much is known of this logic, the discussion of this section will be somewhat

151f TAp + Q1 plus the arithmetical interpretation of &+ is interpretable, it is interpretable
on a definable cut, which is closed under w;. Similarly for IAg + ©; plus the arithmetical
interpretation of Ox. The intersection of the two cuts, will, by downwards persistence of
II;-sentences, interpret IAg + 3 plus the arithmetical interpretations of both &4 and <.

161f TAg + Q1 plus the arithmetical interpretation of &t is interpretable, it is interpretable
on a definable cut I closed under wi. We can define this cut in such a way that IAg + Q1
verifies the statement that, for all A, IAg 4+ Q1 F A= IAg + Q1 - AL
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tentative. We show that the interpretability logic of PRA strictly extends the
minimal logic. The following reasoning is due to Lev Beklemishev. Every finite
¥9-axiomatized extension of PRA is reflexive. (See [2].) Smooth interpretability
in a reflexive theory has the Orey-Hajek characterization —verifiably in PRA.
This tells us that A >pra B, with A € X9, is II3. Moreover, again by Orey-
Hijek, for A € X9, we have:

PRAF A >pra B — (AAOpraC) >pra (BAOpRAC).
Now define the following class So of modal formulas:
1. boxed formulas and their negations are in S,
2. if ¢ € Sy and 1 arbitrary, then —(¢ > 1)) € Sy
3. S, is closed under conjunction and disjunction

It is easily seen that all interpretations of formulas in S, are in 9. So the
following principle will be in IL(PRA):

B Fo >y — (pa0x) > (YaOy), for ¢ € Sy

Remember that to use Kripke semantics for non-derivability results, we only
need soundness. It is easy to show, by a Kripke model argument, that the
following instance of B:

Op > q — (OpaOr) > (gaOr)

is not in ILW*. So IL(PRA) is not the minimal interpretability logic.

We provide some ‘upperbounds’ for IL(PRA). Since M is not derivable in ILP,
we can find, by the arithmetical completeness theorem for ILP find arithmetical
sentences A, B, C such that:

121 |71A l>]21 B — (A/\D]Elc) l>]21 (B/\DIElc)
Let D be the single axiom of I¥;. Let
A":=(DAA), B':= (DaB), C":= (D = C).

Then:
PRAV A" bpra B' — (A'A0praC") >pra (B'AOpRAC)

Hence M is not part of IL(PRA).
An even better example, is the following principle that is (i) in the intersec-
tion of ILM and ILP, but (ii) is not arithmetically valid in PRA.

PIl ¢ > Oy — O(¢ > OY)

To show that this principle is not PRA-valid, we need the following theorem due
to Shavrukov (see [41]).
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Theorem 9.1 Suppose a consistent, finitely aziomatized, sequential theory F
interprets a reflexive theory R that extends IAg + EXP. Then {P€Il; | F >
(R + P)} is complete X9.

We reason as follows. Clearly IX9 > (PRA + Con(PRA)). So IXJ and PRA +
Con(PRA) satisfy the conditions of Shavrukov’s theorem. Hence,

{Pel, | 1YY > (PRA + Con(PRA) + P)}

is complete ¥J. By a well-known theorem due independently to Goldfarb, Fried-
man and Harrington, there is a primitive recursive function F', transforming P
to P', with PRA F (Con(PRA)AP) < Con(PRA + P’). Hence

IYY > (PRA + Con(PRA) + P) & IZ) 1> (PRA + Con(PRA + P'))

This tells us that {4 | IZ9 > (PRA + Con(PRA + A))} is complete 9. Let D
be the single axiom of I39. We can reformulate our insight as:

X :={A| D >pra OpraA)} is complete 9.

On the other hand, if PII would hold, by the soundness of PRA, X would be
¥9. Quod non.

Remember that PRA is EA (IAg + EXP) plus the II3-induction rule. So it is
reasonable to expect some analogies between PRA and the theories EA+II9-TR.
We have that EA + H?L—I R is X,,-reflexive and hence we obtain analogues of the
rule B, where we need suitable classes S for EA+1I3-IR and S, for EA+TI9-TR
with n > 4. Note that Sy is simply all modal formulas.

Let n > 3. Clearly, T := EA +TI°-IR extends I¥;. For A, B € X5, we have:
THADrB <+ AP, -cons B. The interpretations of modal formulas used in the
proof of the Hijek-Montagna arithmetical completeness theorem, in which it is
shown that ILM is the the logic of II;-conservativity for ¥;-sound extensions
of I, are all As. Hence on these specific interpretations II;-conservativity
and interpretability coincide. It follows that every counterexample for ILM is
a counterexample for IL(T"). In other words: IL(T") C ILM. It is open whether
IL(PRA) is a sublogic of ILM.

10 Other interpretations of P

10.1 Partial Conservativity

Héajek and Montagna show that the logic of II;-conservativity of all extensions
of I¥; that do not prove their own iterated inconsistencies is ILM. See [23].
Japaridze gives a proof that does not use simplified models. See [19]. Konstantin
Ignatiev characterizes the logics for partial conservativity for the classes II,, for
n > 2 and ¥, for n > 3. He characterizes the closed fragment of the logic for
31-conservativity. In these logics the principle J5 is conspicuously absent. This
suggests a more comprehensive study starting with ILg (= IL minus J5).
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10.2 Efficient Interpretability

It is typical of the interpretations in the literature that the proofs of the in-
terpretations of the axioms of the target theory are fairly simple. So all these
interpretations are in some sense ‘efficient’. Let’s explicate efficiency as the
demand that there is a polynomial P such that for every axiom A there is a
proof p of the interpretation of A where the size (= number of symbols) of p
is bounded by P of the size of A. In other words the sizes of the proofs are
bounded by an P-Time computable function. Efficient interpretability is this
sense is studied by Rineke Verbrugge in [49],[50]. In [49] it is shown that ILM
is sound and complete for arithmetical interpretations in PA interpreting > as
feasible interpretability. In [50] it is shown that feasible interpretability over PA
is ¥s-complete. For more information on complexity, see subsection A.2.

10.3 Functional Relative Consistency

Christian Bennet studied in his thesis [4] the following notion of strong relative
consistency. Let T and U be extensions of PA in the language of PA. Let PR be
the set of primitive recursive terms. Define:

T >ec U & JtePR Opp (Y (Proofy (z, L) — Proofr(tz, L)).

It was pointed out in [55] that the logic of A >y pa B is ILP. The proof rests
on the following ‘Friedman Characterization’ of [>gyc.

The proof follows a suggestion of Kreisel. It uses the PA-verifiable fact that the
provably recursive functions of PRA are precisely the primitive recursive ones.
We have, in PA, writing (x) for Opga(OrT — OpT):

(*) — dtePR DPRAVHZ (PrOOfU(CE, J_) — PI’OOfT(t.T, J_))

—  3tePR OppVax (Proofy(z, L) — Proof p(tx, 1))

—  3tePR OpraOpaVz (Proofy (z, L) — Proofp(tx, 1))

—  JtePR OprpVz (OppProofy (z, L) — OpaProofp(tz, 1))

—  JtePR OpgraVz (Proofy(z, L) — (mProofp(tz, L) — OppLl))
= (%)

Clearly there are many variations on the theme of strong relative consisten-
cy. Vary the theories involved. Use P-Time or Kalmar Elementary instead of
Primitive Recursive. Etcetera.

Note that the Friedman characterization for interpretability in finitely ax-
iomatized sequential theories says that 7' >U iff U is strongly cutfree (tableaux)
consistent relative to T' where we use Kalmar Elmentary instead of Primitive
Recursive.
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10.4 Constructive Logic

It is unknown what the provability logic L(HA) of HA (Heyting Arithmetic) is.
It is even compatible with our present state of knowledge that it is complete II3.
L(HA) is a modal logic that contains the intuitionistic propositional calculus,
IPC, plus the principles L1-4 of Lob’s Logic. In addition it contains many others
like:

° D_l_||:|¢) — |:||:|¢
° D(—l—||:|¢ — |:|¢) — |:||:|¢)
e O(¢pv ) = O(p v Oy) (Leivant’s Priciple)

The notion of X -preservativity turns out to be very useful in the study of
provability principles in HA. Remember that ¥;-preservativity is given by:

A Dy pres,HA B i VS€X -sentences (Oya(S — A) — Opa(S — B)).

It is well possible that it is easier to formulate the logic of ¥;-preservativity,
then the logic of provability alone. The following principles are an attractive
subsystem of ¥1-preservativity logic of HA. Of course the basic logic here is IPC.

b=y =Fo >y
RE@DYAY>Y) =6 DY
BEXPOAX DY) =X > (Pa))
4 F(Op — ¢) > ¢

15 (0 >xAY >X) = (pvih) D> x

The surprizing new principle is ¢t5. This principle corresponds via contraposi-
tion to the IL-invalid principle: F (x > ¢ A x > 9¥) = x > (¢ah). One easy
counterexample to this last principle was provided by the existence of oreysen-
tences. It is easy to see that in the intuitionistic case we have oreysentences O
for >y _pres,HA too. These have the property: O > L and -O > L. Applying 15
gives us: (Ov—0) > L. This is not a contradiction, but just a testimony of the
non-derivability of excluded third in HA!

Regrettably the beautiful logic ¢1-5 does not exhaust the X;-preservativity
principles valid in HA. The reader is referred to [52],[59],[60] for more informa-
tion.
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11 Extensions of the language

11.1 Witness comparisons

Héajek and Montagna characterize the II;-conservativity logic for extensions of
I, with the witness comparison order added. See their [24]. This is an impor-
tant result since a lot of interesting arguments can be formalized in this logic.
De Jongh and Pianigiani apply the result of Hijek and Montagna to solve a
problem posed by Guaspari. See [11].

Svejdar, in his fundamental paper [45], considers variations on the provability
predicate that give a different meaning to the witness comparison formulas. It
is open to give arithmetical completeness theorems for the interpretations he
considers.

11.2 Propositional constants

The simplest kind of extension of the languages of provability and interpretabil-
ity logic is, of course, extension with one propositional constant representing
some significant statement in the intended target theory. For example one could
extend the interpretability logic IL(ZF) with a constant for the Continuum Hy-
pothesis CH. Let’s call the logic obtained by extending the logic of a target
theory T by adding a constant for a designated sentence A: IL(T, A).

The only example of a result along this line that I know of is the characteri-
zation of the closed fragment of IL(IAq+Q1,EXP) in [57]. In this fragment many
salient facts about the relationship between the weak theory and the strong ax-
iom can be formulated, like Paris and Wilkie’s result that EXP > < T, Solovay’s
result that T > —-EXP and my own result that ¢T > EXP.

11.3 Weak interpretability and tolerance

Giorgi Japaridze studies the notions of weak interpretability and tolerance.
Weak interpretability of U in 7" means that U is interpretable in some con-
sistent extension of 7T'. Tolerance is a generalization of this notion to the n-ary
case. The reader is referred to Japaridze’s papers [17] and [18].

11.4 Y;-Interpolability

Konstantin Ignatiev, in his paper [28], characterizes the logic of ¥;-interpolabil-
ity over PA. X;-interpolability over PA is defined as follows.

e A —»pp B> 3SeX)-sentences (Opa (4 — S) A Opa(S — B)).

Interpolability can be viewed as a kind of dual of II;-conservativity. In the lan-
guage predicates like being provably equivalent to a X1 -sentence and weak inter-
pretability can be expressed. Ignatiev shows that the logic of X;-interpolability
satisfies interpolation —in contrast to ILM.
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The problem of characterizing the combined logic of interpretability and
interpolability is open. We do not know whether this combined logic satisfies
interpolation.

11.5 Feferman’s Predicate

The Feferman Predicate for a reflexive theory T is the predicate A that is
defined as follows.

L] ATA < dx (DTJA A QT@T).

Here, for theories that contain SUPEXP, O , A means provability of A from the
axioms of T' with gbdelnumbers smaller than z. (If the theory does not contain
SUPEXP one must also restrict the formulas used in the proof to those with
complexity < |z|. See also appendix C.) The Feferman Predicate is a provability
predicate with ‘built in consistency’. It is an indispensable technical tool for
constructing interpretations via the Henkin construction. The godelsentence
Feferman provability in PA is an oreysentence for PA.

The first systematic study of the Feferman Predicate for PA in provability
logic was made by the author in his paper [54]. However, Volodya Shavrukov
was the first to provide a modal system for combined ordinary provability and
Feferman provability that is arithmetically complete for interpretations in PA.
In the interpretation of Shavrukov’s system one makes use of a specific choice
of the enumeration of the axioms of PA. See [40].

Give the important connection between Feferman provability and inter-
pretability, it would be interesting to see a characterization of the combined
logic of these two notions.
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A Some pointers to further work

A.1 Restrictions of the language

Maarten de Rijke studies unary interpretability logic, i.e. the logic of the pred-
icate (T > ¢). It turns out that his i, ilp and ilm all satisfy interpolation. The
reader is referred to his papers [14], [16].

A.2 Complexity

Robert Solovay (in his unpublished [43]) and Per Lindstrom (in [31]) prove
independently that {S€X; | T >p S}, where T is a ¥;-sound reflexive theory, is
II,-complete. Volodya Shavrukov shows, in his [41], that {P€Il; | GB > (ZF +
P)} and {S€X; | GB > (ZF + S)} are X3-complete. This shows that things are
as bad as they can get.

A.3 Embeddings of Algebras

Claes Strannegard, in his unpublished [44] generalizes the completeness theorem
for ILP to a result on embeddings of algebras analogous to Shavrukov’s result
on embedding diagonalizable algebras.
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B A list of problems in Interpretability Logic

For completeness sake I added, what I take to be, the two major open problems
of Provability Logic as problems 1 and 2 to my list. The major open problems
of Interpretability Logic are 5,7,8. Problems 6,12,14 are purely modal.

1. What is the provability logic of Ay + 17 What is the provability logic
of Buss’ S1? Remarks:

e At present it cannot be excluded that the problem is connected to
problems in complexity theory.

e Even if the problem is mainly arithmetical, it also has modal aspects.
E.g., formulate a plausible extension of Lib’s Logic of which it is
not immediately evident that it cannot be the provability logic of
IAO + Ql.

e It would even be possible that the logics of Ay + ; and Si differ.
That would be rather surprising. Can it be proved that these logics
are the same?

Clearly, at this stage it is not wise to ask about the interpretability logic
of TAg +Q1/S5. On the other hand, looking at the more difficult problem
could help to suggest provability principles extending Lob’s Logic. Fro
some information, see subsection 9.1.

2. What is the provability logic of Heyting’s Arithmetic HA and of related
theories (like HA+ECTy, HA+MpR)? See subsection 10.4.

3. Give a characterization of interpretability that works for all reasonable
arithmetical theories. See appendix C.

4. Give a construction of an oreysentence that works for all reasonable arith-
metical and sequential theories. See subsection 3.5. An easier variant is
the same question for local interpretability.

5. What is the interpretability logic of all reasonable arithmetical theories. I
conjecture that this logic is ILW*. See section 6. See also [56]. Note that
there are all kinds of variants. What is the interpretability logic of all
finitely axiomatized extensions of PRA? What is the interpretability logic
of I, for all possible choices of the set of designated numbers? Etcetera.

6. Axiomatize IL(IAg + EXP). See subsection 9.2.

7. What is IL(PRA)? What is IL(IX,-IR) for n > 2? Here IL(IX,-IR) is
IAq + EXP plus the X, -induction rule. See subsection 9.3.

8. What is the logic for II;-conservativity in PRA? See subsections 9.3 and
10.1.
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9. What are the logics of ¥;- and of Xs-conservativity over PA? See subsec-
tion 10.1.

10. What are the interpretability logics for the language with witness com-
parisons, where the ‘proof-predicate’ is interpreted using Svejdar’s inter-
pretations IT and II1? See [45], p989,990. For a treatment of Svejdar’s
interpretation I, see [24]. As far as I know these problems are open even
for the language with O, but without >. See also subsection 11.1.

11. What is the logic of interpretability, extended with the Feferman predicate
in the style of Shavrukov. See subsection 11.5.

12. Give a modal completeness theorem for ILW*. See subsection 6.
13. Do IL, ILW, ILP satisfy interpolation?

14. Does the logic for interpretability and X -interpolability of Ignatiev satisfy
interpolation? See subsection 11.4.

15. What is the logic of the predicate (GB + A) > (ZF + B), where A, B
are in the language of ZF and where our basis theory is ZF? (Note that
(ZF + A) > (GB + B) is equivalent to Ozg(A — $gpB).)

16. Is it possible to extend the approach of appendix D to a different basic
theory than PA. One problem is that the convenient fact that internally
definable models are endextensions disappears.

C The Orey-Hajek characterization and other
matters

In this appendix we prove a refined version of theorem 3.2. We will only consider
sequential theories. In this section, restricted provability, Prov,, and O,, will
mean that we restrict the axioms used to those with godelnumber < n and
the proofs to those only involving formulas A of complexity p(A) < |n|. Here
|n| := entier(?log(n + 1)). Our notion of complexity p counts depth of quantifier
changes. We will make the natural assumption that p(A4) < |[#A4|. We will say
that a theory V' is r-reflexive if it proves, for all n, Con, (V). In the presence of
the axiom SUPEXP in T and U we can drop the restriction on the complexity
of the formulas involved in te proofs, since we can prove cutelimination for
predicate logic. In other words, for theories proving SUPEXP reflexivity and
r-reflexivity conincide. We will formulate our result below partly in terms of
VIIS-conservativity, rather than II9-conservativity. In the presence of the axiom
EXP in T and U VII-conservativity coincides with ordinary II%-conservativity.
We write 7' oy U for: Vz 07Oy, T. Note that 7' is r-reflexive iff T oy 7.

Lemma C.1 Let theories T, U, W be given.
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1. Suppose that W proves I15-completeness!” and that T' is W-verifiably r-
reflexive. Then, W T Dioc U = T Do U.

2 WEFET bopU - T I>VH’;—con U

Let U be W-verifiably r-reflexive. Then, W =T >y con U = T PBon U.

- w

WET bopU—-T >U
5. WET bU T B U

Proof

(1) Suppose that W proves I15-completeness and that 7 is W -verifiably r-
reflexive. Reason in W. Suppose T' I>oc U. Let ay, be the formula defin-
ing the set of axioms of U with gédelnumber < z. Since, we did not assume
YY-collection, we have to stipulate that “T" >|oc U’ means:

Vz 3K,y Vacay . Ip<y Proofr(p, a).

Fix z. By II5-completeness we have: Or(Va€ay . Ip<y Proofr(p,a")). We can
use this last fact, inside Or, to transform an z-proof g in U of, say, b into a proof
q* of b in T. The T-axioms involved in ¢* will be bounded by y. A subproof
of ¢* that verifies the interpretation of a U-axiom will only involve formulas
with complexity bounded by |y|. Those parts of ¢* that ‘simulate’ ¢ will only
contain 7T-formulas obtained by IC-translating U-formulas of complexity at most
|z|. These T-formulas will have complexities bounded by |z|+ |K|. Thus we can
find a z such that: Op(Oy,L — Op . 1). Ergo, OrOy,T.

To prove (2), reason in W. Suppose Yz OpOp, T and Oy P, where P €
VIIY. We can find an z such that OpOy, P and Op (=P — Oy ,.—P). (The
last fact holds, since all theories containing S} prove 3%%-completeness, where
the complexity of the witnessing proof is linear in the complexity of the I%¢-
formula.) Combining we find: OpP. (Note that, from a bound of on the
U-proofs of P, we can extract a bound on the T-proofs of P. Thus proving
‘smooth’ VII¢-conservativity.)

(3) Suppose that U is W-verifiably r-reflexive. Reason in W. Suppose
T '>vn’;-conU- Consider any z. Since Oy <y, T, we have immediately, OrOy,, T.

To prove (4), we use the Henkin construction as described in [56] on the Fe-
ferman predicate OF A > 3z (Oy . A A Op, T). This gives us an interpretation
KofUinT.

Finally, (5) is trivial. Q

171t is sufficient for Hg—completeness that W proves EXP.
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In the next theorem we just harvest the fruits of the preceding lemma.

Theorem C.2 e Suppose that W proves I14-completeness and that T is W -
verifiably r-reflexive. Then, T >, U, T >U and T >onU are W -provably
equivalent.

o Suppose that U is W -verifiably r-reflezive, then T >oRU and T >virt-con U
are W -provably equivalent.

e Suppose that W proves I15-completeness and that T,U are W -verifiably
r-reflexive. Then T > U, T > U, T Doy U and T >yt -con U are
W -provably equivalent.

Following an idea of Lev Beklemishev we show the ‘necessity’'® of the conditions

on T,U of lemma C.1. We have been looking at four notions for comparing
theories. These give rise to 16 implications of the form T'" >x U — T >y U.
Since we want to show the necessity of the conditions, it is sufficient to consider
the weakest non-trivial implications. These turn out tobe T' >1oc U = T > U,
T >U—=T Pymrcon U and T Bypecon U = T Djoc U. We can replace our
last implication by the even weaker non-trivial implication: 7" >pocon U —
T >oc U. We will say that T is *r-reflezive if T is r-reflexive for some choice
of the designated natural numbers of 7. One can show that if T" is *r-reflexive
and if A is any choice of the natural numbers for T', then there is a definable
N-cut Z, such that (T,7) is r-reflexive.

Theorem C.3 We work in a suffiently rich metatheory W.

1. Let T be given. Suppose, for all U, if T >1oc U, then T >U. Then T is
*r-reflexive.

2. Let T be given. Suppose, for all U, if T > U, then T >vitt-con U. Then
T is r-reflexive.

3. Let U be given. Suppose, for all T, if T >0 con U, then T >, U. Suppose
also that Oy EXP. Then U is r-reflexive.

Proof
(1) Suppose for all U, if T >oc U, then T' > U. Take

U =100 + Q1 + {01 T | n € w}.

18 Ag the reader will see the Beklemishev explication of ‘necessity’ focusses on the question
of characterizing properties of the form P(T) : & VYU (T b1 U = T >2 U) or Q(U) :&
VT (T >1 U = T 1> U). Of course, this just one possible way of explicating the question of
necessity. E.g. some further restriction of the quantifier in the definition of P could change
the picture. Etcetera.
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By familiar arguments —see e.g [58]— we have, T' >, U*. By assumption, for
some K, K : T > U*. It is not difficult to see that we can always replace
by a T-cut. Take the new numbers as given by K. So T will be W-verifiably
r-reflexive w.r.t /.

(2) Suppose that for all U, if T' >U, then T' Dyppp_con U. We have, for any n,
by familiar arguments, that 7' > (IAg + Q4 + <1, T). Hence, by conservativity,
O7Or,,T. Ergo T is r-reflexive.

(3) Suppose that, for all T, if T' >mo-con U then T’ 1>joc U. Suppose also that
U contains EXP. Let T* be axiomatized by IAq + Qy, plus the II-consequences
of U. Using a version of Craig’s trick we can make our axiomset X¢-defined.
Clearly, T* >mocon U, 50 T >joc U. Fix n. By familiar arguments, for some
U-cut Z, DUOﬁnT. Let Uy be a finite subtheory of U such that Oy, “Z is a cut”
and O, <>[ILRT. Ex hypothesi, for some K, K : T* > Uy. We can find a T*-cut
J such that on J there is a T*-definiable isomorphism between J and a T*-
definable ‘external cut’ of K. We can choose J so small that it image on the
K-side is in Z. We may conclude, by the downward persistence of I19-sentences,
O OgﬂT. T* is I9-axiomatized over IAg + Qy, so by the work of Paris and
Wilkie (see [35], see also lemma 4.1 of [57], for a sharp version) it follows that:
Or 4 exp<unT. Hence, Oyly, T. (For the application of lemma 4.1, we need
that our metatheory contains SUPEXP.) Q

Note that we cannot get around asking something like “U proves EXP” in (3),
since without this assumption IAq + §2; also satisfies our condition on U. But
IAg + Q2 is not r-reflexive.

We end this section with some remarks on local interpretability. Let’s again
work in a convenient meta theory, like the de luxe IAy + BX; + SUPEXP.
Let RCON(T) := {Or,T | n € w} and T' := IAp + Q3 + RCON(T) and
T := TAp + EXP + RCON(T'). By the considerations of e.g. [58], we have:
T =jc T7¢. So we find, applying some ideas of Paris and Wilkie (see [35] and
lemma 4.1 of [57]):

T U & T >loc U
& VnIZe(IAp + Q)-cuts DTrcOgﬁnT
< Vn Opree Oy, T

So, we may conclude: T' D>oc U < Vn Oprce Oy, T. In a different formulation:
T ioc U Vn Ik Opn  exp(Ore T = QunT).
It is easy to see that T is r-reflexive. So we have:
T UeT U T >U™S

Let’s write [T], [T] oc for, respectively, the interpretability type and the lo-
cal interpretability type of T. We may consider the (local) interpretability types
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equipped with the obvious partial orders as degrees of (local) interpretability.
Consider the mappings F : [T]ioc — [T7] and G : [T] = [T]oc. Evidently
the pair (F,G) is an adjunction between the degrees of local interpretability
and the degrees of interpretability. We also see that the degrees of local inter-
pretability of arbitrary theories are isomorphic to the degrees of interpretability
of theories that are *r-reflexive. Note that these results hold for sequential theo-
ries that interpret, say, IAg + Q1. Since even Robinson’s Q interprets IAg +
this is, I guess, a reasonably wide class.!”

D A Kripke model for Arithmetic

It would be nice to generalize insights from provability logic and interpretability
logic to theories without substantial coding machinery. One way to this could
be to replace the coded modal operators by modal operators defined in terms
of natural relations between models like extension. In this appendix I study
some relations between models of PA to which we can make the coded operators
correspond. Moreover we will briefly look at a non-codable operator. The results
of this section are not in the literature. However, specialists in the field have
been aware that some such elaboration is possible.

A internal model of a model M is a model that is definable in M by a
relative interpretation /. A restricted internal model is an internal model for
which we have a truthpredicate N in M, i.e., for any A with (appropriately
coded) parameters in the internal model, M = N(#A) < AN . Define:

1. M <y N :& N is an extension of M,
2. M =<5 N :& N is an endextension of M,

3. M =<3 N :& N is an extension of M
isomorphic to an internal model of M,

4. M <4 N :& N is an extension of M
isomorphic to a restricted internal model of M.

We are going to treat the relations <; as partial orders between models. This is somewhat
awkward since the correct way to treat these matters is to work with a category with as
morphisms the embeddings of the domain of M into the domain of A'. Such embeddings
are not fixed with the models since —as is well known— many models have several different
isomorphic submodels. There is no problem at all with treating these matters categorically.

19A defect of the degrees approach is, perhaps, that we abstract away in a rather radical
manner from the information contained in individual interpretations and ‘local interpreta-
tions’ (defined in some appropriate way). So here is an open question: can we work in more
informative categories and still preserve the significant result above providing an adjunction.
It is easy to see that the most obvious approach does not work since there are many alter-
natives for our specific choice of defining T'C, which are not isomorphic in the category of
theories and interpretations.
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However, for the purposes of this paper it is somewhat laborious. Here we will refrain from
identifying isomorphic models but restrict ourselves to embeddings in the strict sense, i.e.
embeddings that send an object to itself. Thus we obtain the desired effect of working with a
partial ordering. However, we are forced to the tortuous definition of e.g. <3. Having noted

this, we will henceforth ignore these subtleties and pretend, e.g., that <3 simply means is an

internal model of, etcetera.?0

We write L”F}f& for the language of PA with parameters in M.

Theorem D.1 We have:
o For1<i<j<4:<;C<;.

o For A€ L}, we have IM <; N N EASIM <N N E A.

Proof
The first part is easy. For the second part is clearly suffices to show that

3M<1N N|:A=>3M<4NN':A

Consider any models M, A and suppose M <; N and V' |= A. For each
standard number n we have N |= Opp , A. By Matiyasevic’s Theorem Opp , A
is PA-equivalent with a purely universal sentence. Hence, for each standard
n, M | Opp ,A. Use the Henkin construction on the Feferman-consistency
statement of PA + A to produce the desired restricted internal model. a

It is easy to see that the first two of the above inclusions are strict. Is there an
example to show that the third inclusion is strict (even modulo isomorphism)?
(If we drop the requirement of reflexivity, the identity interpretation would be a
trivial example ...by Tarski’s theorem on the undefinability of truth.) Define:

o REFA( := {(0,,C = O) | C € L} and meM},
(] M<i+N:<:>MjiN':REFM.
[] Mji,/cN:C>IC<i+M, /C<i+/\fand/\/lji/\/

I feel that it is a defect that we have to use syntax to define <;. Is there a
more structural characterization?

Theorem D.2 We have:

1. =<; s a partial ordering.

20 Another way to circumvent working in a category is by unraveling. Instead of models we
work with sequences N =: Mo, f1, M1,..., fn My, where fj+1 is an i-embedding of M; into
M 11. Our accessibility relation is extension of sequences.
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=it s transitive and antisymmetric.

<i+ € =i

M=N <4 P> M= P.

M =iy N & VCeLl (M EOppC = N = O).
M =i N = VOeLN,VEkeK (N | 0,C — C).

S St o e

Proof

We only treat 5. Suppose M <;1 N, C€LF} and M |= OppC. It follows that,
for some m in M, M = OppOpa,,C. Ergo, since <; preserves Y-sentences
—remember that for i = 1 this uses Matiyasevi¢’s Theorem—, N |= Opa ,,,C.
Ergo, by REF ¢, N |= C. Conversely, suppose

YOELHA (M |= OppaC = N = O).

By verifiable uniform essential reflexiveness, we have that, for any m in M and
for any D in £, M | Opa(Opa D — D). Ergo N |= Opa ,,,D — D. a

We will consider the models of PA equiped with accessibility relations <;4, <;,
for a fixed i, in the roles of R,S, as a simplified Veltman frame —dropping
the demand of upwards wellfoundedness of R. Clearly this frame is a class.
However, I do not think that this matter needs to bother us here. If the reader
wishes, she can restrict the big frame e.g. to countable models coded in, say,
the standard natural numbers.

At this point it is convenient to change our language. We will use a, b, ¢, . ..
for models of PA, a l- A for a = A. We fix an i and write R, S for <;, <;.

Let L’;QA be the smallest language containing Lpp, closed under the logical
connectives of Predicate Logic and under the connectives O and > of Inter-
pretability Logic. Define L’,”): in a similar way. Define, for A in ﬁ;ﬂ‘, alFOA
and a - A > B in the usual way of forcing in (simplified) Veltman models.
Viewed in this way, our big frame with IF is a big model, which we will call Big
(or, more precisely, Big;).

Theorem D.3 Let A, B be sentences of L. We have:
alk A >pa B & alFA>B

Note that the similar, simpler result for O is an immediate consequence of the
result for .
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Proof

“=" Suppose a IF A >pa B and aRb IF A. By the Orey-H4jek characterization,
a IF YxOpp(A — Opa . B). Moreover, for all C' € L, such that a IF OppC,
we have: b IF C. So, for all k in a, b I Opp ,B. We want to find a ¢ with
bSc I+ B and aRec. Construct inside b, a restricted internal model ¢ for PA + B
by the formalized Henkin construction, using the Feferman Predicate App p-
This Feferman predicate is defined as follows:

Apa,pC ¢+ Jz(Opay . C A Opa . B).

It is clear that bSc |= B. By the transitivity of S: aSc. Consider C' in L§,
and k in a. Evidently, for some k' in a, b I Opa 4 (Bpa ,C — C). Hence,
blF Apa g(OparC — C). We may conclude that c - Opp ,C — C and, thus,
aRec.

“<” Suppose a | A >pa B. Then, by Orey-Héjek, for some k in a, a IF
Opa(A A Opp ,—B). Using the Henkin construction, we may build b, with aRb I-
A and b IF Opp ,—=B. Consider any c¢ with bS,c. Since bSe, it follows that
¢ Ik Opp ,—B. Since aRc, it follows that ¢ IF =B. a

Clearly theorem D.3 allows us to translate modulo valid equivalence the arith-
metico-modal language back into its purely arithmetical fragment.

We want to compare ILM-models with Big. Since we are considering models
of different signature the usual notion of bisimulation will not do. The following
minor adaptation will do the trick. Consider two languages ¢/ and V that are
both closed under the connectives of interpretability logic. Consider finite sets
of sentences X CU and YCV. Let £ (X) be the sublanguage of I generated
by X and the connectives of interpretability logic. Similarly for £, (V') and V.
Let o be a total and surjective relation between X and Y. We extend o to the
smallest relation ¢’ between £ (X) and £ (Y") closed under rules like:

o if Ao’B and A'c’'B’ then (ArA")o(BAB').

etcetera. We rename o', par abus de langage, to 0. Note that o is again total
and surjective between £; (X) and L (Y). Moreover if ¢ is functional on X,
then ¢ is functional on £ (X). In this case, we write Ao for the unique B with
AoB. Let K and M be models for U, respectively V, with a forcing relation
that is ‘correct’ w.r.t. the connectives of interpretability logic. A relation B
between the nodes of K and M is a o-bisimulation if:

e For all AcX, BeY: (kBm and AoB) = (kIF A< m - B)

o (kBm and kREK') = 3Im/(k'Bm’,mRm' and
Vm (m'Spm = 3" (K" Bm" and k' Sck")))

o (kBm and mRm') = 3k'(K'Bm/, kREK' and
VE" (k' Spk" = Im" (K" Bm" and m'S,,m")))
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It is easily seen that for any A, B in L) (X), respectively £y (Y), with AcB we
have: kBm = (kI A < m I+ B).

Consider any finite ILM-model /C, for a finite set of atoms P, with domain
{1,---, N} and bottom 1. By [62], or by [19], we can find arithmetical sentences
Ai, for i =1,---, N, such that for all k,m,n € {1,---N}:

20 m#n=PAF-(AnAy)

Z1 PA + )\, is consistent

Z2 PAF Xy = OV g Am

Z3 mSgn = PAF A\ = A Dpa An

Z4 kRm = PAE A = =(Am Bpa = V,u5,0 An)

(In Z1 it would suffice to ask that PA + A; is consistent, since the other consis-
tencies follow from this and Z4.) Define pA :=\/_ . An. We take P in the role
of X and the range of X in the role of Y. Define the following relation between
the nodes of K and the nodes of Big: kAa :< a Ik A\,. We have:

Theorem D.4 A is a total \-bisimulation.

Proof

Totality is immediate from Z1. Suppose kAa.

If k& IF p, then, by definition, a IF p\. Conversely, if a IF pA, then a IF A,,, for
some m with m IF p. Since, a IF A\g, we have, by Z0, m = k and, hence, k I p.

Suppose kRm. By Z4, a IF =(Am >pa = V,,5,, An). By theorem D.3, there
is a b, such that aRb, b IF A\, and such that, for all ¢ with bS,c, ¢ IF VmSkn An.
In other words, mAb and, whenever bS,c, then nAc, for some n with mSgn.

Suppose aRb. By Z2 and theorem D.3, there is an m, with kRm and b I+ \,,,
i.e. mAb. Consider any n with mSgn. Since, by Z3, a I+ A, >pa An, We can
find, by theorem D.3, a ¢ with bS,c and ¢ IF A,, in other words, nAc. a

Note that —modulo our switches between >pp and >— there is nothing arith-
metical about the proof of D.4. An immediate consequence is the arithmetical
completeness of ILM. Let ¢ be a function from £ to the sentences of Lpa. We
write ¢o as before and ¢ for the usual arithmetical interpretation of ¢ corre-
sponding to o. Note that ¢? can be obtained from ¢ by ‘replacing’ > by >pa
and O by Opp. We have, by theorem D.3: Big IF ¢o < Big IF ¢7.

Theorem D.5 ILM I ¢ < Vo Big I o < Vo PA - ¢°
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Proof

The second equivalence is by D.3 and the completeness theorem for predicate
Logic. The first equivalence from left to right is the usual check of the soundnes
of ILM. We prove the second equivalence from right to left by contraposition.
Suppose ILM I/ ¢, then, by [12], there is a finite ILM-countermodel K to ¢. We
may assume that the domain of K is {1,---, N}, that 1 is the root of K and that
1 ¢. Consider A for our present model. By Theorem D.4 there is a PA-model
a that A-bisimulates with 1. We have: a I ¢o. a

We end this appendix, by considering a model connective on Big that cannot
be eliminated via an arithmetical definition. Let L5, be the language of arith-
metic extended by a new unary connective ©. The analogous language with

a,*

parameters in a, is L5, . Define, for A € L5y,
e alk QA :& Vb(aSb=bIF A).

By theorem D.1, for arithmetical A the forcing of QA is independent of the
question which <; we have chosen S to be.

Let Ly be a language of ordinary unimodal logic on finitely many variables.
We take the single modal necessity operator to be Q. Let o map the variables
to arithmetical sentences. We extend this mapping to Ly in the obvious way.
Define © := {¢p€Ly | Vo Big E ¢o}.

Theorem D.6 O is closed under the S4-azioms and -rules.

Proof

The theorem is immediate from the fact that S is a weak partial ordering. QO

We will show in theorem D.9 that © coincides with S4.

Corollary D.7 There is no arithmetical formula « such that, for all arithmeti-
cal sentences 4, al- (VA & a(#A4)). Q

Proof

The non-existence of « is immediate from the well-known fact that S4 plus
modalized self-reference yields inconsistency. We can certainly afford the space
to repeat the argument. Let’s agree to write aA for a(#A). Find, by the Godel
Fixed Point Lemma, G with PA F G & —aG. Suppose a IF aG, then a IF G
and, hence a IF —aG. Quod non. Hence, for no a, a I+ aG. On the other
hand, if a IF —aG, then there is a b with a.Sb and b IF -G and thus b IF aG. A
contradiction. a
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Not only is @ arithmetically undefinable, it falsifies induction for L5, in Big,
since we can use © to define the (standard) natural numbers, as the following
theorem shows.

Theorem D.8 There is a Lj,-fromula in one variable that defines the (stan-
dard) natural numbers in a. As a consequence true arithmetic can be interpreted
into {A€Lp, | Big IF A}.

Proof

We show that the predicate OOpp , T defines the natural numbers in a. Say
X = {m€a | alF OOpp,, T}. Since, for every n € w, PA F Opp,, T, we
have: w C X. Consider a non-standard element m of a. It is clearly sufficient
to show that m ¢ X. In case a IF Opp,, L, we are done (by the identity
interpretation). In case a IF Opa ,, T, we have, by the Second Incompleteness
Theorem, a = Cpp ,0Opa,mL. We use the formalized Henkin Construction to
build (in a) an internal model b of Opp ,, L. This internal model is the desired
witness that m ¢ X. a

The following theorem is due to Volodya Shavrukov. It is published here by his
permission.

Theorem D.9 S4 is the schematic modal logic of Q. In other words, © is
precisely the set of theorems of S4.

Proof

Suppose ¢ is unprovable in S4. We have a finite, transitive, reflexive Kripke
model K = (K, S,IF) and k in K s.t. k Iff ¢.

Add an R-bottom node 0 under K to obtain a simplified ILM-model. Call
the new model K. Let k,m,n range over the domain K+ of KT. Now we
apply the Berarducci-Japaridze conditions for finite simplified ILM-models (see
[5],[19]), extended with an extra insight that is immediate from the proof.!
There is a function A : k — X from KT to sentences of arithmetic, with the
following properties.

1 PAF Viexs M

2. o 1= \/{meKJr | kSm} Am 18 31
3. m#n=PAF-(AnAl)

4 k#0=PAF XA = OVep Am

21 Berarducci and Japaridze assume also that the original model K has an R-bottom. This
assumption is never used in the proof.
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5 mSin = PAF AL — A\ >pa An
6. kRm = PAF )\, — —I(Am >pa _'\/mSkn )\n)
7. Ao is true

We claim: kSom < N E Ay >pa Am. From left to right is immediate by
5,7. For the converse direction, suppose that not kSom. then, by 6, we have
N E =(Ax >pa VkSgn An). But this is incompatible with N |= Ay >pa Am, by
3. Hence N }£ Ay >pp Amn.

We define kAa < a IF A\p. We show that A is a total bisimulation for
ordinary modal logic, w.r.t. A defined on the atoms as before, between K and
Big. Totality is trivial. We leave the atomic case to the reader. Suppose k € K,
kAaSb. By 2 and the properties of S, we have b \/{meKJr | kSm} Am, and,
hence, for some m, kSmAb. Suppose k € K, kAa and kSm. By the choice of
our model, it follows that kSym, and, hence, N |= Ay >pp Am. Since a Ik Ag,
the interpretation of PA + A, in PA + A; gives us a b, such that aSb I A, and,
ipso facto, mAb. a
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