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� Introduction

A miracle happens� In one hand we have a class of marvelously complex theories
in predicate logic� theories with �su�cient coding potential�� like PA �Peano
Arithmetic� or ZF �Zermelo	Fraenkel Set Theory�� In the other we have certain
modal propositional theories of striking simplicity� We translate the modal
operators of the modal theories to certain speci
c� 
xed� de
ned predicates of
the predicate logical theories� These special predicates generally contain an
astronomical number of symbols� We interpret the propositional variables by
arbitrary predicate logical sentences� And see� the modal theories are sound and
complete for this interpretation� They codify precisely the schematic principles
in their scope� Miracles do happen � � � �

Our miracle �as any good miracle� involves transsubstantiation� We trans	
late between languages of incomparable signature� The modal languages do not
contain quanti
ers� the predicate logical languages do not contain modal opera	
tors� The modal operators can be translated to predicates because we transsub	
stantiate formulas occurring in the scope of a modal operator to closed terms
�numerals� representing codes �g
odelnumbers� of formulas of the target theory�

The miracle does not always work�as is to be expected of true miracles� we
get no analogous result if we try to work with modal predicate logical languages�
See ����

Provability Logic studies formal provability as a modality employing ideas
and methods of modal logic� Interpretability Logic extends Provability Logic by
adding a binary modality� This modality can be given several interpretations�
Relative interpretability and ���conservativity are the most salient� �We will

�The author thanks Lev Beklemishev� Dick de Jongh� Carlos Areces and Stefan Iwan for
invaluable comments and suggestions� Maarten de Rijke was the most supportive editor ever� I
am grateful to Volodya Shavrukov for his graceful permission to include one of his unpublished
results�
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see some others�� Thus� Provability Logic and Interpretability Logic are part of
a branch of Modal Logic where we do not study time� as in Temporal Logic� or
obligation� as in Deontic Logic� but formal theories� An important philosophical
di�erence is this� Time and obligation are not themselves mathematical objects�
We model certain salient and interesting aspects of the central notions using
classes of structures and study the interplay of the logics and the structures�
Formal theories� in contrast� are themselves mathematical objects� They do not
appear in the role of analysanda� The Kripke structures we employ play the
role of technical auxiliaries� not analysantia�

This paper aims to survey the main results of Interpretability Logic� It
does not pretend to be exhaustive� Below I give some reasons for studying
Interpretability Logic� On a 
rst reading this list of motivations could be very
well skipped�

��� Beauty

Of course� there is the matter of beauty� However� beauty should not be adver	
tized� Thus I will further pass it over in silence � � � �

��� Reasoning in the logics

Some non	trivial reasoning concerning interpretability can be formalized in the
modal logics� The gain here is perspicuity and generality��

Representing some substantial reasoning in modal terms was the main aim
of V�it�eslav �Svejdar in his classical paper ����� �Svejdar employs a combination
of interpretability and witness comparisons for certain special formulations of
proof predicates� The true potential of the ideas of �Svejdar�s paper is still
not fully explored� It would certainly be beni
cial� from the didactical point of
view� if some proofs concerning degrees of interpretability and the complexity of
interpretability would be rephrased in �Svejdar�s language� For some of �Svejdar�s
interpretations no arithmetical completeness results exist �

Another example of non	trivial reasoning in the logics is the alternative proof
of a result of Solovay in ����� See also section � of this paper�

��� Other spin�o�

Let me 
rst mention an example of spin	o� of research into the question whether
there is a ZF	sentence that is interpretable in ZF� but not in GB� Solovay�s work
on this question produced the method of shortening cuts� This method was
e�g� used by Paris � Wilkie� by Pudl�ak and various others to prove several
metatheorems� See ���������� ����� The method was adapted by Nelson to build
stronger and stronger theories in his predicativist programme� See �����

�For the case of provability logic the programme of using the language to represent non�
trivial reasoning was strongly advocated by Craig Smoryn�nski� See his book ���	�
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The expertise developed in proving arithmetical completeness theorems for
Interpretability Logic was used with good result by Shavrukov in the study of
the combined logic for provability and a Feferman predicate� See �����

Dick de Jongh and Duccio Pianigiani� in their����� used the work of H�ajek
and Montagna ����������� to solve an open problem posed by Guaspari in �����

��� Internal interest

The study of Interpretability has also some internal interest in Provability Logic
considered as a project� It is this� Solovay�s result turned out to be completely
general� Consider any theory into which I���EXP is interpretable� say by the
interpretation N � Suppose that we arithmetize �in N � and suppose that our
theory is  ���N �	sound� Then its provability logic is precisely L
ob�s Logic� In
case we drop the condition of  ���N �	soundness� we get only relatively uninter	
esting well understood variants of L
ob�s Logic� See ����� There are only two
ways to escape the stability �keeping modal language and the interpretation of
the box as provability 
xed�� The 
rst is to go below I�� � EXP� to weaker
theories� where L
ob�s Logic is still arithmetically valid� but where we do not
know whether it is complete� See e�g� ���� The second is to vary the logic� It
is well known that if we consider the provability logic of Heyting Arithmetic��
HA� we 
nd a new� rich� weird and wonderful landscape of wild and surprising
modal principles� See e�g� ��!��

Of course� extending the modal language might also be a way to escape the
stability of Solovay�s result� It turns out that for Interpretability we do get good
modal logics and Solovay style completeness results� but that we do not have the
absolute stability of Provability Logic� There are two major classes of theories
that have quite di�erent interpretability logics� The 
rst class is that of the
sequential�  ��	sound� 
nitely axiomatized theories containing I�� � SUPEXP�
Examples are� I�� � SUPEXP� I n �n � ��� ACA�� GB� Theories in this class
are sound and complete for the logic ILP� See ����� The second class is that
of sequential� locally essentially re"exive theories containing I �� Examples
are PA and ZF� Theories in this class satisfy are sound and complete for the
logic ILM� This result was proved independently by Alessandro Berarducci and
Volodya Shavrukov� See ��� and ��!�� Outside of these major classes we know
very little� See section ! and appendix B�

��� Philosophical interest

The philosophical interest of Provability Logic is that it analyzes G
odelian meta	
mathematical reasoning in its bare essence� I think that this� all by itself� con	
stitutes a substantial contribution� However� there is a bonus� The contrast
between provability in some appropriate intuitive sense and formal provability

�Heyting Arithmetic is� in esence� Peano Arithmetic with intuitionistic logic instead of
classical logic�
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is shown most strikingly in the comparison of the modal systems S� and L
ob�s
Logic� GL� corresponding to these notions� Speci
cally� comparison between Re	
"ection and L
ob�s Principle seems a potent antidote to the misguided impression
that the di�erence between the notions is one of strength� the impression that
G
odel�s Theorem means that Human Mental Powers exceed what formal sys	
tems can do� the Myth of the Mental Muscles� The di�erence between the two
notions is� I submitt� rather one of kind� Their comparison in terms of strength
is as absurd as comparing the strength of a master of Chess and one of Karate�

Interpretability Logic does not add �as far as I can see� anything along
the lines of the above sources of interest over and above what we already had in
Provability Logic� It does add the expressive power to re"ect modally the con	
sequences� not only of G
odelian Incompleteness� but also of G
odelian Complete	
ness in the form of the interpretation version of the Model Existence Lemma�
It seems to me that the results of my paper ���� throw some light on Nelson�s
program for founding predicative mathematics using interpretations� see �����
Speci
cally� the result that I�� � EXP is equivalent modulo interpretability
with I�� �#� � Con�I�� �#��� seems to show that the insight in the consis	
tency of his own theories must be suspect for the predicativist who rejects the
cogency of the totality of exponentiation� �See also subsection ������

��	 Selection of notions 
��

Interpretability Logic studies abstract global properties of certain arithmetical
predicates of independent interest� We could reverse the direction and use prin	
ciples of Interpretability Logic as a check list to see whether a candidate notion�
e�g� for comparing theories� is a reasonable one� I have two tentative examples�
The 
rst is the notion of  	preservativity� which is proposed as a metamathe	
matical tool in the study of Heyting�s Arithmetic� HA� and its extensions� See
����� ��!� and subsection ���� of this paper� The second is the formula of the
Friedman Characterization of interpretability in sequential� 
nitely axiomatized
theories applied to in
nitely axiomatized theories� This would give us a way
of comparing theories that is sensitive to the ease in which a theory can prove
concrete ��

�	sentences�
�

� A list of theories and notions

At this point we interpolate a little list of notions and theories� The best reading
strategy is to glance through it and to return to it when needed� A good book
where most of the notions and theories mentioned here are treated is �����

�I have a sketch of a proof that I
� � fsupexp�n
� j n � �g is equivalent w�r�t� this
notion with I
��EXP� This in spite of the fact that our �rst theory clearly proves the same
theorems as I
��
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� The language of arithmetic �unless stated otherwise� is the language
of �� S �successor�� � and �� If $ is a set of arithmetical formulas�
closed under subformulas and substitution of terms� then I$ is the theory
containing the basic facts about �� S����� plus induction restricted to $�
Two salient theories are I�� and I �� PA is Peano Arithmetic� the theory
of full induction�

� We write %A� %t for the g�odelnumbers of A� respectively t� For any
number n let n be the numeral of n� In the context of weak theories one
almost always employs numerals that correspond to binary notations� Let
num be the function mapping n to %n� Par abus de langage we also use
�num� for the arithmetization of num� We write � both for concatenation
and its arithmetization

� ProvT is the arithmetization of provability in T � We write �TA for
ProvT �%A�� We also use the notation �TA in case A containes free vari	
ables� What we mean here is best explained by example� �Tx & y means
ProvT �t�x� y��� where t�x� y� is the term num�x� �%& � num�y��

� We will write � for ���� So e�g� �T� will be another way of writing
Con�T ��

� #� is the axiom expressing that the function xentier��
�log�x���� is total� Here�

entier�x� is the largerst natural number � x� EXP expresses that expo	
nentiation is total� SUPEXP that superexponentiation is total� etc� One
can show that these axioms can be formulated using ��	formulas of the
usual arithmetical language�

� I�� � #� is studied by Paris and Wilkie in their ����� It is a natural
theory to do arithmetization in up to the formalization of G
odel�s Second
Incompleteness Theorem� Complicated Rosser arguments �like the proof
of Solovay�s Theorem� may present di�culties�

� S�� is a theory introduced by Buss in his ���� It is weaker than I���#� and
can be consider as the theory of P�TIME� Its provably recursive functions
are precisely the P�TIME computable ones� In S�� we can formalize the
Second Incompleteness Theorem�

� I�� � EXP is also known as Elementary Arithmetic or EA� Its provably
recursive functions are precisely the Kalmar elementary functions� All
Rosser style arguments can be formalized in this theory�

� In I�� � SUPEXP one can formalize cut	elimination for Predicate Logic�

� PRA is usually formulated as a theory with symbols for all primitive re	
cursive functions and as axioms the appropriate de
ning equations corre	
sponding to these symbols� plus induction for atomic formulas� Since this
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formulation of PRA does not quite 
t our framework �the set of atomic
symbols of its language being in
nite� we will often think of di�erent�
but equivalent formulations� Two such formulations are�

� I�� � EXP� SUPEXP� SUPSUPEXP� � � ��

� I���EXP plus the  
�
�	induction rule� This rule states that if we have

proved the premiss of  ��	induction� then we may draw its conclusion�
We will call this theory R ���

�

For an extensive discussion of formulations of PRA and related theories�
see ����

� RfnT is the local re�ection principle for T � i�e� the schema �TA� A� for
the sentences A of LT � RFNT is the global or uniform re�ection principle
for T � i�e� the schema 	�x ��TA��x�� A��x��� for formulas A��x� of LT �

� ZF is Zermelo	Fraenkel Set Theory� GB is G
odel	Bernays Set Theory� GB
is 
nitely axiomatized� ACA� is a 
nitely axiomatized extension of PA
with classes� In many respects ACA� is to PA as GB is to ZF�

� What is relative interpretability�

There is no analogue of the Church	Turing Thesis for interpretability� For one
thing interpretations are dependent on the notion of Formal Provability� which is
itself an artifact of the mathematical imagination� For another� the boundaries
of what we count as an interpretation seem to be quite interest dependent�

It is clear that an interpretation of a theory V in a theory U should at least
deliver a function f� from the sentences of V to the sentences of U � such that� for
all sentences A of V � V 
 A � U 
 f�A� ����� Let� for example� U be PA and
let V be ZFC� PA contains su�cient coding machinery to represent ProvZFC�x��
The mapping A �� ProvZFC�%A� will satisfy �� Nobody however would count
it as an interpretation in any sense� One objection against allowing this as an
interpretation would be that we cannot use this mapping to establish relative
consistency results� This objection� if accepted� would also rule out e�g� the
Friedman Translation as an interpretation�	

Another proposal is to demand that interpretations commute with certain
connectives� This proposal would rule out e�g� forcing� realizability� the double

�One can show that the ��
�
�induction rule is equivalent over I
��EXP to the ��

�
�induction

rule� Warning� this result does not hold over arbitrary extensions of I
� � EXP�
�Ironically� our de�nition of relative interpretation will not even �t this precise format�

However� we can tell a story to explain that we only deviate in an unessential sense� that has
to do with the details of the treatment of variables and thinking modulo ��conversion�

�To demand that interpretations commute with � does not guarantee the possibility of
relative consistency proofs� We could need the insight of relative consistency to show that
� holds� We get an example of this phenomenon by replacing ProvZFC in our example by a
predicate representing Feferman provability in ZFC�
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negation translation� �The Friedman Translation only fails to commute with

��

Rather than pursuing the problem of 
nding a reasonably general notion of
interpretation satisfying certain intuitive constraints� we will study one given
notion of interpretation� relative interpretability� This notion is due to Tarski�
Mostowski and Robinson� See ����� Roughly we demand that our interpretations
commute with all the propositional connectives �including the all important

� and with the quanti
ers modulo relativization to a domain� Moreover� we
restrict ourselves to theories in classical Predicate Logic� This choice means a
restriction on the generality of the results discussed in this paper� However�
sometimes the results are stable under extension� E�g�� in studying 
nitely
axiomatized extensions of ZF in the language of ZF we could easily extend our
notion to include forcing� without changing the corresponding Interpretability
Logic�

From this point on we will confuse �interpretation� with �relative interpreta�
tion� in the precise sense de�ned below�

��� De
ning relative interpretation

An important thing to remember is that we are interested in formalization of
facts concerning interpretability in a wide range of theories� This means that
our de
nition of interpretation must be relatively simple and managable� More	
over� all kinds of details that we usually abstract away from� like the precise
choice of auxiliary variables� may become relevant� �Indices of such variables
have to be coded too� so unhappy choices may produce codes that are to large
for a weak theory to handle�� The de
nitions of the translation based on an
interpretation vary across papers� The de
nition given here is� I think� the
most convenient one� It has the advantage of handling function symbols of the
interpreted language with relative ease�
 It sidesteps� by the use of �fresh� aux	
iliary variables and by avoiding substitution the hairy issue of variable clashes�
Since unfortunate choices of auxiliary variables can cause undesirable and ug	
ly growth of the translations� we will 
rmly regiment the use of the auxiliary
variables by assigning each argument place its unique auxiliary representative�
thus keeping our algorithm within linear time� Consider 
rst order theories U
and V with languages respectively LU and LV � We assume that identity occurs
in these languages and that we have only 
nitely many relation and function
symbols� Constants are treated as �	ary function symbols� We extend LU with
new variables a�� � � � � an� where n is the maximum of the arities of the relation
and function symbols of LV � The ai will be used to handle the machinery of

�Usually one de�nes interpretations only for relational languages� justifying this restriction
by the existence of an algorithm to eliminate function symbols� Here we incorporate such an
algorithm in the very de�nition of the translation�
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the argument places in the translation� Say the resulting language is L�U �
� An

interpretationM of V into U is given by two things�

� a function F mapping the relation symbols R and the function symbols f
of LV on formulas of L�U � We demand�

� if the arity of R is k� then the free variables of F �R� are among
a�� � � � � ak�

� if the arity of f is �� then the free variables of F �f� are among
a�� � � � � a��

�We could allow extra free variables ��parameters�� in F �R� and in F �f��
This would only cause some minor changes in the set	up��

� a formula �� with only a� free� of L
�
U giving the domain of the interpreta	

tion�

M gives a translation ���M of LV in L�U in the following way� We write A�v��
for v a variable of L�U distinct from a�� as an abbreviation of �a��A � a� & v��
The translation of a formula A will have the same free variables as A itself� The
translation of a term t will have as free variables the free variables of t plus the
auxiliary variable a�� which stands here for the value of t�

� R�t�� � � � � tk�M �& �a� � � � �ak �F �R� � �t��M�a�� � � � � � �tk�M�ak���

� f�t�� � � � � t��M �& �a� � � � �a� �F �f� � �t��M�a�� � � � � � �t��M�a��� �note that
a constant c simply goes to F �c�� a formula containing only a� free��

� xM �& �a� & x��

� ���M commutes with the propositional constants�

� �	xA�M �& 	x���x�� AM�� ��xA�M �& �x���x� �AM��

Note that the usual algorithm for eliminating function symbols� is a special
case of an interpretation in our sense� Simply put� F �R� �& R�a�� � � � � ak� and
F �f� �& f�a�� � � � � a�� & a�� We will call this interpretation ID� since it ful
lls
the role of the indentity interpretation�

One can avoid the device of using �A�t�� by a slightly more elaborate use of
a larger set of auxiliaries� I leave such variants to the fantasy of the reader� A
more radical alternative is to develop syntax on sharing graphs and code the
�labeled� graphs arithmetically� A more detailed discussion is outside the scope
of this paper�

	The critical reader may object here� that by extending LU to L

U
� we� in e�ect� extend U

to U
� thus changing the interpreting theory� This line of thought can lead to a fascinating
discussion on theory individuation� Rather than entering into this discussion� let me point
out that the auxiliary variables are easily eliminated by ��conversion from the translation�
The gain of having the auxiliaries is just conceptual perspicuity�
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Let �A �&
V
f��x� j x free in Ag� U interprets V viaM if� for all theorems

�not necessarily sentences� A of V � U 
 �A � AM� Alternatively� we can
use axioms instead of theorems in the de
nition� However� we must note two
things here� First� we must include statements expressing the functionality of
the function symbols among the axioms� Secondly in weak theories like I���
or even PRA� we do not have  �	collection


� This lack blocks the derivation
of the equivalence of �theorems	interpretability� and �axioms	interpretability��
The delicate points concerning formalization in a weak environment are treated
extensively in ����� We will ignore these subtleties here� We write�

� M � U � V � U interprets V viaM�

� U � V �� for someM� M � U � V �

� U � V �� U � V and V � U �

� A �U B �� �U � A� � �U �B�� �We say� A interprets B over U ��

We can view theories and interpretations as objects and morphisms of a cate	
gory� We did not build in into the notion of interpretation any data concerning
theories� So strictly speaking a morphism in the category of theories and inter	
pretations is a triple hV�M� Ui� such thatM � U � V ���

A closely related notion is local interpretability� Let FS�V � be the set of
subtheories of V which are axiomatized by 
nitely many axioms of V � We
de
ne local interpretability as follows�

� U �loc V �� 	V��FS�V � �M�� M� � U � V��

� U �loc V �� U �loc V and V �loc U �

� A �loc�U B �� �U �A� �loc �U �B�� �A locally interprets B over U ��

If want to emphasize the contrast with local interpretability� we will call ordinary
interpretability global interpretability� It is well known that local and global
interpretability do not coincide� E�g� let Conn�GB� be the consistency statement
for GB w�r�t� proofs in which no formulas occur of complexity greater than n�
Then�

GB �loc �I�� � fConn�GB� j n � �g��

but not� GB ��I���fConn�GB� j n � �g�� An advantage of local interpretabil	
ity is that it is less complex ���

�� than global interpretability � 
�
��� Some basic

����collection is the principle �x�y A� �a�b�x�a�y�b A� where A is �� and a� b do not
occur in A�
��We take the morphisms to go from interpreted theory to the interpreting theory� since this

convention is in consonance with the tradition in the study of the degrees of interpretability
to have the stronger theories in the higher degrees� By erasing �morphism identity� we get a
preorder� by dividing out the induced equivalence relation we get the usual partial order of
degrees�
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facts on the relationship between local and global interpretability are presented
in appendix C� For a broader discussion on local interpretability and a descrip	
tion of some further notions of reduction� the reader is referred to �����

��� Interpretations as internal models

The construction of a model of two dimensional elliptic geometry on the sphere
can be considered as the construction of a model of two dimensional elliptic
geometry inside a model of three dimensional Euclidean geometry� We will
say that the 
rst model is an internal model of the second� Interpretations
appear in the literature almost always as internal models� The reason for this
preference is clear� an internal model can be visualized� An interpretation gives
a uniform method of assigning internal models��� This mapping is described in
some detail below� Relative consistency proofs employing interpretations do not
need to talk about models at all� E�g� the statement that if ZF is consistent	
then PA is consistent can be veri
ed in weak theories like S�� and I�� �#��

For completeness we describe the mapping of models associated with an
interpretation� Consider a model K & hK� Ii of U � Suppose M � U � V � We
write �a � k� for �the assignment that sends a to k�� �I do not want to be speci
c
here on the question whether assignments have to de
ned on all variables or
not� In the 
rst case we need some convention of what happens with the non	
displayed variables�� De
ne a new model KM �& N �& hN� Ji� as follows�

� k � k� �� K� �a� � k� a� � k�� j& FM�&��

� N� �& fk�K j K� �a� � k� j& �Mg�

� Let k � N�� Then �k� �& fk��N� j k � k�g�

� N �& f�k� j k � N�g�

� Let � be the arity of R�
J�R� �& fh�k��� � � � � �k��i j K� �a� � k�� � � � � a� � k�� j& FM�R�g

� Let � be the arity of f �
J�f� �& fhh�k��� � � � � �k��i� �k��i j K� �a� � k�� a� � k�� � � � � a� � k�� j& FM�f�g�

Clearly N will be a model of V � It is rather striking that the examples of
�models� that stood at the cradle of modeltheory� the alternative interpretations
of geometry� can all be viewed as interpretations��� In the next subsection we
provide some salient examples of interpretations�

��See ���	 for a paper in which interpretations are studied as operators on models�
��Let Mod�U
 be the set of models satisfying U � Then� K � U � V yields a function from

Mod�U
 to Mod�V 
� Considering K as a morphism V
K
	� U � we see that Mod can be viewed

as a contravariant functor from the category of theories and interpretations to the category of
sets� It is easy to provide examples to show that even if K � U �V is faithful� i�e� if the set of
interpreted theorems coincides with the theorems of V � still the associated function between
the models sets need not be surjective�
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��� Examples of interpretations

Interpretations are everywhere dense'

�� The interpretation of two	dimensional elliptic geometry in Euclidean ge	
ometry of three dimensions� In this interpretation polar points on the
sphere are identi
ed� Thus the interpretation of identity is a non trivial
equivalence relation� The interpretation employs free parameters� since
we need to choose an abitrary centre and diameter for our sphere�

�� The Poincar�e model and the Beltrami	Klein model of hyperbolic geome	
try� In these models the points of two dimensional hyperbolic geometry
are interpreted as the points of the interior of a circle C� The lines are
interpreted in the Poincar�e model as diameters and segments of circles
orthogonal to C� In the Beltrami	Klein model lines are simply segments
of lines� The Poincar�e model is faithful with respect to angles� E�g� the
well known theorem that� in hyperbolic geometry� the sum of the angles
of a triangle is strictly less than ����� can be seen in one glance using
Euclidean intuitions� See e�g� ����� p���� Alternatively� see ����� In the
Beltrami	Klein model all kinds of facts concerning incidence can be seen
immediately� For example the fact that there alway is a line �asymptot	
ically� parallel to both rays of an angle� in the model this will be the
line connecting the points of intersection of the rays with the circle C�
Thus the Euclidean models of hyperbolic geometry have in addition to
foundational importance� also heuristic value�

�� The interpretation of arithmetic in set theory� This interpretation has
foundational importance� it shows that numbers can be reduced to sets�

�� G
odel�s interpretation of ZF��V�L� in ZF� This interpretation provides a
relative consistency proof of ZF�CH w�r�t� ZF�

�� The interpretation of elementary syntax in arithmetic� This interpretation
plays a central role in the veri
cation of G
odel�s First Incompleteness The	
orem and in both statement and proof of G
odel�s Second Incompletenss
Theorem�

�� The interpretation of I���Con�ZF� in GB� This interpretation gives us a
metamathematical lemma� from which we may conclude superexponential
speed	up of GB over ZF� See �����

�� The interpretation of I�� in Robinson�s arithmetic Q� This interpretation
plays an important role in the development of Predicative Arithmetic in
a foundational program worked out by E� Nelson� See �����

�� Consider a sequential theoryU � i�e� a theory containing a su�cient amount
of machinery to handle sequences of arbitrary objects of the theory� Let
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U contain a modicum of arithmetic �e�g� Robinson�s arithmetic plus the
axioms expressing that the standard ordering on the natural numbers is
linear�� Suppose U 
 Con�V �� Then U � V � The interpretation is con	
structed by mimicking the Henkin model construction in U � Where we
lack induction� we employ de
nable cuts using Solovay�s method of short	
ening cuts to �load� our cuts with some additional desirable properties�
�See ���� or ���� for a careful exposition��

!� A nonexample� Suppose PA is formalized using 
� treating �A as an
abbreviation of �A � 
�� Let PA� be the theory obtained by replacing

 by � & � in the non	induction axioms� De
ne a �pseudo	interpretation�
M as� replace 
 by � & �� Then� M � PA� � PA � �PA� � Con�PA����
So PA� validates� � ���� for the extended sense of interpretation where
we allow 
 to go to some sentence�

Dear reader� undoubtedly you miss your favourite example of an interpretation
in the list� Please add it� �in thought��

��� Interpretations and arithmetic

We consider theories U formalized in predicate logic with reasonably simple
axiom sets� A plausible demand is that these axiom sets are  b�� We ask that
a suitable weak theory of arithmetic is interpretable in U � A good choice is
I�� � #� or� alternatively� Buss� S

�
�� For information about weak theories� see

e�g� �������������� The usual arithmetization of syntax� leading up to G
odel�s
Second Incompleteness Theorem� can be formalized in I�� �#� or S

�
�� We will

always code syntax in the natural numbers of the theory�
Strictly speaking we are considering pairs hU�Ni� where N is the designated

interpretation of the natural numbers� The point is important� since one can
always de
ne di�erent systems of natural numbers that are not provably iso	
morphic� x� y� z� u� v always range over these designated natural numbers� Here
is an example of one theory with di�erent designated sets of natural numbers�

Example ��� I�� � SUPEXP veri
es that GB is conservative over ZF w�r�t�
the language of ZF� So a weak theory knows that GB and ZF are equiconsis	
tent� Let � be the usual interpretation of the natural numbers in GB� Clearly�
hGB� �i 
 Con�GB�� Con�ZF�� and� hence� by the Second Incompleteness The	
orem� hGB� �i �
 Con�ZF�� On the other hand one can 
nd an interpretation I�
such that hGB� Ii 
 I�� �#� �Con�ZF�� Note that we cannot have� on pain of
contradiction� hGB� Ii 
 SUPEXP� Closer inspection shows that we cannot even
have hGB� Ii 
 EXP�

The example shows that talk like GB and ZF have the same strength is somewhat
misleading� it depends on how one compares� In practice we will leave the
designated set of natural numbers implicit� they will always be clear from the
context�

��



One of the nice things of interpretability logic is that it will enable us to make
distinctions between certain kinds of theories� We introduce two important no	
tions� sequentiality and re�exivity� A theory is sequential if we can de
ne(code
sequences of arbitrary objects from the domain of the theory in the theory� A
place in a sequence or the length of a sequence is taken in the designated natural
numbers of the theory� For a full discussion see e�g� �����

� A theory is re�exive if it proves the consistency of each of its 
nite sub	
theories�

� A theory is locally essentially re�exive if all its 
nite sentential extensions
are re"exive� Alternatively� a theory is locally essentially re�exive if it
proves the local re"ection principle for each of its 
nite subtheories� So if
T is our theory and if we write �T�n for the arithmetization of provability
from the 
rst n axioms of T � then T is locally essentially re"exive if� for
all sentences A�LT and for all n� T 
 �T�nA� A�

� A theory is globally essentially re�exive or uniformly essentially re�exive
or� simply� essentially re�exive if it proves the uniform re"exion principle
for all its 
nite subtheories� So T is essentially re"exive if� for all formulas
A��x��LT and for all n� T 
 	�x��T�nA��x�� A��x���

� A theory is veri�ably re"exive � etcetera� if it veri
es the formalized state	
ment of its own re"exivity� etcetera� E�g� the formalized version of local
uniform re"exivity for T is� 	A�SentLT 	x �T ��T�xA� A��

For an extensive discussion of re"ection principles� see ������������ By the Second
Incompleteness Theorem� locally re"exive theories cannot be 
nitely axioma	
tizable� If a theory is sequential and satis
es full induction� then it will be
veri
ably uniformly essentially re"exive� Conversely� if a uniformly essential	
ly re"exive theory extends I�� � #�� then it satis
es full induction� So for
sequential theories extending I�� �#��

Induction & uniform essential re"exivity & veri
able uniform essen	
tial re"exivity�

Consider any theory T � If we extend T with its own local re"ection principle�
then the resulting theory� say U � will be locally essentially re"exive� By a result
of Feferman� U will be contained in T plus the true ��

�	sentences� I � is not
re"exive� PRA is veri
ably re"exive but not essentially so� PA� ZF� ZFC are
veri
ably uniformly essentially re"exive�

Let $ be a set of sentences present� possibly via a 
xed interpretation� both
in the language of T and U � We say that T is $�conservative over U i� for all
A in $� U 
 A� T 
 A� We write�

� T ���cons U �� T is $�conservative over U �

��



� A ���cons�T B �� �T �A� ���cons �T �B��

The use of conservativity to compare theories looms large in the literature�
For some kinds of theories we have pleasant characterizations of interpretabil	

ity� We write Conn�U� for the consistency of all axioms of T with g
odelnumber
smaller or equal than n�

Fact ��� Suppose T is re"exive� Then we have the following�

�� T � U � T �loc U

�� T � U � for all n T 
 Conn�U�

�� Suppose that U is re"exive and satis
es sentential  ��	completeness� A
su�cient condition for full  ��	completeness is the presence of the axiom
EXP� We have� T � U � T ����con U

�� Suppose that T is T 	veri
ably locally essentially re"exive and that it
proves full  	completeness� Then�

T 
 A �T B � A �loc�T B

� A ����con�T U

� 	x �T �A� �T�nB�

The equivalence ������ is the important Orey	H�ajek characterization� We e	
laborate on the proof in appendix C� Note that the notions of re"exivity� ��	
conservativity and satisfying the Orey	H�ajek characterization do depend on the
designated numbers of our theories� but that interpretability and local inter	
pretability do not� For extensions of PA in the arithmetical language we have
a purely model theoretical characterization of interpretability �and ipso facto
��	conservativity��

Fact ��� Let T� U be extensions of PA in the language of PA� Then�

T � U � allM withM j& T have end	extension N with N j& U�

We end this section with the Friedman characterization of interpretability for

nitely axiomatized sequential theories� See� for a proof� �����

Fact ��� Let T� U be 
nitely axiomatized sequential theories� We write �
for cut	free(tableaux(Herbrand provability� Let r �& ���� Remember that
EA & I�� � EXP� We have� EA 
 T � U � �EA�rT�� rU���

It is an open question to give a characterization of interpretability that works
for all sequential theories that contain a su�cient amount of arithmetic�

��



��� Excursion� oreysentences

Hilbert� in one of his more confused stages� suggested that truth is consistency�
One problem with this suggestion is its lack of compliance with the law of non	
contradiction� both A and �A might be consistent� If we replace consistency in
Hilbert�s idea by interpretability� as Nelson seems to do� then the same problem
emerges� for many theories U we can 
nd a sentence O such that � �U O

and � �U �O� Such a sentence O is called an oreysentence� We provide some
examples�

�� Let � stand for tableaux	provability �a version of cut	free provability��
Then the g
odelsentence of �I����� is an oreysentence� This was veri
ed
in Marianne Kalsbeeks masters thesis ��!��

�� Let T be sequential� A rossersentence R of �T � tableaux provability
in T � is a sentence such that I�� � #� 
 R � �T�R � �TR� Any
rossersentence of �T is an oreysentence of T � This is immediate by the
Friedman characterization and the veri
ability of Rosser�s Theorem in EA�

�� Suppose T is re"exive� We de
ne Feferman provability ��T for T � as fol	
lows� ��TA �� �x��T�xA � �T�x��� Here �T�x is provabilty from the 
rst
x axioms of T � One can show� T 
 ��� and��A�TA� The g
odelsentence
G of ��T is an oreysentence of T � by the following reasoning� Argue in T �
Suppose G� Then we have ���G� and� hence� ���G� So we can construct
an interpretation K such that ��G�K� On the other hand if �G� then the
identity interpretation ID will give us �G� Let M be the interpretation
that behaves like K if G and like ID if �G� Then we have ��G�M� without
assumptions� Similarly� suppose �G� Then we 
nd ��TG� Since we have
�
�
T�� it follows that �

�
TG� This gives us an interpretation N with GN �

Reasoning as before we can produce an uncoditional interpretation P with
GP �

�� Suppose K � T � U � We call K restricted �in T � if it admits a �truth	
predicate� K in T � i�e� a predicate K such that T 
 K�%A� � AK for

all sentences A of LU ��� We write� K�K � T �res U � etcetera� Suppose
M�M � T �res T � Then the liarsentence of M is an oreysentence of T �
We leave the amusing veri
cation to the reader�

�� Let ZF�� be ZF minus the axiom of Foundation Fo� Then Fo is an orey	
sentence of ZF��

�� The Continuum Hypothesis CH is an oreysentence of ZF�

�� The ordinary rossersentence RZF of ZF is an oreysentence of GB� However�
neither � �ZF R� nor � �ZF �R�

��To give a fuller description of what such a predicate would involve is both tedious and
laborious� Let�s say it is beyond the scope of this paper�

��



It is an open question whether every sequential theory T that contains enough
arithemetic has an oreysentence� All theories that occur in the literature as
�natural� theories do have oreysentences�

� The language of interpretability logic

The language of interpretability logic� Lint� is the language of modal proposi	
tional logic extended with a binary modal operator �� We will write 	 � 
 as
an abbreviation of �	 � 
 � 
 � 	��

Let U be any given theory �in the sense of subsection ����� An interpretation
���� of Lint into U maps the atoms on sentences of LU � commutes with the
propositional connectives and satis
es�

��	�� �& �U	
� and �	 � 
�� �& 	� �U 
��

We study the interpretability principles valid in theories U � i�e� we ask ourselves
for which � do we have� for all ����� U 
 ��� We will call the set of these
principles� IL�U��

� The logic IL

We introduce our basic modal logic IL � The principles of our logic are arith	
metically sound for a wide class of theories and for various interpretations of its
main connective �� The theory is not arithmetically complete for any known
interpretation� The motivation for studying this speci
c set of axioms comes
from its modal simplicity and elegance� The aim of this section is to introduce
the logic and to convince the reader of its richness and beauty�

��� The logic introduced

IL is the smallest logic in Lint containing the tautologies of propositional logic�
closed under modus ponens and the following rules� �A principle is just a rule
with empty antecedent��

L� 
 	 � 
 �	

L	 
 ��	� 
�� ��	� �
�

L
 
 �	� ��	

L� 
 ���	� 	�� �	

J� 
 ��	� 
�� 	 � 


J	 
 �	 � 
 � 
 � ��� 	 � �

��



J
 
 �	 � � � 
 � ��� �	�
� � �

J� 
 	 � 
 � ��	� �
�

J� 
 �	 � 	

IL is valid in all reasonable theories U �i�e� sequential theories containing enough
arithmetic� see subsection ����� L��� are the principles of L
ob�s Logic� The va	
lidity of J� is witnessed by the identity interpretation ID� J	 re"ects the fact that
interpretations can be composed� J
 is valid� since� given any two interpreta	
tions K andM and any sentence A� we can construct an interpretation N that
behaves like K if A and like M if �A� J� tells us that relative interpretability
implies relative consistency� Finally J� is the �Interpretation Existence Lemma��
It is valid because a form of Henkin�s model construction can be formalized in
weak arithmetics like I�� � #�� This construction is discussed in section ����
example �� Note that we do not have 
 �	 � 
 � 	 � �� � 	 � �
���� This
principle is invalid as is illustrated by the existence of oreysentences�

De Jongh and Visser prove that IL has unique and explicit �xed points� See
����� No characterization of the closed fragment of IL has been given� �The
counterexample to the 
nite model property for simpli
ed models in subsec	
tion ��� illustrates the richness of the closed fragment�� It is unknown whether
IL satis
es interpolation� De Jongh and Veltman prove a modal completeness
theorem w�r�t� Veltman models� See ����� Veltman models are explained in
subsection ����

��� Consequences of IL

In our representations of reasoning we always suppress the propositional part�
We may reason as follows� We will 
rst prove the principle K
�

K
 
 �	� �	 �


This principle shows that we we have the option to treat the � as a de
ned
symbol� Some reformulations in this spirit will be discussed in subsection ����


 �	 � ���	 � 
� L�� L	
� �	 �
 J�
� ��	� �
 J�
� �	 L�� L	

Next we show�

K� 
 	 � �	��	�

��



We have�

 ��	� 	� � �	 � 	 � L�� J�

 	 � 	 � �	 � 	 � J�

 �	��	� � 	 J



 ��	� �	��	�� � L�

 	 � �	��	� J�

We are now ready and set to prove K	�

K	 	 � �	���	��

First we reason in L
ob�s Logic� as follows�


 ��	���	����	���	�� � ��	���	�������	 � �	�� L�� L	
� �	���	�����	� L�
� �	��	�

By J��J	� we may conclude�

� 
 ��	���	����	���	�� � �	��	�

Thus� we 
nd�


 �	���	� � ��	���	����	���	�� K�
� �	��	� �

� 	 K�

We give a slightly �strengthened� version of K	�

K� �	���� � �	������	��

We leave the proof of K� to the reader� An immediate consequence of K	 is
the familiar fact that 
 � ��
� which was proved 
rst in Feferman�s classical
�Arithmetization of Metamathematics� ������� Note that this last principle is one
possible �interpretation� version of the Second Incompleteness Theorem� Any
theory interprets itself plus its own inconsistency and� hence� cannot prove its
own consistency� In the same vein the existence of an oreysentence would be
an interpretation version of Rosser�s Theorem� In locally essentially re"exive
theories� however� oreysentences must have higher complexity than rossersent	
ences�

��� Alternative language� alternative axiomatization

In IL we have 
 �	� �	 �
� So we have the possibility to eliminate � from
the language� Moreover� some axioms are super"uous� so we can give a more
e�cient axiomatization� Eliminating the � can be often convenient� e�g� in
proving modal completeness theorems� We present and verify one alternative�

��



Let L�int be the language of interpretability logic without �� We will treat �	
as an abbreviation of �	 � 
� Thus there is an obvious translation of Lint to
L�int� To spare ourselves the anxiety of carrying scholastic distinctions along� I
will in the following simply confuse the two languages� IL can be axiomatized as
the smallest logic in Lint containing the tautologies of propositional logic� closed
under modus ponens and the following rules�

I� 
 	� 
 � 
 	 � 


I	 
 �	 � 
 � 
 � ��� 	 � �

I
 
 �	 � � � 
 � ��� �	�
� � �

I� 
 	 � �	 � �	 �
��

Proof

It is easy to see that these principles can be derived from IL� I� is just a variant of
K	� We prove the usual principles from the alternative ones� Clearly� J	�I	 and
J
�I
� Using I� and I	 and propositional logic one easily veri
es the substitution
principle sub� 
 	 � 
 �
 ��p �& 	� � ��p �& ��� Thus we certainly do not
have to worry about replacing subformulas by their equivalents in propositional
logic� E�g�� 	 �
 can be interchanged with ��	� In the veri
cations below we
will mostly suppress mention of the use of I�� I	� sub and propositional logic�

L� Suppose 
 	� then 
 �	� 
 and� hence� 
 �	�

J� Reason inside 
� Suppose ��	� 
�� We have �	��
� �
 and� a fortiori�
�	��
� � 
� Also� 
 � 
� hence� by I
� ��	��
��
� � 
� So� 
nally�
	 � 
�

L	 Reason inside 
� Suppose ��	 � 
�� Then ���
 � �	�� so� by J��
�
 � �	� Suppose �	� i�e�� �	 �
� By I	� �
 �
� i�e�� �
�

J� Reason inside 
� Suppose ��	 � 
�� Then� by J�� 	 � 
� We reason by
contraposition� Suppose ��
 and� thus� 
 �
� By I	� 	 �
 and� thus�
��	�

L� Reason inside 
� By I�� �	 � ��	 ��	�� So� by J�� ��	� ���	 ��	��
Hence� ���	� 	�� �	�

J� Reason inside 
� We have �	 � �	��	�� Moreover� by I��

�	��	� � ��	��	� � �	��	� �
��

Hence� �	��	� � ��	��	� ���	�� and so �	 � 	�

�!



L
 As is well known� L
 follows from L��L	�L�� We give an alternative
derivation� Reason inside 
� J� gives us� ��	 � �	� Hence� by J��
���	� ��	� Ergo� �	� ��	�

�

A variation of our theme is to study the contraposed versions of interpretability�
��	conservativity and the like� We write A �c�X B for �B �X �A� E�g�

� A �c�int B � �K ��AK � B��

� A �c����cons B � 	S� � ���S � A�� ��S � B���

I will call contraposed ��	conservativity�  ��preservativity� As we will see
in subsection ����  �	preservativity in the precise form given above is a more
interesting notion than ��	conservativity as soon as we turn to constructive
logic� For sequential locally essentially re"exive theories that satisfy full  	
completeness� both notions have an Orey	H�ajek characterization�

� A �c�int B � A ����pres B � 	n ���nA� B��

The principles of contraposed IL are as follows�

�� 
 	� 
 � 
 	 � 


�	 
 �	 � 
 � 
 � ��� 	 � �

�
 
 �� � 	 � � � 
�� � � �	�
�

�� 
 ��	� 	� � 	

Here �	 abbreviates � �	� If we rewrite 	 �
 as �	�
� we see that the �	��s are
necessity operators of a normal modal logic� To get some feeling for the logic
the reader might amuse him(herself by deriving contraposed J�� i�e� 
 	 ��	�
from scratch� Note that in contraposed form oreysentences appear as sentences
O with the property� O �
 and �O �
�

��� Semantics

A Kripke semantics for IL was discovered by Frank Veltman� An IL	frame �or
Veltman frame� is a tuple hK�R� Si� where�

� K is a non	empty set

� R is a transitive� upwards wellfounded relation on K

� S is a ternary relation on K satisfying�

� ySxz � xRy and xRz

��



� xRyRz � ySxz

� Sx is transitive and re"exive on fy jxRyg

A forcing relation � on an IL	frame satis
es the usual clauses� where R is the
accessibility relation for �� plus�

� x � 	 � 
 � 	y��xRy � y � 	�� �z�ySxz � z � 
��

This makes � into a sort of might�conditional�
An IL	model or Veltman model is a structure hK�R� S��i� where hK�R� Si

is an IL	frame and � is a forcing relation on hK�R� Si� Veltman � de Jongh
show� IL is sound � complete for 
nite IL	models� See �����

For many logics extending IL one can get rid of the subscript in the S relation�
These models are simpli
ed Veltman models� sometimes called Visser models�
Their full de
nition is as follows�

� K is a non	empty set

� R is a transitive� upwards wellfounded relation on K

� S is a transitive� re"exive relation on K satisfying R � S

We can recover the Sx�s in the new setting by taking�

ySxz �� xRy� xRz and ySz�

The clauses for forcing are as before� now using the de�ned Sx�s� In ���� it
is shown that we can unravel each Veltman model to a bisimulating simpli
ed
one� �The relevant notion of bisimulation is speci
ed below�� So we have also
completeness for IL in simpli
ed models� The following example shows that we
lose the 
nite model property for IL if we work with simpli
ed models� Consider
the formula�

	 �& �� � � ���� � ����� ��� �����

Here is a Veltman model satisfying this formula�

c
R � d

I�
�
�
R ��

� ��
�
� Sa

�
�
�

b

�

R

a

��



We employ the obvious convention that the model intended is the closure under
the closure rules of IL	models� Thus we will have� cSbd� dSac� but not dSbc� It
is easy to see that a � 	� Consider an arbitrary simpli
ed model K with a node
a with a � 	� We will show that K is not 
nite�

Proof

Since a � �� and a � � ����� we can 
nd a b with aRb � ���� A fortiori�
b � ��� Because a � ���� � ��� ������ there is a d� with bRd� and� for
no c� bRc� d�Sc and c � ��� Let d be a top node of our model such that d & d�

or d�Rd� Clearly d � �
� It is easy to see that� by the closure conditions of
Veltman models� bRd and� for no c� bRc� dSc and c � ��� We claim that not
dSb� Since b � ���� there is a c with bRc � ��� If we had dSb� it would
follow that dSbSc� and� thus� dSc� Quod non� Since a � � ����� there is a
b� with aRb�� dSb� and b� � ����

Thus� we can construct a chain of nodes� b�� d�� b�� d� � � �� such that aRbiRdi�
diSbi��� not diSbi� and di � �
� Note that if x occurs in the chain before y�
then xSy� Now assume that our model is 
nite� It follows that some node e
must occur twice in the chain� Since nodes of the b	type are necessarily distinct
from nodes of the d	type� it follows that we can construct a cycle containing
some pair bi� di� Clearly any two nodes on the cycle will be S	related� and hence
diSbi� A contradiction� �

The study of models for IL leads to a strenghtened notion of bisimulation� Let
two models K andM be given� A relation Z between the nodes of our models
is a bisimulation if it satis
es the following conditions�

at kZm� �k � p� m � p�� for all atoms p�

zig If kRk� and kZm� then there is a m� with mRm� and k�Zm� and� for all
m�� with m�Smm

��� there is a k�� with k��Zm�� and k�Skk
���

zag If mRm� and kZm� then there is a k� with kRk� and k�Zm� and� for all k��

with k�Skk
��� there is a m�� with k��Zm�� and m�Smm

���

Since we can associate a model to a simpli
ed model in the evident way� it makes
sense to speak about bisimulations between models and simpli
ed models and
between simpli
ed models and simpli
ed models� We will see bisimulations in
action is subsection ���� We end this subsection with a picture of the zig	clause�

k�
Sk � k�� m�

Sm � m��

� �

R R

k m

��



� F� W� W� and other principles

In this section we discuss some further principles in interpretability logic� All
the principles discussed in this section are valid in all reasonable arithmetical
theories�

F 
 �	� ��	 ��	�

KW	 
 	 ��
 � 
 � �
��	�

W 
 	 � 
 � 	 � �
���	�

KW
 
 	 � �
��	�� 	 � 


KW� 
 	 � 
 � 
 � �
���	�

M� 
 	 � 
 � ��	���� � �
����

W� 
 	 � 
 � �
���� � �
������	�

Before discussing the meaning of these principles� let me describe their inter	
relations� It is easily seen that W follows from W�� We prove that M� follows
from W��


 	 � 
 � 	 � �
��	� J�� J	
� ��
��	����� � ��
��	�������	� W�

� ��	���� � �
���� J�� J	

Conversely� W� follows from W and M� together� The argument is due to Dick
de Jongh�


 	 � 
 � 	 � �
���	� W
� ��	���� � �
���	���� M�

� ��
��	������
���	����� � �
���	���� J�� J	� J

� �
���� � �
������	� J�� J	

W� KW
 and KW� are interderivable over IL� Most of the arguments are simple�
We show that KW� follows from W� We leave applications of L��L	 implicit in
this proof�


 
 � ��
���	���	� � J�

 
 � ��
���	��	� � J�� J	� J�� J


 	 � 
 � 
 � �
���	� J�� J	�W� J


Here is the derivation of KW	 from W�


 	 ��
 � 	 � ��
���	� W
� 	 ���
��	� L�� L	� J�� J	
� 	 � �
��	� J�� J	
� ��
��	��	� � �
��	� J�� J	� J

� 
 � �
��	� J�� J	

��



F easily follows from KW	�
Our principle KW	 is interderivable with �Svejdar�s KW��� V�it�eslav �Svejdar

in his ���� established that KW	 �in his paper KW��� is not derivable from F
over IL� He also shows thatW is not derivable from KW	� Mladen Vukovi�c shows
that W is not derivable from M�� See his ����� It is easy to see W

� �and� hence�
M�� does not follow from W �these principles correspond to di�erent classes of
frames� Here is a schema of the dependencies of our principles over IL�


 F KW	 W KW
 KW� M� W�M� W�

F � � � � � � � �
KW	 � � � � � � � �
W � � � � � � � �
KW
 � � � � � � � �
KW� � � � � � � � �
M� ) ) � � � � � �
W�M� � � � � � � � �
W� � � � � � � � �

F� KW	 and W all characterize the same class of Veltman frames� the class of
frames such that for each x� R � Sx is upwards wellfounded� Such frames are
called ILW	frames� Thus ILF and IL�KW	� are incomplete w�r�t� their character	
istic classes� De Jongh and Veltman prove the completeness theorem for ILW
w�r�t� 
nite ILW	models� Unfortunately� their proof �which is rumoured to be
very beautiful� was never published� Simpli
ed ILW	frames� are� as expected�
simpli
ed IL	frames with the extra property that R � S is upwards wellfound	
ed� In ���� it is shown that for every ILW	model there is a bisimilar simpli
ed
ILW	model� Moreover the construction preserves 
niteness� Thus� we have com	
pleteness for ILW in 
nite� simpli
ed ILW	models�

The characteristic class of both ILM� and ILW� is the class of frames sat	
isfying� xRyRzSxuRv � yRv� It follows that ILM� is incomplete w�r�t� its
characteristic class� No modal completeness theorem is know for ILW��

The closed fragment of ILF �and� ipso facto� of all extensions of ILF� has been
characterized by H�ajek and �Svejdar� it is the same as the one of L
ob�s logic�
See ����� It is unknown whether ILF or ILW satis
es interpolation� We will see
in subsection ��� that ILM� and ILW� do not satisfy interpolation�

F can be viewed as an interpretability version of the second incompleteness
theorem� ILW was conjectured to be the interpretability logic of all reasonable
arithmetical theories� This conjecture was refuted in ����� The current con	
jecture is that ILW� is the interpretability logic of all reasonable arithmetical
theories�

An immediate consequence of KW	 is the Contraposition Principle�

KW� 
 	 ���� � � �	

��



We give an application of this principle� Paris � Wilkie show that

EXP �I����� �I������

�see ������ ergo by KW�� � �I����� �EXP� i�o�w��

�I�� �#�� � �I�� �#� � �EXP��

This fact was originally shown by Solovay employing vastly di�erent means�

	 The principle P

P is the Persistence Principle�

P 
 	 � 
 � ��	 � 
�

P characterizes IL	frames with the following property�

yRzSxu� �yRu � zSyu��

We call such frames ILP	frames� De Jongh � Veltman show the completeness
of ILP w�r�t� �
nite� ILP	models� See their ����� Simpli
ed ILP	frames will be
IL	frames with the extra property� yRzSu� yRu� In ����� it is shown that any
ILP	model bisimulates with a simpli
ed ILP	model� Moreover� this construction
preserves 
niteness� Thus� we have completeness for ILP in 
nite� simpli
ed
ILP	models� It is unknown whether ILP satis
es interpolation'

P is valid for interpretations in 
nitely axiomatized arithmetical theories
extending� say� I�� � #�� To see the arithmetical validity� reason as follows�
Let C be the single axiom of T � Suppose A �T B� This means that� for some K�
�T �A� �BK�CK��� It follows that �T�T �A� �BK�CK��� i�o�w� �T �A �TB��
ILP is complete for interpretations in 
nitely axiomatized sequential theories
with designated natural numbers satisfying I�� � SUPEXP that do not prove
their iterated inconsistency for any 
nite number of iterations� Examples of
such theories are� I�� � SUPEXP� I n for n & �� �� � � �� ACA� and GB� The
proof of arithmetical completeness is given in ����� For a somewhat di�erent
proof� not using simpli
ed Veltman models� see ����� For a proof of modal and
arithmetical completeness for the closely related ILP�� see �����

Since ILP is arithmetically complete for some class of reasonable theories� it
must� a fortiori� imply W�� which is valid in all reasonable theories� We verify
directly that ILP extends ILW��


 	 � 
 � ��	 � 
� P
� ���	� �
� J�
� ���
������
�� �
������	�� L�� L	
� �
������
� � �
������	� J�
� �
���� � �
������	� K�� J	
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Note that in fact we proved�

IL 
 ��	 � 
�� �
���� � �
������	��


 Montagna�s Principle M

We exhibit a principle which is arithmetically valid in all veri
ably locally es	
sentially re"exive theories� Montagna�s Principle M�

M 
 	 � 
 � �	���� � �
����

M was known before to Lindstr
om and to �Svejdar �even if not in �modal guise���
M characterizes IL	frames with the following property� ySxzRu� yRu� We call
such frames ILM	frames� De Jongh � Veltman show that ILM is complete w�r�t�

nite ILM	models� See ����� or� alternatively� ���� A simpli
ed ILM	frame is a
simpli
ed IL	frame with the property that ySzRu � yRu� In ���� it is shown
that every ILM	model bisimulates with a simpli
ed ILM	model� The proof is also
given in the more accessible ���� Thus we have completeness w�r�t� simpli
ed
ILM	models� However for simpli
ed ILM	models we do not have the 
nite model
property� as is illustrated by the following formula�

��� � �� � ��� � � � p� � �� � ��� � ��� � p��

Here is an ordinary Veltman model satisfying this formula �in a��

d
Sc � e p

I�
�
� R

�
�
� �

�
�
R �
�
��

b�
Sa � c

I�
�
� R

�
�
� �

�
�
R �
�
��

a

Suppose there would be a 
nite simpli
ed ILM	model satisfying our formula�
Then there would be a sequence of nodes� b�� c�� b�� c�� � � �� such that bi and ci
are R	above a� biSci� bi � ��� � � � p� and ci � ��� � ��� � p��� Since our
model is 
nite there must be bi� ci with ciSbi� It is however easy to see that in
a simpli
ed ILM model any two nodes that are on an S	cycle and that force the
same atoms must force the same formulas� So we have a contradiction�

��



M is arithmetically valid in all veri
ably locally essentially re"exive theo	
ries T extending EA �& I�� � EXP�� To see this� 
x such a theory T � Re	
member that� by fact ���� in T we have that interpretability over T exten	
sionally conincides with ��	conservativity over T � So it is su�cient to prove
M for ��	conservativity over T � Reason in T � Suppose A ���	cons�T B� Let
S be any  �	sentence and P be any ��	sentence� Suppose �T ��B�S� � P ��
Then� �T �B � ��S�P ��� hence� since ��S�P � is ��� �T �A� ��S�P ��� Ergo�
�T ��A�S�� P �� Noting that we may replace S by �TC� we are done�

For extensions of PA in the language of arithmetic� we can seeM immediately
by re"ecting upon the following well	known characterization�

U � V � allM j& U have end	extension N j& V�

Alessandro Berarducci and Volodya Shavrukov have shown �independently�
that ILM is complete for arithmetical interpretations in extensions T of PA in
the language of PA that are  ��	sound� or� more precisely� that do not prove
one of their own iterated inconsistency statements� �nT
� See their papers ���
and ��!�� For a proof not using simpli
ed Veltman models� see ����� H�ajek
� Montagna show that ILM is complete for arithmetical interpretations for
��	conservativity in extensions of I � that do not prove their own iterated
inconsistency statements� See their paper ����� For a proof that avoids simpli
ed
Veltman models� see ��!��

Since in veri
ably locally essentially re"exive theories T extending EA� in	
terpretability and ��	conservativity over T provably coincide �see fact ����� the
result by H�ajek and Montagna tells us that ILM is complete for arithmetical in	
terpretations in veri
ably locally essentially re"exive theories T extending I �
that do not prove one of their own iterated inconsistency statements��� The
weakest such theory is I � � RfnI�� � where RfnI�� is the local re"ection prin	
ciple for I �� This theory is certainly below PA� since� by an observation of
Feferman� it is a subtheory of I � plus the set of all true ��	sentences�

Clearly� since ILM is complete for some class of interpretations in reasonable
arithmetical theories� W� must be derivable in ILM� We show how to do this�
First we derive W� Reason in ILM� Suppose we have 	 � 
� By M we may
conclude� �	���	� � �
���	�� By K	� we have 	 � �	���	�� Hence� using
J	� 	 � �
���	�� Using W� we may derive KW�� So we 
nd� from 	 � 
�

 � �
���	�� Applying M again� we have �
���� � �
������	��

��� Consequences of M

Two consequences of M are�

KM� 
 	 ��
 � ��	� �
�

��In the proof of the theorem a primitive recursive function is introduced of which it is
shown that it is eventually weakly decreasing� Then one needs to infer that it is eventually
constant� It is precisely at this point that ���induction is needed�

��



KM	 
 	 � 
 � ���
 � ���� ��	� ����

Clearly� these principles show us what is �visible� of the ��	conservativety of
essentially re"exive theories over theories interpreted in them� It is easily seen
that these principles are interderivable over IL� Both KM� and KM	 characterize
IL	frames satisfying ySxzRu� yRu� �Svejdar shows that neither of them implies
M over IL� See his �����

��� Failure of interpolation

Consider any logic I between ILM� and ILM� We show that I does not satisfy
interpolation� The proof is a minor adaptation of Konstantin Ignatiev�s unpub	
lished argument that ILM does not satisfy interpolation� Note that it follows
that ILW� does not have interpolation and neither has IL�	�� the interpretability
logic of all reasonable theories� which is after all 
rmly in between ILM� and
ILM�

Proof

We have�
I 
 ��p� �q�� �r � t� ��r�p� � �t�p���

Suppose� to get a contradiction� that there is a formula I�p� only containing p�
such that�

I 
 ��p� �q�� I�p� and I 
 I�p�� �r � t� ��r�p� � �t�p���

Consider the following two simpli
ed models for ILM�

p f� p f� p f �� p f ��

� � � �
R R R R

p d� p d�
S � e p d� e�

� � � � �

R

I�
�
�
R ��

�

R R R R

p b� p b� c p b� c�

�I�
�
�
R ��

�

R

�
�
� R
�
�
�� I�

�
�
R ��

� �
�
� R
�
�
��

a a�

��



We employ the usual convention that the intended models are what one gets
when one closes o� the displayed relations under the appropriate closure rules�
So� for example� in the 
rst model we will have b�Sf� and d�Rf�� p is only
forced where this is displayed� Let B be the relation between the nodes of the
models that connects f�� f� with f ��� f

�
�� d�� d� with d�� etc� Inspection shows

that B is a bisimulation� The crux is that� for b�� b�� we meet the R	move from
b� to d� with an R	move from b� to d�� and that� for a� a

�� we meet the R	moves
from a� to b� and to d� with counter moves from a to b�� respectively d�� Since
our models are ILM	models� they are� a fortiori� I	models� Extend the second
model by stipulating that d� � q and f �� � q �and no other node forces q�� We
get� a� � ��p � �q�� Hence� by assumption� a� � I�p�� By bisimulation� we

nd a � I�p�� Now extend the 
rst model by stipulating that d� � r and e � t�
It follows that a � r � t� Since a � I�p�� we obtain that a � ��r�p� � �t�p���
Quod non� �

��� An overview of systems

We end this section with a schema of salient systems and what is and is not
known about them� The �))� in the case of the arithmetical completeness
question signals that we not only do not have an arithmetical completeness
result� but even lack a conjecture on what the appropriate arithmetical semantics
should be�

system kripke comp arith comp interpol clos frag

IL � )) ) )
ILF � )) ) �
ILW � )) ) �
ILW� ) ) � �
ILP � � ) �
ILM � � � �

� Beyond 
nite and essentially re�exive

This section provides some remarks concerning the interpretability logics of
theories which are not locally essentially re"exive extensions of I � or 
nitely
axiomatized� sequential extensions of I�� � SUPEXP�

WARNING� To make sense of interpretability in weak theories� which
almost always lack  ��	collection� we have to employ the notion of
smooth interpretability� See �����

�!



��� Weak theories

We know that the provability logics of I���#� and S
�
� both extend L
ob�s Logic�

It is a great open question whether these logics are equal to L
ob�s Logic� �See
���� and ����� In the light of this great open problem the question what the
interpretability logics of I�� �#� and S

�
� are� seems to be de
nitely immodest�

However� you never know� Sometimes it is easier to answer a seemingly more
di�cult question�

The interpretability logics of I�� � #� and S�� are certainly totaliter aliter
compared to the logics we know� Let me just mention two valid principles of
both� We will sketch the arguments for their arithmetical validity in I�� �#�
in the footnotes�

�� 
 �	 ��
 � 	 ����� 	 � ��
������

P� 
 	 ��
 � ��	 ��
��	

It is easy to see that the 
rst principle is not provable in ILP� and� hence� not
generally arithmetically valid� The second principle is in the intersection of ILP
and ILM� It is not provable in ILW�� One can show that it is not in IL�PRA��
See subsection !���

��� I�� � EXP

In ���� it was shown that the following semantics is sound and complete for
IL�I�� � EXP�� Our models are 
nite strict partial orders� with accessibility
relation� say� R� The clauses for atoms and propositional atoms are as usual�
The accessibility relation for � is R �R� The clause for � is�

k � 	 � 
 �� 	m ��kRm � �n �mRn � n � 	��� �p �mRp � p � 
���

Clearly this logic can be viewed as a fragment of L
ob�s Logic via the following
translation ����� ���� commutes with atoms and with the propositional con	
nectives� ��	�� �& ��	� and �	 � 
�� �& ���	� � �
��� The problem
of axiomatizing this logic in a perspicuous way seems to be remarkably hairy�
Marianne Kalsbeek provides a number of principles in her preprint �����

��� PRA and its kin

We study the interpretability logic of PRA and some related theories� Since
not much is known of this logic� the discussion of this section will be somewhat

��If I
� ��� plus the arithmetical interpretation of �� is interpretable� it is interpretable
on a de�nable cut� which is closed under ��� Similarly for I
� � �� plus the arithmetical
interpretation of ��� The intersection of the two cuts� will� by downwards persistence of
���sentences� interpret I
� � �� plus the arithmetical interpretations of both �� and ���
��If I
� ��� plus the arithmetical interpretation of �� is interpretable� it is interpretable

on a de�nable cut I closed under ��� We can de�ne this cut in such a way that I
� � ��

veri�es the statement that� for all A� I
� � �� 
 A� I
� � �� 
 AI �

��



tentative� We show that the interpretability logic of PRA strictly extends the
minimal logic� The following reasoning is due to Lev Beklemishev� Every 
nite
 ��	axiomatized extension of PRA is re"exive� �See ����� Smooth interpretability
in a re"exive theory has the Orey	H�ajek characterization �veri
ably in PRA�
This tells us that A �PRA B� with A �  ��� is �

�
�� Moreover� again by Orey	

H�ajek� for A �  ��� we have�

PRA 
 A �PRA B � �A��PRAC� �PRA �B��PRAC��

Now de
ne the following class S� of modal formulas�

�� boxed formulas and their negations are in S�

�� if 	 � S� and 
 arbitrary� then ��	 � 
� � S�

�� S� is closed under conjunction and disjunction

It is easily seen that all interpretations of formulas in S� are in  
�
�� So the

following principle will be in IL�PRA��

B 
 	 � 
 � �	���� � �
����� for 	 � S�

Remember that to use Kripke semantics for non	derivability results� we only
need soundness� It is easy to show� by a Kripke model argument� that the
following instance of B�

�p � q � ��p��r� � �q��r�

is not in ILW�� So IL�PRA� is not the minimal interpretability logic�
We provide some �upperbounds� for IL�PRA�� Since M is not derivable in ILP�

we can 
nd� by the arithmetical completeness theorem for ILP 
nd arithmetical
sentences A�B�C such that�

I � �
 A �I�� B � �A��I��C� �I�� �B��I��C�

Let D be the single axiom of I �� Let

A� �& �D�A�� B� �& �D�B�� C � �& �D � C��

Then�
PRA �
 A� �PRA B

� � �A���PRAC
�� �PRA �B

�
��PRAC

��

Hence M is not part of IL�PRA��
An even better example� is the following principle that is �i� in the intersec	

tion of ILM and ILP� but �ii� is not arithmetically valid in PRA�

P� 
 	 ��
 � ��	 ��
�

To show that this principle is not PRA	valid� we need the following theorem due
to Shavrukov �see ������

��



Theorem ��� Suppose a consistent	 �nitely axiomatized	 sequential theory F

interprets a re�exive theory R that extends I�� � EXP� Then fP��� j F �

�R� P �g is complete  ���

We reason as follows� Clearly I �� � �PRA � Con�PRA��� So I �� and PRA �
Con�PRA� satisfy the conditions of Shavrukov�s theorem� Hence�

fP��� j I 
�
� � �PRA� Con�PRA� � P �g

is complete  ��� By a well	known theorem due independently to Goldfarb� Fried	
man and Harrington� there is a primitive recursive function F � transforming P
to P �� with PRA 
 �Con�PRA��P �� Con�PRA� P ��� Hence

I �� � �PRA� Con�PRA� � P �� I �� � �PRA� Con�PRA� P ���

This tells us that fA j I �� � �PRA � Con�PRA � A��g is complete  ��� Let D
be the single axiom of I ��� We can reformulate our insight as�

X �& fA j D �PRA �PRAA�g is complete  
�
��

On the other hand� if P� would hold� by the soundness of PRA� X would be
 ��� Quod non�

Remember that PRA is EA �I���EXP� plus the ��
�	induction rule� So it is

reasonable to expect some analogies between PRA and the theories EA���
n	IR�

We have that EA���
n	IR is  n	re"exive and hence we obtain analogues of the

rule B� where we need suitable classes S� for EA��
�
�	IR and S� for EA��

�
n	IR

with n � �� Note that S� is simply all modal formulas�
Let n � �� Clearly� T �& EA���

n	IR extends I �� For A�B �  �� we have�
T 
 A �T B � A ����consB� The interpretations of modal formulas used in the
proof of the H�ajek	Montagna arithmetical completeness theorem� in which it is
shown that ILM is the the logic of ��	conservativity for  �	sound extensions
of I �� are all ��� Hence on these speci�c interpretations ��	conservativity
and interpretability coincide� It follows that every counterexample for ILM is
a counterexample for IL�T �� In other words� IL�T � � ILM� It is open whether
IL�PRA� is a sublogic of ILM�

�� Other interpretations of �

���� Partial Conservativity

H�ajek and Montagna show that the logic of ��	conservativity of all extensions
of I � that do not prove their own iterated inconsistencies is ILM� See �����
Japaridze gives a proof that does not use simpli
ed models� See ��!�� Konstantin
Ignatiev characterizes the logics for partial conservativity for the classes �n for
n � � and  n for n � �� He characterizes the closed fragment of the logic for
 �	conservativity� In these logics the principle J� is conspicuously absent� This
suggests a more comprehensive study starting with IL� �& IL minus J���

��



���� E�cient Interpretability

It is typical of the interpretations in the literature that the proofs of the in	
terpretations of the axioms of the target theory are fairly simple� So all these
interpretations are in some sense �e�cient�� Let�s explicate e�ciency as the
demand that there is a polynomial P such that for every axiom A there is a
proof p of the interpretation of A where the size �& number of symbols� of p
is bounded by P of the size of A� In other words the sizes of the proofs are
bounded by an P�Time computable function� E�cient interpretability is this
sense is studied by Rineke Verbrugge in ��!������� In ��!� it is shown that ILM
is sound and complete for arithmetical interpretations in PA interpreting � as
feasible interpretability� In ���� it is shown that feasible interpretability over PA
is  �	complete� For more information on complexity� see subsection A���

���� Functional Relative Consistency

Christian Bennet studied in his thesis ��� the following notion of strong relative
consistency� Let T and U be extensions of PA in the language of PA� Let PR be
the set of primitive recursive terms� De
ne�

T �src U �� �t�PR �PA�	x �ProofU �x�
�� ProofT �tx�
���

It was pointed out in ���� that the logic of A �rrc�PA B is ILP� The proof rests
on the following �Friedman Characterization� of �src�

PA 
 T �src U � �PRA��T� � �U���

The proof follows a suggestion of Kreisel� It uses the PA	veri
able fact that the
provably recursive functions of PRA are precisely the primitive recursive ones�
We have� in PA� writing ��� for �PRA��T� � �U���

��� � �t�PR �PRA	x �ProofU �x�
�� ProofT �tx�
��

� �t�PR �PA	x �ProofU �x�
�� ProofT �tx�
��

� �t�PR �PRA�PA	x �ProofU �x�
�� ProofT �tx�
��

� �t�PR �PRA	x ��PAProofU �x�
�� �PAProofT �tx�
��

� �t�PR �PRA	x �ProofU �x�
�� ��ProofT �tx�
�� �PA
��

� ���

Clearly there are many variations on the theme of strong relative consisten	
cy� Vary the theories involved� Use P�Time or Kalmar Elementary instead of
Primitive Recursive� Etcetera�

Note that the Friedman characterization for interpretability in 
nitely ax	
iomatized sequential theories says that T �U i� U is strongly cutfree �tableaux�
consistent relative to T where we use Kalmar Elmentary instead of Primitive
Recursive�

��



���� Constructive Logic

It is unknown what the provability logic L�HA� of HA �Heyting Arithmetic� is�
It is even compatible with our present state of knowledge that it is complete ��

��
L�HA� is a modal logic that contains the intuitionistic propositional calculus�
IPC� plus the principles L��� of L
ob�s Logic� In addition it contains many others
like�

� ����	� ��	

� �����	� �	�� ��	

� ��	 � 
�� ��	 � �
� �Leivant�s Priciple�

The notion of  ��preservativity turns out to be very useful in the study of
provability principles in HA� Remember that  �	preservativity is given by�

A ���pres�HA B �� 	S� �	sentences ��HA�S � A�� �HA�S � B���

It is well possible that it is easier to formulate the logic of  �	preservativity�
then the logic of provability alone� The following principles are an attractive
subsystem of  �	preservativity logic of HA� Of course the basic logic here is IPC�

�� 
 	� 
 � 
 	 � 


�	 
 �	 � 
 � 
 � ��� 	 � �

�
 
 �� � 	 � � � 
�� � � �	�
�

�� 
 ��	� 	� � 	

�� 
 �	 � � � 
 � ��� �	�
� � �

The surprizing new principle is ��� This principle corresponds via contraposi	
tion to the IL	invalid principle� 
 �� � 	 � � � 
� � � � �	�
�� One easy
counterexample to this last principle was provided by the existence of oreysen	
tences� It is easy to see that in the intuitionistic case we have oreysentences O
for ���pres�HA too� These have the property� O �
 and �O �
� Applying ��
gives us� �O ��O� �
� This is not a contradiction� but just a testimony of the
non	derivability of excluded third in HA'

Regrettably the beautiful logic ���� does not exhaust the  �	preservativity
principles valid in HA� The reader is referred to �������!������ for more informa	
tion�
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�� Extensions of the language

���� Witness comparisons

H�ajek and Montagna characterize the ��	conservativity logic for extensions of
I � with the witness comparison order added� See their ����� This is an impor	
tant result since a lot of interesting arguments can be formalized in this logic�
De Jongh and Pianigiani apply the result of H�ajek and Montagna to solve a
problem posed by Guaspari� See �����

�Svejdar� in his fundamental paper ����� considers variations on the provability
predicate that give a di�erent meaning to the witness comparison formulas� It
is open to give arithmetical completeness theorems for the interpretations he
considers�

���� Propositional constants

The simplest kind of extension of the languages of provability and interpretabil	
ity logic is� of course� extension with one propositional constant representing
some signi
cant statement in the intended target theory� For example one could
extend the interpretability logic IL�ZF� with a constant for the Continuum Hy	
pothesis CH� Let�s call the logic obtained by extending the logic of a target
theory T by adding a constant for a designated sentence A� IL�T�A��

The only example of a result along this line that I know of is the characteri	
zation of the closed fragment of IL�I���#��EXP� in ����� In this fragment many
salient facts about the relationship between the weak theory and the strong ax	
iom can be formulated� like Paris and Wilkie�s result that EXP ���� Solovay�s
result that � � �EXP and my own result that �� � EXP�

���� Weak interpretability and tolerance

Giorgi Japaridze studies the notions of weak interpretability and tolerance�
Weak interpretability of U in T means that U is interpretable in some con	
sistent extension of T � Tolerance is a generalization of this notion to the n	ary
case� The reader is referred to Japaridze�s papers ���� and �����

���� 	��Interpolability

Konstantin Ignatiev� in his paper ����� characterizes the logic of  �	interpolabil	
ity over PA�  �	interpolability over PA is de
ned as follows�

� A�PA B �� �S� ��	sentences ��PA�A� S� � �PA�S � B���

Interpolability can be viewed as a kind of dual of ��	conservativity� In the lan	
guage predicates like being provably equivalent to a  ��sentence and weak inter�
pretability can be expressed� Ignatiev shows that the logic of  �	interpolability
satis
es interpolation �in contrast to ILM�

��



The problem of characterizing the combined logic of interpretability and
interpolability is open� We do not know whether this combined logic satis
es
interpolation�

���� Feferman�s Predicate

The Feferman Predicate for a re"exive theory T is the predicate � that is
de
ned as follows�

� �TA �� �x ��T�xA � �T�x���

Here� for theories that contain SUPEXP� �T�xA means provability of A from the
axioms of T with g
odelnumbers smaller than x� �If the theory does not contain
SUPEXP one must also restrict the formulas used in the proof to those with
complexity � jxj� See also appendix C�� The Feferman Predicate is a provability
predicate with �built in consistency�� It is an indispensable technical tool for
constructing interpretations via the Henkin construction� The g
odelsentence
Feferman provability in PA is an oreysentence for PA�

The 
rst systematic study of the Feferman Predicate for PA in provability
logic was made by the author in his paper ����� However� Volodya Shavrukov
was the 
rst to provide a modal system for combined ordinary provability and
Feferman provability that is arithmetically complete for interpretations in PA�
In the interpretation of Shavrukov�s system one makes use of a speci�c choice
of the enumeration of the axioms of PA� See �����

Give the important connection between Feferman provability and inter	
pretability� it would be interesting to see a characterization of the combined
logic of these two notions�

References

��� L�D� Beklemishev� Iterated local re"ection vs iterated consistency� Techni	
cal Report LGPS ���� Department of Philosophy� Utrecht University� �!!��

��� L�D� Beklemishev� Induction rules� re"ection principles and provably re	
cursive functions� Technical Report LGPS ���� Department of Philosophy�
Utrecht University� �!!��

��� L�D� Beklemishev� Parameter free induction and re"ection� Technical Re	
port LGPS ���� Department of Philosophy� Utrecht University� �!!��

��� C� Bennet� On some orderings of extensions of arithmetic� Department of
Philosophy� University of G
oteborg� �!���

��� A� Berarducci� The interpretability logic of Peano arithmetic� The Journal
of Symbolic Logic� ������!*���!� �!!��

��



��� A� Berarducci and R� Verbrugge� On the provability logic of bounded
arithmetic� Annals of Pure and Applied Logic� �����*!�� �!!��

��� G� Boolos� The logic of provability� Cambridge University Press� �!!��

��� S� Buss� Bounded Arithmetic� Bibliopolis� Napoli� �!���

�!� P� Clote and J� Kraj�i�cek� editors� Arithmetic	 Proof Theory and Computa�
tional Complexity� Oxford University Press� Oxford� �!!��

���� P� Clote and J� Remmel� editors� Feasible Mathematics II� Birkha
user�
Boston� �!!��

���� D� de Jongh and D� Pianigiani� Solution of a problem of David Guaspari�
Studia Logica� �����������*������� �!!��

���� D� de Jongh and F� Veltman� Provability logics for relative interpretability�
In 
��
� pages ��*��� �!!��

���� D� de Jongh and A� Visser� Explicit 
xed points in interpretability logic�
Studia Logica� ����!*��� �!!��

���� M� de Rijke� Bi	unary interpretability logic� Technical Report Report X	
!�	��� ITLI� University of Amsterdam� �!!��

���� M� de Rijke� A note on the interpretability logic of 
nitely axiomatized
theories� Studia Logica� ������*���� �!!��

���� M� de Rijke� Unary interpretability logic� The Notre Dame Journal of
Formal Logic� �����!*���� �!!��

���� G� Dzhaparidze �Japaridze�� The logic of linear tolerance� Studia Logica�
�����!*���� �!!��

���� G� Dzhaparidze �Japaridze�� A generalized notion of weak interpretability
and the corresponding logic� Annals of Pure and Applied Logic� ������*����
�!!��

��!� G� Dzhaparidze �Japaridze�� A simple proof of arithmetical completeness
for ��	conservativity logic� The Notre Dame Journal of Formal Logic�
������*���� �!!��

���� S� Feferman� Arithmetization of metamathematics in a general setting�
Fundamenta Mathematicae� �!���*!�� �!���

���� M�J� Greenberg� Euclidean and Non�Euclidean Geometries	 �d edition�
Freeman� �!!��

���� D� Guaspari� Sentences implying their own provability� The Journal of
Symbolic Logic� ������*��!� �!���

��



���� P� H�ajek and F� Montagna� The logic of ��	conservativity� Archiv f�ur
Mathematische Logik und Grundlagenforschung� ������*���� �!!��

���� P� H�ajek and F� Montagna� The logic of ��	conservativity continued� Archiv
f�ur Mathematische Logik und Grundlagenforschung� �����*��� �!!��

���� P� H�ajek and P� Pudl�ak� Metamathematics of First�Order Arithmetic� Per	
spectives in Mathematical Logic� Springer� Berlin� �!!��

���� P� H�ajek and V� �Svejdar� A note on the normal form of closed formulas of
interpretability logic� Studia Logica� �����*��� �!!��

���� D� Hilbert and S� Cohn	Vossen� Anschauliche Geometrie� Wissenschaftliche
Buchgesellschaft� Darmstadt� �!���

���� K�N� Ignatiev� The provability logic of  �	interpolability� Annals of Pure
and Applied Logic� ����*��� �!!��

��!� M�B� Kalsbeek� An orey sentence for predicative arithmetic� Technical
Report Report X	�!	��� ITLI� University of Amsterdam� �!�!�

���� M�B� Kalsbeek� Towards the interpretability logic of i�� � exp� Technical
Report LGPS ��� Department of Philosophy� Utrecht University� �!!��

���� P� Lindstr
om� On partially conservative sentences and interpretability� Pro�
ceedings of the American Mathematical Society� !�����*���� �!���

���� L� Manevitz and J� Stavi� ��
� operators and alternating sentences in arith	

metic� The Journal of Symbolic Logic� ������*���� �!���

���� J� Mycielski� P� Pudl�ak� and A�S� Stern� A lattice of chapters of mathe�
matics �interpretations between theorems�� volume ��� of Memoirs of the
American Mathematical Society� AMS� Providence� Rhode Island� �!!��

���� E� Nelson� Predicative arithmetic� Princeton University Press� Princeton�
�!���

���� J�B� Paris and A� Wilkie� On the scheme of of induction for bounded
arithmetic formulas� Annals of Pure and Applied Logic� ������*���� �!���

���� P�P� Petkov� editor� Mathematical logic	 Proceedings of the Heyting ����
summer school in Varna	 Bulgaria� Plenum Press� Boston� �!!��

���� P� Pudl�ak� Cuts� consistency statements and interpretations� The Journal
of Symbolic Logic� ������*���� �!���

���� P� Pudl�ak� On the length of proofs of 
nitistic consistency statements in

nitistic theories� In J�B� et al Paris� editor� Logic Colloquium ���� pages
���*�!�� North*Holland� Amsterdam� �!���

��



��!� V�Yu� Shavrukov� The logic of relative interpretability over Peano arith	
metic �in Russian�� Technical Report Report No��� Stekhlov Mathematical
Institute� Moscow� �!���

���� V�Yu� Shavrukov� A smart child of Peano�s� The Notre Dame Journal of
Formal Logic� ������*���� �!!��

���� V�Yu� Shavrukov� Interpreting re"exive theories in 
nitely many axioms�
Technical Report LGPS ���� Department of Philosophy� Utrecht University�
�!!��

���� C� Smory�nski� Self�reference and modal logic� Springer	Verlag� �!���

���� R�M� Solovay� On interpretability in set theories� Unpublished manuscript�
�!���

���� C� Stranneg+ard� Interpretability over 
nitely axiomatized theories� Unpub	
lished manuscript� �!!��

���� V� �Svejdar� Modal analysis of generalized rosser sentences� The Journal of
Symbolic Logic� ���!��*!!!� �!���

���� V� �Svejdar� Some independence results in interpretability logic� Studia
Logica� ����!*��� �!!��

���� A� Tarski� A� Mostowski� and R�M� Robinson� Undecidable theories� North*
Holland� Amsterdam� �!���

���� L�C� Verbrugge� E�cient metamathematics� ILLC	disseration series �!!�	
�� Amsterdam� �!!��

��!� L�C� Verbrugge� Feasible interpretability� In 
�
� pages ���*���� �!!��

���� L�C� Verbrugge� The complexity of feasible interpretability� In 
��
� pages
��!*���� �!!��

���� A� Visser� The provability logics of recursively enumerable theories ex	
tending Peano arithmetic at arbitrary theories extending Peano arithmetic�
Journal of Philosophical Logic� ���!�*���� �!���

���� A� Visser� Evaluation� provably deductive equivalence in heyting�s arith	
metic of substitution instances of propositional formulas� Technical Report
LGPS �� Department of Philosophy� Utrecht University� �!���

���� A� Visser� Preliminary notes on interpretability logic� Technical Report
LGPS �!� Department of Philosophy� Utrecht University� �!���

���� A� Visser� Peano�s smart children� A provability logical study of systems
with built	in consistency� Notre Dame Journal of Formal Logic� ������*�!��
�!�!�

�!



���� A� Visser� Interpretability logic� In 
��
� pages ���*��!� �!!��

���� A� Visser� The formalization of interpretability� Studia Logica� �����*����
�!!��

���� A� Visser� An inside view of exp� The Journal of Symbolic Logic� ������*
���� �!!��

���� A� Visser� The unprovability of small inconsistency� Archive for Mathe�
matical Logic� ������*�!�� �!!��

��!� A� Visser� Propositional combinations of  *sentences in heyting�s arith	
metic� Technical Report LGPS ���� Department of Philosophy� Utrecht
University� �!!��

���� A� Visser� J� van Benthem� D� de Jongh� and G� Renardel� NILL� a study
in intuitionistic propositional logic� In A� et al� Ponse� editor� Modal Log�
ic and Process Algebra	 a Bisimulation Perspective� pages ��!*���� CSLI
Publications� Lecture Notes� no� ��� �!!��

���� M� Vukovi�c� Some correspondences of priinciples of interpretability logic�
Glasnik Matemati�cki� ��������!�*���� �!!��

���� D� Zambella� On the proofs of arithmetical completeness of interpretability
logic� The Notre Dame Journal of Formal Logic� ������*���� �!!��

A Some pointers to further work

A�� Restrictions of the language

Maarten de Rijke studies unary interpretability logic� i�e� the logic of the pred	
icate �� �	�� It turns out that his il� ilp and ilm all satisfy interpolation� The
reader is referred to his papers ����� �����

A�� Complexity

Robert Solovay �in his unpublished ����� and Per Lindstr
om �in ����� prove
independently that fS� � j � �T Sg� where T is a  �	sound re"exive theory� is
��	complete� Volodya Shavrukov shows� in his ����� that fP��� j GB � �ZF�
P �g and fS� � j GB � �ZF� S�g are  �	complete� This shows that things are
as bad as they can get�

A�� Embeddings of Algebras

Claes Stranneg+ard� in his unpublished ���� generalizes the completeness theorem
for ILP to a result on embeddings of algebras analogous to Shavrukov�s result
on embedding diagonalizable algebras�

��



B A list of problems in Interpretability Logic

For completeness sake I added� what I take to be� the two major open problems
of Provability Logic as problems � and � to my list� The major open problems
of Interpretability Logic are ������ Problems ������� are purely modal�

�� What is the provability logic of I�� � #�) What is the provability logic
of Buss� S��) Remarks�

� At present it cannot be excluded that the problem is connected to
problems in complexity theory�

� Even if the problem is mainly arithmetical� it also has modal aspects�
E�g�� formulate a plausible extension of L
ob�s Logic of which it is
not immediately evident that it cannot be the provability logic of
I�� �#��

� It would even be possible that the logics of I�� � #� and S�� di�er�
That would be rather surprising� Can it be proved that these logics
are the same)

Clearly� at this stage it is not wise to ask about the interpretability logic
of I���#�(S

�
�� On the other hand� looking at the more di�cult problem

could help to suggest provability principles extending L
ob�s Logic� Fro
some information� see subsection !���

�� What is the provability logic of Heyting�s Arithmetic HA and of related
theories �like HA�ECT�� HA�MPR�) See subsection �����

�� Give a characterization of interpretability that works for all reasonable
arithmetical theories� See appendix C�

�� Give a construction of an oreysentence that works for all reasonable arith	
metical and sequential theories� See subsection ���� An easier variant is
the same question for local interpretability�

�� What is the interpretability logic of all reasonable arithmetical theories� I
conjecture that this logic is ILW�� See section �� See also ����� Note that
there are all kinds of variants� What is the interpretability logic of all

nitely axiomatized extensions of PRA) What is the interpretability logic
of I � for all possible choices of the set of designated numbers) Etcetera�

�� Axiomatize IL�I�� � EXP�� See subsection !���

�� What is IL�PRA�) What is IL�I n	IR� for n � �) Here IL�I n	IR� is
I�� � EXP plus the  n	induction rule� See subsection !���

�� What is the logic for ��	conservativity in PRA) See subsections !�� and
�����

��



!� What are the logics of  �	 and of  �	conservativity over PA) See subsec	
tion �����

��� What are the interpretability logics for the language with witness com	
parisons� where the �proof	predicate� is interpreted using �Svejdar�s inter	
pretations II and III) See ����� p!�!�!!�� For a treatment of �Svejdar�s
interpretation I� see ����� As far as I know these problems are open even
for the language with �� but without �� See also subsection �����

��� What is the logic of interpretability� extended with the Feferman predicate
in the style of Shavrukov� See subsection �����

��� Give a modal completeness theorem for ILW�� See subsection ��

��� Do IL� ILW� ILP satisfy interpolation)

��� Does the logic for interpretability and  �	interpolability of Ignatiev satisfy
interpolation) See subsection �����

��� What is the logic of the predicate �GB � A� � �ZF � B�� where A�B
are in the language of ZF and where our basis theory is ZF) �Note that
�ZF�A� � �GB� B� is equivalent to �ZF�A� �GBB���

��� Is it possible to extend the approach of appendix D to a di�erent basic
theory than PA� One problem is that the convenient fact that internally
de
nable models are endextensions disappears�

C The Orey�H�ajek characterization and other

matters

In this appendix we prove a re
ned version of theorem ���� We will only consider
sequential theories� In this section� restricted provability� Provn and �n� will
mean that we restrict the axioms used to those with g
odelnumber � n and
the proofs to those only involving formulas A of complexity 
�A� � jnj� Here
jnj �& entier��log�n����� Our notion of complexity 
 counts depth of quanti
er
changes� We will make the natural assumption that 
�A� � j%Aj� We will say
that a theory V is r�re�exive if it proves� for all n� Conn�V �� In the presence of
the axiom SUPEXP in T and U we can drop the restriction on the complexity
of the formulas involved in te proofs� since we can prove cutelimination for
predicate logic� In other words� for theories proving SUPEXP re"exivity and
r	re"exivity conincide� We will formulate our result below partly in terms of
	�b�	conservativity� rather than �

�
�	conservativity� In the presence of the axiom

EXP in T and U 	�b�	conservativity coincides with ordinary �
�
�	conservativity�

We write T �OH U for� 	x �T�U�x�� Note that T is r	re"exive i� T �OH T �

Lemma C�� Let theories T� U�W be given�

��



�� Suppose that W proves �b�	completeness
�
 and that T is W 	veri
ably r	

re"exive� Then� W 
 T �loc U � T �OH U �

�� W 
 T �OH U � T ���b

�
�con U

�� Let U be W 	veri
ably r	re"exive� Then� W 
 T ���b

�
�con U � T �OH U �

�� W 
 T �OH U � T � U

�� W 
 T � U � T �loc U

Proof

��� Suppose that W proves �b�	completeness and that T is W 	veri
ably r	
re"exive� Reason in W � Suppose T �loc U � Let �U�x be the formula de
n	
ing the set of axioms of U with g
odelnumber � x� Since� we did not assume
 ��	collection� we have to stipulate that �T �loc U � means�

	x �K� y 	a��U�x �p�y ProofT �p� a
K��

Fix x� By �b�	completeness we have� �T �	a��U�x �p�y ProofT �p� a
K��� We can

use this last fact� inside �T � to transform an x	proof q in U of� say� b into a proof
q� of bK in T � The T 	axioms involved in q� will be bounded by y� A subproof
of q� that veri
es the interpretation of a U 	axiom will only involve formulas
with complexity bounded by jyj� Those parts of q� that �simulate� q will only
contain T 	formulas obtained by K	translating U 	formulas of complexity at most
jxj� These T 	formulas will have complexities bounded by jxj� jKj� Thus we can

nd a z such that� �T ��U�x
 � �T�z
�� Ergo� �T�U�x��

To prove ���� reason in W � Suppose 	x �T�U�x� and �UP � where P �
	�b�� We can 
nd an x such that �T�U�xP and �T ��P � �U�x�P �� �The
last fact holds� since all theories containing S�� prove � 

b
�	completeness� where

the complexity of the witnessing proof is linear in the complexity of the � b�	
formula�� Combining we 
nd� �TP � �Note that� from a bound of on the
U 	proofs of P � we can extract a bound on the T 	proofs of P � Thus proving
�smooth� 	�b�	conservativity��

��� Suppose that U is W 	veri
ably r	re"exive� Reason in W � Suppose
T ���b

�
�conU � Consider any x� Since �U�U�x�� we have immediately� �T�U�x��

To prove ���� we use the Henkin construction as described in ���� on the Fe	
ferman predicate ��UA �� �x ��U�xA � �U�x��� This gives us an interpretation
K of U in T �

Finally� ��� is trivial� �

��It is su�cient for �b
�
�completeness that W proves EXP�

��



In the next theorem we just harvest the fruits of the preceding lemma�

Theorem C�� � Suppose that W proves �b��completeness and that T is W �
veri�ably r�re�exive� Then	 T �locU 	 T �U and T �OHU are W �provably
equivalent�

� Suppose that U isW �veri�ably r�re�exive	 then T �OHU and T ���b

�
�conU

are W �provably equivalent�

� Suppose that W proves �b��completeness and that T� U are W �veri�ably
r�re�exive� Then T �loc U 	 T � U 	 T �OH U and T ���b

�
�con U are

W �provably equivalent�

Following an idea of Lev Beklemishev we show the �necessity��� of the conditions
on T� U of lemma C��� We have been looking at four notions for comparing
theories� These give rise to �� implications of the form T �X U � T �Y U �
Since we want to show the necessity of the conditions� it is su�cient to consider
the weakest non�trivial implications� These turn out to be T �loc U � T � U �
T � U � T ���b

�
�con U and T ���b

�
�con U � T �loc U � We can replace our

last implication by the even weaker non	trivial implication� T ���
�
�con U �

T �loc U � We will say that T is �r�re�exive if T is r	re"exive for some choice
of the designated natural numbers of T � One can show that if T is �r	re"exive
and if N is any choice of the natural numbers for T � then there is a de
nable
N 	cut I� such that hT� Ii is r	re"exive�

Theorem C�� We work in a su�ently rich metatheory W �

�� Let T be given� Suppose	 for all U 	 if T �loc U 	 then T � U � Then T is
�r�re�exive�

�� Let T be given� Suppose	 for all U 	 if T � U 	 then T ���b

�
�con U � Then

T is r�re�exive�

�� Let U be given� Suppose	 for all T 	 if T ���
�
�conU 	 then T �locU � Suppose

also that �UEXP� Then U is r�re�exive�

Proof

��� Suppose for all U � if T �loc U � then T � U � Take

U� �& I�� �#� � f�T�n� j n � �g�

�	As the reader will see the Beklemishev explication of �necessity� focusses on the question
of characterizing properties of the form P �T 
 �� �U �T �� U � T �� U
 or Q�U
 ��
�T �T �� U � T �� U
� Of course� this just one possible way of explicating the question of
necessity� E�g� some further restriction of the quanti�er in the de�nition of P could change
the picture� Etcetera�

��



By familiar arguments �see e�g ����� we have� T �loc U
�� By assumption� for

some K� K � T � U�� It is not di�cult to see that we can always replace K
by a T 	cut� Take the new numbers as given by K� So T will be W 	veri
ably
r	re"exive w�r�t K�

��� Suppose that for all U � if T �U � then T ���b

�
�conU � We have� for any n�

by familiar arguments� that T � �I���#���T�n��� Hence� by conservativity�
�T�T�n�� Ergo T is r	re"exive�

��� Suppose that� for all T � if T ���
�
�conU then T �locU � Suppose also that

U contains EXP� Let T � be axiomatized by I���#�� plus the �
�
�	consequences

of U � Using a version of Craig�s trick we can make our axiomset  b�	de
ned�
Clearly� T � ���

�
�con U � so T

� �loc U � Fix n� By familiar arguments� for some

U 	cut I� �U�IU�n�� Let U� be a 
nite subtheory of U such that �U�,I is a cut-

and �U��
I
U�n�� Ex hypothesi� for some K� K � T

� �U�� We can 
nd a T
�	cut

J such that on J there is a T �	de
niable isomorphism between J and a T �	
de
nable �external cut� of K� We can choose J so small that it image on the
K	side is in I� We may conclude� by the downward persistence of ��

�	sentences�
�T��

J
U�n�� T

� is ��
�	axiomatized over I�� � #�� so by the work of Paris and

Wilkie �see ����� see also lemma ��� of ����� for a sharp version� it follows that�
�T��EXP�U�n�� Hence� �U�U�n�� �For the application of lemma ���� we need
that our metatheory contains SUPEXP�� �

Note that we cannot get around asking something like ,U proves EXP- in ����
since without this assumption I�� � #� also satis
es our condition on U � But
I�� �#� is not r	re"exive�

We end this section with some remarks on local interpretability� Let�s again
work in a convenient meta theory� like the de luxe I�� � B � � SUPEXP�
Let RCON�T � �& f�T�n� j n � �g and T rc �& I�� � #� � RCON�T � and
T rce �& I�� � EXP � RCON�T �� By the considerations of e�g� ����� we have�
T �loc T

rc� So we 
nd� applying some ideas of Paris and Wilkie �see ���� and
lemma ��� of ������

T �loc U � T rc �loc U
rc

� 	n �I��I�� �#��	cuts �T rc�
I
U�n�

� 	n �T rce�U�n�

So� we may conclude� T �loc U � 	n �T rce�U�n�� In a di�erent formulation�

T �loc U � 	n �k �I���EXP��T�k� � �U�n���

It is easy to see that T rc is r	re"exive� So we have�

T �loc U � T rc �U � T rc �U rc�

Let�s write ��T �� � ��T �� loc for� respectively� the interpretability type and the lo	
cal interpretability type of T � We may consider the �local� interpretability types

��



equipped with the obvious partial orders as degrees of �local� interpretability�
Consider the mappings F � ��T �� loc �� ��T rc�� and G � ��T �� �� ��T �� loc� Evidently
the pair hF �Gi is an adjunction between the degrees of local interpretability
and the degrees of interpretability� We also see that the degrees of local inter	
pretability of arbitrary theories are isomorphic to the degrees of interpretability
of theories that are �r	re"exive� Note that these results hold for sequential theo	
ries that interpret� say� I���#�� Since even Robinson�s Q interprets I���#��
this is� I guess� a reasonably wide class��


D A Kripke model for Arithmetic

It would be nice to generalize insights from provability logic and interpretability
logic to theories without substantial coding machinery� One way to this could
be to replace the coded modal operators by modal operators de
ned in terms
of natural relations between models like extension� In this appendix I study
some relations between models of PA to which we can make the coded operators
correspond� Moreover we will brie"y look at a non	codable operator� The results
of this section are not in the literature� However� specialists in the 
eld have
been aware that some such elaboration is possible�

A internal model of a model M is a model that is de
nable in M by a
relative interpretation N � A restricted internal model is an internal model for
which we have a truthpredicate N in M� i�e�� for any A with �appropriately
coded� parameters in the internal model�M j& N�%A�� AN � De
ne�

�� M�� N �� N is an extension ofM�

�� M�� N �� N is an endextension ofM�

�� M�� N �� N is an extension ofM
isomorphic to an internal model ofM�

�� M�� N �� N is an extension ofM
isomorphic to a restricted internal model ofM�

We are going to treat the relations 
i as partial orders between models� This is somewhat

awkward since the correct way to treat these matters is to work with a category with as

morphisms the embeddings of the domain of M into the domain of N � Such embeddings

are not �xed with the models since �as is well known� many models have several di�erent

isomorphic submodels� There is no problem at all with treating these matters categorically�

��A defect of the degrees approach is� perhaps� that we abstract away in a rather radical
manner from the information contained in individual interpretations and �local interpreta�
tions� �de�ned in some appropriate way
� So here is an open question� can we work in more
informative categories and still preserve the signi�cant result above providing an adjunction�
It is easy to see that the most obvious approach does not work since there are many alter�
natives for our speci�c choice of de�ning T rc� which are not isomorphic in the category of
theories and interpretations�
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However� for the purposes of this paper it is somewhat laborious� Here we will refrain from

identifying isomorphic models but restrict ourselves to embeddings in the strict sense� i�e�

embeddings that send an object to itself� Thus we obtain the desired e�ect of working with a

partial ordering� However� we are forced to the tortuous de�nition of e�g� 
�� Having noted

this� we will henceforth ignore these subtleties and pretend� e�g�� that 
� simply means is an

internal model of� etcetera���

We write LMPA for the language of PA with parameters inM�

Theorem D�� We have�

� For � � i � j � �� �j � �i�

� For A � LMPA	 we have �M �i N N j& A� �M �j N N j& A��

Proof

The 
rst part is easy� For the second part is clearly su�ces to show that

�M �� N N j& A� �M �� N N j& A�

Consider any models M� N and suppose M �� N and N j& A� For each
standard number n we have N j& �PA�nA� By Matiyasevi�c�s Theorem �PA�nA

is PA	equivalent with a purely universal sentence� Hence� for each standard
n� M j& �PA�nA� Use the Henkin construction on the Feferman	consistency

statement of PA�A to produce the desired restricted internal model� �

It is easy to see that the 
rst two of the above inclusions are strict� Is there an
example to show that the third inclusion is strict �even modulo isomorphism�)
�If we drop the requirement of re"exivity� the identity interpretation would be a
trivial example � � � by Tarski�s theorem on the unde
nability of truth�� De
ne�

� REFM �& f��mC � C� j C � LMPA and m�Mg�

� M �i� N ��M�i N j& REFM�

� M �i�K N �� K �i� M� K �i� N andM�i N

I feel that it is a defect that we have to use syntax to de
ne �i�� Is there a
more structural characterization)

Theorem D�� We have�

�� �i is a partial ordering�

��Another way to circumvent working in a category is by unraveling� Instead of models we
work with sequences N ��M�� f��M�� � � � � fnMn� where fj
� is an i�embedding ofMj into
Mj
�� Our accessibility relation is extension of sequences�

��



�� �i� is transitive and antisymmetric�

�� �i� � �i�

�� M�i N �i� P �M �i� P�

�� M�i� N � 	C�LMPA �M j& �PAC � N j& C��

�� M�i� N � 	C�LNPA	k�K �N j& �kC � C��

Proof

We only treat �� SupposeM�i� N � C�LMPA andM j& �PAC� It follows that�
for some m in M� M j& �PA�PA�mC� Ergo� since �i preserves  	sentences
�remember that for i & � this uses Matiyasevi�c�s Theorem�� N j& �PA�mC�
Ergo� by REFM� N j& C� Conversely� suppose

	C�LMPA �M j& �PAC � N j& C��

By veri
able uniform essential re"exiveness� we have that� for any m inM and
for any D in LMPA�M j& �PA��PA�mD � D�� Ergo N j& �PA�mD � D� �

We will consider the models of PA equiped with accessibility relations �i���i�
for a 
xed i� in the roles of R�S� as a simpli
ed Veltman frame �dropping
the demand of upwards wellfoundedness of R� Clearly this frame is a class�
However� I do not think that this matter needs to bother us here� If the reader
wishes� she can restrict the big frame e�g� to countable models coded in� say�
the standard natural numbers�

At this point it is convenient to change our language� We will use a� b� c� � � �
for models of PA� a � A for a j& A� We 
x an i and write R�S for �i���i�

Let L�
PA

be the smallest language containing LPA� closed under the logical
connectives of Predicate Logic and under the connectives � and � of Inter	
pretability Logic� De
ne La��PA in a similar way� De
ne� for A in La��PA � a � �A
and a � A � B in the usual way of forcing in �simpli
ed� Veltman models�
Viewed in this way� our big frame with � is a big model� which we will call Big
�or� more precisely� Bigi��

Theorem D�� Let A�B be sentences of LaPA� We have�

a � A �PA B � a � A �B

Note that the similar	 simpler result for � is an immediate consequence of the
result for ��

��



Proof

,�- Suppose a � A �PA B and aRb � A� By the Orey	H�ajek characterization�
a � 	x�PA�A � �PA�xB�� Moreover� for all C � LaPA such that a � �PAC�
we have� b � C� So� for all k in a� b � �PA�kB� We want to 
nd a c with
bSc � B and aRc� Construct inside b� a restricted internal model c for PA�B

by the formalized Henkin construction� using the Feferman Predicate �PA�B �
This Feferman predicate is de
ned as follows�

�PA�BC �� �x��PA�B�xC � �PA�xB��

It is clear that bSc j& B� By the transitivity of S� aSc� Consider C in LaPA
and k in a� Evidently� for some k� in a� b � �PA�k���PA�kC � C�� Hence�
b � �PA�B��PA�kC � C�� We may conclude that c � �PA�kC � C and� thus�
aRc�

,�- Suppose a �� A �PA B� Then� by Orey	H�ajek� for some k in a� a �
�PA�A ��PA�k�B�� Using the Henkin construction� we may build b� with aRb �
A and b � �PA�k�B� Consider any c with bSac� Since bSc� it follows that

c � �PA�k�B� Since aRc� it follows that c � �B� �

Clearly theorem D�� allows us to translate modulo valid equivalence the arith	
metico	modal language back into its purely arithmetical fragment�

We want to compare ILM	models with Big� Since we are considering models
of di�erent signature the usual notion of bisimulation will not do� The following
minor adaptation will do the trick� Consider two languages U and V that are
both closed under the connectives of interpretability logic� Consider 
nite sets
of sentences X�U and Y�V � Let LIL�X� be the sublanguage of U generated
by X and the connectives of interpretability logic� Similarly for LIL�Y � and V �
Let � be a total and surjective relation between X and Y � We extend � to the
smallest relation �� between LIL�X� and LIL�Y � closed under rules like�

� if A��B and A���B� then �A�A����B�B���

etcetera� We rename ��� par abus de langage� to �� Note that � is again total
and surjective between LIL�X� and LIL�Y �� Moreover if � is functional on X �
then � is functional on LIL�X�� In this case� we write A� for the unique B with
A�B� Let K and M be models for U � respectively V � with a forcing relation
that is �correct� w�r�t� the connectives of interpretability logic� A relation B
between the nodes of K andM is a ��bisimulation if�

� For all A�X � B�Y � �kBm and A�B�� �k � A� m � B�

� �kBm and kRk��� �m��k�Bm��mRm� and
	m�� �m�Smm

�� � �k���k��Bm�� and k�Skk
�����

� �kBm and mRm��� �k��k�Bm�� kRk� and
	k���k�Skk�� � �m���k��Bm�� and m�Smm

�����
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It is easily seen that for any A�B in LIL�X�� respectively LIL�Y �� with A�B we
have� kBm� �k � A� m � B��

Consider any 
nite ILM	model K� for a 
nite set of atoms P � with domain
f�� � � � � Ng and bottom �� By ����� or by ��!�� we can 
nd arithmetical sentences
�i� for i & �� � � � � N � such that for all k�m� n � f�� � � �Ng �

Z
 m �& n� PA 
 ���m ��n�

Z� PA� �m is consistent

Z	 PA 
 �k � �
W
kRm �m

Z
 mSkn� PA 
 �k � �m �PA �n

Z� kRm� PA 
 �k � ���m �PA �
W
mSkn

�n�

�In Z� it would su�ce to ask that PA� �� is consistent� since the other consis	
tencies follow from this and Z��� De
ne p� �&

W
m�p �m� We take P in the role

of X and the range of � in the role of Y � De
ne the following relation between
the nodes of K and the nodes of Big� k.a �� a � �k� We have�

Theorem D�� . is a total ��bisimulation�

Proof

Totality is immediate from Z�� Suppose k.a�
If k � p� then� by de
nition� a � p�� Conversely� if a � p�� then a � �m� for

some m with m � p� Since� a � �k � we have� by Z
� m & k and� hence� k � p�
Suppose kRm� By Z�� a � ���m �PA �

W
mSkn

�n�� By theorem D��� there
is a b� such that aRb� b � �m and such that� for all c with bSac� c �

W
mSkn

�n�
In other words� m.b and� whenever bSac� then n.c� for some n with mSkn�

Suppose aRb� By Z	 and theorem D��� there is an m� with kRm and b � �m�
i�e� m.b� Consider any n with mSkn� Since� by Z
� a � �m �PA �n� we can

nd� by theorem D��� a c with bSac and c � �n� in other words� n.c� �

Note that �modulo our switches between �PA and �� there is nothing arith	
metical about the proof of D��� An immediate consequence is the arithmetical
completeness of ILM� Let � be a function from LIL to the sentences of LPA� We
write 	� as before and 	� for the usual arithmetical interpretation of 	 corre	
sponding to �� Note that 	� can be obtained from 	� by �replacing� � by �PA

and � by �PA� We have� by theorem D��� Big � 	� � Big � 	� �

Theorem D�� ILM 
 	� 	� Big � 	� � 	� PA 
 	�

��



Proof

The second equivalence is by D�� and the completeness theorem for predicate
Logic� The 
rst equivalence from left to right is the usual check of the soundnes
of ILM� We prove the second equivalence from right to left by contraposition�
Suppose ILM �
 	� then� by ����� there is a 
nite ILM	countermodel K to 	� We
may assume that the domain of K is f�� � � � � Ng� that � is the root of K and that
� �� 	� Consider � for our present model� By Theorem D�� there is a PA	model
a that �	bisimulates with �� We have� a �� 	�� �

We end this appendix� by considering a model connective on Big that cannot
be eliminated via an arithmetical de
nition� Let L�PA be the language of arith	
metic extended by a new unary connective �� The analogous language with
parameters in a� is La��

PA � De
ne� for A � La��
PA �

� a � �A �� 	b�aSb� b � A��

By theorem D��� for arithmetical A the forcing of �A is independent of the
question which �i we have chosen S to be�

Let LML be a language of ordinary unimodal logic on 
nitely many variables�
We take the single modal necessity operator to be �� Let � map the variables
to arithmetical sentences� We extend this mapping to LML in the obvious way�
De
ne / �& f	�LML j 	� Big j& 	�g�

Theorem D�	 / is closed under the S��axioms and �rules�

Proof

The theorem is immediate from the fact that S is a weak partial ordering� �

We will show in theorem D�! that / coincides with S��

Corollary D�
 There is no arithmetical formula � such that� for all arithmeti	
cal sentences A� a � ��A� ��%A���

Proof

The non	existence of � is immediate from the well	known fact that S� plus
modalized self	reference yields inconsistency� We can certainly a�ord the space
to repeat the argument� Let�s agree to write �A for ��%A�� Find� by the G
odel
Fixed Point Lemma� G with PA 
 G � ��G� Suppose a � �G� then a � G

and� hence a � ��G� Quod non� Hence� for no a� a � �G� On the other
hand� if a � ��G� then there is a b with aSb and b � �G and thus b � �G� A
contradiction� �

��



Not only is � arithmetically unde
nable� it falsi
es induction for L�PA in Big�
since we can use � to de
ne the �standard� natural numbers� as the following
theorem shows�

Theorem D�� There is a L�PA�fromula in one variable that de�nes the �stan�
dard� natural numbers in a� As a consequence true arithmetic can be interpreted
into fA�L�PA j Big � Ag�

Proof

We show that the predicate ��PA�x� de
nes the natural numbers in a� Say
X �& fm�a j a � ��PA�m�g� Since� for every n � �� PA 
 �PA�n�� we
have� � � X � Consider a non�standard element m of a� It is clearly su�cient
to show that m �� X � In case a � �PA�m
� we are done �by the identity
interpretation�� In case a � �PA�m�� we have� by the Second Incompleteness
Theorem� a j& �PA�m�PA�m
� We use the formalized Henkin Construction to
build �in a� an internal model b of �PA�m
� This internal model is the desired

witness that m �� X � �

The following theorem is due to Volodya Shavrukov� It is published here by his
permission�

Theorem D�� S� is the schematic modal logic of �� In other words	 / is
precisely the set of theorems of S��

Proof

Suppose 	 is unprovable in S�� We have a 
nite� transitive� re"exive Kripke
model K & hK�S��i and k in K s�t� k �� 	�

Add an R	bottom node � under K to obtain a simpli
ed ILM	model� Call
the new model K�� Let k�m� n range over the domain K� of K�� Now we
apply the Berarducci	Japaridze conditions for 
nite simpli
ed ILM	models �see
������!��� extended with an extra insight that is immediate from the proof���

There is a function � � k �� �k from K� to sentences of arithmetic� with the
following properties�

�� PA 

W
k	K� �k

�� �k �&
W
fm	K� j kSmg �m is  �

�� m �& n� PA 
 ���m ��n�

�� k �& �� PA 
 �k � �
W
kRm �m

��Berarducci and Japaridze assume also that the original model K has an R�bottom� This
assumption is never used in the proof�

��



�� mSkn� PA 
 �k � �m �PA �n

�� kRm� PA 
 �k � ���m �PA �
W
mSkn

�n�

�� �� is true

We claim� kS�m � N j& �k �PA �m� From left to right is immediate by
���� For the converse direction� suppose that not kS�m� then� by �� we have
N j& ���k �PA �

W
kS�n

�n�� But this is incompatible with N j& �k �PA �m� by
�� Hence N �j& �k �PA �m�

We de
ne k.a �� a � �k� We show that . is a total bisimulation for
ordinary modal logic� w�r�t� � de
ned on the atoms as before� between K and
Big� Totality is trivial� We leave the atomic case to the reader� Suppose k � K�
k.aSb� By � and the properties of S� we have b 


W
fm	K� j kSmg �m� and�

hence� for some m� kSm.b� Suppose k � K� k.a and kSm� By the choice of
our model� it follows that kS�m� and� hence� N j& �k �PA �m� Since a � �k�
the interpretation of PA� �m in PA� �k gives us a b� such that aSb � �m and�
ipso facto� m.b� �

��


