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Abstract

In this paper, we show that the predicate logics of consistent extensions
of Heyting’s Arithmetic plus Church’s Thesis with uniqueness condition
are complete Π0

2. Similarly, we show that the predicate logic of HA∗, i.e.
Heyting’s Arithmetic plus the Completeness Principle (for HA∗) is com-
plete Π0

2. These results extend the known results due to Valery Plisko. To
prove the results we adapt Plisko’s method to use Tennenbaum’s Theorem
to prove ‘categoricity of interpretations’ under certain assumptions.
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1 Introduction

In this paper, we extend Plisko’s negative results concerning predicate logics
of constructive theories. We show, for two classes of theories, that the set of
schematically valid predicate logical sentences of those theories is complete Π0

2.
The first class consists of theories which prove a version of Church’s Thesis.1

The second class contains sufficiently sound theories T that prove their own
Completeness Principle: if A, then A is provable in T .

The methodology we employ is to prove a version of Tennenbaum’s Theo-
rem for interpretations, showing that, over the given theory T , a suitable weak
arithmetic F is categorical for interpretations. This means that T proves, for
any two interpretations, that if they both interpret F then they are isomor-
phic. This method was developed by Valery Plisko in a series of papers, to wit
[Pli73, Pli77, Pli78, Pli83, Pli90, Pli91, Pli93, Pli02].

There is an illuminating way of looking at these results. We can view the
constructive connectives as an extension of the classical ones. Let’s put our-
selves at the standpoint that the constructive connectives are basic and that
the classical ones are defined via the double negation translation. From this
point of view, classical conjunction, implication and universal quantification co-
incide with their constructive counterparts, but classical disjunction is ¬ (¬∧¬)
and classical universal quantification is ¬∃¬, Thus, constructive disjunction and
existential quantification appear as new connectives additional to the classical
ones. We view e.g. HA as an extension of PA. Now the demand that relative
interpretations commute with the new connectives appears as an extra con-
straint. It is not at all surprising that under this further constraint we will find
less relative interpretations.

We could also extend our classical language not with constructive disjunc-
tion and existential quantification, but with, say, a modal necessity operator
and see what happens then. In fact, this idea was extensively studied for the
interpretation of the necessity operator as formal provability. It turned out that
we meet analogous phenomena. E.g., following a similar path, we can show that
the predicate provability logic of PA is complete Π0

2.
2

1Our result for the first class improves Plisko’s result by eliminating the use of Markov’s
Principle.

2For an exposition, see [Boo93] or [AB04]. The original papers are [Art80, Mon87, Var86,
BM87]. For a further development, see [Vis03].
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Remark 1.1 There is a clear connection between interpretations and models.
A relative interpretation of V in U can be viewed as a uniform construction
of V -models as inner models of U -models. Thus, it is not surprising that an
analogous categoricity theorem can be proved for models. It is consistent with
reasonable constructive metatheories like CZF that Heyting Arithmetic (HA)
is categorical.3 What is more: in a constructive metatheory, like CZF, rich
enough to formalize the notion of satifaction, enriched with a suitable version of
Church’s Thesis and Markov’s Principle, we can prove that (a sufficiently rich
subsystem of) Heyting’s Arithmetic (HA) is categorical. See e.g. [McC91]. It
seems to me that Markov’s Principle is superfluous: mimicking the methods of
this paper one should be able to show, in a sufficiently strong metatheory which
includes Church’s thesis, that iS1

2, i.e. the constructive version of Buss’ theory
S1

2, is categorical. I will not explore this line further in this paper.

Acknowledgements

I thank Peter Aczel, Lev Beklemishev, Emil Jerabek, Helmut Kohlenbach, Joan
Moschovakis and Jaap van Oosten for illuminating discussions.

2 Relative Interpretations

In my paper [Vis04], I developed a framework for translations and interpreta-
tions. In the present paper, we need only a small part of that framework. We
introduce the notions we need.

2.1 Constructive Predicate Logic

We study the predicate logics of certain arithmetical theories. For that reason
it is important to be clear what predicate logic is supposed to be. We choose
to study constructive predicate logic in relational languages of finite signature
with identity. Informally, we will also work with languages with terms. These
languages can be translated using a standard algorithm to corresponding rela-
tional languages. This algorithm, fortunately, is also correct for constructive
logic.

A signature Σ is a triple 〈pred, ar, E〉, where pred is a finite set of predicate
symbols, where ar : pred → ω is the arity function. The special predicate E is
binary. It represents the identity relation. We will often write ‘=’ for: E.

We assume that we are given a fixed ω-ordered sequence of variables v0, v1, . . ..
We will use x, y, x0, . . . as metavariables ranging over variables. (We will follow
the usual convention that, if e.g. “v3”, “x” and “y” are used in one formula,
they are supposed to be distinct.) Formulas and sentences based on Σ and
v0, v1, . . . are defined in the usual way.

A theory of signature Σ will be given by its axioms, i.e. a set of sentences of
the signature. Derivability from the theory employs the axioms and the rules of

3Models here are supposed to be models in the classical sense.
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constructive predicate logic including the identity axioms and rules for E. We
will assume that the axiom set of our theories is appropriately simple, say p-
time decidable. The minimal theory of a given signature Σ is the (constructive)
predicate logic PredΣ.

2.2 Relative Translations

Let Σ and Θ be signatures. A relative translation τ : Σ → Θ is given by a
pair 〈δ,Φ〉. Here δ is a Θ-formula representing the domain of the translation.
We demand that δ contains at most v0 free. The mapping Φ associates to each
relation symbol R of Σ with arity n an Θ-formula Φ(R) with variables among
v0, . . . , vn−1. We translate Σ-formulas to Θ-formulas as follows:

• (R(y0, · · · , yn−1))τ := Φ(R)(y0, · · · , yn−1);4

• (·)τ commutes with the propositional connectives;

• (∀y A)τ := ∀y (δ(y) → Aτ );

• (∃y A)τ := ∃y (δ(y) ∧Aτ ).

We call τ unrelativized if δτ is given by v0 = v0. Suppose τ is 〈δ,Φ〉. Here are
some convenient notations.

• We write δτ for δ and Fτ for F .

• We write Rτ for Φτ (R).

• We write ~x ∈ δ for: δ(x0) ∧ . . . ∧ δ(xn−1).

• We write ∀~x∈δ A for: ∀x0 . . .∀xn−1 (~x ∈ δ → A).

• We write ∃~x∈δ A for: ∃x0 . . .∃xn−1 (~x ∈ δ ∧A).

We can compose relative translations as follows:

• δτν := (δν ∧ (δτ )ν),

• Rτν = (Rτ )ν .

We write ν ◦ τ := τν. Note that (Aτ )ν is provably equivalent in predicate logic
to Aτν . The identity translation id := idΘ is defined by:

• δid := (v0Ev0),

• Rid := R(v0, . . . , vn−1).

4Here Φ(R)(y0, · · · , yn−1) is our sloppy notation the result of substituting the yi for the
vi in Φ(R). We assume that some mechanism for α-conversion is built into our definition of
substitution to avoid variable-clashes.
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2.3 Relative Interpretations

A translation τ supports a relative interpretation of a theory U in a theory V ,
if, for all U -sentences A, U ` A ⇒ V ` Aτ . (Note that this automatically takes
care of the theory of identity. Moreover, it follows that V ` ∃v0 δτ .) We will
write K = 〈U, τ, V 〉 for the interpretation supported by τ . We write K : U → V
for: K is an interpretation of the form 〈U, τ, V 〉.

When no confusion is possible, we will often write ‘RK ’ for ‘RτK
’, ‘AK ’ for

AτK , etc.

Suppose that T and T ′ have signature Σ and T ⊆ T ′. Suppose further that
K : U → V , M : V → W . We define:

• ET,T ′ : T → T ′ is 〈T, idΣ, T ′〉. idT := ET,T .

• M ◦K : U → W is 〈U, τM ◦ τK ,W 〉.

We identify two interpretations K, K ′ : U → V if:

• V ` δK ↔ δK′ ,

• V,~v : δ ` PK ↔ PM , where ar(P ) = n and ~v = v0, . . . , vn−1.

One can show that modulo this identification, the above operations give rise to
a category of interpretations that we call iINT.

We will be interested in interpretations of PredΣ in a theory U . It should be
noted that it is not automatic that a translation between the right signatures
supports such an interpretation. What is needed is precisely that U verifies
that δτ is inhabited and that Eτ is a congruence (on δτ ) w.r.t. the translated
predicates Pτ . All of this can be expressed in a single sentence.

In classical logic, this point is of minor importance. Let’s write ‘cPred’ for
classical predicate logic. Consider any translation τ from Σ to Θ. We can
effectively find a new translation τ◦ such that τ◦ supports an interpretation of
(c)PredΣ in cPredΘ, and such that, whenever τ supports an interpretation of
(c)PredΣ in U , then the interpretations from (c)PredΣ to U , supported by τ and
τ◦ are the same. The idea is simple. Let C be the single sentence expressing
that τ supports an interpretation of predicate logic. Now define:

• δτ◦(v0) :↔ ((C ∧ δτ (v0)) ∨ (¬C ∧ v0 = v0)),

• v0Eτ◦v1 :↔ ((C ∧ v0Eτv1) ∨ (¬C ∧ v0 = v1)),

• Pτ◦~v :↔ Pτ~v.

So, in the classical case, we could always work with the modified translations.
These would always give us an interpretation of predicate logic. However, the
correctness of this construction relies heavily on classical logic. Thus, in the
constructive case, we must take care not to confuse translations with interpre-
tations of predicate logic. Note that we have proved the following lemma.
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Lemma 2.1 Suppose U and V are classical theories and U is a subtheory of
V . Suppose further that K : PredΣ → V . Then we can find a K◦ : PredΣ → U ,
such that K = EU,V ◦K◦.

The following picture shows the situation of Lemma 2.1

U
E - V

PredΣ

K◦

6

K

-

2.4 Definable Maps between Interpretations

We extend iINT with extra structure. In this enriched category, iINTmorph, the
arrows between two objects play themselves the role of objects in a category as
follows. Consider K, M : U → V . An arrow F : K ⇒ M is a V -definable, V -
provable morphism from K to M considered as ‘parametrized internal models’.
Specifically, this means that a morphism from K to M is given as a triple
〈K, F, M〉, where F is a formula with the following properties.

• The free variables of F are among v0, v1. We write F (x, y) or xFy, for:
F [v0 := x, v1 := y].

• V ` xFy → (x ∈ δK ∧ y ∈ δM ).

• V ` (x ∈ δK ∧ y ∈ δM ∧ xEKx′Fy′EMy) → xFy.

• V ` ∀x∈δK ∃y∈δM xFy.

• V ` (xFy ∧ xFy′) → yEMy′.

• V ` ~xF~y → (PK~x → PM~y).5

Here ‘~xF~y’ abbreviates x0Fy0 ∧ . . . ∧ xn−1Fyn−1, for appropriate n.

We will call the arrows between interpretations: i-maps. We consider F,G :
K ⇒ M as equal when they are V -provably the same. The identity IDK :
K ⇒ K is given by: v0(IDK)v1 :↔ v0, v1 ∈ δK ∧ v0EKv1. If A : K ⇒ L and
B : L ⇒ M , then B ·A : K ⇒ M is the obvious ‘vertical’ composition of B and
A.

An isomorphism of interpretations is easily seen to be a morphism with the
following extra properties.

• V ` ∀y∈δM ∃x∈δK xFy,

• V ` (xFy ∧ x′Fy) → xEKx′,
5Note that if P represents a function in U , then, by elementary reasoning, we have:

V ` ~xF~y → (PK~x ↔ PM~y).
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• V ` ~xF~y → (PM~y → PK~x).

In some cases we can define meaningful horizontal compositions between i-maps
and interpretations. However, this idea is beyond the scope of the present paper.
The reader is referred to [Vis04].

We may obtain a new category ihINT by dividing out i-isomorphisms between
morphisms.

2.5 Predicate Logics of Theories

Consider any theory U . Let Σ be a signature and let PredΘ be predicate logic
in the signature Σ. We define:

• PREDΣ(U) := {A∈sentΣ | ∀K ((K : PredΣ → U) ⇒ U ` AK)}.

We will speak of the predicate logic of U . Note that, strictly speaking, the
predicate logic of U is a function from signatures to sets of sentences. We will
measure the complexity of the predicate logic of U by considering a signature for
which this complexity is maximal. (There will always be such a signature.)

The unrelativized predicate logic of U is what we obtain if we restrict our-
selves in the definition of PRED to unrelativized interpretations.

There is an obvious generalization of our definition. Let U and V be theories.
We define:

• VALV (U) := {A∈sentV | ∀K ((K : V → U) ⇒ U ` AK)}.

So, VALV (U) is the set of all U -admissible consequences of V .

We have the following theorem.

Theorem 2.2 Suppose V is a classical theory and U is a subtheory of V . Then,
PREDΣ(U) ⊆ PREDΣ(V ).

Proof

Suppose A is in PREDΣ(U) and K : PredΣ → V . By Lemma 2.1, we can find
a K◦ : PredΣ → U , such that, for any sentence B of signature Σ, we have
U ` BK◦ ⇒ V ` BK . Clearly, U ` AK◦

. Hence, V ` AK . 2

It would be interesting to know a bit more of when we can have monotonicity
in the constructive case.
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2.6 Preliminaries on Arithmetical Theories: Part 1

In this subsection, we will introduce the preliminaries on arithmetical theories
needed for the paper as a whole. For Section 7, we will need some further
notions and notations. We postpone their introduction to Subsection 7.1.

Suppose that U is an extension of HA in the language of HA. Suppose also
that K : V → U , where V is a subtheory of U which extends iQ, the constructive
version of Robinson’s Arithmetic. We define in U (modulo arithmetization):

• xFKx′ iff there is a sequence σ with length(σ) = x + 1, such that ZK(σ0),
and for all i < x we have σiSKσi+1 and σx = x′.

We have the following theorem.

Theorem 2.3 Suppose V and U are arithmetical theories. Suppose further that
U satisfies full induction and that iQ ⊆ V ⊆ U . Let K : V → U . Then, FK is
an initial i-embedding from EV,U to K, i.e. FK is an injective i-morphism which
embeds EV,U into an initial part of K. Moreover, modulo provable sameness, FK

is the unique i-morphism from EV,U to K.

The proof is a formalization of the standard Dedekind argument that the stan-
dard numbers are initial in any non-standard model.6

We introduce the following useful notation:

(†) (Ax̆)K :↔ ∃x′ (xFKx′ ∧ (Ax′)K).

Note that U ` xFKy ↔ (x̆ = y)K . We may view our notation as follows. First,
we extend the predicate logical language with a new variable x̆ for each variable
x. We stipulate that the x̆ may only occur as free variables. Now we extend the
clauses for interpretations, by (†), stipulating that this clause is always executed
before the clause for the main connective.

Note that (Bx̆∧Cx̆)K will not be syntactically equal of to (Bx̆)K ∧ (Cx̆)K .
However, using the functionality of FK , we can get the commutation clauses for
(·)K , modulo provable equivalence. E.g.

• U, y ∈ δK ` (Ax̆y ∧Bx̆y)K ↔ ((Ax̆y)K ∧ (Bx̆y)K),

• U, y ∈ δK ` (¬Ax̆y)K ↔ ¬ (Ax̆y)K .

• U, y ∈ δK ` (∀z Ax̆yz)K ↔ ∀z∈δK (Ax̆yz)K .

From the fact that F is an initial embedding, we have that, for Σ0
1-formulas S~x,

• U ` S~x → (S~̆x)K .

6Suppose U extends iQ. Then, the statement that, for every K : iQ → U , there is a unique
morphism from EiQ,U to K, is equivalent to induction. I.o.w., EiQ,U is initial in the i-category
of interpretations from iQ to U iff U satisfies full induction. See [Vis04].
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3 The Classical Case

Our focus in this paper is on predicate logics of constructive arithmetical the-
ories. The aim of this section is just to briefly survey what is known in the
classical case. We will just treat arithmetical theories. For discussion of the
general case, see [Yav97]. We have:

Theorem 3.1 Consider any finitely axiomatized arithmetical theory U . Then,
we can find a recursively axiomatizable extension W of U such that the predicate
logic of W is complete Π0

2.

This is in essence Theorem (C.7) on p127 of [Vis05]. In case we consider essen-
tially reflexive theories, the situation is different. The following theorem is a
special case of the results of Appendix A of [Vis99].

Theorem 3.2 Let U be an extension of PA in the language of PA. We have:
PREDΣ(U) ` A iff U ` 2cPredΣA.

So, the predicate logic of U corresponds precisely with U ’s idea of what predicate
logic is.

Proof

By formalizing the model existence lemma we can find an interpretation K :
B → (U + con(B)). Here consistency is consistency in classical logic. By
Lemma 2.1, we can find an interpretation K◦ : cPredΣ → U such that

EU,U+con(B) ◦K◦ = K ◦ EcPredΣ,B .

It follows, taking B := ¬A, that, if U ` AK◦
, then U ` 2cPredΣA.

Conversely, suppose U ` 2cPredΣA. Let K be any interpretation of cPredΣ in U .
We only need finitely many axioms to verify that K is such an interpretation.
Let these axioms be below n. We find U ` 2U,nAK . By the essential reflexivity
of U , we get U ` AK . 2

We have the following corollary.

Corollary 3.3 Let U be an extension of PA in the language of PA. We have
that PREDΣ(U) is recursively enumerable. Moreover, the predicate logic of U is
ordinary predicate logic iff U is Σ0

1-sound.

Proof

We treat the second claim. In case U is Σ0
1-sound, then U ` 2PredΣA implies

PredΣ ` A. Conversely, suppose that U ` S, where S is a false Σ0
1-sentence.

Let Θ be the signature of arithmetic. Then, we have, for any interpretation K
of PredΘ in U , U ` (Q → S)K . So, PREDΘ(U) ` Q → S. 2

9



Open Question 3.4 Let U be an extension of PA in the language of PA. It
is a bit unsatisfactory that we do not have an axiomatization of PREDΣ(U). I
conjecture that this is cPredΣ plus all axioms of the form (Q → S)K , where
U ` S and where K : cPredΘ → cPredΣ. Here Θ is the signature of arithmetic.

4 Categoricity

In this section, we study categoricity for interpretations. We fix some finitely
axiomatized theory F, which is not too strong. It is pleasant to keep this theory
‘fluid’, so that we can add assumptions to it, when needed. For the time being F
could be any theory between iQ and iEA, the constructive version of Elementary
Arithmetic, which is given by ∆0-induction and the axiom Exp, which states that
exponention is total. We will always assume that F is a subtheory of the theories
we are considering.

We define the Categoricity Scheme Cat and the Categoricity Rule CatR, as
follows:

CatS ` FK → “FK is an isomorphism”.

CatR ` FK ⇒ ` “FK is an isomorphism”.

In the formulation of the scheme and the rule, “K” ranges over interpretations
of PredΘ in U . Here Θ is the signature of arithmetic.7

Both CatS and CatR are inconsistent with classical logic, under rather general
circumstances. Suppose U is classical and U ` con(F). In this case, there is
a K : F → U that is restricted, i.e. such that there is a predicate K̃ with
U ` AK ↔ K̃(pAq), for all arithmetical sentences A. Using the supposed
isomorphism FK , we may transform K̃ into an ordinary truthpredicate. Thus,
both CatS and CatR are in immediate contradiction with Tarski’s theorem of
the undefinability of truth.

We will consider the Scheme and the Rule for extensions of HA in the lan-
guage of HA. Since, HA ` con(iEA) and iEA will be the strongest version of F
we consider, there are no classical extensions of HA satisfying CatS or CatR.

Open Question 4.1 Are there interesting equivalents or characterizations of
CatS and CatR?

We sketch an argument due to Valery Plisko. Suppose that U is a consistent
extension of HA in the arithmetical language and that U implies CatS. We show
that the predicate logic of U is complete Π0

2.
To avoid cluttering the presentation, let’s first suppose that U is Σ0

1-sound.
We consider relative interpretations of predicate logic for ΘX , the signature of

7Note that my use of ‘Scheme’ versus ‘Rule’ is abus de langage. In fact, the Scheme is
also a rule, since the Scheme is only applicable if U ` CτK , where CτK is the single axiom
expressing that τK supports an interpretation of predicate logic.
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the arithmetical language plus one additional unary predicate X. We define, in
this language, a formula TP(x, X) expressing that ‘X is a truth predicate for
arithmetical formulas up to complexity x’ (in the sense that it commutes with
the predicate logical connectives in the desired way). Here we take any system
of computing complexities such that in HA we have (i) a partial truthpredicate
for formulas of any complexity and (ii) a complexity for each formula.8 Consider
any Π0

2-sentence A = ∀x∃y A0xy, where A0 is ∆0
0. We define Ã as follows:

• Ã :↔ (
∧

F → ∃u (¬TP(u, X) ∧ ∀x<u ∃y A0xy)).

We claim that Ã is in the predicate logic of U iff A is true.

First, suppose that A is true. Consider any K : PredΘX
→ U . Let K− be the

restriction of K to the signature Θ. Thus, K− : PredΘ → U . By CatS, we find
that F := FK− is an i-isomorphism in U + FK . We have, for any n and any
arithmetical sentence C of complexity < n with Gödelnumber c,

U + FK ` (TP(n̆,X) → (X(c̆) ↔ C))K (1)

(Here, we read the underlining with wide scope.) Let B := XK . It follows that:

U + FK ` (TP(n̆,X))K → (∃x (cFx ∧Bx) ↔ C) (2)

Using the Gödel Fixed Point Lemma, we can construct a formula L with Gödel-
number ` such that:

HA ` L ↔ ¬∃x (`Fx ∧Bx) (3)

We take N to be the complexity of C plus 1. We may conclude, combining
equation (2) (with L, `,N for C, c, n) with equation (3):

U + FK ` ¬ (TP(N̆ ,X))K (4)

We clearly have F ` ∀x<N ∃y A0xy. So, U ` (
∧

F → ∀x<N ∃y A0xy)K . Thus,
U ` (Ã)K . We find that Ã is in the predicate logic of U .

Conversely, suppose Ã is in the predicate logic of U . Consider any n. We define
en as follows. The interpretation en is unrelativized. When restricted to Θ it is
the identical interpretation. Moreover, en sends X to a partial truthpredicate for
formulas of complexity n. Specializing the U -validity of Ã to the interpetation
en, it follows that U ` ∀x<n ∃y A0xy. By Σ0

1-soundness we are done.

To handle the non-Σ0
1-sound case, we use the following theorem, which is a

minor variation of a theorem due independently to Friedman, Goldfarb and
Harrington.

Theorem 4.2 Let U be a consistent arithmetical theory that extends iQ. For
any Σ0

1-formula Sx, we can effectively find a Σ0
1-formula Rx, such that Sn is

true iff Rn is true iff U ` Rn.
8See e.g. [Bur00] for good notion of complexity.
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See [Vis05] for an exposition. Now take Sx to be ∃y A0xy. Let Rx be as
promised by the above theorem and take B := ∀x Rx. Define A◦ := B̃. Then
we clearly have that A is true if B is true. Moreover, since U ` ∀x<n Rx implies
that ∀x<n Rx is true, we find that A◦ is in the predicate logic of U iff B is true.
Combining, we have that A◦ is in the predicate logic of U iff A is true.

Note that the above result holds also when we restrict the class of interpreta-
tions to any class that includes the en. Thus, the result holds for unrelativized
interpretations.

5 Church’s Thesis with Uniqueness Condition

In this section, we will show that, over HA, Church’s Thesis with uniqueness
condition implies the Categoricity Scheme. Let’s for the moment assume that
F is iEA. Later, we will argue that with some care F can be taken to be iS1

2.
Let T be Kleene’s T -predicate. We define:

• x · y ' z :↔ ∃u (Txyu ∧ Uu = z),

• (x · y) ↓ :↔ ∃u Txyu,

• x ·v y ' z :↔ ∃u<v (Txyu ∧ Uu = z).

Let U be an extension of HA + CT0!. Here:

CT0! ` ∀x∃!y Axy → ∃e ∀x ((e · x) ↓ ∧Ax(e · x))

The scheme CT0! is essentially weaker than the scheme CT0. This has been
shown by Vladimir Lifschitz in his [Lif79]. See also [Oos90].

Suppose K : F → U . Let F = FK be the unique initial embedding. We
will show that F is surjective and, hence, an i-isomorphism. Thus K will be
i-isomorphic to EF,U .

By our stipulation that F is iEA, we have:

(‡) F ` ∀a∀x (¬ (x ·a x ' 0) ∨ (x ·a x ' 0)).

This follows from the following facts.

a) iEA proves ∆0(exp)-induction.

b) ∆0(exp)-induction proves decidability of ∆0(exp)-formulas.

c) The T -predicate is ∆0(exp).

Reason in U . Consider any a ∈ δK . We have:

(∀x (¬ (x ·a x ' 0) ∨ (x ·a x ' 0)))K (5)

12



So, it follows:
∀x (¬(x̆ ·a x̆ ' 0)K ∨ (x̆ ·a x̆ ' 0)K) (6)

By CT0! we can find a recursive index e such that:

∀x ∃y≤1 e · x ' y (7)
∀x e · x ' 0 → ¬(x̆ ·a x̆ ' 0)K (8)
∀x e · x ' 1 → (x̆ ·a x̆ ' 0)K (9)

Suppose e · e ' 1. Then, by the initiality of FK , (ĕ · ĕ ' 1)K . On the other
hand, by equation (9), (ĕ · ĕ ' 0)K . A contradiction.

So, e · e ' 0. Thus, for some v, we have e ·v e ' 0 and, hence, (ĕ ·v̆ ĕ ' 0)K .
Suppose that (v̆ < a)K . It follows that (ĕ ·a ĕ ' 0)K . So, we have a contradiction
with equation (8). We may conclude that (a ≤ v̆)K . Hence, for some z, zFa.

Thus, F is surjective and, hence, an isomorphism.

Note that (‡) is the most heavy assumption we made about F. Since Kleene’s T -
predicate is ∆b

1 in iS1
2, the main problem is the first bounded universal quantifier

in (x̆ ·a x̆ ' 0). Note, however, that we could replace (‡) by

(£) F ` ∀a∀x (¬ (x ·|a| x ' 0) ∨ (x ·|a| x ' 0))K .

The principle (£) is verifiable in iS1
2, since (x ·|a| x ' 0) will be ∆b

1. Our
argument now tells us that b := |a| in K is in the range of F . Say xFb. Now
it is easy to see that, there is a c with 2x+1Fc and c >K a. Hence, for some y,
yFa, and we are done.

Finally, consider any theory W extending HA+CT0!. We verify that W satisfies
CatS. Consider any K : PredΘ → W . Let τ := τK be the underlying translation.
Clearly, τ also supports an interpretation K# : F → (W + Fτ ). Now apply the
above result, noting that, qua formula, FK = Fτ = FK# .

Remark 5.1 Let I be a formula with just x free, Consider, the following variant
of CT0!.

CT0!(I) ` (cut(I) ∧ ∀x∈I ∃!y∈I Axy) → ∃e∈I ∀x∈I (((e · x) ↓)I ∧Ax(e · x))

We extend iEA with all CT0!(I). We can adapt the above arguments to show
that the resulting theory satisfies full induction, and, thus, coincides with HA+
CT0!. Thus, in a rather weak sense, Church’s Thesis implies induction.

6 Interpretations over HA

In the light of the results of the previous section what can we say about inter-
pretations in HA? Suppose K : F → HA. Then, it follows that EHA,HA+CT0! ◦K
is isomorphic to EF,HA+CT0!. Thus, if HA ` AK , then HA + CT0! ` A. So the
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arithmetical extensions of F that are interpretable in HA will be bounded by
HA + CT0!.

It also follows that such a K cannot be restricted, since it is i-isomorphic to E
in HA + CT0!.

We can do better if we assume the domain of K to be almost negative. Suppose
δK in almost negative. We find:

HA ` ∀a∈δK (∀x (¬ (x ·|a| x ' 0) ∨ (x ·|a| x ' 0)))K (10)

Hence:
HA ` ∀a∈δK ∀x (¬ (x̆ ·|a| x̆ ' 0)K ∨ (x̆ ·|a| x̆ ' 0)K) (11)

Now we may apply extended Church’s Rule to obtain the desired index e of a
function that chooses between the disjuncts.9 We now argue as before to show
that FK is an isomorphism.

Thus, we find that, over HA, the theory HA itself admissibly follows from iS1
2,

provided that we only consider interpretations with almost negative domain
formulas. Since, unrelativized interpretation have, a fortiori, an almost negative
domain, we have: VALunr

iS1
2
(HA) = HA.

Open Question 6.1 Can we relatively interpret some strict extension of HA
in HA?

7 The Completeness Principle

In this section we study the predicate logic of the theory HA∗. We will introduce
the theory in Subsection 7.2.

7.1 Preliminaries on Arithmetical Theories: Part 2

We will employ Guaspari’s witness comparison notation. Suppose A is of the
form ∃x A0x and B is of the form ∃y B0y. Suppose further that x is not free in
B and y is not free in A.10 We will write:

• A ≤ B :↔ ∃x (Ax ∧ ∀y<x ¬By).

• B < A :↔ ∃y (By ∧ ∀x<y ¬Ax).

• Ey :↔ ∃z y = z.
9We need the extended rule to find e on the assumption that a ∈ δK , for an almost

negative δK . Note that Troelstra and van Dalen misstate the principle in their [TvD88],
p243, forgetting the restriction on the antecedent.

10If A and B do not satisfy the variable conditions, we take suitable α-variants that do.
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So, we have e.g.: Ey ≤ ∃x Ax ↔ ∀x<y ¬Ax. If we have a disjunction ∃x A0x∨
∃y B0y in a witness comparison, we read this formula as ∃z (A0z ∨B0z).

We will employ the following arithmetizations.

• sent: the predicate defining the set of (gödelnumbers of) sentences of the
arithmetical language.

• proofT (p, x): the arithmetization of the proof predicate.

• provT (x): the arithmetization of the provability predicate.

• neg: the arithmetization of the operation that sends a formula to its nega-
tion.

• n: the numeral of n.

• pAq: the numeral of the the gödelnumber of A.

• sub(x, y, z): the relational arithmetization of the function that sends x and
y to the gödelnumber z of the formula that is the result of substituting
the numeral of x for v0 in the formula coded by y. So, e.g., the following
is a true sentence: sub(n, pv0 = v1q, pn = v1q);

• 2T Aẏ: ∃p∃z<p ( sub(y, pAv0q, z)∧proofT (p, z)) (and similarly for several
variables). We put the quantifier over proofs in front because of the role
this quantifier will play in witness comparisons.

• p : 2T Aẏ: ∃z<p ( sub(y, pAv0q, z) ∧ proofT (p, z)).

We won’t consider the dot notation under multiple nestings of the 2, so we need
not discuss what happens in that case. To get some feeling for the combination
of the dot notation and the breve notation, we look at some examples.

i) 2T (A˘̇x)K : this is ∃p∃z<p ( sub(x, p∃v1(v0FKv1 ∧Av1)q, z)∧ proofT (p, z)).

ii) 2T (A ˙̆x)K : this makes no sense. To unwind the dot notation, we first have
to compute the K-translation. This cannot be done without first removing
the dot.

iii) (2T A ˙̆x)K : this is ∃y (xFKy ∧ ∃p∃z<p ( sub(y, pAv0q, z) ∧ proofT (p, z))).

7.2 What is HA∗?

The theory HA∗ was introduced in [Vis82]. The theory consists of HA plus the
Completeness Principle for HA∗. The Completeness Principle for a theory T is
given by:

CP[T ] ` A → 2T A.
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We have HA∗ := HA + CP[HA∗].11 The theory HA∗ was used as a technical tool
in [dJV96] and in [Vis02].

A principle closely connected to the Completeness Principle is the Strong
Löb Principle SLP. This principle is given by:

SLP[T ] ` (2T A → A) → A

As a special case of SLP we have ` ¬¬2T⊥. One can show that SLP and CP
are interderivable.

We briefly review some of the results of [Vis82] and [dJV96].

• Michael Beeson introduced the notion of fp-realizability in [Bee75]. The
simplest variant of this form of realizability is a provability translation.
The theory HA∗ is to this translation as Troelstra’s HA + ECT0 is to
Kleene’s r-realizability. This means that HA∗ is the set of sentences such
that their provability translations are provable in HA.

• Let A be the smallest class closed under atoms and all connectives, where
the clause for implication is restricted as follows:

(A ∈ Σ1 and B ∈ A) ⇒ (A → B) ∈ A.

Note that modulo provable equivalence in HA all prenex formulas (of the
classical arithmetical hierarchy) are in A. The theory HA∗ is conservative
w.r.t. A over HA.

• There are infinitely many incomparable T with T = HA+CP[T ]. However
if T = HA + CP[T ] verifiably in HA, then T = HA∗.

• Let KLS:=Kreisel-Lacombe-Shoenfield’s Theorem on the continuity of the
effective operations. We have HA∗ ` KLS → 2HA∗⊥. This immediately
gives Beeson’s result that HA 0 KLS. See [Bee75].

• Every prime RE Heyting algebra H can be embedded into the Heyting al-
gebra of HA∗. This mapping is primitive recursive and sends every element
of the algebra to a Σ-sentence (modulo provability). See [dJV96].

7.3 The Predicate Logic of HA∗

In this subsection, we will show that the predicate logic of HA∗ is complete Π0
2.

We will write 2∗ for 2HA∗ , etc. We start with an analogue of Tennenbaum’s
theorem. We will take F := iEA.

Theorem 7.1 We have:
HA∗ + FK ` ∀y∈δK (∃z (y = z̆)K ∨2∗⊥).

11The natural way to define HA∗ is by a fixed point construction as: HA plus the Complete-
ness Principle for HA∗. Here it is essential that the construction is verifiable in HA.
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Proof

Define the following formula:

• Buy :↔ ∃z ( sub(y, u, z) ∧ ((Ey ∨ prov∗(neg(z̆))) ≤ prov∗(z̆))K)

Note that Buy is equivalent over HA∗ + FK + y ∈ δK with Cuy, where:

• Cuy :↔ (∃w ( sub(y̆, ŭ, w) ∧ (Ey ∨ prov∗(neg(w))) ≤ prov∗(w)))K

By the Gödel Fixed Point Lemma, we can find a formula Rv0 such that:

iQ ` Ry ↔ B(pRv0q, y) (12)

Equation (12) implies:

HA∗ + FK + y ∈ δK ` Ry ↔ ((Ey ∨2∗¬R ˙̆y) ≤ 2∗R ˙̆y)K (13)

Note the strangeness of the double role that y plays in the right hand side of
this equivalence. In the occurrence in ‘Ey’ we have y in the role of a domain
element of K. In the occurrences with a breve, y is an element of the external
numbers mapped into the K-numbers. So, in a sense, y stands for two different
K-numbers, to wit y and z with yFKz.

Reason in HA∗ + FK + y ∈ δK . We clearly have (Ey)K . Hence, since F is iEA,
we have Ry or R⊥y, where

• R⊥y :↔ (2∗R ˙̆y < (Ey ∨2∗¬R ˙̆y))K

Suppose we have Ry. Then, by the Completeness Principle, we have 2∗Rẏ. Let
p be a witnessing proof. It follows that (p̆ : 2∗R ˙̆y)K . By, equation (13), we
either have (y ≤ p̆)K or (2∗¬R ˙̆y ≤ Ep̆)K . In the first case, we find that, for
some z, we have (y = z̆)K . In the second case, we find that, for some q, we
have (q̆ : 2∗¬R ˙̆y)K and, hence, q : 2∗¬Rẏ. Combining this with 2∗Rẏ, we
find 2∗⊥.

Now suppose R⊥y. It follows that ¬Ry. By the Completeness Principle, we
find that, for some r, we have r : 2∗¬Rẏ. Hence (r̆ : 2∗¬R ˙̆y)K . Now, using
R⊥y again, we find (2∗R ˙̆y < Er̆)K and, hence, 2∗Rẏ. We may conclude 2∗⊥.

Combining our two cases, we see that, for some z, (y = z̆)K or 2∗⊥. 2

Here is an immediate consequence of Theorem 7.1.

Theorem 7.2 We have:
HA∗ + ~xFK~y ` 2∗A~̇x ↔ (2∗A~̇y)K .
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Proof

We reason in HA∗ + ~xFK~y. From left to right is immediate. For the right to
left direction, suppose that (q : 2∗A~̇y)K . By Theorem 7.1, either, for some p,
pFKq, or 2∗⊥. In the first case we have p : 2∗A~̇x, in the second case 2∗A~̇x. So
in both cases, we are done. 2

For a generalization of Theorem 7.2, see Appendix A.

Theorem 7.3 The predicate logic of HA∗ is complete Π0
2.

Proof

Suppose A :↔ ∀x∃y A0xy, where A0 is in ∆0
1. We will (effectively) construct

a formula Ã, such that Ã is in the predicate logic of HA∗ iff A is true. The
theorem is immediate from this claim. The predicate logical language that we
interpret is the relational language of arithmetic enriched by a 0-ary predicate
symbol Q. We define:

• Ã :↔ ((F ∧ ∃x∈sent (Q ↔ prov∗(x))) →
∃x, y∈sent ((Q ↔ prov∗(x)) ∧

(prov∗(y) ↔ 2∗(prov∗(ẋ))) ∧
∀u<y ∃v A0uv)).

First, suppose ∀x∃y A0xy. Consider any K. Let B be the arithmetical sentence
QK . Let C be the consequent of the implication Ã. Consider the following
theory:

T := HA∗ + FK + (∃x∈sent (Q ↔ prov∗(x)))K .

Note that, for any n, T ` ∀u<n ∃v A0uv and also T ` (∀u<n ∃v A0uv)K .

Reason in T . We have to prove CK . Suppose x witnesses

(∃x∈sent (Q ↔ prov∗(x)))K .

We have either zFKx, for some z, or 2∗⊥. We first treat the second case.
Suppose we have 2∗⊥. Let n := p>q. Now it is easy to see that we can choose
x and y to be equal to n̆.

We turn to the first case. We find that z ∈ sent and, applying Theorem 7.2,
B ↔ prov∗(z). So, we have 2∗B ↔ 2(prov∗(ż)), by the Completeness Principle.
Thus, taking n := pBq, we find:

z, n ∈ sent∧(B ↔ prov∗(z))∧(prov∗(n) ↔ 2∗(prov∗(ż)))∧∀u<n ∃v A0uv. (14)

Using Theorem 7.2 again, from this we immediately obtain CK .

For the reverse direction, let an be unrelativized and let an be the identity on all
arithmetical predicates and let Qan

:= 2∗n+1⊥. Suppose Ã is in the predicate
logic of HA∗. It follows, by instantiating with an, that, for any n,

HA∗ ` ∃y∈sent ((prov∗(y) ↔ 2∗n+2⊥) ∧ ∀u<y ∃v A0uv). (15)
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Since HA∗ has the existence property, for some k = kn,

HA∗ ` k∈sent ∧ (prov∗(k) ↔ 2∗n+2⊥) ∧ ∀u<k ∃v A0uv. (16)

So, by the Σ0
1-soundness of HA∗, we find ∀u< k ∃v A0uv. Suppose kn = km, for

m > n. Then,
HA∗ ` 2∗n+2⊥ ↔ 2∗m+2⊥. (17)

So, by the Strong Löb Principle, HA∗ ` 2∗n+2⊥. Quod non. Thus, the kn take
infinitely many values. We may conclude that A. 2
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A The Friedman Translation

In this appendix we give a generalization of Theorem 7.2. I do not know any
application of the generalization, but it seems fairly natural.

The Friedman interpretation (·)B is defined as follows. It sends atomic
formulas α to α∨B. It commutes with all connectives including the quantifiers,
with the exception of ⊥ which is treated like an atomic formula. Note that the
Friedman translation is not a relative translation in the sense of this paper.

Theorem A.1 Suppose all the free variables in A are among ~x. We have:
HA∗ + FK ` ∀~x∀~y∈δK (~xFK~y → (A2∗⊥~x ↔ (A2∗⊥~y)K)).

Proof

The proof is by induction on A. We reason in HA∗ + FK .

Let A be an atomic formula α. Suppose ~xFK~y. Since FK is an initial embedding,
we have α~x iff (α~y)K . By Theorem 7.2, we have 2∗⊥ iff (2∗⊥)K . So, we have:

α2∗⊥~x ↔ α~x ∨2∗⊥
↔ (α~y)K ∨ (2∗⊥)K

↔ (α~y ∨2∗⊥)K

↔ (α2∗⊥~y)K

The cases of the propositional connectives are trivial.
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Let A~x be ∃u Bu~x. Suppose ~xFK~y. We treat the right to left direction. Suppose
(∃v Bv~y)2∗⊥,K . Say v witnesses this. We either have uFKv, for some u, or 2∗⊥.
In case 2∗⊥, we are easily done. So assume uFKv. We have u, ~xFKv, ~y. By
the induction hypothesis, we find B2∗⊥u~x and, hence (∃u Bu~x)2∗⊥. The other
direction is easier.

The case of the universal quantifier is similar. 2
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