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Abstract

In this paper, we provide basic facts about the category INT of inter-
pretations. E.g., we give a characterization of its epimorphisms and we
show that, modulo a small detail, its opposite category is regular and
even coherent. We also study a salient subcategory, the category of direct
interpretations.
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1 Introduction

In [Vis06], I studied several categories of interpretation. The main focus of
that paper was on questions like the use of such categories to provide notions
of sameness of theories, or to analyze Tarski’s theorem on the undefinability of
truth, or to explicate the notion of axiom scheme. In the present paper, I adress
the more modest question of which salient properties from the literature two
categories, to wit INT and INTdir possess. This question is asked without regard
to possible applications. Thus, the contents of the paper should be characterized
as being basic groundwork.

We provide a careful definition of our categories INT and INTdir. We ver-
ify that the category has certain basic closure properties, like the existence of
products and finite colimits. We show that, if we enrich the category with a
bottom, the opposite of the resulting category is regular and even coherent.

We also study direct interpretations. These are unrelativized interpretations
that send identity to identity. Direct interpretations are important, e.g. for the
study of notions like sequentiality.

2 Basic Definitions

We consider ∆1
b-axiomatized theories in predicate logic of finite signature with

identity.1 Interpretability will be one-dimensional relative interpretability with-
out parameters where identity is not necessarily translated as identity. We will
specify this notion below.

Officially, we demand that our theories have relational languages, i.e. that
they are without function symbols or constants. However, we will be sloppy
about this. Often we will speak about languages as if they have function sym-
bols and constants. We assume implicitly that such function symbols and con-
stants are eliminated using the well know translation algorithm of functional to
relational languages.

There are some reasonable variants of interpretability, that we will not con-
sider. In many cases, our results will immediately translate to analogous results
for the variants. In some cases, there will be a real difference. The variants
are the following. We could consider many-sorted theories, where we now re-
strict ourselves to the one sorted case. We could consider multidimensional
interpretations, where an object of the interpreted theory is represented by a
sequence of objects of the interpreting theory. For example, if we interpret a
points-and-lines version of Euclidean Geometry into a points-only version, we
will interpret a line as a pair of points. Finally, we could consider interpretations
with parameters.2

To define an interpretation, we first need the notion of translation.
1The demand on the complexity of the axiom set is not as restrictive as it seems, since we

often can diminish the complexity of the axiom set using versions of Craig’s trick.
2There is not even full clarity about what the ‘right’ fully general definition of interpretation

with parameters is. Closer investigation seems to be long overdue.
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2.1 Relative Translations

Let Σ and Θ be finite signatures. A relative translation τ : Σ → Θ is given by
a pair 〈δ, F 〉. Here δ is a Θ-formula representing the domain of the translation.
We demand that δ contains at most v0 free. The mapping F associates to each
relation symbol R of Σ with arity n an Θ-formula F (R) with variables among
v0, . . . , vn−1.

We will write: v0, . . . , vn−1 : δ for δv0∧· · ·∧δvn−1. We translate Σ-formulas
to Θ-formulas as follows:

• (R(y0, · · · , yn−1))τ := F (R)(y0, · · · , yn−1);
here F (R)(y0, · · · , yn−1) is our sloppy notation for:

F (R)[v0 := y0, · · · , vn−1 := yn−1],

the result of substituting the yi for the vi; we assume that some mecha-
nism for α-conversion is built into our definition of substitution to avoid
variable-clashes;

• (·)τ commutes with the propositional connectives;

• (∀y A)τ := ∀y (δ(y) → Aτ );

• (∃y A)τ := ∃y (δ(y) ∧Aτ ).

Suppose τ is 〈δ, F 〉. Here are some convenient conventions and notations.

• We write δτ for δ and Fτ for F .

• We write Rτ for Fτ (R).

• We will always use ‘=’ for the identity of a theory. In the context of
translating, we will however switch to ‘E’. So, Eτ is the translation of
identity.

• We write ~x : δ for: δ(x0) ∧ . . . ∧ δ(xn−1).

• We write ∀~x : δ A for: ∀x0 . . .∀xn−1 (~x : δ → A).

• We write ∃~x : δ A for: ∃x0 . . .∃xn−1 (~x : δ ∧A).

We can compose relative translations as follows:

• δτν := (δν ∧ (δτ )ν),

• Rτν = ~v : δτν ∧ (Rτ )ν .

We write ν ◦ τ := τν. Note that (Aτ )ν is provably equivalent in predicate logic
to Aτν . The identity translation id := idΘ is defined by:

• δid := (v0 = v0),

• Rid := R(v0, . . . , vn−1).
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Note that translations as defined here only have good properties modulo prov-
able equivalence. E.g., δid◦id = (v0 = v0∧v0 = v0), which is not strictly identical
to δid.

An translation τ is called direct if it is unrelativized (i.o.w., if its domain is
given by v0 = v0), and if it sends identity to identity (i.o.w., Eτ = (v0 = v1)).

2.2 Relative Interpretations

A translation τ supports a relative interpretation of a theory U in a theory V ,
if, for all U -sentences A, U ` A ⇒ V ` Aτ . (Note that this automatically takes
care of the theory of identity. Moreover, it follows that V ` ∃v0 δτ .) We will
write K = 〈U, τ, V 〉 for the interpretation supported by τ . We write K : U → V
for: K is an interpretation of the form 〈U, τ, V 〉. If M is an interpretation, τM

will be its second component, so M = 〈U, τM , V 〉, for some U and V .

Par abus de langage, we write ‘δK ’ for: δτK
; ‘PK ’ for: PτK

; ‘AK ’ for: AτK , etc.

Suppose T has signature Σ and K : U → V , M : V → W . We define:

• idT : T → T is 〈T, idΣ, T 〉,

• M ◦K : U → W is 〈U, τM ◦ τK ,W 〉.

We identify two interpretations K, K ′ : U → V if:

• V ` δK ↔ δK′ ,

• V ` δK → (PK ↔ PK′).

One can show that modulo this identification, the above operations give rise to
a category INT of theories and interpretations.

A interpretation is direct iff its underlying translation is direct. The restriction
of INT to direct interpretations is INTdir.

Remark 2.1 A problem with our definition of our categories is the direction of
the arrows. The direction that we have chosen feels like the natural one. Also,
it was previously used e.g. in [Háj70] and [Vis06]. Moreover, it coheres with
the extensive tradition in degrees of interpretability. On the other hand, it is
opposite to the direction in boole algebras. We have the inconsistent theory on
top, they have absurdum at the bottom. Also, with our direction, the MOD-
functor that sends a theory to its class of models will be contravariant. Finally,
as we will see in this paper, nice properties like regularity are enjoyed by the
opposite category.

We end this section with the definitions of a few important special morphisms
and operations on morphisms.
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• Suppose U ⊆ V , i.e. V extends U in the same language, say with signature
Σ. We take EUV := 〈U, idΣ, V 〉.

• Consider K : U → V . We define K−1[V ] as the theory with as theorems
{A | V ` AK}. We can find a suitably effective axiomatization of K−1[V ]
using Craig’s trick. We define K̆ := 〈K−1[V ], τK , V 〉.

Note that K is equal to K̆ ◦ EU,K−1[V ]. We will see that EU,K−1[V ], K̆ is an
epi-mono factorization of K that is both an image factorization and a coimage
factorization.

3 Basic facts about INT and INTdir

In this section, we collect the basic facts about our categories. Part of the
material is also found in [Vis06].

3.1 The Embedding of INTdir in INT

Let EMB be the embedding functor from INTdir in INT. We will show that EMB
has a left adjoint DIR. Here is the definition. Consider a theory U . We take
as signature of V := DIR(U), the signature of U enriched by two new symbols
E∗ and ∆. The theory V is the result of replacing ‘=’ in the axioms of U by
‘E∗’ (including the axioms concerning identity provided by predicate logic), of
adding the axioms of identity for the outer identity ‘=’ for the full language,
of relativizing the quantifiers in the axioms of U to ∆, and of adding, for each
predicate symbol except ‘=’, he following axiom.

• ` ∀~v (P~v → ~v : ∆).

We define η : U → V as follows:

• δη := ∆,

• Pη := P , Eη := E∗.

Suppose K : U → W . We define a direct interpretation M : V → W as follows:

• ∆M := δK ,

• PM~v := (~v : δK ∧ PK~v), E∗
Mv0v1 := (v0, v1 : δK ∧ EKv0v1).

We can easily verify that M is the unique direct interpretation that makes the
following diagram commute.

W

U
η

-

K

-

V

M

6
.................
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These data determine the left adjoint DIR.

We end this subsection, by proving a useful lemma.

Lemma 3.1 Let V := DIR(U). Let H be any V -formula not containing =.
Consider any variables ~y;~z, such that ~y and ~z are disjoint and the free variables
of H are among ~y;~z. Then there is a U -formula H0 with free variables among
~y, that V ` (~y : ∆ ∧ ~z : ∆c) → (H ↔ Hη

0 ).

Proof

The proof is by induction on H. First we treat the atomic case. Let H := P~x,
where ~x is a subset of ~y, ~z. In case ~x is contained in ~y we take H0 := P~x. In
case, some x in ~x is in ~z, we take H0 := ⊥. The cases of E∗ and ∆ are similar.

The cases of the propositional connectives are trivial.

Suppose H~x = ∀u J(u, ~x). Then, H is equivalent to:

∀u : ∆ J(u, ~x) ∧ ∀u : ∆c J(u, ~x).

Let ~y;~z cover ~x. We may assume that u does not occur in ~y;~z. Let J0(u, ~y)
and J1~y be the formulas provided by the induction hypothesis for, respectively,
~y, u;~z and ~y;~z, u. Then, we can take H0~y :↔ ∀u J0(u, ~y) ∧ J1~y. 2

Example 3.2 An interpretation K : U → V is surjective if, for every sentence
A in the language of V , there is a sentence B in the language of U , such that
V ` A ↔ BK . In [Vis06] we proved that a morphism is surjective iff it is epi in
INT3. From the results of Subsection 3.4 it will follow that every epimorphism
of INT is surjective. Here we give an example of a surjective morphism which is
not epi in INT.

Consider U and V := DIR(U). Let W be the extension of V with the axiom:

• ` x = y ↔ ((¬∆x ∧ ¬∆y) ∨ (∆x ∧∆y ∧ xE∗y)).

Let η+ := EV W ◦ η. We see that every W -formula is equivalent to a formula
without =. Thus, by Lemma 3.1, η+ is surjective. It is easily seen that, if U is
consistent, η+ is not an epimorphism.

3.2 Isomorphisms

Isomorphism in INT is usually called definitional equivalence or synonymy. It
is easily seen that isomorphisms are direct, so INT and INTdir have the same
isomorphisms.

Consider a theory T with signature Σ. Let T ′ be a theory with signature Σ′.
We say that T ′ is a definitional extension of T iff Σ′ extends Σ and the axioms
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of T ′ are the axioms of T plus, for each predicate symbol P of Σ′ \Σ, an axiom
of the form: ` P~x ↔ A~x, where A is in the language of T with at most ~x free.
We have the following easy theorem.

Theorem 3.3 Any definitional extension of a theory is definitionally equivalent
to that theory.

Note that it essential that we really pin down the meanings of the symbols in
the extension of the signature. If we start with a theory and just extend the
signature adding no extra axioms, the result will generally not be isomorphic to
the original theory.

3.3 Monomorphisms

An interpretation K : U → V is faithful iff, for all U -sentences A, U ` A ⇔
V ` AK . In [Vis06], we have shown that an interpretation is faithful iff it is
a monomorphism in INT. It is easy to see that the proof also works for INTdir.
Thus, a direct interpretation is faithful iff it is a monomorphism in INTdir.

In Subsection 4.2, we will show that all monomorphisms are cocovers (in
both categories). In Subsection 4.4, we will show that all monomorphisms are
regular (in both categories).

3.4 Epimorphisms

This subsection substantially improves the treatment in [Vis06]. We show that
each epimorphism can be written as J ◦ E , where J is an isomorphism and E is
a theory extension.

Lemma 3.4 In INT, epimorphisms are direct.

Proof

Suppose K : U → V is an epimorphism. We prove that K is direct. First
suppose V 0 ∀x δK(x). Let V0 be the following theory.

• The signature of V0 is the signature of V expanded by a constant c and a
binary predicate symbol E∗.

• V0 is axiomatized by the axioms of V (including the axioms for identity)
with = replaced by E∗, plus the usual axioms for =, plus the axiom
` ¬ δ′K(c), where δ′K is the result of replacing = by E∗ in δK , and the
axiom ` ∃y (cE∗y ∧ c 6= y).

Clearly, V0 is consistent. We may now interpret V in V0 via two interpretations
M and N .

• δMv0 := (v0 = v0), v0EMv1 := v0E
∗v1, PM~v := P~v.

• δNv0 := (v0 6= c), v0ENv1 := v0E
∗v1, PN~v := P~v.
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We clearly have that M and N are not equal and that M ◦K is equal to N ◦K.
A contradiction.

Next suppose that V ` ∀x δK(x) and V 0 ∀x, y (xEKy → x = y). Let V1 be
the following theory.

• The signature of V1 is the signature of V expanded by new constants c, d
and e.

• The theory V1 is axiomatized by the axioms of identity, plus the relativiza-
tion of V to the domain δ given by v0 6= c, including axioms of the form
P~v → ~v : δ, plus the axioms c 6= d, c 6= e, d 6= e and dE′

Ke, where E′
K is

the relativized variant of EK .

It is easily seen that V1 is consistent. We define two interpretations M and N
of V into V1 as follows.

• δMv0 := (v0 = v0), xEMy := (x = y ∨ (x = c ∧ y = d) ∨ (x = d ∧ y = c)),
PM~v := ∃~w (~wEM~v ∧ P ~w).

• δNv0 := (v0 = v0), xENy := (x = y ∨ (x = c ∧ y = e) ∨ (x = e ∧ y = c)),
PN~v := ∃~w (~wEN~v ∧ P ~w).

We clearly have that M and N are not equal and that M ◦K is equal to N ◦K.
A contradiction.

We may conclude that K is direct. 2

We can split any interpretation K : U → V into EU,K−1[V ] and K̆ : K−1[V ] → V .
Note that K̆ is faithful, and, hence, a monomorphism. Moreover, any EWZ is
trivially an epimorphism. Thus, we can factor K into an epi and a mono:
K = K̆ ◦ EU,K−1[V ].

Theorem 3.5 The following holds both in INT and in INTdir. Suppose K : U →
V . The following are equivalent.

1. K is an epimorphism.

2. K̆ is an isomorphism.

3. MOD(K) is injective.

Here MOD is the usual contravariant functor sending a theory to its class of
models and an interpretation to the corresponding inner model construction.
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Proof

(1) ⇒ (2). Suppose that K : U → V is epi. By Lemma 3.4, we know that K is
direct. Suppose that U has signature Σ and that V has signature Θ. We arrange
it so that Σ and Θ are disjoint, except that they share the identity symbol. Let
Θ′ be a copy of Θ, disjoint from Σ and Θ except again for the shared identity
symbol. Let Z be the theory of signature Σ∪Θ axiomatized by the axioms of V
plus axioms of the form ∀~x (P~x ↔ PK~x), for all P in Σ. Let Z ′ be the similar
theory in signature Σ ∪ Θ′. Let be the theory in signature Σ ∪ Θ ∪ Θ′, with
W = Z ∪ Z ′.

Let M and N be the two obvious interpretations of V in W .3 Clearly, M ◦K
is equal to N ◦K. Since K is epi, we find that M is equal to N . This means
that: Z,Z ′ ` ∀~x (Q~x ↔ Q′~x), for all corresponding Q, Q′ in Θ, resp. Θ′. By
Beth’s Theorem, we may now conclude that, for each Q, there is a formula AQ

in Σ, such that Z ` ∀~x (Q~x ↔ AQ~x). Thus, V and K−1[V ] are both definitional
extensions of each other. Let L : V → K−1[V ] be the direct interpretation based
on Q 7→ AQ. It is easily seen that L is the inverse of K̆.

(2) ⇒ (3). This is trivial.

(3) ⇒ (1). Suppose that MOD(K) is injective. Suppose that M,N : V → W
and M ◦ K is equal to N ◦ K. To obtain a contradiction, we assume that M
is not equal to N . This implies that, for some model M of W , the models
N := MOD(M)(M) and N ′ := MOD(N)(M) are different. (Note that the
relevant notion of difference is numerical distinctness here.) On the other hand
we have:

MOD(K)(N ) = MOD(K)(MOD(M)(M))
= MOD(M ◦K)(M)
= MOD(N ◦K)(M)
= MOD(K)(MOD(N)(M))
= MOD(K)(N ′)

This contradicts the injectivity of MOD(K). 2

We can consider the epimorphisms with codomain U as superobjects of U . These
can be ordered by ≤, given by M ≤ N :⇔ ∃K K ◦ M = N . The following
theorem shows that the structure of the superobjects with ≤, is, modulo iso-
morphism, precisely the structure of the extensions of U in the same language
with ⊆.

Theorem 3.6 Suppose that M : U → V and N : U → W are both epimor-
phisms. Then, the following are equivalent.

a. For some K : V → W , we have K ◦M = N .

b. M−1[V ] ⊆ N−1[W ].
3The interpretations M and N are, in INTdir, a cokernel pair of K.
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Proof

(a) ⇒ (b). It is easy to see that M−1[V ] ⊆ (K ◦M)−1[W ].

V
K - W

M−1[V ]

M̂

?

M̆

6

E - N−1[W ]

N̂

?

N̆

6

U

E

-
�

E

(b) ⇒ (a). By Theorem 3.5, M̆ has an inverse, say M̂ and N̆ has an inverse,
say N̂ . So, we may take K := N̆ ◦ E ◦ M̂ 2

More on superobjects in Section 5.

3.5 Initial Object

The category INTdir has as initial object the theory ID of pure identity. Note
that ID is not strict: it may be codomain of an arrow that is not an isomorphism.
In other words, INTdir has many non-initial, weak initial objects.

The category INT obviously has no initial object. This defect is caused by
a design choice. We opted to work in ordinary predicate logic and not in free
logic, thus excluding empty domains. For some purposes it is convenient to
have an initial object. We will realize this by simply adding a formal object 2

to INT, stipulating a unique arrow from 2 to any theory and to 2 itself, and
adding the obvious compositions. Thus, we obtain the category INT(2). Note
that if INT has limits of some kind then so has INT(2). Moreover, if INT has
binary sums, then so does INT(2). Similarly for coequalizers.

We will show below that INT is closed under binary sums and coequalizers. It
follows that INT(2) is closed under finite sums and coequalizers. By a well
known theorem, we may conclude that INT(2) is closed under finite colimits.
(See [Mac71], p109.)

Open Question 3.7 The category INT has many non-isomorphic weak initial
objects. It seems to be a quite interesting question to characterize these modulo
isomorphism. Also, are there properties in terms of the category that single out
the pure predicate logics among the initial objects?
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3.6 Final Object

We allow the inconsistent theory in any signature. All these theories will be
isomorphic in both categories and provide us with final objects. Note that final
objects are strict: an arrow starting from a final object is an isomorphism.

3.7 The Cartesian Product

The cartesian product in INT will be called: ⊗. The reasons to prefer this
notation to the more obvious ×, are as follows. (i) If we would write ×, we
should also write + for the sum. However, we use e.g. ‘T + A’ for the theory T
extended with the sentence A. So, this would introduce an unwanted ambiguity.
(ii) No tensor products in sight in this area. The product of INTdir will be: �.

The product has the same definition in both categories. The easiest way to
introduce it is as follows. First we treat a special case. Consider theories U and
V of the same signature such that U∪V is inconsistent. By a simple compactness
argument, we find that there is an A such that U ` A and V ` ¬A. We will call
A, a separating formula for U and V . (Note: a separating formula is assigned
to the ordered pair U, V .)

Let W be axiomatized by by the following sets of axioms: axioms of the form
A → B, where B is an axiom of U , and axioms of the form ¬A → C, where C
is an axiom of V . Clearly, W = U ∩ V . Note that it follows that we can write
U as W + A and V as W +¬A. So, any pair of mutually contradictory theories
in the same language is finitely axiomatizable over their intersection.

We claim that W is the cartesian product of U and V in INT. The projections
are the standard embeddings EWU and EWV witnessing the subtheory relation.
Note that these embeddings are direct.

To show that W = U ⊗ V with the stated projections, we have to uniquely
provide the dotted arrow that makes the following diagram commute.

T

U �
E

�

K

W

?

?

.................

E
- V

M

-

Suppose the translations associated with K, M are τ, ρ. Let A be the chosen
separating sentence for U and V . We define a new translation τ〈A〉ρ as follows.

• δτ〈A〉ρ := ((A ∧ δτ ) ∨ (¬A ∧ δρ))

• Pτ〈A〉ρ := ((A ∧ Pτ ) ∨ (¬A ∧ Pρ))
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The interpretation N := K〈A〉M : T → W is the interpretation corresponding
to τ〈A〉ρ. We take:

T

U �
E

�

K

W

N

?

.................

E
- V

M

-

We may easily verify that K〈A〉M supports the unique morphism that makes our
diagram commute. This also shows that equality is a congruence for (·)〈A〉(·).
Thus, (·)〈A〉(·) can be viewed as an operation on arrows. Note that modulo
equality (·)〈·〉(·) preserves directness. In the context of INTdir, the obvious mod-
ification will make it literally direct.

We defined the cartesian product for a special case. We extend the definition
to arbitrary theories as follows. Let U and V be arbitrary with signatures Σ
and Θ. Let Σ ∪Θ be the union of our signatures. To make sense of taking the
union, it is best to consider the arities to be built in into the symbols, so that,
say, a binary predicate P and a ternary predicate P are automatically counted
as different predicates.

Consider definitional extensions U ′ and V ′ of U and V in the signature Σ∪Θ.
In case U ′∪V ′ is inconsistent, we take, as U⊗V , the intersection W ′ := U ′∩V ′.
Our first projection becomes π0 := J ◦EW ′U ′ , where J : U ′ → U is the standard
isomorphism associated with definitional extensions. Similarly, π1 := L◦EW ′V ′ ,
where L : V ′ → V is an isomorphism. It is easy to see that we have defined a
product in this way.

If U ′ ∪ V ′ is consistent, we extend the signature Σ ∪ Θ with a fresh 0-ary
predicate symbol P , and replace U ′ be the definitional extension U ′ +P and V ′

by the definitional extension V ′ + ¬P . Now we may proceed as before.

Sometimes it is convenient to have a specific choice for our product. The default
will be as follows. We take as new signature the union of the signatures of U
and V plus a fresh 0-ary P . The axioms of the product are:

• ` P → A, if ` A is an axiom of U ,

• ` P → ∀~x R~x, if R is a predicate not in the signature of U ,

• ` ¬P → B, if ` B is an axiom of V ,

• ` ¬P → ∀~x S~x, if S is a predicate not in the signature of V .

The projection π0 is direct and sends P to > and R to >, if R is not in the
signature of U . The projection π1 is direct and sends P to ⊥ and S to >, if S
is not in the signature of V .
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Remark 3.8 This remark presupposes familiarity with the results of [Vis06].

Consider INT↑PA, i.e. INT restricted to extensions of PA in the language of PA.
We show that in this category, we do not generally have cartesian products.
Consider the following diagram in INT↑PA.

PA

PA �
π0

�

id

W
?

.................

π1

- PA

id

-

Clearly, the πi are retractions in INT. Moreover W is an extension of PA in the
language of PA. It follows that the πi are also retractions in hINT, aka INT1,
the category where we identify provably isomorphic arrows. We may now apply
Corollary 9.4. of [Vis06] to conclude that W ⊆ PA. Hence, W = PA. More
specifically, Theorem 9.2 of [Vis06] tells us that the πi are both isomorphic to
the identity interpretation. But, then, for any M : U → PA, π0 ◦M and π1 ◦M
are isomorphic. Thus, our supposed product cannot possibly fulfill its role, as
becomes clear by choosing K and L in the following diagram non-isomorphic.

PA

PA �
π0

�

K

W

M

?

.................

π1

- PA

L

-

Note that it also follows that hINT↑PA has no cartesian product.

Note that the existence of a left adjoint to EMB implies that, if � exists, then
⊗ exists and ⊗ is equal to �.

3.8 The Sum

In the present subsection we define sum in INT and INTdir.4 We will call the
sum of INT: ⊕. The sum of INTdir will be called: �.

We first treat the case of INTdir. Consider two theories U and V . Say, U
has signature ΣU and V has signature ΣV . The sum U �V is given as a theory
W of signature ΣW , where ΣW is given as the disjoint union of ΣU and ΣV ,
where we refrain from duplicating identity. Let τU and τV be the obvious direct
translations of the languages of U , respectively V into the language of W . We
take W to be axiomatized by the following axioms.

4A number of details of the sum definition were studied by Spencer Gerhardt in the context
of a small project. Specifically, he formulated the definition of sum in INT.
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• ` AτU , for A a U -axiom,

• ` BτV , for B a V -axiom.

We consider the identity axioms as logical axioms, which are thus shared. The
in-arrows are the interpretations based on τU and τV . It can be easily seen that
this defines the sum in INTdir.

We define U ⊕ V as DIR(U) � DIR(V ), extended by the following axioms.

• ` ∀x (x : ∆U ∨ x : ∆V ),

• ` x = y ↔ ∀z ((xEUz ↔ yEUz) ∧ (xEV z ↔ yEV z)).

Note that, in the presence of the other axioms, the last axiom says that = is
the crudest congruence relation respecting all the all the predicates of W . The
new in-arrows are the obvious ones. E.g., inU = EDIR(U),W ◦ indir,DIR(U) ◦ηU . The
extra axioms are needed to insure the uniqueness condition for the sum. It is
easy to check that ⊕ is the sum for the category INT.

3.9 Equalizers: a Counterexample

We show that neither INT nor INTdir has equalizers. In case of INT, this is trivial,
since we may have M,N : U → V , where V does not prove that the intersection
of δM and δN is non-empty. However, this argument rests on the fact that we
do not allow non-empty domains. We provide a counterexample, that works in
both categories, where there are many K such that M ◦K = N ◦K, but there
is no equalizer of M and N .

Let U be predicate logic in the language with a constant symbol 0, a unary
function symbol S, a unary predicate symbol P and the identity symbol. Let V
be a theory in the language with a constant 0, a unary function symbol S, two
unary predicate symbols Q and R, and the identity symbol. The theory V is
axiomatized by all axioms of the form ` Qn ↔ Rn, where 0 := 0, n + 1 := S(n).

We define M,N : U → V as direct interpretations which preserve S and 0,
with PMv0 := Qv0 and PNv0 := Rv0. Consider the signature of the language of
predicate logic with just the identity symbol and one zero-ary predicate symbol
S. Let Z be predicate logic in this language. Let Ln : Z → U be the direct
interpretation that sends S to Pn. Note that M ◦ Ln = N ◦ Ln.

Suppose the pair M,N has an equalizer K : W → V . Since, the direct inter-
pretations Ln must factor through K, we find that K must be direct. Let O be
any predicate symbol of W . Suppose OK~v = A~v. We write A(0,S, P,~v) to make
the depence on symbols of the language visible. In this notation AM (0,S, P,~v) =
A(0,S, Q,~v) and AN (0,S, P,~v) = A(0,S, R,~v). Since, K is an equalizer, we have
V ` ∀~v (ON

M~v ↔ ON
K~v). Thus, (†) V ` ∀~v (A(0,S, Q,~v) ↔ A(0,S, R,~v)). Let us

suppose that the proof only involves the axioms ` Qi ↔ Ri, for i = 0, . . . , k−1.
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We extend the language of V with new propositional constants p0, . . . , pk−1 and
constants ~c. We find from (†):∧

i<k

(Qi ↔ pi), A(0,S, Q,~c) `
∧
i<k

(Ri ↔ pi) → A(0,S, R,~c)

By applying interpolation and some familiar reasoning we find that, for some
B,

U ` A(0,S, P,~v) ↔ B(0,S, P0, . . . , P (k−1)).

Let k? be the maximum of the k corresponding to predicate symbols O of W .
Since K is an equalizer, we have, for some J : Z → W , Lk? = K ◦ J . Thus, for
some C,

U ` P (k?) ↔ C(0,S, P0, . . . , P (k?−1)).

By a simple model-theoretic argument, we see that this is impossible.

Open Question 3.9 Suppose we restrict INTdir to finitely axiomatized theo-
ries. Do we have equalizers in that case?

3.10 Coequalizers

Suppose that, in INT, we have M,N : U → V . Let W be V plus the following
axioms.

• ` ∀v (δMv ↔ δNv),

• ` ∀~v (PM~v ↔ PN~v).

It is easy to see that EV W is a coequalizer for M,N . Similarly, we find coequal-
izers in INTdir.

We see that coequalizers are, modulo isomophism, finite extensions. Con-
versely, each finite extension is a coequalizer. Consider E : V → (V + A). Let
U be predicate logic with just identity and a zero-ary predicate symbol P . Let
M : U → V be the direct interpretation sending P to > and let N : U → V be
the direct interpretation sending P to A. Clearly, E is the coequalizer of M,N .

3.11 Distributivity

We start with distributivity of plus over times in INTdir. Consider theories
U , V and W . We may find U ′ isomorphic to U , V ′ isomorphic to V and W ′

isomorphic to W , such that (i) the language of U ′ is disjoint, except for identity,
from the languages of V ′ and W ′ and (ii) the languages of V ′ and W ′ are the
same and (iii) V ′ ∪W ′ is inconsistent.

Clearly, U �(V �W ) is isomorphic to U ′�(V ′�W ′), which is U ′∪(V ′∩W ′).
(This last theory is a theory in the union of the languages of U ′ and V ′, W ′,
with some appropriate axiomatization. Intersection and union of theories are
supposed to be applied to theories-as-sets-of-theorems.) We easily see that
U ′ ∪ (V ′ ∩ W ′) = (U ′ ∪ V ′) ∩ (U ′ ∪ W ′). Moreover, (U ′ ∪ V ′) ∩ (U ′ ∪ W ′) is
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(U ′ � V ′) � (U ′ � W ′), since U ′ ∪ V ′ and U ′ ∪ W ′ are theories in the same
language which are mutually contradictory. This last theory is isomorphic to
(U �V )� (U �W ). Inspection of the argument shows that the embedding from
U � (V � W ) in (U � V ) � (U � W ) can be taken to be the canonical one.

The case of distributivity of plus over times in INT is just a variant of the above
argument. Note that we do not have full distributivity in INT(2).

For the case of distributivity of times over plus, in both categories, we can
reproduce the standard lattice-theoretical reasoning which is used to prove one
kind of distributivity from the other kind. We do not get an isomorphism in this
way. We do get an arrow from U � (V � W ) to (U � V ) � (U � W ). Inspection
of the hardware shows that the choice here is not unique. We can find such an
arrow that witnesses the fact that the canonical arrow from (U �V )� (U �W )
to U � (V � W ) is a split epi/retraction. Similarly for the case of ⊗.

There is a nice application of distributivity to compute:

Tn :=

n×︷ ︸︸ ︷
T ⊗ · · · ⊗ T and T [n] :=

n×︷ ︸︸ ︷
T � · · ·� T .

We have: Tn = EMB(T [n]), so it is sufficient to compute T [n]. By distributivity,
we have: T [n] = T � ID[n]. Now consider the category of finite boole algebras
with the usual morphisms. With each finite boole algebra B we can associate a
propositional theory rep(B) in the usual way by choosing a finite set of genera-
tors. We send B to the predicate logical theory REP(B) := ID + rep(B) in the
obvious signature corresponding to the chosen generators. It is easy to see that
REP is a functor that preserves products. The finite boole algebras are dually
isomorphic to the finite sets, which modulo isomorphism are just the natural
numbers. If we take the boole algebra with 0 generators to be >>, we get:

n =

n×︷ ︸︸ ︷
1 + · · ·+ 1 7→

n×︷ ︸︸ ︷
>>× · · · × >> 7→ ID[n].

Here

n×︷ ︸︸ ︷
>>+ · · ·+>> is the boole algebra with n atoms. Thus we can find Tn as

follows. Find a formula φ that defines the boole algebra with n atoms in a
language with propositional variables p0, . . . , pk−1. Enrich the language of T
with fresh 0-ary predicate synbols P0, . . . , Pk−1. then Tn is the theory in the
extended language with Tn = T + φ(P0, . . . , Pk−1). E.g., T 2 can be taken to be
the theory T in the language of T extended by a fresh 0-ary predicate symbol
P . (This illustrates that the extension of the signature plays a role independent
of the formula φ!)

4 Image Factorization and Regularity

In this section, we show that both the category INT (INTdir) and the category
INTop (INTop

dir) have images. Moreover, we show that in INTop (INTop
dir) the image
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factorization is stable. This tells us that the category (INT(2))op is regular.

4.1 Image Factorization

Consider an arbitrary category C. An morphism f : a → b has an image
factorization iff f = m(f) ◦ g, where m(f) : im(f) → b is monic, such that, for
every g′ and h′ with f = h′ ◦ g′ and h′ is monic, there is a necessarily unique j
with j ◦ g = g′, h′ ◦ j = m(f). The category C has images iff every morphism
has an image factorization.

a
f - b

im(f)
-

m
(f

)
-

g

-

c

j

?

-

h
′

-
g ′

-

We first show that INT has an image factorization. Consider K : U → V . We
have K = K̆ ◦ EU,K−1[V ]. Here K̆ is monic. Consider any L : U → W and
M : W → V such that K = M ◦L and M is monic. We have L = L̆◦EU,L−1[W ].
Since, M ◦ L̆ is monic, it is faithful. Remember that τK = τK̆ , τM◦L̆ = τM◦L.
So, V proves that τK̆ is equal to τK is equal to τM◦L is equal to τM◦L̆. It follows
that L−1[W ] = K−1[V ], L = L̆ ◦ EU,K−1[V ], K̆ = M ◦ L̆.

U
K - V

K−1[V ]
-

K̆

-
E

-

W

L̆

?

-

M

-
L

-

Note that the E-arrows are direct. Moreover if K and L are direct, then so are
K̆ and L̆. thus the result also holds in INTdir.

We proceed to show that INTop has images. We translate the problem to INT.
Consider K : U → V . We have K = K̆ ◦ EU,K−1[V ]. Here EU,K−1[V ] is epi.
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Consider any L : U → W and M : W → V such that K = M ◦ L and L
is epi. As we have seen L̆ is an isomorphism, say its inverse is N . Clearly
L−1[W ] ⊆ K−1[U ]. We show that P := EL−1[W ],K−1[V ] ◦ N is the desired
witnessing arrow. We have:

EU,K−1[V ] = EL−1[W ],K−1[V ] ◦ EU,L−1[W ]

= EL−1[W ],K−1[V ] ◦N ◦ L̆ ◦ EU,L−1[W ]

= EL−1[W ],K−1[V ] ◦N ◦ L

Note that the underlying translation of M ◦ L̆ is equal in V to the underlying
translation of K. Hence M ◦ L̆ = K̆ ◦ EL−1[W ],K−1[V ]. We may conclude that
M = K̆ ◦ EL−1[W ],K−1[V ] ◦N .

U
K - V

K−1[V ]

K̆

-
E

--

W

P

6

M

-
L

--

Note that our witnessing arrow P is of the form E ◦N , where N is an isomor-
phism. Since both E-arrows and isomorphisms are direct, P is direct. Thus our
result also holds in INTdir.

4.2 Covers and Cocovers

We have that K is an epimorphism iff K̆ is an isomorphism. This tells us that
in INT (INTdir) the epimorphisms are precisely the covers. Moreover, K is a
monomorphism iff EU,K−1[V ] is the identity. This means that in INTop (INTop

dir)
the epimorphisms are precisely the covers. In other words, in INT (INTdir), the
monomorphisms are precisely the cocovers.

4.3 Stability

Next we show that in INTop the image factorization is stable. This means that
images are stable under pullback. See [Jac99], p257. Our argument will also
work for INTop

dir.
We translate stability to what it means in the opposite world of INT. Suppose
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the following diagram is a pushout.

U
K - V

W

L

?

in+
0

- Z

in+
1

?

We have to show that the following diagram is also a pushout.

U
K - V

L−1[W ]

E

?

K̃
- (in+

1 )−1[Z]

E

?

The existence of K̃ is guaranteed by the universal properties of the factorization.
We can take Z to be W ⊕ V extended by equalizing axioms of the form:

• ∀x ((∆0(x) ∧ δin0
L (x)) ↔ (∆1(x) ∧ δin1

K (x)))

• ∀~x : (∆0 ∩ δin0
L ) (P in0

L (~x) ↔ P in1
K (~x))

The in+
i are the ini composed with the appropriate extensions. Computing

the pushout of EU,L−1[W ] and K directly, we see that we may take it to be
V + {AK | W ` AL}. Thus, it is sufficient to show that, if Z ` Bin+

1 , then
V + {AK | W ` AL} ` B. We have a closer look at Z. This theory us
axiomatized as follows.

P1) Axioms of the form ` Ain0 , where A is an axiom of W .

P2) Axioms of the form ` Bin1 , where B is an axiom of V .

P3) Axioms normalizing the predicates of W in Z: ` Qin0~x → ~x : ∆0.

P4) Axioms normalizing the predicates of V in Z: ` Rin1~x → ~x : ∆1.

P5) Axioms concerning the domains: ` ∀x (x : ∆0 ∨ x : ∆1)

P6) Axiom concerning outer identity:
` xEy ↔ ∀z ((xE0z ↔ yE0z) ∧ (xE1z ↔ yE1z)).

P7) Equalizing axioms:

• ` ∀x ((∆0(x) ∧ δin0
L (x)) ↔ (∆1(x) ∧ δin1

K (x)))
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• ` ∀~x : (∆0 ∩ δin0
L ) (P in0

L (~x) ↔ P in1
K (~x)).

Suppose Z ` Bin1 . Let Z0 be the theory in the language of Z axiomatized by
P1,2,3,4,7. By an easy model theoretical argument, we see that Z0 ` Bin1 . Our
next step is to switch to another version of Z0, say Z1. We add to the language
of Z0 the predicates of U in a disjoint way, say Pin2 , plus a new unary predicate
∆2. We axiomatize Z1 as follows.

Q1) Axioms of the form ` Ain0 , where A is an axiom of W .

Q2) Axioms of the form ` Bin1 , where B is an axiom of V .

Q3) Axioms normalizing the predicates of W in Z1: ` Qin0~x → ~x : ∆0.

Q4) Axioms normalizing the predicates of V in Z1: ` Rin1~x → ~x : ∆1.

Q5) Axioms normalizing the predicates of U in Z1: ` Pin2~x → ~x : ∆2.

Q6) First set of equalizing axioms:

• ` ∀x ((∆0(x) ∧ δin0
L (x)) ↔ ∆2(x)),

• ` ∀~x : ∆2 (P in0
L (~x) ↔ P in2(x)).

Q7) Second set of equalizing axioms:

• ` ∀x ((∆1(x) ∧ δin1
K (x)) ↔ ∆2(x)),

• ` ∀~x : ∆2 (P in1
K (~x) ↔ P in2(x)).

We clearly have: Z1 ` Bin1 . It follows that C ` (D → Bin1), where C is a
conjunction of axioms from Q1,3,5,6 and D is a conjunction of axioms from
Q2,4,5,7.

By the interpolation theorem, there is a J in the language of ∆2 and the
Pin2 such that C ` J and D,J ` Bin1 . By Lemma 3.1, there is an U -sentence I
such that Q5 ` I in2 ↔ J .

By sending ∆0 to v0 = v0, Qin0 to Q, ∆2 to δL, Pin2(~v) to ~v : δL ∧ PL(~v),
etc. we find: W ` IL. Similarly, we have: V + IK ` B. We are done.

4.4 Regularity

Consider the category (INT(2))op. By the results of Section 3, this category
has finite limits. By the results of this section this category has stable images.
Hence, the category is regular. See e.g. [Jac99] or [GZ02] for further explanation
of regular categories. Similarly, the category INTop

dir is regular.
Some consequences of regularity will be spelled out in Section 5. We note

one important consequence here: in a regular category a morphism is a cover
iff it is a regular monomorphism. (A regular monomorphism is an equalizer.)
Thus, in INT we will have that a morphism is mono iff it is a cocover iff it is a
regular mono.

In Section 5, we will see that (INT(2))op (INTop
dir) is coherent.
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5 Theory Extensions as Superobjects

For any category C, we can define the associated category of subobjects Sub(C).
See [Jac99]. Since we are living in a ‘opposite world’, we want to look at super-
objects instead. Here are the basic definitions.

We define Super(C) as follows. The objects of Super(C) are the epimorphisms
of C modulo the equivalence relation ≡ defined by f ≡ g iff, for some isomor-
phism h, g = h ◦ f . A morphism in our new category j : α → β is a morphism
j of our old category such that j ◦ f = g ◦ k for some f in α, g in β, and k. It is
easy to see that, if we have such a triple f, g, k, then k is uniquely determined
by f and g. Moreover, if j : α → β, then, for every f ′ ∈ α, g′ ∈ β, we have a
k′, such that j ◦ f ′ = g′ ◦ k′. Identity and composition are directly induced by
identity and composition in the original category. We easily verify that we have
defined a category.

Consider the structure of all superobjects with domain a. We define α ≤ β
iff, for some f ∈ α, g ∈ β and h, we have h ◦ f = g. Note that if we can
find such a h for some pair of representatives, then we can find it for all pairs of
representatives. Note also that h is automatically unique. We call this structure
super(a). The structure super(a) is the fiber of the domain functor from Super(C)
to C.

We turn to the case of INT(2). We consider the following category Ext(INT(2)).
The objects of this category are pairs 〈T,U〉 where U is an extension of T in
the same language. A morphism K : 〈T,U〉 → 〈V,W 〉 is a morphism K :
T → V such that 〈U, τK ,W 〉 : U → W . Theorems 3.5 and 3.6 show us that
Super(INT(2)) is isomorphic to Ext(INT(2)).

It is well known that push-outs preserve epimorphisms. This gives rise to
the push-out functor K? := super(K) between preorders of superobjects. This
functor is given in the following diagram.

U
K - V

U ′

E

? K ′
- V + U ′K

E
?

Here K ′ = 〈U ′, τK , V ′ + U ′K〉. It is easy to see that this does indeed define a
functor. Note that K? preserves meets and joins. We have the following result

Theorem 5.1 Consider K, M : U → V . We have K? = M? iff, for all U -
sentences A, V ` AK ↔ AM .

Proof

Suppose K? = M?. Then,

V + AK = V + (U + A)K = V + (U + A)M = V + AM .
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Conversely, suppose that, for all U -sentences A, V ` AK ↔ AM . Then,

V + U ′K = V + {AK | U ′ ` A} = V + {AM | U ′ ` A} = V + U ′M .

2

Note that the above result means that the category INT3, the category of inter-
pretations modulo elementary equivalence, is definable in terms of INT.

A category is coherent if it is regular and the pullback functors preserve binary
joins and it has a strict initial object. An initial object a is strict iff every
f : b → a is an isomorphism. Since the K? are the opposite variants of the
pullback functors and since inconsistent theories are clearly strict final objects
in INT (INTdir), we find that (INT(2))op (INTop

dir) is coherent.

We have, for K : U → V ,

U ′ ⊆ K−1[V ′] ⇔ K?(U ′) ⊆ V ′.

Thus, K−1[·] is the right adjoint of K?. If we switch to the opposite category
we see that K−1[·] is a left adjoint and thus is the functor ∃K .

Since INTop is regular, the functor ∃K the Beck-Chevalley condition. Trans-
lating this fact back to INT, we get the following result. Suppose the following
diagram is a push-out.

U
K - V

W

L

?

M
- Z

N

?

We find that, for any V ′ ⊇ V , W + (K−1[V ′])L = M−1[Z + V ′N ].
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