Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Lars S. von Chrzanowski, ${ }^{\text {a* }}$

Martin Lutz, ${ }^{\text {a }}$ Anthony L. Spek, ${ }^{\text {a }}$
Bart M. J. M. Suijkerbuijk ${ }^{\text {b }}$ and
Robertus J. M. Klein Gebbink ${ }^{\text {b }}$
${ }^{\text {a Bijvoet Center for Biomolecular Research, }}$ Crystal and Structural Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands, and ${ }^{\mathbf{b}}$ Organic Chemistry and Catalysis, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands

Correspondence e-mail:
I.vonchrzanowski@chem.uu.nl

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
Disorder in main residue
R factor $=0.024$
$w R$ factor $=0.054$
Data-to-parameter ratio $=22.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

\{2,6-Bis[(dimethylamino- κN)methyl]-4-\{[(2,5-dioxo-1-pyrrolidinyl)oxy]carbonyl\}-phenyl- $\left.\kappa C^{1}\right\}$ (diiodine)iodidoplatinum(II) dichloromethane hemisolvate

In the title compound $\left[\mathrm{Pt}\left(\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{4}\right) \mathrm{I}\left(\mathrm{I}_{2}\right)\right] \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$, the coordination environment of the $\mathrm{Pt}^{\mathrm{II}}$ centre is distorted square-pyramidal and is defined by two neutral N atoms and an anionic C atom from the mono-anionic ligand, an iodide anion, and an additional η^{1}-coordinated I_{2} molecule. Intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts result in a dimeric structure. The asymmetric unit of (I) consists of two independent $\left[\mathrm{PtI}\left(\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{4}\right)\left(\mathrm{I}_{2}\right)\right]$ molecules and a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent molecule

Comment

The study of the interaction of simple diatomic molecules with d^{8} transition metals is crucial for a better understanding of the mechanism of oxidative addition and reductive elimination reactions. Therefore, we report here the crystal structure of the title compound, (I), as a product of the addition of I_{2} to the pincer $\mathrm{Pt}^{\mathrm{II}}$ complex 3,5-bis-[(dimethylamino)methyl]-4-[iodidoplatino(II)]benzoic acid N-hydroxysuccinimide ester.

(I)

The asymmetric unit of (I) consists of two independent $\left[\operatorname{PtI}\left(\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{4}\right)\left(\mathrm{I}_{2}\right)\right]$ molecules and a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent molecule (Fig. 1). One molecule (containing Pt2) shows disorder

Received 16 March 2007
Accepted 21 March 2007
\qquad

Figure 1
The asymmetric unit of (I), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. Only one of the two disordered components is shown for molecule 2.

Figure 2
The disorder in the structure of the second molecule (Pt2). H atoms have been omitted for clarity. The minor disorder component is drawn with dashed bonds.
about the molecular axis over all atomic positions, except for the heavy atoms and the N atoms bonded to Pt2 (Fig. 2). In the following, we discuss only molecule 1, containing Pt1. Geometric parameters for the Pt 2 coordination environment are very similar to those for Pt 1 and are given in Table 1.
The coordination environment of the $\mathrm{Pt}^{\mathrm{II}}$ centre is defined by the mono-anionic ligand 2,6-bis[(dimethylamino)-methyl]-4-\{[(2,5-dioxo-1-pyrrolidinyl)oxy]carbonyl\}phenyl $\left(\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{4}\right)$, an iodide anion and an I_{2} molecule. The ligand is coordinated in a tridentate manner to the metal via the anionic C atom $[\mathrm{Pt} 1-\mathrm{C} 11=1.942$ (4) \AA] and the two neutral amine N atoms $[\mathrm{Pt} 1-\mathrm{N} 11=2.104$ (4) \AA and $\mathrm{Pt} 1-\mathrm{N} 12=$ 2.103 (4) \AA]. The iodide anion is coordinated trans to atom $\mathrm{C} 11\left[\mathrm{C} 11-\mathrm{Pt} 1-\mathrm{I} 11=173.70(12)^{\circ}\right]$, with a $\mathrm{Pt} 1-\mathrm{I} 11$ distance of 2.72985 (19) \AA. The I_{2} molecule is end-on η^{1}-coordinated to the $\mathrm{Pt}^{\mathrm{II}}$ centre $[\mathrm{Pt} 1-\mathrm{I} 21=2.8260(3) \AA$ A and is part of a linear $\mathrm{Pt} 1-\mathrm{I} 21-\mathrm{I} 23$ arrangement $\left[177.248(14)^{\circ}\right]$, with $\mathrm{I} 21-\mathrm{I} 31=$ 2.8379 (4) \AA. These distances compare well with those observed in similar $\mathrm{Pt}^{\mathrm{II}}$ complexes, such as $\left[\operatorname{PtI}(\mathrm{NCN})\left(\eta^{1}-\mathrm{I}_{2}\right)\right.$ $\left\{\mathrm{NCN}=2,6\right.$-bis[(dimethylamino)methyl]phenyl, $\left.\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{~N}_{2}\right\}$ reported by Gossage et al. (1999).

Figure 3
Hydrogen-bond interactions in (I). The $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts are shown as dashed lines. [Symmetry code: (i) $1-x,-y, 1-z$.]

The small bite angles of the chelate ligand $[\mathrm{C} 11-\mathrm{Pt} 1-\mathrm{N} 11$ $=82.09(15)$ and $\left.\mathrm{C} 11-\mathrm{Pt} 1-\mathrm{N} 21=82.15(15)^{\circ}\right]$ result in a distorted square-pyramidal geometry of the central $\mathrm{Pt}^{\mathrm{II}}$ atom. This can be quantified as 91.8% on the pathway from trigonal bipyramid to square pyramid (Holmes, 1984). The sum of the cis angles is 360°, although they deviate by up to 8° (for $\mathrm{N} 21-$ $\mathrm{Pt} 1-\mathrm{I} 11$) from the ideal value of 90°. The largest deviation for the trans angles is $19^{\circ}(\mathrm{N} 21-\mathrm{Pt} 1-\mathrm{N} 11)$ from the ideal value of 180°. A conformational analysis of ring puckering results in coefficients of 98.3° for the sine form of the $\mathrm{PtC}_{3} \mathrm{~N} 11$ chelate ring, and of 87.6° for the sine form of the $\mathrm{PtC}_{3} \mathrm{~N} 21$ chelate ring (Evans \& Boeyens, 1989). Therefore, the two five-membered $\mathrm{PtC}_{3} \mathrm{~N}$ chelate rings are best described as twist conformations and are puckered in the same direction, with the N atoms mutually cis. The torsion angles $\mathrm{Pt} 1-\mathrm{N} 11-\mathrm{C} 71-\mathrm{C} 21=$ $26.1(4)^{\circ}$ and $\mathrm{Pt} 1-\mathrm{N} 21-\mathrm{C} 101-\mathrm{C} 61=-28.6(4)^{\circ}$ result in a local non-crystallographic C_{s} symmetry.

The N-oxosuccinimide groups connect two molecules into a dimer structure via an intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contact, with $\mathrm{H} 16 A \cdots \mathrm{O} 11^{\mathrm{i}}=2.46 \AA$ [symmetry code: (i) $1-x,-y, 1-z$] (Table 2 and Fig. 3).

Experimental

The reaction of 3,5-bis-[(dimethylamino)methyl]-4-[iodidoplatino(II)]benzoic acid, prepared as reported by Suijkerbuijk et al. (2002), with I_{2} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane (1:1) results in the title compound,
(I). Dark-red crystals suitable for X-ray data collection were obtained after recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane (1:1).

Crystal data

$\left[\mathrm{Pt}\left(\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{4}\right) \mathrm{I}\left(\mathrm{I}_{2}\right)\right] \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ $M_{r}=950.63$
Triclinic, $P \overline{1}$
$a=8.7012$ (1) \AA
$b=15.1862(2) \AA$
$c=19.8391$ (4) \AA
$\alpha=99.2137(14)^{\circ}$
$\beta=90.7250(15)^{\circ}$

Data collection

Nonius KappaCCD area-detector diffractometer
Absorption correction: analytical (de Meulenaer \& Tompa, 1965)
$T_{\text {min }}=0.14, T_{\text {max }}=0.63$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.054$
$S=0.94$
11455 reflections
511 parameters
$\gamma=103.7589(13)^{\circ}$
$V=2509.90(7) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=9.41 \mathrm{~mm}^{-1}$
$T=150(2) \mathrm{K}$
$0.42 \times 0.09 \times 0.06 \mathrm{~mm}$

35716 measured reflections 11455 independent reflections 8859 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.036$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

Pt1-C11	1.942 (4)	Pt2-C12	1.966 (8)
Pt1-N21	2.103 (4)	Pt2-N22	2.098 (4)
Pt1-N11	2.104 (4)	Pt2-N12	2.103 (4)
Pt1-I11	2.6862 (3)	Pt2-I12	2.6827 (4)
Pt1-I21	2.8260 (3)	Pt2-I22	2.8198 (3)
I21-I31	2.8379 (4)	I22-I32	2.8472 (4)
Pt2-C13	1.908 (9)		
$\mathrm{C} 11-\mathrm{Pt} 1-\mathrm{N} 21$	82.15 (15)	$\mathrm{C} 13-\mathrm{Pt} 2-\mathrm{N} 12$	85.7 (3)
$\mathrm{C} 11-\mathrm{Pt} 1-\mathrm{N} 11$	82.09 (15)	$\mathrm{C} 12-\mathrm{Pt} 2-\mathrm{N} 12$	79.3 (3)
N21-Pt1-N11	161.06 (14)	N22-Pt2-N12	160.14 (16)
$\mathrm{C} 11-\mathrm{Pt} 1-\mathrm{I} 11$	173.70 (12)	$\mathrm{C} 13-\mathrm{Pt} 2-\mathrm{I} 12$	173.3 (4)
$\mathrm{N} 21-\mathrm{Pt} 1-\mathrm{I} 11$	98.26 (10)	$\mathrm{C} 12-\mathrm{Pt} 2-\mathrm{I} 12$	172.6 (4)
N11-Pt1-I11	96.26 (10)	N22-Pt2-I12	97.20 (12)
C11-Pt1-I21	84.54 (12)	N12-Pt2-I12	97.75 (11)
N21-Pt1-I21	94.22 (10)	C13-Pt2-I22	83.7 (5)
N11-Pt1-I21	94.68 (10)	$\mathrm{C} 12-\mathrm{Pt} 2-\mathrm{I} 22$	85.4 (4)
$\mathrm{I} 11-\mathrm{Pt} 1-\mathrm{I} 21$	101.675 (11)	$\mathrm{N} 22-\mathrm{Pt} 2-\mathrm{I} 22$	94.64 (11)
Pt1-I21-I31	177.248 (14)	N12-Pt2-I22	95.10 (10)
C13-Pt2-C12	6.5 (4)	$\mathrm{I} 12-\mathrm{Pt} 2-\mathrm{I} 22$	101.569 (11)
$\mathrm{C} 13-\mathrm{Pt} 2-\mathrm{N} 22$	78.2 (3)	Pt2-I22-I32	177.533 (15)
$\mathrm{C} 12-\mathrm{Pt} 2-\mathrm{N} 22$	84.3 (3)		
Pt1-N11-C71-C21	26.1 (4)	Pt2-N22-C102-C62	-28.4 (7)
Pt1-N21-C101-C61	-28.6 (4)	$\mathrm{Pt} 2-\mathrm{N} 12-\mathrm{C} 73-\mathrm{C} 23$	20.5 (11)
Pt2-N12-C72-C22	25.9 (9)	Pt2-N22-C103-C63	-35.1 (9)

Table 2
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 161-\mathrm{H} 16 A \cdots \mathrm{O} 11^{\mathrm{i}}$	0.99	2.46	$3.296(7)$	142
Symmetry code: (i) $1-x,-y, 1-z$.				

All H atoms were introduced in geometrically idealized positions, with $\mathrm{C}-\mathrm{H}=0.95-0.99 \AA$ and refined using a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$ for CH and $\mathrm{CH}_{2} \mathrm{H}$ atoms, or $1.5 U_{\mathrm{eq}}(\mathrm{C})$ for methyl H atoms. Disordered C, N and O atoms were refined isotropically. The highest peak and deepest hole in the residual electron density are both $0.8 \AA$ from atom I12. All C and O atoms and atom N 32 in the second molecule (Pt 2) are disordered about the long axis of the molecule. The occupancy factors for these positions were refined to 0.566 (6) and 0.434 (6). Atoms C41/C131/O11/O21/N31, $\mathrm{C} 42 / \mathrm{C} 132 / \mathrm{O} 12 / \mathrm{O} 22 / \mathrm{N} 32$ and $\mathrm{C} 42 / \mathrm{C} 133 / \mathrm{O} 13 / \mathrm{O} 23 / \mathrm{N} 33$ were restrained to lie on respective common planes.

Data collection: COLLECT (Nonius, 1999); cell refinement: DIRAX (Duisenberg, 1992); data reduction: EVALCCD (Duisenberg et al., 2003) and SORTAV (Blessing, 1987); program(s) used to solve structure: DIRDIF97 (Beurskens et al., 1997); program(s) used to refine structure: $S H E L X L 97$ (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: manual editing of the SHELXL97 output.

This work was supported by the Council for Chemical Sciences of the Netherlands Organization for Scientific Research (CW-NWO).

References

Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., García-Granda, S., Gould, R. O., Smits, J. M. M. \& Smykalla, C. (1997). The DIRDIF97 Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.
Blessing, R. H. (1987). Crystallogr. Rev. 1, 3-58.
Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.
Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. \& Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.

Evans, D. G. \& Boeyens, J. C. A. (1989). Acta Cryst. B45, 581-590.
Gossage, R. A., Ryabov, A. D., Spek, A. L., Stufkens, D. J., van Beek, J. A. M., van Eldik, R. \& van Koten, G. (1999). J. Am. Chem. Soc. 121, 2488-2497.
Holmes, R. R. (1984). Prog. Inorg. Chem. 32, 119-235.
Meulenaer, J. de \& Tompa, H. (1965). Acta Cryst. 19, 1014-1018.
Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Suijkerbuijk, B. M. J. M., Slagt, M. Q., Klein Gebbink, R. J. M., Lutz, M., Spek,
A. L. \& van Koten, G. (2002). Tetrahedron Lett. 43, 6565-6568.

