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Abstract

In this paper, we characterize the strength of the predicative Frege hier-
archy, Pn+1V, introduced by John Burgess in his book [Bur05]. We show
that Pn+1V and Q + conn(Q) are mutually interpretable. It follows that
PV := P1V is mutually interpretable with Q. This fact was proved earlier
by Mihai Ganea in [Gan06] using a different proof. Another consequence
of the our main result is that P2V is mutually interpretable with Kalmar
Arithmetic (a.k.a. EA, EFA, I∆0+EXP, Q3). The fact that P2V interprets
EA, was proved earlier by Burgess. We provide a different proof.

Each of the theories Pn+1V is finitely axiomatizable. Our main re-
sult implies that the whole hierarchy taken together, PωV, is not finitely
axiomatizable. What is more: no theory that is mutually locally inter-
pretable with PωV is finitely axiomatizable.
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1 Introduction

A predicative version of the logicist program is outlined in [Bur05], chapter 2.
The idea is to build a hierarchy of stronger an stronger systems obtained by
adding at each next stage (i) predicative second order comprehension over the
previous system and (ii) full principle V for the newly added concepts.1 More
precisely, the hierarchy is defined as follows.

• PV := P1V is the system we obtain by adding second order variables
X0, Y 0, . . . and a function symbol ‡0 to the predicate logic of pure identity,
plus the following axioms.

P11) ` ∃X0 ∀x (X0x ↔ A(x, ~y, ~Y 0)),
where A does not contain X and does not contain bound concept
variables of degree 0.

P12) ` ‡0X0 = ‡0Y 0 ↔ ∀z (X0z ↔ Y 0z).

• Pn+2V is the theory obtained by adding to Pn+1V new second order vari-
ables Xn+1 and a new function symbol ‡n+1, plus the following axioms.

Pn+21) ` ∃Xn+1 ∀x (Xn+1x ↔ A(x, ~y, ~Y 0, . . . , ~Y n+1)),
where A does not contain X and does not contain bound concept
variables of degree n + 1.

Pn+22) ` ‡n+1Xn+1 = ‡nY n ↔ ∀z (Xn+1z ↔ Y nz).

Pn+23) ` ‡n+1Xn+1 = ‡n+1Y n+1 ↔ ∀z (Xn+1z ↔ Y n+1z).

I think this approach to predicativity is in many respects attractive. There is
the undeniable simplicity and naturality of the chosen axioms and the charm
of combining Fregean and Russellian ideas. More importantly, the hierarchy
goes way beyond the predicative systems provided by Nelson’s approach. See
[Nel86]. Nelson developed predicative systems by considering simply what is
interpretable in Q. There are two significant objections to Nelson’s project.
One is that it is unclear how he justifies the use of unbounded quantification.
This criticism is was voiced in Pudlák’s review [Pud88]. A second criticism is
that his approach lacks reflexive closure. Specifically, we cannot prove con(Q)
in the Nelson systems. In fact, addition of con(Q) would yield a system that
violates Nelson’s philosophy, since Q + con(Q) is mutually interpretable with
I∆0 + EXP and the totality of exponentiation is something Nelson denies. See
for this criticism: [Iwa00]. The present Frege-style approach partly evades this
second criticism. As we will see the hierarchy (up to ω), provides consistency
statements for each of its stages. On the other hand, we will show that the
hierarchy, in a sense, stops at ω. As a consequence, for no ordinal α, the theory
PαV will prove the consistency of PωV. Thus, the hierarchy only evades the
criticism, if we are prepared to view it as ‘open ended’ towards ω.

1In the Frege style, the denotations of the second order variables are called concepts.
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A further good point about the hierarchy is that it is reasonably stable w.r.t.
design choices, like the choice whether or not to begin with just the theory of
identity or rather with, say, the theory of pairing.

Our aim in the present paper is technical rather than philosophical. We provide
an answer to the question: how strong are the PnV? We show that, verifiably
in I∆0 + Ω1, the theory Pn+1V is mutually interpretable with the theory Q +
conn(Q). This result generalizes a result of Mihai Ganea, who shows that PV :=
P1V is mutually interpretable with Q. See [Gan06]. Ganea’s interpretation of
PV in Q is simpler than the one we provide. On the other hand, to verify
the correctness of the interpretation, he employs a corollary of the Löwenheim-
Behmann Theorem, due to Burgess. It is not known whether this corollary can
be verified in I∆0 + Ω1.

One consequence of the available consistency statements is that we have
exponentiation available in our hierarchy —in fact already in P2V.

We will show that the PnV are all finitely axiomatizable. In contrast their
limit, PωV is not finitely axiomatizable. What is more: no theory that is locally
mutually interpretable with PωV is finitely interpretable.

The proof of the finite axiomatizability result uses Burgess’ result that PV is
finitely axiomatizable, which in turn uses the Löwenheim-Behmann Theorem.
Thus, it is unknown whether it can be verified in I∆0 + Ω1.

The methodology of the paper is what one could call miniature model theory.
This endeavor falls between proof theory and model theory. As in proof theory,
we study syntactical matters, but unlike in proof theory we seldom look at the
details of proofs. As in model theory, we employ the intuition of constructing
structures. We lack, however, the possibility to quantify over structures. Our
‘structures’ will in fact be interpretations given by concrete formulas. In model
theory we work in a strong metatheory like ZFC. Here, we work in a weak theory
like I∆0 + Ω1. Thus, we lack even induction. We compensate for the lack of
induction by employing Solovay’s methodology of shortening cuts. In effect, we
follow the idea if you can’t do what you want to do with the number system you
are working with, switch to another one.

To prove our main result we should realize two directions. We should move from
a consistency statement to predicative comprehension and axiom V. To do this
we miniaturize the following model theoretic argument. Given that we know
that U is consistent, we can use the Henkin construction to build a countable
model of U . We can extend this model to a model of predicative comprehension
by adding the parametrically first order definable sets over the model. The class
of these sets is countable, so there is a mapping of these sets into the object
domain of our model. We choose such a mapping to serve as our Frege function.
To miniaturize the argument, we build an interpretation rather than a model.
This is done using the Henkin-Feferman construction. It turns out that adding
the definable sets is as easy as it is in ordinary model theory. This part of the
proof is in Section 5. To find the Frege function, we have to do some work. We
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need to specify the function concretely. To make this possible, U should satisfy
some constraints. The one we use is the demand that U interprets a certain
theory of two successors. Also we have to switch number systems to obtain
some desired effects of induction. All this is realized in Section 6.

In the other direction, we derive consistency from predicative comprehension.
Here, we employ a well-known strategy. We are given a predicative extension of
U . We use our classes to build a truth predicate for the U -language. Then, we
use the truth predicate to prove consistency of U , compensating for the lack of
induction by going to a definable cut. This is executed in Section 7.

A remarkable fact, emerging from the argument, is that the presence of the
Frege functions only adds metamathematical strength, when we move from the
theory of pure identity to P1V. In all subsequent steps, the gain in power is
achieved by predicative comprehension all by itself!

Finally, in Section 8, we put everything together.

Prerequisites

A good introduction to many of the methods and ideas of the paper is [HP91].

Acknowledgments

I am grateful to Lev Beklemishev, John Burgess, Mihai Ganea, Richard Heck,
Rosalie Iemhoff, Joost Joosten and Charles Parsons for enlightening discussions.

2 Theories and Interpretations

In this section, we introduce basic notions and tools.

2.1 Theories

We consider theories in many-sorted first order predicate logic. The axiomati-
zation of the theories should be sufficiently simple, e.g. ∆1

b . The default is that
our theories have finitely many sorts and are of finite signature.2 It is optional
whether a sort has identity or not.

We will sometimes consider pointed theories, i.e. theories with a designated
sort. We will always assume that the pointed sort has identity. We will write
‘Udae’ for: theory U with designated sort a. We will confuse one-sorted theories
with pointed one-sorted theories. Moreover, specific named theories will often
have a fixed implicit point, E.g., the PnV will have, as designated sort, the sort
of basic objects.

Our notion of theory is intensional. We assume some proof system is fixed, so
a theory will be given by its signature (including the sorts) plus an arithmetical
formula defining the set of (Gödel numbers of) axioms. We will use ⊆ and =ext

2There will be just one exception considered in the paper: the theory PωV.
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for the subset relation and the identity relation between the theories considered
as sets of theorems. A finitely axiomatized theory is always specified with an
explicit numerical bound on the size of the Gödelnumbers of the axioms. Note
that this notion is stronger than a specification of the set of axioms just by a
formula that gives us de facto a finite set. On the other hand it is weaker —in
the context of I∆0 + Ω1 as metatheory— than having a numerical code for the
finite set of axioms.

We define two important operations on theories, that will play an important
role in this paper.

• ΘU := Q + con(U),

• ΩU := I∆0 + Ω1 + con(U).

By a result of Wilkie, the theories ΘU and ΩU are mutually interpretable. Note
that the operations Θ and Ω are essentially intensional. For every consistent U ,
we can find a V , such that U =ext V and ΩU 6=ext ΩV .

2.2 Interpretations

Interpretations play a main role in the present paper. They are both part of our
methods of proof —as the tools of miniature model theory— and of the state-
ment of our results. Our main result is stated in terms of mutual interpretability
which is a very good way of measuring metamathematical strength of theories.
In contrast, in proof theory, theories are often compared using conservativity
w.r.t. some class of sentences like Π0

2.
Interpretability in this paper will be one-dimensional relative many sorted

interpretability without parameters where identity is not necessarily translated
as identity. We provide a rather extensive treatment, since we are not aware
of a good treatment of interpretability between many sorted theories in the
literature. Especially, there is a tendency towards fuzzy thinking about the re-
lationship between many-sorted theories and their one-sorted flattening. Since,
there is an important relationship between flattening and Frege functions, it
seems good to provide an introduction.

The choice for one dimensional interpretations without parameters is mainly
one of convenience. Developing the full machinery with the parameters and
more dimensionality would be more laborious. Moreover, our main result,
which states that certain theories are mutually interpretable becomes stronger,
when stated for a more restrictive notion of interpretability. Of course, non-
interpretability results become weaker for the more restrictive notion. We will
briefly meet this phenomenon in Remark 2.2.

We will define interpretations for relational languages. To obtain interpreta-
tions for languages with functions, we consider them as consisting of two steps.
First one translates the given language to a relational one using a standard al-
gorithm. It is well known this can be done in polynomial time. Then, we apply
an interpretation as defined below.3

3Note that if we have U and the corresponding U rel, we have U ` A ⇔ U rel ` Arel.
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To define an interpretation, we first need the notion of translation. Let Σ
and Ξ be finite signatures for many-sorted predicate logic with finitely many
sorts. We assume that the sorts are specified with the signature. A relative
translation τ : Σ → Ξ is given by a triple 〈σ, δ, F 〉. Here σ is a mapping of the
Σ-sorts to the Ξ-sorts. The mapping δ assigns to every Σ-sort a a Ξ-formula
δa representing the domain for sort a of the translation. We demand that δa

contains at most a designated variable vσa
0 free. The mapping F associates to

each relation symbol R of Σ a Ξ-formula F (R). The relation symbol R comes
equipped a sequence ~a of sorts. We demand that F (R) has at most the variables
vσai

i free. We translate Σ-formulas to Ξ-formulas as follows:

• (R(ya0
0 , · · · , yan−1

n−1 ))τ := F (R)(yσa0
0 , · · · , yσan−1

n−1 ).

(We assume that some mechanism for α-conversion is built into our defi-
nition of substitution to avoid variable-clashes.)

• (·)τ commutes with the propositional connectives;

• (∀ya A)τ := ∀yσa (δa(y) → Aτ );

• (∃ya A)τ := ∃yσa (δa(y) ∧Aτ ).

Suppose τ is 〈σ, δ, F 〉. Here are some convenient conventions and notations.

• We write δτ for δ and Fτ for F .

• We write Rτ for Fτ (R).

• We will always use ‘=a’ for the (optional) identity of a theory for sort a.
In the context of translating, we will however switch to ‘Ea’.

• We write ~x : δ~a for: δa0(xσa0
0 ) ∧ . . . ∧ δan−1(xσan−1).

• We write ∀~x : δ~a A for: ∀xσa0
0 . . .∀xσan−1

n−1 (~x:δ~a → A).

Similarly for the existential case.

A special translation on a signature Σ is the identity translation idΣ. The
first component σ of this translation sends all sorts of Σ to themselves. The
second component δ sends each sort a to >. The third component F sends each
predicate symbol P to P~v~a. We can compose relative translations as follows:

• δa
τν := (δστ a

ν ∧ (δa
τ )ν),

• Rτν = (Rτ )ν .

Moreover, there is an inverse (·)fun of (·)rel, to wit: substitute f~x = y for, say, Ff (~x, y). We

have: U ` A~z ↔ ((A~z)rel)fun and U rel ` B~z ↔ ((B~z)fun)rel. So, in a reasonably strong sense,
U and U rel are ‘the same’.
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We write ν ◦ τ := τν.

A translation τ supports a relative interpretation of a theory U in a theory V ,
if, for all U -sentences A, U ` A ⇒ V ` Aτ .4 (Note that this automatically takes
care of the theory of identity. Moreover, it follows that V ` ∃v0 δa

τ .) Thus, an
interpretation has the form: K = 〈U, τ, V 〉. We write K : U → V , K : U � V
or K : V � U , for: K is an interpretation of the form 〈U, τ, V 〉. The notation
K : U → V is used when we are thinking of theories and interpretations as
objects and morphisms in a category. The notation K : U � V is used when
we are thinking of � as a preorder. Moreover, the notation � is intended to
suggest that interpretability is a generalization of provability.

Par abus de langage, we write ‘δK ’ for: δτK
; ‘PK ’ for: PτK

; ‘AK ’ for: AτK , etc.
Suppose T has signature Σ and K : U → V , M : V → W . We define:

• idT : T → T is 〈T, idΣ, T 〉,

• M ◦K : U → W is 〈U, τM ◦ τK ,W 〉.

We identify two interpretations K, K ′ : U → V if:

• For all U -sorts a, V ` δa
K ↔ δa

K′ ,

• V,~v : δ~a ` PK ↔ PM , where ~a is the sequence associated with R.

One can show that modulo this identification, the above operations give rise to
a category of interpretations that we call INTms. If we just consider one-sorted
theories, we call the resulting category INT. Isomorphism in INTms is called
synonymy or definitional equivalence.

2.3 Isomorphisms between Interpretations

Consider K, M : U → V . An isomorphism G : K ⇒ M is a V -definable,
V -provable isomorphism from K to M considered as ‘parametrized internal
models’. Specifically, this means that an isomorphism from K to M is given
as a triple 〈K, G,M〉, where G assigns to each U -sort a a formula Ga with the
following properties.

• The free variables of Ga are among vσKa
0 , vσM a

1 .

We write Ga(x, y) or xGay, for: Ga[v0 := x, v1 := y].

• V ` xGay → (x : δa
K ∧ y : δa

M ).

4If we have Σ-collection available n our metatheory, this definition coincides with the one
where we just demand that for all U -axioms A, V ` Aτ . Since, we will be interested in
verifiability in I∆0 + Ω1, which lacks Σ-collection, we need the notion involving theorems.
Otherwise, e.g. the transitivity of interpretability cannot be verified. Note that, if I∆0 + Ω1

proves that, for all axioms A of U , V ` Aτ , then I∆0 + Ω1 proves also that, for all U -
sentences B, if U ` B, then V ` Bτ . This is because I∆0 + Ω1 will supply p-time bounds on
the V -proofs of the Aτ , by a theorem of Wilkie and Paris in their [WP87]. See further [Vis91].
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• V ` ∀x : δa
K ∃y : δa

M xGay.

• V ` ∀y : δa
M ∃x : δa

K xGay.

• V ` ~xG~a~y → (PK~x ↔ PM~y).

Here ‘~xG~a~y’ abbreviates x0G
a0y0∧ . . .∧xn−1G

an−1yn−1, for ~a correspond-
ing to P .5

By induction on A, we can show that, for the appropriate ~a:

V ` ~xG~a~y → (AK~x ↔ AM~y) (1)

We may divide out isomorphisms of interpretations in the category INTms. One
can show that in this way we obtain a new category hINTms. (See [Vis06] for a
treatment of the one-sorted case.) Isomorphism of theories in this category is
called: bi-interpretability.

2.4 Flattening

Consider any many-sorted theory U of signature Σ. Let sort be the set of sorts
of Σ. We associate to U a one-sorted theory FLAT(U) or U [ as follows. We
take as language of U [ a one-sorted language with the predicate symbols of U
plus, for each a in sort, a new unary predicate symbol 4a. If ~a is the sequence
associated to P in Σ, we associate to P a sequence of the same length consisting
of the single sort in the new signature. Viewed differently, we give as arity to
P in the flat environment the length of ~a. We define a translation η := 〈σ, δ, F 〉
from the language of U to the language of U [.

• σ sends all sorts of U to the single sort of U [.

• δa(v) :↔4a(v).

• F (P )(~v) :↔ P (~v).

Here are the axioms of U [.

[1) ` ∀v
∨

a∈sort4a(v).

[2) ` P (~v, w, ~z) → 4a(w), where a is the sort corresponding to the location of
w in P (~v, w, ~z) according to Σ.

[3) ` Aη, where A is an axiom of U .

Clearly, there is an interpretation based on η of U in U [. Par abus de langage,
we call this interpretation also η. The mapping FLAT has all kinds of good
properties, as is pointed out in the remark below, but these will pay no further
role in this paper.

5Note that this covers the case of the functionality and the injectivity of Ga in case the sort
a has identity. In case the sort does not have identity, we consider the question of functionality
and injectivity to be vacuous.
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Remark 2.1 Suppose K : U → V and V is one-sorted. Then we can easily
show that there is a unique K? : U [ → V , such that K = K? ◦ ηU . Thus, (by
[Mac71], p81, Theorem 2(ii)) it follows that FLAT is a functor from INTms →
INT, that is left adjoint to the embedding functor of INT into INTms.

We do not have, generally, that U [ is definitionally equivalent or even bi-
interpretable with U . In fact, U [ need not be mutually interpretable with U .
E.g., consider a two-sorted theory W with identity for both sorts and no further
predicate symbols. The theory’s axioms say that the first sort contains precisely
two elements and the second sort precisely three. It is easily seen that W does
not interpret W [. Note that definitional equivalence implies the existence of a
bijection between the sets of sorts. So, a more-than-one-sorted theory can never
be definitionally equivalent to a one-sorted one.

Remark 2.2 Our discussion depends on the precise choice of our notion of
interpretation. If we allow multi-dimensional interpretations with parameters,
we can make an interpretation of U [ in U , assuming that U has identity. Let ~s
be a sequence of all U -sorts. Let ~s have length n. We write [~x]i for the result
of omitting the ith element from ~x. We interpret U [ via, say N := N~s, where
~s : ~s.

• δN (~v) :↔
∨

i<n[~v]i = [~s]i,

• 4si

N (~v) :↔ [~v]i = [~s]i,

• Suppose the sequence associated in U with P is si0 , . . . , sik−1 .

PN (~v0, . . . , ~vk−1) :↔ (
∧

j<k[~vj ]ij
= [~s]ij

∧ P (v0,i0 , . . . , vk−1,ik−1)).

Note that N is not faithful, since it places ~s in each 4a
N . The further study of

the multidimensional case with parameters is beyond the scope of this paper.

Along another line, we can also establish a close connection between U and U [.
By a model theoretic argument, we can easily show that: U ` A ⇔ U [ ` Aη.

2.5 Interpretability

We define partial preorders on many sorted theories.

• K : U � V :⇔ K : V � U .

• U � V :⇔ V � U :⇔ ∃K K : V � U .

We read V �U as: V is interpretable in U . We read U �V as: U interprets
V .

• We also want interpretability between pointed theories.

Udae� V dbe :⇔ V dbe� Udae :⇔ ∃K (K : V � U ∧ σK(b) = a).
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• A finite subtheory V � n of V is a theory with axioms defined by αV (x)∧
x < n. We define:

U �loc V :⇔ V �loc U :⇔ ∀n (V � n) � U .

We read V �loc U as: V is locally interpretable in U .

• We define U ≡ V :⇔ (U � V ∧ V � U).

We say: U and V are mutually interpretable. Similarly for U ≡loc V .

3 Addition of Principles as a Functor

In this section, we study basic constructions used to build predicative systems.

3.1 The Functor PC

We study the operation of adding predicative comprehension to a theory. We
show that this operation gives us a functor PC. The functor PC works on pointed
theories. Let a pointed theory Udae be given. We extend the language of U
with an extra sort c for concepts. We write the variables of the new sort as
capitals. We add a new predicate app with associated sequence ca. We write
‘Xx’ for app(X, x). We add the axiom scheme of predicative comprehension:

` ∃X ∀xa (Xx ↔ A(x, ~y, ~Y )).

Here A does not contain any concept quantifiers. The sequence ~y may contain
variables of any sort of U .

Remark 3.1 Note that in the official language this could have been written as:

` ∃xc ∀ya (app(x, y) ↔ A(y, ~z)).

Here A does not contain quantifiers of sort c. The sequence ~z consists of variables
of all sorts.

The resulting pointed theory is PC(Udae), also written as (Udae)pc. We take
the new point simply the old point a. We will write Hx | A(x, ~y, ~Y )I for a
concept provided by comprehension. Note that we should be careful in using
comprehension terms, since the theory does not guarantee uniqueness. The
comprehension terms are only unique modulo definable extensional equality.

The following theorem tells us that the mapping PC is a functor w.r.t. the
interpretability preorder.

Theorem 3.2 We have: Udae � V dbe ⇒ (Udae)pc � (V dbe)pc. This fact is
verifiable in I∆0 + Ω1.
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Proof

Suppose K : Udae� V dbe. We define Kpc as follows.

• σKpc restricted to the sorts of V is σK ; σKpc(c) = c.

• δKpc restricted to the sorts of V is δK ;

δc
Kpc(X) :↔ ∀xa (Xx → δb

K(x)) ∧ ∀xa, ya ((Xx ∧ xEb
Ky) → Xy).

(Remember our assumption that designated sorts have identity.)

• FKpc restricted to the predicates of U is FK ; (Xx)Kpc :↔ Xx.

To verify that we do interpret comprehension, we have to show:

U ` (~y : δ~s
Kpc ∧ ~Y : δc

Kpc) → (∃X ∀xb (Xx ↔ A(x, ~y, ~Y )))Kpc

.

Here A does not contain bound concept variables and ~s is a sequence of sorts of
U .

So, in U , under the presupposition of the antecedent, we have to provide
an X in δc

Kpc such that, for all x in δa
Kpc , Xx iff AKpc

(x, ~y, ~Y ). Noting that
our translation does not introduce new bound concept variables, we see that
X := Hx | δa

Kpc(x) ∧AKpc

(x, ~y, ~Y )I, provides a desired solution.

We easily see that he U -proofs that verify comprehension inside Kpc are p-time
in the code of A. The main thing to verify is the closure of X as defined under
Eb

K . This is an induction on A, where one provides a p-time estimate in A of
the U -proof. 2

3.2 Finite Axiomatizability I

For one-sorted theories with pairing, predicative comprehension can given by
finitely many axioms. Here is a statement of the theorem.

Theorem 3.3 Suppose U is a one-sorted theory with identity and pairing. Then,
Upc can be finitely axiomatized over U .

We give a proof of Theorem 3.3 is Appendix A. If we consider one sorted
sequential theories everything gets much simpler.6 Moreover, the question where
the theorem can be verified is more perspicuous. Since, we only need the theorem
for the sequential case, we will treat the sequential case here.

Theorem 3.4 Suppose U is a one-sorted, sequential theory. Then, Upc can be
finitely axiomatized over U .

6For an introduction to sequentiality, see e.g. [HP91].
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Proof

We may assume that the numbers of U satisfy I∆0 + Ω1. Say N : U �I∆0 + Ω1

is the relevant interpretation. As is well known, we can choose N is such a way
that we have attractive extra properties for our sequences like closure under
concatenation and the presence of projection functions. We code our syntax in
N . We code assignments as finite sequences of pairs of variables and objects,
satisfying the uniqueness condition. If a variable does not occur in the sequence,
it is assigned a default value, say 0. We use:

• v : var, for: v is (a code of) a variable.

• ν : varseqn, for: ν is a sequence of (codes of) variables of length n.

• σ : ass, for: σ is (a code of) and assignment.

• X : val, for: X is a concept consisting of assignments.

• σ[v := x], for: the result of resetting v in σ to x. I.o.w.,

τ = σ[v := x] :↔ ∃y, ρ, ρ′ (σ = ρ ∗ 〈〈v, y〉〉 ∗ ρ′ ∧ τ = ρ ∗ 〈〈v, x〉〉 ∗ ρ′)
∨ (∀y, ρ, ρ′ σ 6= ρ ∗ 〈〈v, y〉〉 ∗ ρ′ ∧ τ = σ ∗ 〈〈v, x〉〉).

Here are the axioms.

F1. ∀ν : varseqn ∃X ∀σ (Xσ ↔ (σ : ass ∧ P (σν0, . . . , σνn−1))),

for any P and n, where arU (P ) = n.

F2. ∀X ∀ν : varseq1 ∃Y ∀σ (Y σ ↔ (σ : ass ∧X(σν0))),

F3. ∀X : val∀σ : ass ∀v : var ∃Y ∀x (Y x ↔ X(σ[v := x])).

F4. ∀X ∃Y ∀x (Y x ↔ ¬Xx).

F5. ∀X, Y ∃Z ∀x (Zx ↔ (Xx ∧ Y x)).

F6. ∀X : val∀v : var ∃Y ∀σ (Y σ ↔ (σ : ass ∧ ∃x X(σ[v := x]))).

It is easy to see that these axioms follow from Predicative Comprehension.
Conversely, we can obtain instances of Predicative Comprehension in the obvious
way. Instead of specifying the procedure, let’s just consider an example. We
want of produce, for any z, an X such that,

∀x (Xx ↔ ∃y ((Y y ∧ Pxy) ∧ Pyz)).

We pick variables v0, v1, v2. We apply Axiom F2 to Y and 〈v1〉 to obtain X0.
We apply Axiom F1 to P and 〈v0, v1〉 to obtain X1. We apply Axiom F1 to P
and 〈v1, v2〉 to obtain X2. Next we apply Axiom F5 to X0 and X1 to obtain
X3. We apply Axiom F5 to X3 and X2 to obtain X4. By applying Axiom F6
to X4 and v1, we obtain X5. Finally, we apply Axiom F3 to X5 and 〈〈v2, z〉〉

13



and v0 to obtain X. We now unpack the definition of X to obtain the desired
instance of Comprehension. We put σ0 := 〈〈v2, z〉, 〈v0, x〉, 〈v1, y〉〉. We have:

Xx ↔ X5(〈〈v2, z〉〉[v0 := x])
↔ X5〈〈v2, z〉, 〈v0, x〉〉
↔ 〈〈v2, z〉, 〈v0, x〉〉 : ass ∧ ∃y X4(〈〈v2, z〉, 〈v0, x〉〉[v1 := y])
↔ ∃y X4〈〈v2, z〉, 〈v0, x〉, 〈v1, y〉〉
↔ ∃y (X3σ0 ∧X2σ0)
↔ ∃y (X0σ0 ∧X1σ0 ∧X2σ0)
↔ ∃y (Y (σ0v1) ∧ P (σ0v0, σ0v1) ∧ P (σ0v1, σ0v2))
↔ ∃y (Y y ∧ P (x, y) ∧ P (y, z)).

We turn to the issue of verifiability in I∆0 + Ω1. Suppose we want to ver-
ify Predicative Comprehension for A. Note that, for any A, the number of
natural big ‘steps’ in the proof will be of order c|A|, for standard c. Here
|A| := entier(2log(A + 1)). The indices of the variables and the coded variables
involved can be bounded by ||A||. Each big step has a fixed form, where the spe-
cific parameters and parts of A or variables representing parts of A are plugged
in. Moreover the number of small substeps, like computations of σv, will be of
order d|A|, for standard d. So the size of the big step will be of order e|A|3, for
standard e. So the total size of the proof will be of order f |A|4, for standard
f . Thus, we can bound the verification πA of comprehension for A by a p-time
function. 2

3.3 The Frege Function and Direct Interpretations

The functor PCF acts on pointed theories. We write (Udae)pcf for PCF(Udae).
We define PCF(Udae) as the result of adding the symbol for the Frege function
‡ and the axiom V to PC(Udae). Here axiom V is:

` ‡X =a ‡Y ↔ ∀za(Xz ↔ Y z).

We define, for Udae and V dbe:

• Udae �dir V dbe iff K : Udae �dir V dbe, for some K that is direct, i.e. K
sends identity for sort b to identity for sort a and δb

K(v) :↔ v =a v.

Lemma 3.5 Consider pointed theories Udae and V dbe. Suppose Udae�dirV dbe.
Then, (Udae)pcf �dir (V dae)pcf . This fact is verifiable in I∆0 + Ω1.

The proof of the lemma is easy.
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4 The Hierarchy PnV, A First Round

In this section, we provide some basic insights concerning the hierarchy PnV.
We call the sort of objects 0 and we call the sorts of concepts 1, 2, . . .. We make
0 the designated sort. We write x for x0 and Xn for xn+1. Here are some
definitions.

• x ∈j+1 y :↔ ∃Y j (Y jx ∧ y = ‡jY ),

• {x | Ax}j+1 := ‡jHx | AxIj+1.7

We remind the reader that Pn+2V is (Pn+1V)pcf plus the following variant of V:

` ‡n+1Xn+1 = ‡nY n ↔ ∀z (Xz ↔ Y z).

4.1 Dropping a Variant of V

In this subsection, we show that the variant of V can be omitted.

Theorem 4.1 We have: Pn+2V ≡dir (Pn+1V)pcf . This fact is verifiable in
I∆0 + Ω1.

Proof

In one direction this is trivial. In the other direction, we have two problems
to solve. The first is that the formulas for which PCF provides predicative
comprehension do not contain the new Frege function. The second is the extra
variant of V we have in Pn+2V.

The first problem is solved by an observation of Allen Hazen. Consider
an instance of predicative comprehension for degree n+1 involving the formula
A(x, ~y, ~Y ), which does contain Frege terms of the form ‡n+1Z. Since the concept
variables occurring in these Frege terms are free in A, for some B, we have
A = B(x, ~y, ~z, ~Y0)[~z := ‡n+1~Y1]. Here B does not contain Frege terms of the
from ‡n+1Z. The intersection of Y0 and Y1 is allowed to be non-empty. It
is immediate that comprehension for A follows from comprehension for B by
universal instantiation.

We turn to the second problem. We let the ‘Julius Caesar indeterminacy’ of
Frege’s system work in our favor. We define M : (Pn+1V)pcf �Pn+2V as follows.
The interpretation M is the identity interpretation except for the interpretation
of the Frege functions. Note that in P1V we have pairing and two distinct
objects 0 := ∅1 and 1 := {∅}1. We set:

• for j ≤ n, fregj
M (Xj , u) :↔ u = 〈0, ‡jXj〉,

• fregn+1
M (Xn+1, u) :↔ ∃Y n (∀z (Xn+1z ↔ Y nz) ∧ u = 〈0, ‡nY n〉)

∨ (¬∃Y n ∀z (Xn+1z ↔ Y nz) ∧ u = 〈1, ‡n+1Xn+1〉)

We easily see that this works. Verifiability in I∆0 + Ω1 is clear. 2

7Par abus de langage, we also use accolades for virtual classes.
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By Lemma 3.5, we may conclude:

Corollary 4.2 Pn+1V ≡dir PCFn+1(ID), where ID is one-sorted predicate logic
with only the identity predicate and with single designated sort 0.

Prima facie, we need exponentiation to verify Corollary 4.2, since for each in-
crease from n + 1 to n + 2, we have a binary splitting. I think that by being
slightly more careful the corollary should be verifiable in I∆0 + Ω1, but I did
not work out the proof.

4.2 Nothing New Beyond ω

A trivial, but still surprising insight is that hierarchies like the PV-hierarchy
stop at ω modulo local interpretability. We formulate this insight in a somewhat
frivolous form. Let’s momentarily drop our restriction to finite signatures and
simple axiom sets. Let P be any partial ordering (of whatever cardinality). We
define PPV as follows. It is a many sorted theory with sorts o (of objects) and p
of concepts, for any p in P. We have identity for sort o, application predicates
appp with characteristic sequence po, and Frege functions ‡p with characteristic
sequence po. We write Y px for appp(yp, xo). Our theory is axiomatized as
follows.

P1) ` ∃Xp ∀x (Xpx ↔ A(x, ~y, ~Y )),

where A does not contain free occurrences of X, where A does only contain
concept variables Y q, for q ≤ p, where A does only contain bound concept
variables Zq, for q < p.

P2) ` ‡pXp = ‡qY q ↔ ∀z (Xpz ↔ Y qz).

Note that, modulo some notational divergence, PnV under the old and under
the new definition are the same (if we view n as a finite ordinal, modeled as the
standard ordering on its predecessors). We write [[P]] for the supremum of the
lengths of all finite ascending sequences in P. Note that [[P]] ∈ ω +1. We have:

Theorem 4.3 We have: PPV ≡loc P [[P]] V.

Proof

We use, locally, the notational conventions of PPV for PnV and PωV.

Consider any finitely axiomatized subtheory U of PPV. Let P0 be the subor-
dering of P generated by the p occurring in the axioms of U . We define ν from
P0 to ω by: ν(p) := sup{ν(q) + 1 | q < p}. For p in P0, we send sort p to sort
ν(p), appp to appν(p), etc. For all other sorts, the translation is don’t care. It is
easily seen that this translation yields the desired interpretation of U in P [[P]] V.
The other direction is similar. 2

Specifically, we get for all infinite ordinals α: PαV ≡loc PωV.
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4.3 Predicative Frege Set Theory

This subsection is devoted to explicating something that is in a sense known
to everybody who studied these matters: there is a natural one-sorted version
of the predicative Frege hierarchy that is in some sense ‘the same’. However,
what is sameness here? This subsection is devoted to (i) a precise description
of the flat hierarchy and (ii) establishing that the relevant notion of sameness
is bi-interpretability. The Frege functions will play the role of isomorphism
between interpretations. It is certainly remarkable to see how ‘thin’ Frege’s strict
distinction between concept and object is from the technical point of view.

Because of their elementary character, all considerations of this subsection
are verifiable in I∆0 + Ω1.

We define the flat Frege hierarchy FSTn as follows.8 The theory FST0 is
simply ID, the one-sorted predicate logic of pure identity. The language of
FSTn+1 adds to the language of FSTn a unary predicate symbol setn+1 and
binary predicate symbol ∈n+1. A formula A is inAx

n+1, iff, whenever a variable y
occurs in a context setn+1(y) or z ∈n+1 y or y ∈n+1 y, then y is not syntactically
equal to x and the occurrence under consideration is free in A. The theory
FSTn+1 is FSTn plus the following axioms.

• ` x ∈n+1 y → setn+1(y).

• For any A in Ax
n+1, such that y is not free in A, we have:

` ∃y : setn+1 ∀x (x ∈n+1 y ↔ Ax~z).

• ` (x : setn+1 ∧ y : setn) → (x = y ↔ ∀z (z ∈n+1 x ↔ z ∈n y)).

(We only have this axiom if n > 0.)

• ` x, y : setn+1 → (x = y ↔ ∀z (z ∈n+1 x ↔ z ∈n+1 y)).

One can show that FSTn is, modulo definitional equivalence, the extension of
(PnV)[ with an axiom stating that everything is an object: ` ∀x 40(x), plus
axioms saying that the Frege functions are identity functions:

` ∀x : setj+1 ∀y (fregj(x, y) ↔ x = y).

We specify two interpretations: SC : Pn+1V�FSTn+1, and CS : FSTn+1
�Pn+1V.

Here is the specification of SC.

• δSC(v) :↔ v = v,

• vESCw :↔ v = w,

• setj+1
SC (v) :↔ ∃Xj v = ‡jXj (j = 0, . . . , n),

• v ∈j+1
SC w :↔ ∃Y j (w = ‡jY j ∧ Y jv) (j = 0, . . . , n).

8FST for: Frege Set Theory.
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We can show that SC is indeed an interpretation of the flat theory in its sorted
counterpart. We treat the comprehension axiom. Suppose Ax~z is in Ax

n+1.
Consider Bx~z := (Ax~z)SC. It is clearly sufficient to produce, in Pn+1V, for all
~z, an Y such that ∀x (Y x ↔ Bx~z). Let’s say that C~z is a context for Bx~z, if C
is a conjunction of formulas Ci, where Ci is of one of the forms (setn+1(zi))SC

or ¬ (setn+1(zi))SC, for each zi in ~z. Since, the disjunction of all contexts is a
tautology, it is sufficient to produce Y under the assumption of some context,
say C. We work in Pn+1V + C.

Any subformula of the form (u ∈j+1 v)SC or (setj+1(v))SC, for j < n, only
contains bound concept variables V j .

Consider any subformula occurrence (u ∈n+1 v)SC or (setn+1(v))SC. Here, v
will be free in B and unequal to x. Thus, either (setn+1(v))SC or ¬ (setn+1(v))SC.
will be in the context. In the first case, we have a variable V n such that ‡nV = v.
It follows that (setn+1(v))SC may be replaced, modulo provable equivalence, by
>, an that (u ∈n+1 v)SC may be replaced by V u. Both replacements do not
contain quantifiers over variables of degree n. In the second case we may replace
both (u ∈n+1 v)SC and (setn+1(v))SC by ⊥. So in all cases B reduces to a
formula without quantifiers over variables of the form V n. We may now apply
predicative comprehension in Pn+1V, to obtain Y . (Note that we implicitly use
∃-elimination.)

Next we specify CS.

• δ0
CS(v) :↔ v = v, δj+1

CS (v) :↔ setj+1(v) (j = 0, . . . , n),

• vE0
CSw :↔ v = w,

• appj+1
CS (w, v) :↔ v ∈j+1 w,

• fregj
CS(v, w) :↔ v = w.

We easily check that CS is indeed an interpretation of the sorted theory in its flat
companion. We show that CS◦SC is the identity interpretation modulo FSTn+1-
provable equivalence. Thus, CS ◦ SC is equal to the identity interpretation for
FSTn+1 in INTms. This tells us that FSTn+1 is a retract of Pn+1V in INTms. We
treat the cases of δ and ∈. We have in FSTn+1:

δCS◦SC(x) ↔ δ0
CS(x) ∧ (δSC(x))CS

↔ x = x

x ∈j+1
CS◦SC y ↔ (x ∈j+1

SC y)CS

↔ (∃Y j (y = ‡jY j ∧ Y jx))CS

↔ ∃z : setj+1 (y = z ∧ x ∈j+1 z)
↔ x ∈j+1 y

Let ∇ := SC ◦ CS. We show that ∇ is isomorphic to the identity interpretation
id on Pn+1V. The isomorphism from id to ∇ is specified as follows:
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• xG0y :↔ x = y,

• XjGj+1y :↔ ‡n(Xj) = y.

We have e.g. in Pn+1V:

δj+1
∇ (‡jXj) ↔ ∃Y j (‡jXj = ‡Y j)

↔ >

appj+1
∇ (‡jXj , y) ↔ ∃Zj (‡jXj = ‡jZj ∧ Zjy)

↔ Xjy

fregj
∇(‡Xj , y) ↔ ‡Xj = y

We may conclude that Pn+1V and FSTn+1 are isomorphic in hINTms. In other
words, these theories are bi-interpretable.

Open Question 4.4 Is PωV bi-interpretable with a theory of finite signature?

We end this subsection, with a useful insight concerning the FSTn+1. A one-
sorted theory is sequential if it has a good notion of sequence of objects (that
works for all objects of the domain. This means that the theory interprets a
weak arithmetic, say Q, via an interpretation, say N .9

Further the theory defines a domain of sequences with projection functions
w.r.t. the N -numbers. It verifies principles stating that we have an empty
sequence and that can always move from σ to σ ∗ 〈x〉. For details, see [HP91].
We can always improve our theory of sequences, by shortening N . First, we can
strengthen the theory of numbers that is interpreted to, say, I∆0 + Ω1. Secondly
we can add all kinds of desirable operations on sequences like concatenation.

Theorem 4.5 Each theory FSTn+1 is sequential. This fact is verifiable in
I∆0 + Ω1.

Proof

It is sufficient to show that FST1 is sequential. Burgess shows how to interpret
Q in P1V. This interpretation preserves identity. We transfer this interpretation
to FST1 via CS. We can improve the resulting interpretation by shortening it
in order to have the principles stating that < is a linear ordering. We define
sequences in the way that is usual in set theory: as functions from the numbers
below a number n to arbitrary objects. Here functions are modeled as sets of
ordered pairs. It is easy to verify that we have the desired properties.

Verifiability in I∆0 + Ω1 is evident, since we only have to show direct inter-
pretability of a standardly finite number of principles. 2

9Pudlák asks that the interpretation N preserves identity. I prefer to define sequentiality
without this demand. In the present context the distinction is irrelevant, since we can work
with an identity preserving N . See also Remark 4.6.
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Remark 4.6 In stead of using Burgess result in the proof of Theorem 4.5, we
could also have used the result from [CH70] or from [MM94].

We note that the interpretation of Q can be given in the system WV−, which is
modulo a direct interpretation a subsystem of P1V. The language of WV− has
two sorts: one for objects and one for concepts. We have identity for objects
and two further binary relations η from objects to concepts and z from concepts
to objects. We have the following axioms.

W1. ` ∃X ∀x ¬xηX.

W2. ` ∀X, x∃Y ∀y (yηY ↔ (yηX ∨ y = x)).

W3. ` ∀X ∃x Xzx.

W4. ` ∀X, Y, z ((Xzz ∧ Y zz) → ∀u (uηX ↔ uηY )).

So, roughly, WV− is P1V, with a weaker comprehension principle and with axiom
V minus the uniqueness condition of the Frege function and without extension-
ality. We can now use the ideas sketched in Appendix III of [MPS90] to prove
that (the flattening of) this theory is sequential. since we lack extensionality,
the interpretation N of Q will not preserve identity.

As is easily seen, if we combine axioms W3 and W4 with full comprehension, we
still get the Russell paradox.

4.4 Finite Axiomatizability II

Burgess shows that the theory P1V is finitely axiomatizable: the concepts de-
finable are generated from empty concept, singleton concept using complement
and intersection. See [Bur05], pp. 89, 90. Since P1V has a pairing operation, we
would like to apply Theorem 3.3 to conclude that all the Pn+1V are finitely ax-
iomatizable. However, Theorem 3.3 is only formulated for one-sorted theories.
We show how to work around this problem. First we need two lemmas.

Lemma 4.7 Finite axiomatizability is preserved over retractions in hINTms.
It follows that bi-interpretability preserves finite axiomatizability. This fact is
verifiable in I∆0 + Ω1.

Proof

Suppose U is is a retract of V in hINTms and that V is finitely axiomatized.
We can now axiomatize U by the translations of the axioms of V , plus axioms
stating that the Ga form an isomorphism between the identity interpretation
and the composition of co-retraction and retraction. 2

Lemma 4.8 Suppose Udae and V dbe are bi-interpretable via direct interpre-
tations. Then (Udae)pc and (V dbe)pc are bi-interpretable via direct interpreta-
tions, i.e. interpretations preserving the domain and the identity of the desig-
nated sorts. This theorem can be verified in I∆0 + Ω1.
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Proof

Suppose the witnessing interpretations are M : Udae → V dbe and N : V dbe →
Udae. We lift M and N to Mpc and Npc as in Theorem 3.2. Note that the
directness causes the lifted interpretations to act identically on the second order
vocabulary. We can now lift the isomorphisms between M ◦ N and idV and
between N ◦M and idU . E.g. if G is the isomorphism from idU to N ◦M , then
we set: XGcY :↔ ∀x, y (xGay → (Xx ↔ Y y)). 2

We are now ready to prove finite axiomatizability of the Pn+1V.

Theorem 4.9 Each theory Pn+1V is finitely axiomatizable.

Proof

We have already seen that P1V is finitely axiomatizable. For the induction
step, suppose Pn+1V is finitely axiomatizable. Since, Pn+1V is bi-interpretable
with FSTn+1, we find that FSTn+1 is finitely axiomatizable. This is a one-
sorted sequential theory. By Theorem 3.4, (FSTn+1)pc is finitely axiomatiz-
able. By Lemma 4.8, (FSTn+1)pc is bi-interpretable with (Pn+1V)pc. It follows
that (Pn+1V)pc is finitely axiomatizable. Since Pn+2V is a finite extension of
(Pn+1V)pc, we are done. 2

Open Question 4.10 We do not know whether the argument for the finite
axiomatizability of P1V can be formalized in I∆0 + Ω1.

1. Can I∆0 + Ω1 verify the finite axiomatizability of P1V?

2. If not, is the finite axiomatizability of Pn+1V, for n ≥ 1, verifiable in
I∆0 + Ω1?

The finite axiomatizations of the stages provided by the proof of Theorem 4.9
are not optimal since we are going back and forth using the interpretations SC
and CS. Here is the finite axiomatization of Pn+1V after some simplifications.

• The axioms of identity for the object sort.

• The variants of axiom V for all concept sorts occurring in Pn+1V.

• The finite axiomatization of comprehension of P1V.

• The axioms F1 for ∈j and setj , for 0 < j ≤ n, and the concept variables
Xk, for j ≤ k ≤ n. Here ∈j and setj are treated as abbreviations.

• The axioms F2 to F6 for concept variables Xj , for 0 < j ≤ n.

We call the theories with the above axiomatization Pn+1Vfa. So Theorem 4.9
tells us that Pn+1Vfa =ext Pn+1V. We also have:
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Theorem 4.11 The theory I∆0 + Ω1 verifies, that, for all n:

• Pn+2Vfa =ext (Pn+1Vfa)pcf ,

• Pn+1Vfa ⊆ Pn+1V.

5 From Consistency to Comprehension

In this section, we treat the Henkin-Feferman construction and show how it can
be extended to an interpretation of predicative comprehension.

5.1 The Henkin-Feferman Construction

We briefly and informally discuss the Henkin-Feferman construction. Since,
we will use some details of the construction in some of our proofs, it is good
to have, at least in outline, a sketch in mind of how the proof works. The
Henkin-Feferman construction is a ‘syntactification’ of the Henkin construction
of a model from a consistent theory. Here, we do not construct a model but an
interpretation. To complicate things we execute the construction in the context
of a weak theory, so that apparently there is not enough induction around. The
lack of induction is compensated using Solovay’s methodology of shortening
cuts. Details can be found in [Vis91].10

Remark 5.1 The early history of the Henkin-Feferman construction is dis-
cussed in [Fef97].

In their book [HB39], in 1939, Hilbert and Bernays gave a formalization
of Gödel’s Completeness Theorem, formalizing Gödel’s own construction. The
result was extended, in 1951, by Hao Wang in his paper [Wan51]. One could
say this gave us the Gödel-(Hilbert+Bernays)-Wang construction.

Then, in 1960, in his classical paper [Fef60], Solomon Feferman further im-
proved the result, using an arithmetical construction based on the Henkin con-
struction. This gave us the Henkin-Feferman construction.

Feferman’s result employed ∆0
2-induction. This can be improved using Solo-

vay’s method of shortening definable cuts. Solovay found his method in 1976. It
is reported in the unpublished note [Sol76]. For an exposition, see e.g. [HP91],
V.5. This improvement leads to the insight that the construction can be done
when we have Robinson’s Q available. I guess, this is optimal: whenever the
result can be meaningfully formulated, we have it. The construction in weak
theories was known as folklore to the specialists. The first detailed exposition
of the construction in the context of weak theories is [Vis90]. This exposition
was improved in [Vis91].

There are further variants of the construction involving cut free consistency,
restricted consistency, non-standard proof predicates and the like, that are out-
side the scope of this paper.

10In fact, only the one-sorted case is treated there. However, the many-sorted case only
asks for very minor adaptations.
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The development of the constructions in this subsection can be executed in
I∆0 + Ω1 as metatheory.

Consider any theory U . We want to construct an interpretation H : ΩU � U .
We extend the language of U with Henkin constants in an inductive way:

whenever we have a sentence ∃xa Ax in the language, we add a constant c[∃xa Ax]
of sort a. We arrange that the language is coded in such a way that all syntactic
operations are p-time and that I∆0 + Ω1 can verify all elementary facts. The
coding will also satisfy monotonicity in the sense that, if B is a proper subfor-
mula in the extended sense of A, then the code of B is smaller than the code of
A. We take ∃xa Ax to be a subformula in the extended sense of c[∃xa Ax]. To
simplify inessentially we will assume that our only official quantifier is ∃.

Reason in ΩU . A definable cut will be a class of numbers given by a formula, such
that, verifiably, this class is closed under 0, S, +, × and ω1, and is downwards
closed w.r.t. <. We construct a complete Henkin theory in steps.

step 0 The theory H0 is U .

step n+1 In case n is not the Gödelnumber of a sentence of the extended
language, we take Hn+1 := Hn. Suppose n is the Gödelnumber of A.
Suppose Hn + A is consistent. If A is not of the form ∃xa Bx, we take
Hn+1 := Hn + A. If A is of the form ∃xa Bx, we take Hn+1 := Hn + A +
B(c[A]). If Hn + A is not consistent, we take Hn+1 := Hn.

We can easily show that the set X of n, such that Hn is defined and consistent,
is closed under 0 and successor. Let =, or, more explicitly, =U , be a definable
cut that is a shortening of X. We have that H := H= :=

⋃
i∈=Hi is a complete

Henkin theory in the language S, of all sentences of the extended language of
U restricted to =. We define an interpretation H, or more explicitly HU , as
follows.

• δa
H is the set of all Henkin constants of sort a in =. We will distinguish

xa qua domain object from cxa , which is xa in its role of Henkin constant,
even if strictly speaking xa = cxa .

• PH(~x) :↔ H(P ~cx); xEa
Hy :↔ H(cx =a cy), if we have identity for sort a.

We have the following theorem.

Theorem 5.2 1. The theory ΩU proves the Tarski clauses, w.r.t. S, for
HU as a truth-predicate of the interpretation HU . For example, in ΩU ,
we have:

• for a predicate P with associated sequence ~a and for ~x : δ~a
H , we have:

PH(~x) :↔ H(P (~cx)),

• for all B,C in S, we have: H(B ∧ C) ↔ (H(B) ∧H(C)),
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• for all B in S and all variables va of the appropriate sort (coded) in
=, we have: H(∀va Bv) ↔ ∀x : δa

H H(Bcx).

Note that it follows, that, for any A in the language of U ,
ΩU ` ∀~x : δ~a

H (H(A~cx) ↔ AH~x).

2. Let S0 be the set of U -sentences in =. We have:
ΩU ` ∀A∈S0 (2UA → H(A)).

The Henkin interpretation as defined here has a remarkable property, that be-
comes immediately evident, when we reflect on the fact that any cut shortening
the set of acceptable stages X would have done the trick. This property is stated
in the theorem below.

Consider any interpretation K : T � Z. We assume that σK maps all Z-
sorts to a single T -sort, say b. Consider any T -formula Avb, having only v free,
Suppose T ` δa

K∩A 6= ∅, for all Z-sorts a. We define K � A as the interpretation
we obtain by restricting the domains δa

K of K to δa
K ∩A.

Lemma 5.3 Consider any theory U . Let J be any ΩU -cut. We have:

ΩU ` ∀~x : δ~a
H ∩ J (AH�J~x ↔ AH~x).

(The notation ‘δ~a
H ∩ J ’ is intended to convey that each δa

K is intersected with
J .) In other words H � J is elementarily equivalent in ΩU to H.

Proof

Clearly the elements of the δa
H ∩ J are precisely the Henkin constants of sort a

for the complete Henkin theory H ∩ J . We have, in ΩU , for ~x : δ~a
H ∩ J :

AH�J~x ↔ (H ∩ J)(A~cx)
↔ H(A~cx)
↔ AH~x

Note that, since A is standard, A~cx will be automatically in J , whenever ~x in
J . 2

Note that we can easily prove a stronger fact.

Fact 5.4 Suppose M : Z � ΩU . Let J be a Z-definable cut in the M -numbers.
Then, (M ◦HU ) � J is elementarily equivalent in Z to M ◦HU .

5.2 Henkin-Feferman meets Comprehension

To give an optimal formulation of a number of our results, it is better to widen
the framework a little bit. Consider a many sorted predicate logical language
and a designated sort b. We extend the language by adding new unary second
order variables for concepts of objects of the sort b. Officially: we add a new
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sort c, plus a predicate app with associated sequence cb. An s-theory is a theory
in this extended language without quantifiers over the new sort c. We map an
s-theory U to a theory U sch in the original language, by replacing all axioms
A ~X by A[ ~B], for all ~B, where the ~B are formulas of the original language, and
where A[ ~B] is the result of replacing the Xix in A ~X, by Bi[v := x], where v
is a fixed designated free variable of sort b, while no occurrences, from the free
variable occurrences in Bi[v := x], distinct from the occurrences of x are bound
in A[ ~B].

The second order theory Upc is obtained from U by reading U second order
and by adding the predicative comprehension scheme:

` ∃X ∀xb (Xx ↔ A(x, ~y, ~Y )).

Theorem 5.5 Suppose U is an s-theory with designated sort b. Then, we have,
verifiably in I∆0 + Ω1, that (Q + con(U sch)) � Upc.

Proof

We first move to a more convenient environment to work in. Remember that
(Q + con(U sch)) = ΘU sch � ΩU sch . So, it is sufficient to show: ΩU sch � Upc. We
specify our interpretation H? := H?

U : ΩU sch �Upc as follows. For all vocabulary
of the language without c, H? coincides with H. The domain of concepts, δc

H? ,
is the class of formulas, in =U sch , of the language of U sch extended with Henkin
constants, that have just one designated variable v of sort b free. We interpret,
for X in δc

H? , say X is Bv, Xx, by H(Bcx).
When we consider a sequence ~X of elements of δc

H? , we will call these objects
in their role of formulas: ~BX . Consider any U -formula C(~Z). We can show by
external induction over C, that:

ΩU sch ` ∀~x : δ~a
H? ∀ ~X : δc

H? ((C( ~X, ~x))H?

↔ H(C[ ~BX ](~cx))) (2)

Consider any s-axiom A ~X of U . Reason in ΩU sch . It is clear that, for all ~X
in δc

H? , we have 2U schA[ ~BX ]. Hence, by Theorem 5.2(2), we have H(A[ ~BX ]).
(Note that A[ ~BX ], will be in S0.) It follows by Equation (2), that (A ~X)H?

.
Thus, outside ΩU sch , we may conclude that ΩU sch ` (∀ ~X A ~X)H?

.

Consider any formula A(v, ~z, ~Z), where v is of the designated sort b. We reason
in ΩU sch . Consider ~y in δ~a

H? and ~Y in δc
H? . Clearly, X := A(v,~cy)[ ~BY ] is in δc

H? .
We have, for x in δb

H? :

(Xx)H?

↔ H(A(cx,~cy)[ ~BY ])

↔ (A(x, ~y, ~Y ))H?

We may conclude that H? : ΩU sch � Upc.

To verify the proof in I∆0 + Ω1, you have to provide p-time bounds for the
ΩU sch-proofs produced in the induction leading to Equation 2. 2
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It is easy to see that we may extend Lemma 5.3 to H?, where we now restrict
also the new domain δc

H? to J . Thus, we have:

Lemma 5.6 Let J be a ΩU sch-cut. We have that H?
U sch � J is elementarily

equivalent to H?
U sch in ΩU sch . This result is verifiable in I∆0 + Ω1.

6 From Consistency to Principle V

In this section, we study how to extract Frege mappings from the Henkin-
Feferman construction.

6.1 The Collapse

We fist give a collapsing lemma. The development in this subsection can be
executed in I∆0 + Ω1.

Lemma 6.1 Let U be an arithmetical theory. Let Av and Evw be arithmetical
formulas such that, U -provably, E defines an equivalence relation on the class
{v | Av}. Then, there is a U -cut J , a set of U -numbers I0 ⊆ J , and a formula
F , such that that I0 is provably downward closed and such that F , U -provably,
defines an injective function from (A∩ J)/E to I0. Moreover any shortening of
J has the same property.

Proof

Reason in U . We assume that we have, apart from the natural numbers, one
extra element ∗ that stands for ‘undefined’. (We can implement this by letting
x+1 represent x and letting 0 represent ∗.) We say that a sequence σ of length
` is acceptable iff it satisfies the following condition. For all i < `, (i 6∈ A and
σi = ∗) or (i ∈ A and ∀j<i ¬ jEi and σi is the smallest number not in the
range of σ � i) or (i ∈ A and ∃j<i (jEi ∧ σi = σj)). We define J0 as the set of
all ` such that:

1. there exists an acceptable sequence of length `;

2. there exists at most one acceptable sequence of length `;

3. for any acceptable sequence of length ` all initial subsequences are also
acceptable;

4. any acceptable sequence of length ` codes a bijection between the classes
(A � `)/E and m, where m is the supremum of

{x + 1 | x 6= ∗ ∧ ∃j<` σj = x};

(So, if the numerical range of σ is non empty, m will be the maximum of
that range plus one, otherwise m = 0.)
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5. if σ is acceptable of length `, then, for any i, σi = ∗ or σi ≤ i.

We can easily check that J0 is closed under successor. Let J be a shortening
of J0 to a cut. We set Fi = x for: i ∈ (A ∩ J) and there is an acceptable σ of
length i + 1 with σi = x. It is easily seen that F is an injection from A ∩ J to
J with downwards closed range.

Clearly, the proof also works for any shortening of J . 2

Corollary 6.2 Consider any theory V . There is a K : ΩV � V , such that each
of the domains δa

K of K is a ΩV -provably downwards closed class Ia
0 and such

that, if there is an identity relation for sort a, then Ea
K is the identity relation

= of ΩV restricted to Ia
0 .

Proof

To simplify the formulation, we will take, for any interpretation M in V , Ea
M

to be =, if a does not have an identity relation.

Consider the Henkin interpretation H : ΩV � V . We apply Lemma 6.1 to each
of the δa

H and Ea
H . Thus we obtain, for each a, Ja and F a with the promised

properties. We take J the intersection of the Ja. Consider K0 := H � J . Then,
by Lemma 5.3, K0 : ΩV � V . Note that, by the same lemma, Ea

K0
will be

Ea
H restricted to J . It follows that each F a collapses δa

K0
/Ea

K0
to a downwards

closed Ia
0 ⊆ J . Using the F a, we find the desired K in the obvious way. 2

6.2 Implementing V

We consider the following theory 2-SUCCp, the theory of two partial successors.
The language of 2-SUCCp consists of one unary predicate symbol Z and three
binary predicate symbols =, Sa and Sb. The theory is axiomatized as follows.

• The axioms of identity.

• ` ∃!x Zx.

• ` (Saxz ∧ Sayz) → x = y.

• ` (Saxy ∧ Saxz) → y = z.

• ` Saxy → ¬Zy.

• ` (Sbxz ∧ Sbyz) → x = y.

• ` (Sbxy ∧ Sbxz) → y = z.

• ` Sbxy → ¬Zy.
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• ` ¬ (Saxz ∧ Sbyz).

It is more pleasant to formulate 2-SUCCp in an unofficial language of partial
functions using the constant 0 for Z and treating Sa and Sb as partial functions
using ' for: either both sides are undefined or both sides are defined and equal,
= for: both sides are defined and equal, 6= for: both sides are defined and unequal,
and ↓ for is defined. In this language our axioms become:

• ` 0 ↓.

• ` Sax = Say → x = y.

• ` ¬Sax = 0.

• ` Sbx = Sby → x = y.

• ` ¬Sbx = 0.

• ` ¬Sax = Sby.

We define the following mapping from numbers to formulas.

• str0(u) := Zu,

• str2n+1(u) := ∃v (strn(v) ∧ Savu),

• str2n+2(u) := ∃v (strn(v) ∧ Sbvu).

When we take some care to recycle our variables in the recursion in an efficient
way, the mapping n 7→ strn(u) will be p-time. Let 2-SUCC∞p be 2-SUCCp plus
all axioms ` ∃u strn(u). In our unofficial language of partial terms we could
view the strn(u) as defining dyadic numerals, say ñ. In this notation, 2-SUCC∞p
is 2-SUCCp plus the axioms ` ñ ↓.

Now consider any theory U . Suppose I∆0 + Ω1 ` M : U � 2-SUCC∞p . Note
that, by a result due to Wilkie & Paris (see [WP87]) we have, in I∆0 + Ω1, a
p-time bound on the U -proofs of the M -translations of the axioms of 2-SUCC∞p .
(As is well known, the mapping A 7→ AM is p-time.) We have:

I∆0 + Ω1 ` ∀x 2U (∃u strx(u))M . (3)

We claim:

I∆0 + Ω1 ` ∀x 2U (∀u, v ((strx(u) ∧ strx(v)) → u = v))M . (4)

The verification is by Σb
1-PIND-Induction on x, which we have available in

I∆0 + Ω1.11 In the verification, we have to take some care to estimate the
U -proofs by a p-time bound in x. Using Equation 4, we easily show:

I∆0 + Ω1 ` ∀x 2U (∀u, v ((strx(u) ∧ str2x+1(v)) → Sa(u, v)))M . (5)
11In fact, we could have used S1

2 as our base theory in stead of I∆0 + Ω1.
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and, similarly:

I∆0 + Ω1 ` ∀x 2U (∀u, v ((strx(u) ∧ str2x+2(v)) → Sb(u, v)))M . (6)

The U -proofs provided in Equations 5 and 6 can be given explicit p-time bounds.
In I∆0 + Ω1 (in fact already in S1

2), we can develop the theory of binary
strings or dyadic numerals, defining e.g. concatenation by x ∗ y := x · `(y) + y,
where `(y) is the largest power of 2, which is ≤ y + 1. We use this to prove the
following equation.

I∆0 + Ω1 ` ∀x, y (x 6= y → 2U (∀u ¬ (strx(u) ∧ stry(u)))M ) (7)

The proof runs as follows. Reason in I∆0 + Ω1. Consider x and y with x 6= y.
We view x and y as binary strings. Either x and y are comparable in the final
substring ordering or they are not. Suppose first that they are comparable, say
y = x′ ∗ x, where x′ 6= 0. As is easily seen: 2U (∀u ¬ (strx′(u) ∧ str0(u)))M . We
can bound the U -proof by a p-time function in x′. We write [x]i for the initial
string of x of length i. We now prove by Σb

1-LIND-Induction on i, that, for all
i < length(x), 2U (∀u ¬ (strx′∗[x]i(u) ∧ str[x]i(u)))M . As usual we have to keep
track of a polynomial bound for the U -proofs. Clearly, the consequent of the
implication of Equation 7 is a direct consequence.

Now suppose that x and y are not comparable in the final substring ordering.
Let x′ be the largest final string they have in common. We have x = x′′ ∗x′ and
y = y′′ ∗ x′, where either x′′ = 2x′′′ + 1 and y′′ = 2x′′′ + 2, or x′′ = 2x′′′ + 2 and
y′′ = 2y′′′ + 1. It is easily seen that:

2U (∀u ¬ (strx′′(u) ∧ stry′′(u)))M

We now prove by Σb
1-LIND-Induction on i, that:

∀i<length(x′) 2U (∀u ¬ (strx′′∗[x′]i(u) ∧ stry′′∗[x′]i(u)))M .

As usual we have to keep track of a polynomial bound for the U -proofs. Clearly,
the consequent of the implication in Equation 7 is a direct consequence.

In ΩU , We have a Henkin interpretation H of U with truth predicate H and
characteristic cut =. We map = into δH via x 7→ νx := c[(∃u strx(u))M ]. By
Theorem 5.2(2) in combination with Equation 3, we have:

ΩU ` ∀x∈= H((strx(νx))M ). (8)

Similarly, by Equation 7, we have:

ΩU ` ∀x, y : = (x 6= y → H((νx 6= νy)M )). (9)

So it follows that, in ΩU , we have an injective mapping ν from = into δH◦M .
A fortiori, ν is injective when considered as a mapping from = to δa

H , where a
is σM (o) for the single sort o of 2-SUCC∞p . Finally note that our argument also
goes through for H � J and = ∩ J , for any ΩU -cut J . We have proved:
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Theorem 6.3 Suppose, for some M , I∆0 + Ω1 ` M : U � 2-SUCC∞p . Then,

ΩU provides an injection from =U on into δ
σM (o)
HU

. This fact also holds if, for
any ΩU -cut J , we consider =U ∩ J and HU � J .

Let U be an s-theory with designated sort b with identity. We set Upcf for the
theory we obtain by extending the language of Upc with a new function symbol
‡ from c to b and adding the axiom V:

` ‡X = ‡Y ↔ ∀zb (Xz ↔ Y z).

Theorem 6.4 Let U be an s-theory with designated sort b. Suppose, for some
M , I∆0 + Ω1 ` M : U sch � 2-SUCC∞p . Then, we have: Q + con(U sch) � Upcf .
This result is verifiable in I∆0 + Ω1.

Proof

It is sufficient to show that ΩU sch � Upcf . We work in ΩU sch . Consider H? and
=. Let Ec be the equivalence relation on δc

H? given by:

XEcY :↔ (∀xb(Xx ↔ Y x))H?

.

By Lemma 6.1, we can find a cut J ⊆ = such that we have an F , that defines
an injective function from δc

H? ∩J modulo Ec into a downwards closed segment
of J . We consider H? � J . Note that all domains of this interpretation will be
coded in J .

By Theorem 6.3, we can find an injection ν from J into δb
H�J modulo Eb

H .
So G := ν ◦F is a map from δc

H?�J to modulo Ec to δb
H?�J modulo Eb

H . We use
G to interpret the function ‡.

Verifiability in I∆0 + Ω1 is obvious. 2

6.3 Proving the Consistency of 2-SUCC∞p

In this subsection, we verify that Robinson’s Arithmetic proves the consistency
of 2-SUCC∞p on a definable cut.

Theorem 6.5 We have: Q � (Q + con(2-SUCC∞p )).

Proof

Since Q � I∆0 + Ω2, it is sufficient to prove the desired consistency statement
on a cut in I∆0 + Ω2. Thus, we work in I∆0 + Ω2.

An a-assignment σ for A codes a function from the free variables of A to
a.12 An evaluation tree Θ for a, p, σ and A, where σ is an a-assignment for A,

12We follow the usual practice to let a stand for {x | x < a}.
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and where p is a polarity + or −, is given as follows. Its nodes are sequences
of numbers below a. The nodes are labeled by triples of assignments, polarities
and formulas. The root is the empty sequence, labeled with 〈σ, p, A〉. We give
the sample clauses for conjunction, universal quantification and negation.

• Suppose we have a node τ labeled with 〈ν, +, (B ∧ C)〉. Then its successor
nodes are τ0 and τ1, where τ0 is labeled with 〈ν � FV(B),+, B〉 and τ1 is
labeled with 〈ν � FV(C),+, C〉.

• Suppose we have a node τ labeled with 〈ν,−, (B ∧ C)〉. Then its suc-
cessor node is τ0, where τ0 is labeled with either 〈ν � FV(B),+, B〉 or
〈ν � FV(C),+, C〉.

• Suppose we have a node τ labeled with 〈ν,+,∀v B〉. In case v is free
in B, its successor nodes are τx for all x < a. where τx is labeled with
〈ν[v := x],+, B〉. In case v is not free in B, its successor node is τ0 labeled
with 〈ν, +, B〉.

• Suppose we have a node τ labeled with 〈ν,−,∀v B〉. In case v is free in
B, its unique successor node is τx for some x < a. where τx is labeled
with 〈ν[v := x],+, B〉. If v is not free in B, its successor node is τ0 with
label 〈ν, +, B〉.

• Suppose we have a node τ labeled with 〈ν, +,¬B〉. Then its successor
node are τ0, labeled with 〈ν,−, B〉.

• Suppose we have a node τ labeled with 〈ν,−,¬B〉. Then its successor
node are τ0, labeled with 〈ν, +, B〉.

A tree is successful iff, for all leaves τ , we have:

• if the label of τ is 〈ν, +, v = w〉, then ν(v) = ν(w);

• if the label of τ is 〈ν,−, v = w〉, then ν(v) 6= ν(w);

• if the label of τ is 〈ν, +,Savw〉, then 2 · ν(v) + 1 = ν(w);

• If the label of τ is 〈ν,−,Savw〉, then 2 · ν(v) + 1 6= ν(w);

• if the label of τ is 〈ν, +,Sbvw〉, then 2 · ν(v) + 2 = ν(w);

• If the label of τ is 〈ν,−,Sbvw〉, then 2 · ν(v) + 2 6= ν(w).

We can make an estimate of the size of any evaluation tree for a and A. We
will write |b| for the entier of the 2-logarithm of b + 1. We write x#y := 2|x|·|y|,
x#2y := 22||x||·||y|| .

First, consider a node α. Clearly, |α| is bounded by a term of order c0 · (|a|+
c1) · |A|, for standard c0 and c1. So, α is estimated by k0#a#A, for sufficiently
large a. Here k0 is fixed and standard. Secondly, the number of nodes is
estimated by k1#a#A. Finally, the size of a label is estimated by k2#a#A.
Thus, for a whole tree Θ, we will have: |Θ| ≤ (k1#a#A) · (c2 · |a| · |A|) ≤
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k3#a#A, for standard k3 and sufficiently large a. Thus, Θ is estimated by
F (a,A) := 2k3#a#A = k4#22a#22A. We will only consider a and A in the
logarithmic cut log := {x | 2x ↓}, so that F will always be defined. Note that,
since we are working in I∆0 + Ω2, the cut log will interpret I∆0 + Ω1.

There will be some p-time function G transforming bounds for trees of B
to bounds for trees of e.g. ∀v B. We will assume that we arranged it so that
provably G(a, F (a,B)) ≤ F (a,∀v B) (and similarly for the other connectives).

We define a, σ |=p A iff there is a successful tree Θ below F (a,A) for a, σ, p, A.
We claim that |= satisfies the obvious commutation clauses for a, A in log.
Suppose e.g. that v is free in B and, for all x < a, we have a, σ[v := x] |=+ B.
So for all x < a, we have a successful tree Θx for a, σ[v := x],+, B. The Θx are
bounded by F (a,B). By ∆0-induction we can find, for each such x, a smallest
such Θx, so we can treat the Θx as functionally dependent on x. We now take
as the set of nodes of the new tree all nodes of the form xτ , where x < a and τ
is a node of Θx. The label of xτ will be the label of τ in Θx. We easily verify
that the new tree is successful. We may conclude that a, σ |=+ ∀v B.

We may verify the validity of predicate logic, on a in log, for the language
of 2-SUCCp, where the language is restricted to log. E.g., we may prove, by
induction on B in log, that, for all σ : FV(B) → a, we have aσ |=+ B or
aσ |=− B. Similarly we may verify the validity of 2-SUCCp on a.

We claim that I∆0 + Ω2 ` conlog(2-SUCC∞p ). Reason in I∆0 + Ω2. Consider
a SUCC∞p -proof π in log. Consider the largest axiom of the form ∃v strb(v)
occurring in π. Clearly, b will be in log. Take a := b + 1. We now show that
all axioms of 2-SUCCp are true in a. Moreover, we show that for each c < a,
∃v strc(v) is true in a. Noting that all formulas occurring in π are in log, we
may now show by induction on subproofs that all subconclusions of π are true.
(Details will depend on the proofsystem.) Hence, π cannot be a proof of falsum.

2

7 From Comprehension to Consistency

The proof in this section is a variant of the proofs of the consistency on a
definable cut of ZF in GB and of the consistency on a definable cut of PA in
ACA0. The original idea for the proof goes back to Mostowski. We show:

Theorem 7.1 Suppose U is a finitely axiomatized s-theory. Suppose further
that U sch is sequential. Then, Upc � (Q + con(U sch)).

Proof

Let ν be a measure of complexity that counts depth of logical constants. Let
L1(x) be the set of U -formulas that do not contain concept variables and that
are of ν-complexity ≤ x.
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We work in Upc. We let σ range over assignments coded as finite sequences of
pairs of variables and objects, satisfying the functionality condition. If a variable
does not occur as a first component in the sequence we take its value to be the
default 0. We assume syntax to be coded in the natural numbers provided by
the fact that U sch is sequential. Suppose U has k predicate symbols. We define:

Tx(X) :↔ X ⊆ ass× L1(x) ∧ ∀σ ∀A∈L1(x) [
((A = P0~v) → (X〈σ,A〉 ↔ P0(σ~v))) ∧
. . .

((A = Pk−1~v) → (X〈σ,A〉 ↔ Pk−1(σ~v))) ∧
((A = ¬B) → (X〈σ,A〉 ↔ ¬(X〈σ,B〉))) ∧
((A = (B ∧ C)) → (X〈σ,A〉 ↔ (X〈σ,B〉 ∧X〈σ,C〉))) ∧
((A = ∃vi B) → (X〈σ,A〉 ↔ ∃y X〈σ[vi := y], B〉)) ]

Let J0 be the class of all x such that ∃!X T (X, x). We show that J contains 0
and is closed under successor.

For x = 0, we take X the concept of all 〈σ,A〉 such that, for some ~v,
((A = P0~v) and P0(σ~v)) or . . . ((A = Pk−1~v) and Pk−1(σ~v)). This exists
by predicative comprehension. Uniqueness is immediate. Let Xx be the unique
concept such that T (Xx, x). We define Xx+1 to be the union of Xx with the
〈σ,A〉 such that ν(A) = x+1 and ((A = ¬B) and ¬Xx〈σ,B〉) or ((A = (B∧C))
and Xx〈σ,B〉 and Xx〈σ,C〉) or ((A = ∃vi B) and ∃y Xx〈σ[vi := y], B〉). It is
easily seen that T (Xx+1, x+1). Moreover, if we had T (Y, x+1), then we would
have T (Y ∩L1(x), x). So, Y ∩L1(x) = Xx. It now easily follows that Y = Xx+1.
We will employ the functional notation Xx for x in J . We write L1(J ) for the
class of all formulas in one of the L1(x) for x ∈ J .

Define Sat(σ,A) :↔ ∃x∈J Xx〈σ,A〉. It is easily seen that Sat is a satisfaction
predicate for L1(J ) in the strong sense that we can verify the commutation
conditions for L1(J ).

Consider any A in L1(J ), any finite assigment σ and any variable vi. We claim
that:

∃Z ∀z (Zz ↔ Sat(σ[vi := z], A). (10)

Let ν(A) =: a. We can take Z := Hz | Xa〈σ[vi := z], A〉I. We easily verify that
Z fulfills the desiderata.

Let P be the set of all U sch-proofs p, such that all formulas occurring in p are
in L1(J ). Let I be the set of numbers x such that all p ∈ P of length ≤ x
(length in the sense of number of steps) have a conclusion Ap such that, for all
σ, Sat(σ,Ap). We show that 0 ∈ I and that I is closed under successor.

We first treat the case of 0. Consider any axiom C~Y of U . Since we are
working in Upc, we have ∀~Y C(~Y ). Consider ~A in L1(J ). By Equation 10, we
can find Zi := Hz | Sat(σ[v0 := z], Ai)I. We may conclude C ~Z. By external
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induction on standard formulas D, we find: D~Z ↔ Sat(σ,D[ ~A]). Thus we may
conclude:

∀ ~A∈L1(J )∀σ Sat(σ,C[ ~A]).

The case of the induction step is dependent on the proof system. The reader is
invited to check that this works for her favorite proof system.

Thus, there can be no p in P with length in I with conclusion ⊥. By
Solovay’s method of shortening initial segments, we can find a cut K that is
verifiably part of I and J . Since we use a standard coding, any U sch-proof in K
will only contain formulas D with ν(D) in J and will have length in I. Thus,
we certainly have conK(U sch).13 2

In the paper, we will only apply this result to ordinary theories, not s-theories.
Theorem 9.7 illustrates that some restriction on the axiom set is necessary to
make the result work.

Since Q + con(U sch) is finitely axiomatized, the previous theorem is trivially
verifiable in I∆0 + Ω1. However, there is a catch. What is verifiable is of the
form “given a finitely axiomatized s-theory U , we can verify in I∆0 + Ω1 that
. . . ”. So the bound on the axioms of U is external/standard. If, however we want
to have the bound internally, we see that the size of the code of our satisfaction
predicate is exponential in the number of predicates of the signature of the
theory. Thus, to make the proof work in I∆0 + Ω1, we have to assume that the
number of predicates is a logarithmic number n, i.e. 2n exists. Inspection shows
that the size of the satisfaction predicate is the only obstacle. We have:

Theorem 7.2 The theory I∆0 + Ω1 proves that, for any finitely axiomatized
s-theory U with logarithmic bound, Upc � (Q + con(U ch)).

8 Putting it All Together

In this section, we assemble the building blocks to prove our main result. We
define (U)ω := U + {conn(U) | n ∈ ω}.

Theorem 8.1 For all n, we have, that it is both true and verifiable in I∆0 + Ω1,
that Pn+1V ≡ Q + conn(Q). It follows that PωV ≡loc (Q)ω.14

Proof

The proof is by (external) induction on n. Here is the outline of the base case.

P1V � Q (11)
� Q + con(2-SUCC∞p ) (12)

13Note that the result involving I and J is stronger than the present one. I know of no
application of the extra information.

14Since Qω is reflexive, it follows that Qω � PωV.
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� (2-SUCC∞p )pcf (13)

⊇ P1V (14)

The various steps are justified as follows.

step 11 This result is proved in [Bur05], Section 2.2.

step 12 This step is our Theorem 6.5.

step 13 This step is provided by our Theorem 6.4.

Since each of the steps is verifiable in I∆0 + Ω1, so is their composition. Next
we prove the induction step. We suppose that it is both true and verifiable in
I∆0 + Ω1 that Pn+1V ≡ (Q + conn(Q)). We have:

Pn+2V ⊇ (Pn+1V)pc (15)
� (Q + conn(Q))pc (16)
� Q + conn+1(Q) (17)
� Q + con(Pn+1V) (18)
� (Pn+1V)pcf (19)
� Pn+2V (20)

Here is the justification of the steps.

step 16 This step is justified by applying Theorem 3.2 to the left-right direction
of the induction hypothesis.

step 17 This step is Theorem 7.1.

step 18 We reason as follows. By the second conjunct of the induction hypoth-
esis in the right-to-left direction, we have: I∆0 + Ω1 ` (Q + conn(Q)) �

Pn+1V. It follows that:

I∆0 + Ω1 ` conn+1(Q) → con(Pn+1V).

Since Q interprets I∆0 + Ω1 on a definable cut, we may conclude that:

(Q + conn+1(Q)) � (Q + con(Pn+1V)).

step 19 This is by Theorem 6.4.

step 20 This is by Theorem 4.1.

Since each of the steps is verifiable in I∆0 + Ω1, the end result is. 2
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Remark 8.2 A curious observation about our proof is that the presence of
the principles V only contributes to consistency strength in the case of P1V.
For all others, predicative comprehension already does all the work. Of course,
consistency strength is but one aspect of a theory, so it could very well be that
Pn+2V has advantages of another kind over PCn+1(P1V). It would be interesting
to have a closer look at this matter.

Where is the induction of the proof of Theorem 8.1, verifiable? There is one
obstacle. In the induction we iterate the p-time functions used in the steps. So
it would seem that our theorem is verifiable in EA. However, I have not verified
this in detail. In stead, I give an alternative proof in that uses Löb’s Rule.

Theorem 8.3 The theory I∆0 + Ω1 proves that, for all logarithmic n:
Pn+1V ≡ Q + conn(Q).

Proof

We write x : log for ∃y 2x = y. Let:

A?x := ((Px+1V ≡ (Q + conx(Q))) ∧ (Px+1V ≡ Px+1Vfa)).

We show that I∆0 + Ω1 ` ∀x : log A?x. We will prove this using Löb’s Rule.
Thus, it is sufficient to show that:

I∆0 + Ω1 ` 2I∆0+Ω1∀x : log A?x → ∀x : log A?x.

We reason in I∆0 + Ω1. Suppose

2I∆0+Ω1∀x : log A?(x). (21)

Note that it follows that:

2I∆0+Ω1∀x : log (con(Px+1V) ↔ conx(Q)). (22)

and:
2I∆0+Ω1∀x : log (con(Px+1V) ↔ con(Px+1Vfa)). (23)

We proceed to prove A?1.

P1V ⊇ P1Vfa (24)
� Q (25)
� Q + con(2-SUCC∞p ) (26)

� (2-SUCC∞p )pcf (27)

⊇ P1V (28)

The only new step here is Step 24. It is justified since the interpretability of Q
in P1V only asks for a standard proof. Hence, Q is also interpretable in P1Vfa
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by a standard proof. This standard proof is of course available inside I∆0 + Ω1,
where we are presently working. Next we prove the case A?(x + 2), for x : log.
We set FSTx+1

fa , for the obvious flat counterpart of Px+1Vfa. We have:

Px+2V ⊇ (Px+1V)pc (29)
⊇ (Px+1Vfa)pc (30)
� (FSTx+1

fa )pc (31)
� Q + con(FSTx+1

fa ) (32)
� Q + con(Px+1Vfa) (33)
� Q + conx+1(Q) (34)
� Q + con(Px+1V) (35)
� Px+1Vpcf (36)
� Px+2V (37)

Here are the justifications of the steps.

step 30 This is immediate by Theorem 4.11.

step 31 This combines Theorem 3.2 with the definition of FSTx+1
fa .

step 32 This is by Theorem 7.2, using the fact that x is logarithmic.

step 33 Since 2I∆0+Ω1(FSTx+1
fa � Px+1Vfa), it follows that:

2I∆0+Ω1(con(FSTx+1
fa ) → con(Px+1Vfa)).

Hence,

Q + con(FSTx+1
fa ) � I∆0 + Ω1 + con(FSTx+1

fa )
⊇ Q + con(Px+1Vfa).

steps 34, 35 These steps follow by combining Equations 22 and 23 with rea-
soning as in step 33.

step 36 This is by Theorem 6.4.

step 37 This step uses Theorem 4.1.

2

Corollary 8.4 The theory EA verifies that, for all n, Pn+1V ≡loc (Q+conn(Q)).
Hence, EA also verifies: PωV ≡ Qω.
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9 Consequences

A first consequence is an alternative characterization of PωV in terms of EA.

Lemma 9.1 Verifiably in I∆0 + Ω1, for any Π0
1-sentence P ,

(Q + con(Q + P )) ≡ (EA + P ).

Proof

This is an immediate consequence of Lemma 4.1 of [Vis92]. Here is a quick
sketch of the proof.

From right to left, we may prove, in EA + P , the cut-free consistency of Q + P .
See [WP87], for how this may be done. There is a definable EA-cut J , such
that, in EA, for all x in J , supexp(x) is defined. On J , we will have, by cut-
elimination, the ordinary consistency of Q + P . thus, J gives us the desired
interpretation.

From left to right, we use that:

Q + con(Q + P ) ≡ I∆0 + Ω1 + con(I∆0 + Ω1 + P ).

So it is sufficient to prove our result with I∆0 + Ω1 substituted for Q. We
construct an interpretation for EA + P in I∆0 + Ω1 + con(I∆0 + Ω1 + P ). We
first construct the Henkin-Feferman interpretation:

H : (I∆0 + Ω1 + con(I∆0 + Ω1 + P )) � (I∆0 + Ω1 + P ).

By a result of Pudlák, there is a cut I such that ∀x : I 2I∆0+Ω1+P supexp(ẋ) ↓.
See [Pud85]. We may take I shorter than the cut =H on which H is coded.
Hence, by Theorem 5.2(2), ∀x : I H(supexp(ẋ) ↓). Now we restrict the domain
of H to those y that such that, for some x ∈ I, H(cy < supexp(ẋ)). It is easily
seen that H restricted to this domain is in an interpretation of EA + P . 2

Lemma 9.2 We have, verifiably in I∆0 + Ω1, that, for all n:
(Q + con2n+1(Q)) ≡ (EA + conn(EA)).

Proof

Let A?x := ((Q+con2x+1(Q)) ≡ (EA+conx(EA))). By Löb’s Rule, it is sufficient
to prove: I∆0 + Ω1 ` 2I∆0+Ω1∀x A?x → ∀x A?x.

Reason in I∆0 + Ω1. Suppose 2I∆0+Ω1∀x A?x. Note that our assumption
implies that:

2I∆0+Ω1∀x (con2x+2(Q) ↔ conx+1(EA)). (38)
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We want to show ∀x A?x. The case x = 0 is immediate using Equation 38.
Suppose x = y + 1. By Lemma 9.1 and Equation 38, we obtain:

Q + con2x+1(Q) ≡ Q + con2y+3(Q) (39)
≡ EA + con2y+2(Q) (40)
≡ EA + cony+1(EA) (41)
≡ EA + conx(EA) (42)

So, for all x, we have A?x. 2

Corollary 9.3 We have, verifiably in EA, that, for all n, P2n+1V ≡ (EA +
conn(EA)) and , thus, PωV ≡loc (EA)ω.

Proof

We combine Lemma 9.2 with Corollary 8.4. 2

The fact that (Q + con(Q)) ≡ EA, suggests the following question.

Open Question 9.4 Is there a (natural) hierarchy of recursive functions Fn

below superexponentiation, such that I∆0 + “Fn is total” is mutually inter-
pretable with Q + conn(Q)?

In his paper [Bek03], Lev Beklemishev has shown that, verifiably in EA+ :=
I∆0 + SUPEXP, the following three theories have the same Π0

1-consequences:
EAω, I∆0+SUPEXP and I∆0+IΠ−

1 (see Propositions 4.5 and 11.5 of [Bek03]).15

Combining these results with Corollary 9.3, we obtain:

Corollary 9.5 The theories PωV, EA+ and I∆0 + IΠ−
1 are equiconsistent over

EA+.

We close this paper wit a treatment of strong reflexivity. It will follow that PωV
is not finitely axiomatizable in a strong sense. From this we get that PωV does
not interpret EA+.

A theory T is strongly reflexive if it interprets:

0+
T := S1

2 + {con(T � n) | n ∈ ω}.16,17,18

15One uses that EA+ is EA plus uniform Σ0
1-reflection for EA.

16We use S1
2 here in stead of I∆0 + Ω1, because it is finitely axiomatized. Any sufficiently

strong finitely axiomatized subtheory of I∆0 + Ω1 would suffice for present purposes.
17We pronounce 0 to rhyme with ‘Joe’.
18An important difference between the functor 0+ and the mappings Θ and Ω is that 0+

is extensional.

39



Here T � n is the result of restricting T to its axioms with Gödel numbers below
n.19 As is easily seen (Q)ω is strongly reflexive. Other examples of strongly
reflexive theories are PA and ZFC. A theory T is strongly `-reflexive if it locally
interprets 0+

T .20

We have:

Theorem 9.6 The following are equivalent:

i. T is strongly `-reflexive,

ii. T ≡loc U , for some strongly reflexive U ,

iii. T ≡loc U , for some strongly `-reflexive U .

Proof

(i) ⇒ (ii) Suppose T is strongly `-reflexive, i.e. T �loc 0+
T . We have 0+

T �T , by
an argument due to Feferman. See [Fef60]. So, T ≡loc 0+

T . We show that 0+
T is

strongly reflexive. Consider any n. We have, for some m, that:

(T � m) � (S1
2 + con(T � n)).

It follows that S1
2 ` con(T � m) → con(S1

2 + con(T � n)). Hence 0+
T proves the

consistency of each of its finitely axiomatized subtheories.

(ii) ⇒ (i) Suppose T ≡loc U , where U is strongly reflexive. Consider any n. For
some m, we have (U � m) � (T � n). So,

S1
2 ` con(U � m) → con(T � n).

It follows that: T � U � (S1
2 + con(U � m)) ⊇ (S1

2 + con(T � n)).

The step (ii) ⇒ (iii) is trivial. We treat (iii) ⇒ (ii). Suppose T ≡loc U , for
some strongly `-reflexive U . By the equivalence of (i) and (ii), U ≡loc V , for
some strongly reflexive V . It follows that T ≡loc V , for some strongly reflexive
V . 2

We may conclude that PωV is strongly `-reflexive. Since, as is easy to verify, ev-
ery strongly reflexive theory locally interprets (Q)ω, we find that PωV is minimal
among strongly `-reflexive theories in the local interpretability preorder.

The following theorem shows that the functors PC and PCF yield coding free
definitions of strong `-reflexivity.

Theorem 9.7 Let U be a sequential theory. Then, the following are equivalent:
(i) U is strongly `-reflexive; (ii) U ≡loc Upc; (iii) U ≡loc Upcf .

19We use ‘strongly’ here to distinguish this notion from a notion of reflexiveness involving
not just restriction of axioms but also restricted provability. We call this notion: (weak)
reflexiveness.

20Sequential theories are (weakly) `-reflexive. Thus, there is an analogy between sequential
theories and sequential strongly `-reflexive theories.
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Proof

(i) ⇒ (iii) Suppose U is strongly `-reflexive. Then, U � (Q + con(U � n)).
We assume that n is so large that sequentiality can be verified in U � n. By
Theorem 6.4, (Q+con(U � n))�(U � n)pcf . Clearly, (U � n)pcf ⊇ (Upcf � n). We
may conclude: U � (Upcf � n). Thus, U �loc Upcf . Trivially, we have Upcf � U .

(iii) ⇒ (ii) This is immediate.

(ii) ⇒ (i) Let n be so large that U � n is sequential. We have, by Theorem 7.1:

Upc ⊇ (U � n)pc

� Q + con(U � n)
� S1

2 + con(U � n).

We may conclude that Upc �loc 0+
U . 2

We show that strong `-reflexivity is a sufficient condition for non finite axiom-
atizability.

Theorem 9.8 No strongly `-reflexive theory is finitely axiomatizable.

Proof

Suppose T is strongly `-reflexive and finitely axiomatized. We have, for some
n, that T = (T � n). Hence, T � (S1

2 + con(T )), contradicting the Second
Incompleteness Theorem.21 2

Note that it follows that theories like PA and ZF are not finitely axiomatiz-
able. The most relevant corollary in the context of this paper is, of course:

Corollary 9.9 The theory PωV is not finitely axiomatizable, nor is any theory
that is mutually locally interpretable with PωV.

Corollary 9.10 The theory PωV does not interpret EA+.

Proof

Since EA+ ⊇ (Q)ω, we have EA+
�loc PωV. Hence, it is impossible that we have

PωV � EA+, since EA+ is finitely axiomatizable. 2

21For the proof of the Second Incompleteness Theorem it is irrelevant on which interpreta-
tion of S1

2 in T we have con(T ). The Theorem is, in this sense, coordinate free.
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Open Question 9.11 It seems to me that every extension of EA studied in
the literature is either finitely axiomatizable or (strongly) reflexive. On the
other hand, it seems very probable to me that the theory PωV is not strongly
reflexive, but just strongly locally reflexive. This makes the following question
interesting. Is PωV strongly reflexive?

Open Question 9.12 We have seen that PωV is not finitely axiomatizable.
But maybe there are next best results. Is there a theory of finite signature bi-
interpretable with PωV? If so, is there such a theory axiomatizable via a finite
number of axiom schemes (or, perhaps rule schemes)?
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A Finite Axiomatizability III

In this appendix we prove Theorem 3.3. We show the following. Suppose U
is a one-sorted theory with identity and pairing. Then, Upc can be finitely
axiomatized over U .
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Proof

We code sequences in U by:

• 〈x〉 := x, σ ~ y := 〈σ, y〉.

Here 〈x0, · · · , xn−1〉 ~ y = 〈x0, · · · , xn−1, y〉. Our definition by recursion is ex-
ternal. Internally, we only define, for any external n, sequences of length n.
Note that a sequence of length n may coincide with a sequence of length k, for
n < k. Clearly, we can define the notion n-seq of sequence of length n in U . It is
convenient to also have the right associating notion of sequence [x0, . . . , xn−1].

• [x] := x, y � σ := 〈y, σ〉.

We now define a number of operations on concepts.

• Suppose P is a k-ary predicate symbol, then
F0,P := H〈x0, · · · , xk−1〉 | P (x0, · · · , xk−1)I.

• F1(X) := H〈x, y〉 | X〈x, y, y〉I, F−
1 (X) := Hy | X〈y, y〉I.

Note that by our conventions this also identifies the last two elements of
longer sequences.

• F2(x) := HxI.

• F3(X) := H〈x, z, y〉 | X〈x, y, z〉I, F−
3 (X) := H〈z, y〉 | X〈y, z〉I.

• F4(X) := H〈y, z, w〉 | X[y, z, w]I.

• F5(X) := H[x, y, z, w] | X[x, 〈y, z, w〉]I.

• F6(X) := H〈x, y〉 | XxI.

• F7(X, Y ) := X \ Y .

• F8(X) := Hy | ∃x X〈y, x〉I.

Let F be the class of functions generated by the functions of our list.

Let renormn([x0, . . . xn−1]) := 〈x0, . . . , xn−1〉. Suppose X is a set of sequences
[x0, . . . , xn−1]. We claim that G0,n, with

G0,n(X) := renormn[X] := Hrenormn(ξ) | ξ ∈ XI,

is in F . For n = 1 this is trivial. For n > 1, note that:

〈〈x0, . . . , xk〉, [xk+1, . . . , xn−1]〉 ∈ F4(X) ⇔ 〈〈x0, . . . , xk−1〉, [xk, . . . , xn−1]〉 ∈ X.

Hence, we can take G0,n := Fn−2
4 .

Let renorm?
n(〈x0, 〈x1, . . . , xn−1〉〉) := [x0, . . . , xn−1]. Suppose X is a set of pairs

〈x0, 〈x1, . . . , xn−1〉〉. We claim that G1,n, with G0,n(X) := renorm?
n[X], is in F .

For n = 1, 2 this is trivial. For n > 2, we take G1,n := Fn−3
5 .
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Suppose n > 1. Let shiftn(〈x0, . . . , xn−1〉) := 〈xn−1, x0, . . . , xn−2〉. We claim
that there is a G2,n in F , such that if X is a concept of sequences of length n,
then G2,n(X) := shiftn[X]. In case n = 2, we take G2,2 := F−

3 . Suppose n > 2.
We take G2,n := G0,n ◦G1,n ◦ F−

3 .

Suppose n > 2 and k < n− 2. Define:

placen,k(〈x0, . . . , xn−1〉) := 〈x0, . . . , xk, xn−1, xk+1, . . . xn−2〉.

Let G4,n,k(X) := placen,k[X]. Then G4,n,k(X) is in F . We can take G4,n,k :=
Gk+2

2,n ◦ (G2,n ◦ F3,n)n−k−2.

Let π be any permutation of n. Let π?(〈x0, . . . , xn−1〉) := 〈xπ0, . . . , xπ(n−1)〉.
We define: G5,n,π(X) := π?[X]. Then G5,n,π is in F . Using the previously de-
fined operations, we can easily define G5,n,π for the case that π is a transposition.
then , we use the fact that any permutation is a product of transpositions.

To any formula of predicate logic A (possibly with free concept variables), we
assign the set of sequences ξ of length `, were ` is the supremum-plus-one of the
indices of the variables occurring in A, such that ξ, considered as an assignment
satisfies A. We now prove by induction on A that this set of sequences is
definable using the Fi. We treat the example of the atomic formula P (v2, v0).
The rest is more or less obvious. We have:

a. X0 := F0,P = H〈x0, x1〉 | P (x0, x1)I.

b. X1 := F6(X0) = H〈x0, x1, x2〉 | P (x0, x1)I.

c. X2 := G5,3,(02)(12) = H〈x1, x2, x0〉 | P (x0, x1)I = H〈x0, x1, x2〉 | P (x2, x0)I.

It follows that every definable set is generated by the Fi. Clearly, the Fi are
definable using predicative comprehension. 2

Is the proof of Theorem 3.3 verifiable in I∆0 + Ω1? I did not verify this in
detail, but it seems to me that if we proceed carefully and choose the variables
in the syntactic representation of the formulas involved in comprehension wisely,
then is should be feasible.

B Questions

Q1. Is PωV bi-interpretable with a theory of finite signature? This is question
4.4.

Q2. We do not know whether the argument for the finite axiomatizability of
P1V can be formalized in I∆0 + Ω1.

(a) Can I∆0 + Ω1 verify the finite axiomatizability of P1V?
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(b) If not, is the finite axiomatizability of Pn+1V, for n ≥ 1, verifiable in
I∆0 + Ω1?

This is Question 4.10.

Q3. Is there a (natural) hierarchy of recursive functions Fn below superexpo-
nentiation, such that I∆0 + “Fn is total” is mutually interpretable with
Q + conn(Q)? This is Question 9.4.

Q4. Is PωV strongly reflexive? This is Question 9.11.

Q5. Is there a theory of finite signature bi-interpretable with PωV? If so, is
there such a theory axiomatizable via a finite number of axiom schemes
(or, perhaps rule schemes)? This is Question 9.12.
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