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Abstract

In his paper [Grz05], Andrzej Grzegorczyk introduces a theory of con-
catenation TC. We show that TC does not define pairing. We determine
a reasonable extension of TC that is sequential, i.e., has a good sequence
coding.
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1 Introduction

The supervenience of structured objects on strings of symbols is one of the
central facts of human life. It underlies writing and speech. The possibility of
this supervenience is based on mathematical facts.

We employ weak systems for strings and concatenation, to study the fine-
structure of reasoning about this supervenience. The focus of this paper is the
question: how do finite sets emerge out of strings?

We study a theory of concatenation TC introduced by Andrzej Grzegorczyk.
We can think of this theory as having two classes of ‘standard models’, to wit:
the finite strings of at least two letters and the decorated linear order types for
classes of of letters or colors of at least two elements.

We introduce an extension of this theory that is sequential, i.e., in which
a theory of finite sets is definable that is sufficient for coding. We will need a
principle that says that, for any string x, all substrings of a’s of x, are strictly
majorizable by some string of a’s y. This extension is valid in our ‘standard
models’. We show that the extension is interpretable in TC. As a corollary we
obtain that Robinson’s Arithmetic Q is interpretable in TC.

The trick we use to simulate sets is a modification of Quine’s trick. Our commas
are strings of a’s flanked by b’s. To distinguish the commas from the elements
we make the commas larger and larger.

We show that TC itself is not sequential: it does not even have a pairing function.

In TC we do not have a good notion of occurrence. We
would like to define an occurrence of v in w as a pair (u, v),
where w = u ∗ v ∗ z, for some z. However, since TC does
not exclude that u is a proper initial segment of itself, we
cannot pin down a uniquely determined place in w in this
way. A secondary target of this paper is to understand how
to reason in the absence of a good notion of occurrence.
We will see that it is possible to simulate some of the usual
reasoning involving occurrences.

2 Theories of Concatenation

In his paper [Grz05], Andrzej Grzegorczyk introduces a theory of concatenation
TC. Grzegorczyk’s theory is in essence an earlier theory due to Tarski plus
axioms guaranteeing the existence of at least two letters or atoms. We will call
Tarski’s theory TC0.

The theory TC has a binary function symbol ∗ for concatenation and two
constants a and b. The theory is axiomatized as follows.

TC1. ` (x ∗ y) ∗ z = x ∗ (y ∗ z)
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TC2. ` x ∗ y = u ∗ v → ((x = u ∧ y = v) ∨
∃w ((x ∗w = u ∧ y = w ∗ v) ∨ (x = u ∗w ∧ y ∗w = v)))

TC3. ` x ∗ y 6= a

TC4. ` x ∗ y 6= b

TC5. ` a 6= b

Grzegorczyk calls axiom TC2: the editor axiom. Tarski’s theory TC0 has only
concatenation in its signature, and is axiomatized by TC1 and TC2.

Andrzej Grzegorczyk and Konrad Zdanowski have shown that TC is essentially
undecidable. See their forthcoming paper Undecidability and Concatenation,
which will appear in the Mostowski Volume. This result can be strengthened
by showing that Robinson’s Arithmetic Q is mutually interpretable with TC.
See below. Note that TC0 is undecidable —since it has an extension that para-
metrically interprets TC— but that TC0 is not essentially undecidable: it is
satisfied by a one-point model. It also has an extension that is a definitional
extension of the theory of pure identity.

The theories TC and TC0 are theories for concatenation without the empty
string, i.o.w., without the unit element ε. We find it more convenient to work
in a theory with unit. Our variant TCε of TC with empty string added looks as
follows.

TCε1. ` ε ∗ x = x ∧ x ∗ ε = x

TCε2. ` (x ∗ y) ∗ z = x ∗ (y ∗ z)

TCε3. ` x ∗ y = u ∗ v → ∃w ((x ∗ w = u ∧ y = w ∗ v) ∨ (x = u ∗ w ∧ y ∗ w = v))

TCε4. ` a 6= ε

TCε5. ` x ∗ y = a→ (x = ε ∨ y = ε)

TCε6. ` b 6= ε

TCε7. ` x ∗ y = b→ (x = ε ∨ y = ε)

TCε8. ` a 6= b

The theories TC and TCε are bi-interpretable. See Appendix A.1 We will also
consider the theory TCε

0, axiomatized by TCε1, 2, 3.

There is a somewhat different salient theory of concatenation which is in many
respects a direct analogue of Robinson’s Arithmetic Q. We call this theory: Qbin.
The axioms of this theory are as follows.

1Almost all desirable properties of theories are preserved modulo bi-interpretability —
e.g. finite axiomatizability, κ-categoricity, sequentialiity. Moreover, bi-interpretability is a
bisimulation w.r.t. theory extension: if U is bi-interpretable with V and U ⊆ U ′, then there
is a V ′ ⊇ V which is bi-interpretable with V .
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Qbin1. ` Sax 6= ε,

Qbin2. ` Sbx 6= ε,

Qbin3. ` Sax 6= Sby,

Qbin4. ` Sax = Say → x = y,

Qbin5. ` Sbx = Sby → x = y,

Qbin6. ` x ∗ ε = x,

Qbin7. ` x ∗ Say = Sa(x ∗ y),

Qbin8. ` x ∗ Sby = Sb(x ∗ y),

Qbin9. ` x = ε ∨ ∃y (x = Say ∨ x = Sby).

In Appendix B, we show that Qbin and TCε are mutually interpretable. Rachel
Sterken proves in her master’s thesis —which will soon be available on internet—
that Qbin is mutually interpretable with Q. It follows that TCε is mutually
interpretable with Q.

3 Basics of TCε

In this section we provide some basic facts concerning TCε. We define:

• atom(x) :↔ x 6= ε ∧ ∀y, z (y ∗ z = x → (x = ε ∨ y = ε)).

• x ⊆ y :↔ ∃u, v y = u ∗ x ∗ v.

• x ⊂ y :↔ ∃u, v (y = u ∗ x ∗ v ∧ (u 6= ε ∨ v 6= ε)).

• x ⊂+ y :↔ x ⊆ y ∧ ¬ y ⊆ x.

• x ⊆ini y :↔ ∃v x ∗ v = y.

• x ⊆end y :↔ ∃u u ∗ x = y.

• y : Nx :↔ ∀z⊆y (x ⊆ z ∨ z = ε).

We will call a y in Nx an x-string.

• If ≺ is one of our pre-orderings, then we define:
y ≺x z :↔ ∀u : Nx (u ⊆ y → ∃v⊆z u ≺ v).

Fact 3.1 The theory TCε proves the following facts.

1. (a) (atom(x) ∧ atom(y) ∧ u ∗ x = v ∗ y) → (u = v ∧ x = y).

(b) (atom(x) ∧ atom(y) ∧ x ∗ u = y ∗ v) → (u = v ∧ x = y).

2. Suppose atom(x) and u ∗ v = x ∗ w, Then, either u = ε or, there is a u0,
such that u = x ∗ u0 and u0 ∗ v = w. Similarly for: u ∗ v = w ∗ x.
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Proof

We reason in TCε Suppose x is an atom.

Ad 1: We treat (a). Suppose atom(y) and u ∗ x = v ∗ y. Then, by the editor
axiom, we have a w, such that (i) u ∗ w = v and x = w ∗ y, or (ii) u = v ∗ w
and w ∗ x = y. In case (i), we have w = ε and, hence u = v and x = y. A
contradiction. Case (ii) is similar. Item (b) is similar.

Ad 2: Suppose u ∗ v = x ∗ w. By the editor axiom, there is a z such that (i)
(u ∗ z = x and v = z ∗ w) or (ii) (u = x ∗ z and z ∗ v = w).

In case (i), either (i1) u = ε —and we are done— or (i2) z = ε and u = x.
In case (i2), we have u = x and v = w. So, we can take u0 := ε. In case (ii), we
can take u0 := z. 2

Fact 3.2 We have in TCε, the following facts.

1. The relation ⊆ini is a weak partial preordering with minimal element ε. The
atoms in our sense are also atoms of this pre-ordering.2 Our preordering
is linear when restricted to the initial substrings of an element x.

2. The relation ⊆end is a weak partial preordering with minimal element ε.
The atoms in our sense are also atoms of this weak pre-ordering. Our
preordering is linear when restricted to the final substrings of x.

3. The relation ⊆ is a partial preordering on the substrings of x with min-
imal element ε. The atoms in our sense are precisely the atoms of the
preordering.

4. x ⊆ y ∗ z → (x ⊆ y ∨ x ⊆ z ∨∃x0, x1 (x = x0 ∗ x1 ∧ x0 ⊆end y ∧ x1 ⊆ini z)),

5. The relation ⊂ is a partial preordering. The relation ⊂+ is a strong or-
dering. We have: x ⊂+ y → x ⊂ y.3

Proof

We reason in TCε. We only treat 4. Suppose x ⊆ y ∗ z. So, for some u, v, we
have u ∗x ∗ v = y ∗ z. By the editor axiom, there is a w, such that (a) u ∗w = y
and x ∗ v = w ∗ z, or (b) u = y ∗w and w ∗ x ∗ v = z. In case (b), we have x ⊆ z
and we are done. We treat case (a). By the editor axiom, we have an r, such
that (a1) x ∗ r = w and v = r ∗ z, or (a2) x = w ∗ r and r ∗ v = z. In case (a1)
we have x ⊆ w ⊆ y, so x ⊆ y, and we are done. In case (a2), we take x0 := w
and x1 := r. 2

2It is not difficult to produce a model to show that we cannot prove that the atoms in our
sense are the only atoms of the preordering.

3It is easy to produce a countermodel to show that the converse does not generally hold.
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Here is a definition.

• Let I(x) be a formula. We treat {x | I(x)} as a virtual class. Par abus de
langage, we write I for {x | I(x)}. We take DC(I)(x) :↔ ∀y⊆x I(y).

Fact 3.3 In TCε, we have the following. Suppose (the virtual class) I is closed
under concatenation. Let J := DC(I). Then, J is closed under concatenation
and downward closed under ⊆.

Proof

Reason in TCε. Suppose I is closed under concatenation. Let J := DC(I).
Clearly, J is downwards closed under ⊆. Suppose x0 and x1 are in J . To show
x0 ∗ x1 is in J . Suppose y ⊆ x0 ∗ x1. By Fact 3.2(4), we have that either (a)
y ⊆ x0, or (b) y ⊆ x1, or (c), for some y0, y1, y = y0 ∗ y1 and y0 ⊆end x0 and
y1 ⊆ini x1. In cases (a) and (b), we immediately have that y is in I. In case
(c), we find that y0 is in I and y1 is in I. Hence, by the closure of I under
concatenation, y is in I. 2

Fact 3.4 We have in TCε the following facts.

1. Nx is closed under ε and concatenation. Moreover, it is downwards closed
under taking substrings.

2. Nx is non trivial, i.e., not equal to {ε}, iff it contains x. If x is an atom,
then Nx is non-trivial.

Proof

We only treat the case that Nx is closed under concatenation. Let:

Ix(y) :↔ y = ε ∨ x ⊆ y.

Clearly, Ix is closed under concatenation and Nx = DC(Ix). The desired result
now follows from Fact 3.3. 2

Our final fact, follows an idea of Pavel Pudlák. Consider any model of TCε
0.

Fix an element w. We call a sequence (w0, . . . , wk) a partition of w if we have
that w0 ∗ · · · ∗ wk = w. The partitions of w form a category with the following
morphisms. f : (u0, . . . , un) → (w0, . . . , wk) iff f is a surjective and weakly
monotonic function from n+1 to k+1, such that, for any i ≤ k, wi = us∗· · ·∗u`,
where {j | f(j) = i} = {j | s ≤ j ≤ `}. We write (u0, . . . , un) ≤ (w0, . . . , wk)
for: ∃f f : (u0, . . . , un) → (w0, . . . , wk). In this case we say that (u0, . . . , un) is
a refinement of (w0, . . . , wk).

Fact 3.5 We work in any model of TCε
0. Consider a w in the model. Then,

any two partitions of w have a common refinement.
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Proof

Fix any model of TCε
0. We first prove that, for all w, all pairs of partitions

(u0, . . . , un) and (w0, . . . , wk) of w have a common refinement, by induction of
n + k.

If either n or k is 0, this is trivial. Suppose (u0, . . . , un+1) and (w0, . . . , wn+1)
are partitions of w. We have, by the editor axiom, that there is a v such that (a)
u0∗· · ·∗un∗v = w0∗· · ·∗wk and un+1 = v∗wk+1, or (b) u0∗· · ·∗un = w0∗· · ·∗wk∗v
and v ∗ un+1 = wk+1. By symmetry, we only need to treat case (a). By the
induction hypothesis, there is a common refinement (x0, . . . xm) of (u0, . . . , un, v)
and (w0, . . . , wn). Let this be witnessed by f , resp. g. It is easily seen that
(x0, . . . xm, wk+1) is the desired refinement with witnessing functions f ′ and g′,
where f ′ := f [m + 1 : n + 1], g′ := g[m + 1 : k + 1]. 2

Note that the length of the common refinement produced by our proof is the
sum of the lengths of our original partitions minus one.

We will use refinements to simulate the presence of occur-
rences. Instead of working with occurrences in an absolute
sense, we will treat them as places in a sufficiently fine re-
finement.

4 TCε and Sequentiality

In this section, we introduce the notion of sequentiality and give an extension
of TCε that is extensional.

4.1 What is Sequentiality?

Adjunctive Set Theory AS is the theory in the language with ∈ and =, which
is axiomatized as follows.

AS1. ` ∃x ∀y y 6∈ x (empty set axiom)

AS2. ` ∀u, v ∃x ∀y (y ∈ x ↔ (y ∈ u ∨ y = v)) (adjunction axiom)

A theory is sequential iff it directly interprets adjunctive set theory AS. Direct in-
terpretability means: interpretability without relativization of quantifiers, that
sends identity to identity. Said differently, a theory is sequential if we can define
a predicate ∈ provably satisfying the axioms of AS.

Remark 4.1 The notion of sequential theory was introduced by Pavel Pudlák
in his paper [Pud83]. Pudlák uses his notion for the study of the degrees of local
multi-dimensional parametric interpretability. He proves that sequential theo-
ries are prime in this degree structure. In [Pud85], sequential theories provide
the right level of generality for theorems about consistency statements.
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The notion of sequential theory was independently invented by Friedman who
called it adequate theory. See Smoryński’s survey [Smo85].4 Friedman uses
the notion to provide the Friedman characterization of interpretability among
finitely axiomatized sequential theories. (See also [Vis90] and [Vis92].) More-
over, he shows that ordinary interpretability and faithful interpretability among
finitely axiomatized sequential theories coincide. (See also [Vis93] and [Vis05].)

Adjunctive Set Theory is mutually interpretable with Q. For the interpetability
of AS in Q, see e.g. [Nel86] or [HP91]. Here is the story of the interpretability
of Q in AS in a nutshell.

1. In [ST50], Wanda Smielew and Alfred Tarski announce the interpretability
of Q in AS plus extensionality. See also [TMR53], p34.

2. A new proof of the Smielew-Tarski result is given by George Collins and
Joseph Halpern in [CH70].

3. Franco Montagna and Antonella Mancini, in [MM94], give an improvement
of the Smielew-Tarski result. They prove that Q can be interpreted in an
extension of AS in which we stipulate the functionality of empty set and
adjunction of singletons.

4. In appendix III of [MPS90], Jan Mycielski, Pavel Pudlák and Alan Stern
provide the ingredients of the interpretation of Q in AS.

In a forthcoming paper we will provide another proof of the interpretability of
Q in AS.

For further work concerning sequential theories, see, e.g., [Pud85], [Smo85],
[MPS90], [HP91], [Vis93], [Vis98], [JV00], [Vis05], [Vis07].

4.2 Sequentiality from Concatenation

We want to define a notion of set from strings that are at least binary. How
are we going to define {w0, . . . , wn−1}? A first idea would be to take simply
w0 ∗ · · · ∗ wn−1. Of course, there is, in general, no way to retrieve precisely the
wi from this object. We need some kind of separator or comma. If we had a
fresh letter, we would be done. However, our rules dictate that we must be able
to make sets of all possible strings —so we have no extra letter available. One
idea to create commas would be to employ a tally length function.

4An important difference is that in the definition, as given by Smoryński, Elementary
Arithmetic EA (aka I∆0 + EXP) is stipulated to be interpretable in adequate theories. This
demand is evidently much too strong.
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Consider the following list of properties: Λaε := ε, Λax := a, if x is an
atom, Λa(x ∗ y) := Λax ∗ Λay. A function that satisfies these properties
is called a tally length function.a

In the model of finite strings, the tally length function is uniquely de-
termined and has a very efficient computation on the two tape Turing
machine. In the model of decorated linear order types, we also have a
tally length function. (I don’t know whether it is necessarily unique.)
Thus, it seems to me a very reasonable function to add as a primitive.b

If we extend our language with a tally length function, there are several
possibilities to define sets. E.g., we could create room for a comma by
replacing the wi by the result of doubling each atom in wi. Define:

• u ≡a v :↔ Λau = Λav,

• dubb(w, w̃) :↔ ∀u, x, v ((w = u ∗ x ∗ v ∧ atom(x)) →
∃ũ, ṽ (ũ ≡a u ∗ u ∧ ṽ ≡a v ∗ v ∧ w̃ = ũ ∗ x ∗ x ∗ ṽ)),

Now we can represent {w0, . . . , wn−1} by:

w̃0 ∗ a ∗ b ∗ w̃1 ∗ · · · ∗ a ∗ b ∗ w̃n−1,

where dubb(wi, w̃i), for each i. A second idea is to represent the set
{w0, . . . , wn−1} by:

w0 ∗ a ∗ w1 ∗ · · · a ∗ wn−1 ∗ w0 ∗ b ∗ w1 ∗ · · · ∗ b ∗ wn−1.

To retrieve the wi, we clearly need a relation like ≡a. A third idea is to
represent {w0, . . . , wn−1} by:

Λaw0 ∗ a ∗ b ∗ Λaw1 ∗ · · · ∗ a ∗ b ∗ Λawn−1 ∗ a ∗ b ∗ b∗
w0 ∗ a ∗ b ∗ w1 ∗ · · · ∗ a ∗ b ∗ wn−1

To make any of these ideas work we will need additional axioms over
TCε plus the tally axioms.

aIt is easy to produce a model of TCε that does not admit a tally length function.
See Appendix C. One can also produce a model that admits different tally length
functions and in which the range of these functions is not Na. See Subsection 5.2.

bOf course, we can define a tally length function in a sufficiently strong extension
of TCε. However, that is after we coded sequences. We are now precisely considering
it as a tool to define sequences.

In our treatment we will not use a tally length function. For one thing, it is
nicer, of course, to avoid expanding the signature. More seriously, it seems to
me that each of the ideas involving the tally length function involve the notion
of occurrence of a substring, which we do not have in TCε. Can we avoid, this
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presupposition? We remind the reader of Quine’s way of representing sets. See
[Qui46]. He represents {w0, . . . , wn−1} by:

w0 ∗ b ∗ u ∗ b ∗ w1 ∗ · · · ∗ b ∗ u ∗ b ∗ wn−1.

Here u is an a-string strictly longer that all a-strings that are substrings of the
wi. This idea works perfectly in the context of a sufficiently strong theory, but
it has the following disadvantage. If we want to adjoin an element to a set, we
may have to update all commas in the given representation. This is a complex
operation. We employ a variant of Quine’s idea. We represent {w0, . . . , wn−1}
by:

b ∗ u0 ∗ b ∗ w0 ∗ b ∗ u1 ∗ b ∗ w1 ∗ · · · b ∗ un−1 ∗ b ∗ wn−1,

where the ui are a-strings and ui ⊆ uj , if i ≤ j. We demand that wi ⊂+
a ui.

This idea is derived from some lecture notes by Visser, de Moor and Walsteijn
of 1986, to wit [VdMM86].

Here is the formal realization. We define:

• (u′, u) is a comma, if u is an a-string and u′ ⊆a u.

• x ∈ y if (i) there are commas (u′, u) and (v′, v), such that (u′, b, u, b, x) is
a partition of v′ and (v′, b, v, u) is a partition of y, for some u, and x ⊂+

a u,
or (ii) there is a comma (u′, u), such that (u′, b, u, b, x) is a partition of y
and x ⊂+

a u.

• ∅ := ε.

• adj(x, y, z) iff, for some c, (x, c) is a comma and (x, b, c, b, y) is a partition
of z, and y ⊂+

a c).

adj(x, y, z) stands for adjunction, i.e. ‘x ∪ {y} = z’, without commitment
to either the existence or the uniqueness of z.

4.3 Correctness of the Definitions

In this subsection, we show that the correctness of the joint definitions of ∈ and
adj, in TCε.5

Theorem 4.2 We have: TCε ` adj(x, y, z) → ∀w (w ∈ z ↔ (w ∈ x ∨ w = y)).

5The fact that correctness can be verified in a weaker theory than the one we need for
existence, by itself, does not give us much information. After all, we could define an alternative
adjunction by:

• adj?(x, y, z) :↔ adj(x, y, z) ∧ ∀w (w ∈ z ↔ (w ∈ x ∨ w = y)).

For this definition correctness would be trivial and the whole burden of verification would be
shifted to the existence clause. Still I like the fact that for this particular definition we only
need TCε to see that adjunction, if defined, delivers the ordered goods.
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Proof

We reason in any model of TCε. Suppose adj(x, y, z). So, σ := (x, b, c, b, y), is
a partiation of z, where (x, c) is a comma and y ⊂+

a c.

Suppose w ∈ x. If w is in x by the first disjunct of the definition of ∈, then,
trivially, w is in z. Suppose w is in x by the second disjunct. So, there is a
comma (d′, d) such that (d′, b, d, b, w) is a partition of x and w ⊂+

a d. Since also
(x, c) is a comma, we find that w ∈ z, by first clause of the definition of z..

Clearly y ∈ z by the second clause of the definition of ∈.

Suppose that w ∈ z. First, we consider the case that this is true by the first
clause of the definition of ∈. So, we have commas (d′, d), (e′, e) such that:
(d′, b, d, b, w) is a partition of e′ and τ := (d′, b, d, b, w, b, e, u) is a partition of
z, for some u, and w ⊂+

a d.
Let ζ := (z0, . . . , zm) be a common partition of σ = (x, b, c, b, y) and τ =

(d′, b, d, b, w, b, e, u). Let f and g be the witnessing morphisms.
It will be pleasant to have a name for, e.g., b-as-occurring-at-place-3-in-σ.

We will call this item (σ, 3). Similarly, for other strings-as-occuring-at-places-
in-a-partition.

It is easily seen that there is a unique i such that zi = b and f(i) = 3. (There
may by other i′ with f(i′) = 3, but, for such i′, we must have zi′ = ε.) This i
is the place of (σ, 3) relative to the context (ζ, f, g). Note that the number i is
just dependent on ζ and f . However, par abus de langage, we will write it as
3σ.6 Similarly, we can define 5τ as the unique j, such that g(j) = 5 and zj = b.
We distinguish a number of cases.

Case 1: Suppose 3σ ≤ 5τ . It follows that e ⊆ y and c ⊆ e′. Hence, e ⊂a y ⊂+
a

c ⊆a e. It follows that e ⊂+ e. Quod impossibile.

Case 2: Suppose that 1σ < 5τ < 3σ. Since 2σ is an occurrence of the a-string c,
we get a contradiction.

Case 3: Suppose 5τ = 1σ. In this case, we have: (d′, b, d, b, w) is a partition of
x, and (d′, d) is a comma and w ⊂a d. So w ∈ x, by the second clause
of the definition of ∈.

Case 4: Suppose 5τ < 1σ. We have f(5τ ) = 0. Clearly, every j, such that
g(j) = 5, must be < 1σ. But then, the j such that g(j) = 6 must
also be < 0σ, since τ6 is the a-string e. It follows that, for some v,
(d′, b, d, w, b, e, v) is a partition of x. Moreover (d′, d) and (e′, e) are
commas and w ⊂+

a d. So w ∈ x, by the first clause of the definition of
∈.

6So, note that it is possible that 3σ 6= 3τ , even if σ = τ .
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Next we suppose that x ∈ z by the second clause of the definition of ∈. So,
we have, for some comma (d′, d), that ν := (d′, b, d, b, w) is a partition of z and
w ⊂a d. Let ζ = (z0, . . . , zm) be a common refinement of σ = (x, b, c, b, y) and
ν = (d′, b, d, b, w). Let f and g be witnessing functions.

Suppose 3σ < 3τ . In this case we may show, reasoning as in case 4 above,
that d ⊆ y and c ⊆ d′. So, c ⊆a d′ ⊆a d ⊆a y ⊂+

a c. It follows that c ⊂+ c. A
contradiction. Similarly, we may refute the supposition that 3σ > 3τ . We may
conclude that 3σ = 3τ and, thus, that w = y. 2

4.4 Existence of Adjuncts

What we need to get existence is obviously something like a suitable collection
principle. We define a-collection as follows:

a-coll ` ∀x ∃y : Na x ⊆a y.

Note however that this not enough. We need our a-string y strictly above the
a-strings of x. So we need strong a-collection.

a-coll+ ` ∀x ∃y : Na x ⊂+
a y.

It is immediate that TCε + a-coll+ proves the existence clause of our adjunction
axiom. Since the empty set axiom is trivial, we find: TCε +a-coll+ is sequential.

We will now show that TCε interprets TCε + a-coll+. We will do this by first
interpreting the strictness axiom (defined below) and then interpreting a-coll.
Here is the strictness axiom.

strict ` ∀u u 6⊂ u.

It is easily seen that strictness plus a-coll implies a-coll+: if we have x ⊆a y,
then we have x ⊂+

a y ∗ a. Note that we interpret more than necessary. In the
decorated order types strictness fails, but we do have strong a-collection.

Theorem 4.3 The theory TCε interprets TCε + strict on an initial segment.

Proof

Consider I(u) :↔ u 6⊂ u. We show that I is closed under concatenation. Suppose
u0 and u1 are in I. Suppose, for some v0, v1, we have v0∗u0∗u1∗v1 = u0∗u1. By
the editor axiom, there is a w such that (1) v0 ∗u0 ∗w = u0 and u1 ∗v1 = w ∗u1,
or (2) v0 ∗ u0 = u0 ∗ w and w ∗ u1 ∗ v1 = u1. Suppose we are in case (1). Since
u0 is in I, we find that v0 = w = ε. It follows that u1 ∗ v1 = u1, and, hence,
since u1 is in I, that v1 = ε.

By Fact 3.3, J := DC(I) is closed under concatenation and downwards closed
under substrings. Also clearly, J contains ε, a and b. Noting that ∀u u 6⊂ u is
universal, we find that relativization to J interprets TCε + strict. 2

Theorem 4.4 We can interpret TCε + a-coll in TCε on an initial segment.

13



Proof

We work in TCε. We first form a predicate N?
a(x), such that, (i) N?

a is a subclass
of Na, (ii) N?

a is closed under ε, a and concatenation, (iii) N?
a is downwards closed

under ⊆, and (iv) N?
a satisfies: for any x and y in N?

a , we have x ∗ y = y ∗ x.
Let I(x) :↔ a ∗ x = x ∗ a. Let J(x) :↔ ∀y:I x ∗ y = y ∗ x. Since, a is

in I, we find that J is a subclass of I. It is easily seen that J is closed under
concatenation. It follows that K := DC(J) is closed under concatenation and
is downwards closed under taking substrings. Clearly, K contains ε and a. We
take N?

a := Na ∩ J .

Suppose that, for i = 0, 1, we have xi ⊆a yi and yi : N?
a . We show that:

x0 ∗ x1 ⊆a y0 ∗ y1. Let z : Na be a substring of x0 ∗ x1. We want to show that
z is a substring of y0 ∗ y1. We have either (1) z ⊆ x0, or (2) z ⊆ x1, or (3), for
some z0, z1, z = z0 ∗ z1, z0 ⊆end x0 and z1 ⊆ini x1. In cases (1) and (2), we are
immediately done. We treat case (3). We find that z0 ⊆ y0 and z1 ⊆ y1. We
have, for certain vij , yi = vi0 ∗ zi ∗ vi1. Since vij ⊆ yi and zi ⊆ yi, we have that
vij and zi are in N?

a . Hence:

y0 ∗ y1 = v00 ∗ z0 ∗ v01 ∗ v10 ∗ z1 ∗ v11 = v00 ∗ v01 ∗ z0 ∗ z1 ∗ v10 ∗ v11.

So z ⊆ y0 ∗ y1.

Let L(x) :↔ ∃y:N?
a x ⊆a y. Clearly L is downwards closed under substrings. By

the above, L is closed under concatenation. It is easily seen that ε, a and b are
in L. Finally, trivially, N?

a is contained in L. Thus, restriction to L interprets
TCε + a-coll. 2

Theorem 4.5 TCε interprets TCε + a-coll+.

Proof

First interpret TCε +strict in TCε. Then relativize to the class L of the previous
theorem to obtain an interpretation of TCε + a-coll. Since strict can be written
in purely universal form as: ` ∀u, v, w (u = w ∗u∗v → (u = ε∧v = ε)), we find
that we will inherit strict in our interpretation. Finally, strict plus a-coll implies
a-coll+. 2

We did not explore the tally length representations in the
context of TCε and its extensions. It is very well possible
that we can make a tally length representation work TCε

plus axioms that are incomparable to strong a-collection. If
that is true, the tally representations and the growing com-
mas representation would both have relative advantages
and disadvantages.
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5 TCε does not have Pairing

We prove that TCε does not prove pairing by producing a model with ‘too many
automorphisms’. We first define what it is for a theory to have pairing. Let
PAIR be the following theory.

PAIR 1. ` (pair(x, y, z) ∧ pair(x′, y′, z)) → (x = x′ ∧ y = y′)

PAIR 2. ` ∀x, y ∃z pair(x, y, z)

A theory has pairing if it directly interprets PAIR. I.o.w., if there we can define
a predicate pair in the language of the theory that provably satisfies the axioms
of PAIR. We first prove a lazy version of our result. Then we raise our standards
and prove the strongest version I could think of.

5.1 A Model Construction

A concatenation structure is a model of TCε
0.

7 There are many concatenation
structures. E.g. all groups are concatenation structures. Also, if (X,≤) is
a linear ordering with a minimal element, then (X, max) is a concatenation
structure. The simplest example is any structure with x ∗ y = y, if y 6= ε, and
x ∗ y = x, if y = ε.

We show that concatenation structures are closed under the operation ~
that is defined as follows. Consider concatenation structures X and U . We will
use x, y, z, . . . for the elements of X and u, v, w, . . . for the elements of U . We
employ p, q, r ambiguously for both. We use α, β, γ, for the elements of X ~U .

The elements of X ~ U are the elements x of X , and triples (y, u, z), where
y and z are in X and u is in U . We assume that the triples (y, u, z) are disjoint
from the x’s. We write ∗ for concatenation if X and U and ? for the new
concatenation. We define:

? x′ (y′, u′, z′)
x x ∗ x′ (x ∗ y′, u′, z′)

(y, u, z) (y, u, z ∗ x′) (y, u ∗ u′, z′)

We prove that X ~ U is indeed a concatenation structure. Clearly, the unit of
X functions as the new unit of X ~ U . Here is the verification of associativity.

α β γ (α ? β) ? γ) α ? (β ? γ)

x x′ x′′ (x ∗ x′) ∗ x′′ x ∗ (x′ ∗ x′′)

x x′ (y′′, u′′, z′′) (x ∗ (x′ ∗ y′′), u′′, z′′) ((x ∗ x′) ∗ y′′, u′′, z′′)

x (y′, u′, z′) x′′ (x ∗ y′, u′, z′ ∗ x′′) (x ∗ y′, u′, z′ ∗ x′′)

x (y′, u′, z′) (y′′, u′′, z′′) (x ∗ y′, u′ ∗ u′′, z′′) (x ∗ y′, u′ ∗ u′′, z′′)

(y, u, z) x′ x′′ (y, u, (z ∗ x′) ∗ x′′) (y, u, z ∗ (x′ ∗ x′′))

(y, u, z) x′ (y′′, u′′, z′′) (y, u ∗ u′′, z′′) (y, u ∗ u′′, z′′)

(y, u, z) (y′, u′, z′) x′′ (y, u ∗ u′, z′ ∗ x′′) (y, u ∗ u′, z′ ∗ x′′)

(y, u, z) (y′, u′, z′) (y′′, u′′, z′′) (y, (u ∗ u′) ∗ u′′, z′′) (y, u ∗ (u′ ∗ u′′), z′′)

7Warning: The presence of the unit is essential to make the construction work.
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Next we verify the editor axiom. Suppose α ? β = γ ? δ. We are looking for a
witness of the editor axiom, say θ. We run though the possible cases.

case 1. All four elements involved are in X . We are done by the editor axiom
of X .

case 2. Three elements are in X . This is impossible.

case 3. Two elements are in X and they are both on the same side of the identity.
This is impossible.

case 4. Two elements are in X and they are either α and γ, or β and δ. We have
e.g.: (y, u, z) ? x = (y′, u′, z′) ? x′. So, (y, u, z ∗ x) = (y′, u′, z′ ∗ x′). Let
p be provided by the editor axiom for X , such that, e.g., z ∗ p = z′ and
x = p∗x′. We take θ := p. We have: (y, u, z)?p = (y, u, z′) = (y′, u′, z′)
and x = p ? x′

case 5. Two elements are in X and they are either α and δ, or β and γ. We have
e.g.: (y, u, z) ? x = x′ ? (y′, u′, z′). So, (y, u, z ∗ x) = (x′ ∗ y′, u′, z′). We
take θ := (y′, u, z). We have (y, u, z) = x′ ? (y′, u, z) and (y′, u, z) ? x =
(y′, u′, z′).

case 6. One element is in X . We have e.g.:

x ? (y, u, z) = (y′, u′, z′) ? (y′′, u′′, z′′),

i.e., (x ∗ y, u, z) = (y′, u′ ∗ u′′, z′′). We take η := (y, u′, z′). We have
x ? (y, u′, z′) = (x ∗ y, u′, z′) = (y′, u′, z′) and (y, u′, z′) ? (y′′, u′′, z′′) =
(y, u′ ∗ u′′, z′′) = (y, u, z).

case 7. No elements are in X . We have:

(y, u, z) ? (y′, u′, z′) = (y′′, u′′, z′′) ? (y′′′, u′′′, z′′′).

So, (y, u ∗ u′, z′) = (y′′, u′′ ∗ u′′′, z′′′). Let p be provided by the editor
axiom for U , such that, e.g., u ∗ p = u′′ and u′ = p ∗ u′′′. Take θ :=
(y′, p, z′′). We have: (y, u, z) ? (y′, p, z′′) = (y, u ∗ p, z′′) = (y′′, u′′, z′′)
and (y′, p, z) ? (y′′′, u′′′, z′′′) = (y′, p ∗ u′′′, z′′′) = (y′, u′, z′).

An important property of the construction ~ is that automorphisms of X and
U can be lifted in the obvious way to automorphisms of X ~ U .

5.2 No Pairing

We show that PAIR is not directly interpretable in TCε. We consider the case
of one-dimensional interpretations with no parameters. In the next subsection,
we will consider parameters, multi-dimensionality and more.

Suppose there is a predicate pair in TCε satisfying the axioms of PAIR. Let
A2 be the monoid on generators a and b. Let D be a domain with at least four
elements. We extend D to a concatenation structure D†, by stipulating that
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d ∗ e := e and by adding a unit to the structure. Note that any permutation of
D is an automorphism of D†.

Consider B := A2 ~ D†. We identify the elements of A2 with their counter-
parts in the construction of B and the elements of D† with the triples (ε, d, ε).
Note that ε of A maps to the unit of B, and that a and b map to atoms of B.
So, B is a model of TCε (modulo expansion of the signature). (The unit of D†

does not map to the unit of B, and the atoms of D† do not map to atoms of B.)
Let d and e be different elements of D. Suppose pair(d, e, α). Suppose first

that α is not a triple. In this case there is an automorphism of B, mapping
d to d′, e to e and α to α, where d′ is in D \ {d, e}. We get pair(d′, e, α). A
contradiction.

Suppose α = (x, e′, y), where e′ ∈ D∪{ε}. Clearly, one of d, e is not identical
to e′. Suppose it is e.g. d. Let d′ ∈ D \ {d, e, e′}. There is an automorphism of
B, mapping d to d′, e to e and α to α. We get pair(d′, e, α). A contradiction.

We may conclude that TCε does not have pairing.

Let Λ0
a be the usual tally length function on binary strings.

Let φ be an automorphism of D†. Define Λφ
aα := Λ0

aα, if α
is in A2 and Λφ

aα := (Λ0
ax, φu, Λ0

ay), if α is (x, u, y), where
x and y are in A2 and u is in D†.
It is easy to see that we have indeed defined a tally length
function, since triples can never be atoms.
It follows that even if we add a tally length function we still
cannot define pairing. Note that no (x, u, y) is in Na. So,
the range of Λφ

a is not contained in Na.
If D has at least two elements, our model allows more than
one tally length function. We also see that tally length
functions need not be idempotent.

5.3 The Pro Version of No Pairing

We adapt the proof of the previous subsection to prove a stronger result. We
borrow some ideas from the proof of Lemma 6.5 of a forthcoming paper by
Harvey Friedman, called The Inevitability of Logical Strength: Strict Reverse
Mathematics.

Let me explain what we are going to prove. A first step is to widen our
concept of interpretation: we will consider multi-dimensional interpretations
with parameters.8

8There is one further possible widening of our class of interpretations: we could consider
piecewise interpretations, where the new domain is assembled out of possibly overlapping
pieces. However, since TCε provides an infinity of closed terms that are pairwise provably
different, one can show that piecewise interpretations, for the case at hand, can always be
replaced by multi-dimensional ones.
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A second step is that we widen the notion of direct interpretability. In the
category of interpretations where we identify two interpretations whenever the
interpreting theory proves that they are the same, direct interpretability can be
defined as follows. Let ID be the pure theory of identity. Let ιU : ID → U , be
the interpretation of ID in U , obtained by just reducing the signature. I.o.w., ιU
is the unique direct interpretation of ID in U . It is easy to see that K : U → V
is direct iff ιV = K ◦ ιU . We now take this characterization and re-interpret it in
the category of interpretations where we count two interpretations as the same
when the associated mappings of models are the same modulo isomorphism. We
do not demand that these isomorphisms are definable in the interpreting theory.
The notion that we obtain in this way is: cardinality preserving interpretation.
An interpretation K : U → V is cardinality preserving if for any model M of
V , the internal model K(M) defined by K has the same cardinality as M.

We will show that there is no cardinality preserving multi-dimensional inter-
pretation with parameters of PAIR in TCε. It follows that TCε is not weakly
bi-interpretable with a theory that has pairing.

We again work in the the modelA2~D† of the previous subsection. However,
now we demand that D is uncountable. We will call the unit of D†, ε† to
distinguish it from the unit ε of A2.

Suppose we have an n-dimensional interpretation K of PAIR in TCε. Let P
be a given finite set of parameters in the model. Let the domain of K be ∆ (in
the parameters). We may assume that P is a subset of (the embedded elements
of) D plus ε†, since all other elements are definable from elements of D plus
ε†.9 Let the domain of K be ∆ (given the parameters). Let E be the identity
of K (given the parameters).

A form is an n-tuple (t0, . . . , tn−1), where each t is either (i) an a,b-string, or
(ii) a term of the form udu′ where u and u′ are a,b-strings and d is a parameter,
or (iii) a term of the form uε†u′ where u and u′ are a,b-strings, or (iv) a term
of the form uXu′, where u and u′ are a,b-strings and X is a variable. We
identify forms modulo permutations of variables. An f-assigment σ is an injective
mapping from variables to D \ P . We define σF , for F a form, in he obvious
way. We define σ[F ] as the set of values of the variables of F .

Clearly, any n-tuple from the domain of B can be obtained as σF , for some
σ and F . Conversely, every such element A uniquely determines σ and F , such
that A = σF .

We call a permutation of D permissible if it leaves each parameter in place.
Two n-tuples have the same form iff they are mapped to each other by an
admissible permutation. It follows that either all elements of a given form are
in ∆, or none is. We have the following simple lemma.

Lemma 5.1 Suppose that σF is in ∆ and (σF )E(τF ), where σ[F ] and τ [F ]
are disjoint. Then, there is only one instantiation of F , modulo E.

9In fact, the a,b-strings are definable in the model. It follows that ε† is definable.

18



Proof

Suppose that σF is in ∆ and (σF )E(τF ), where σ[F ] and τ [F ] are disjoint.
Let σ′ and τ ′ be any other pair with σ′[F ] and τ ′[F ] disjoint. We can find
a permissible permutation φ such that φ ◦ σ = σ′ and φ ◦ τ = τ ′. It follows
that (σ′F )E(τ ′G). Let ν and ρ be any f-assigments. Let θ be an f-assignment
where θ[F ] is disjoint from ν[F ] and ρ[F ] on the variables of F . We find:
(νF )E(θF )E(ρF ), and, hence (νF )E(ρF ). So F contains only one element
modulo E. 2

We show that any F has at most one instance in ∆ modulo E. Suppose F has
an instance in ∆. If F has no variables we are immediately done. So suppose
F has at least one variable.

Let A,B, . . . range over ∆. We define a non-functional sequence coding as
follows (for standard n):

• seq2(A0, A1, B) :↔ pair(A0, A1, B),

• seqk+3(A0, . . . , Ak+2, B) :↔ ∃C
(seqk+2(A0, . . . , Ak+1, C) ∧ pair(C,Ak+2, B)).

Let σ0, . . . , σn be a sequence of n + 1 f-assignments such that the σi[F ] are
pairwise disjoint. Suppose that seqn+1(σ0F, . . . , σnF,B), for some B. Say, B is
of form τG, for some form G. The number of variables of G is smaller or equal to
n. So, τ [G] is smaller or equal to n. It follows that τ [G] is disjoint from one of the
σi[F ], say for i0. Let φ be any admissible permutation that leaves the elements
of τ [G] and of the σi[F ], for i 6= i0 in place, but moves the elements of σi0 [F ]
to a set disjoint from the σi0 [F ]. We find that: seqn+1(φσ0F, . . . , φσnF, φB). It
follows that:

seqn+1(σ0F, . . . , σi0−1F, φσi0F, σi0+1F, . . . , σnF,B).

So, (σi0F )E(φσi0F ). It follows, by the lemma, that F contains, modulo E, only
one object in ∆.

Since there are only countable many forms, it follows that ∆ is countable (mod-
ulo E). So K is not cardinality preserving.

Note that our result still holds when we add a tally length
function.
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A Comparing TC and TCε

We show that TC is bi-interpretable with a corresponding theory TCε.10 This
means that there are interpretations K : TCε → TC and M : TC → TCε so
that K ◦M : TC → TC is isomorphic to the interpretation idTC via a definable
isomorphism F , and M ◦ K : TCε → TCε is isomorphic to the interpretation
idTCε via a definable isomorphism G.11

We can take K and M one-dimensional interpretations without parameters,
We specify K, M , F , and G. We use C for the relational formulation of con-
catenation and E as an alternative way of writing identity.

• δK(x) :↔ x = a ∨ ∃x0 x = b ∗ x0,

• xEKy :↔ x = y,

• CK(x, y, z) :↔ (x = a ∧ y = z) ∨ (y = a ∧ x = z) ∨
∃x0, y0 (x = b ∗ x0 ∧ y = b ∗ y0 ∧ z = b ∗ x0 ∗ y0),

10Gregorczyck and Zdanowski prove that TC interprets TCε in their forthcoming paper
Undecidability and Concatenation. Our argument is a variation of their argument.

11See [Vis06] for detailed definitions.
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• εK := a,

• aK = b ∗ a,

• bK = b ∗ b,

• δM (x) :↔ x 6= ε,

• xEMy :↔ x = y,

• x ∗M y := x ∗ y,

• xFy :↔ x = b ∗ y,

• xGy :↔ (x = a ∧ y = ε) ∨ x = b ∗ y.

The verification that our definitions work is routine. We note the important
fact that the presence of atoms in TCε implies that x ∗ y = ε → (x = ε∨ y = ε).

The author thinks that he can prove the even stronger theorem, to wit that TC
and TCε are definitionally equivalent, but the proof still has to be written up.

B Comparing TCε and Qbin

We first show how to interpret Qbin in TCε. We work in TCε. Define I(x) :↔
∀y ⊆ini x (y = ε∨∃z (z = y∗a∨y = z∗b). It is easy to see that I is closed under
ε, a and b, and that it is downwards closed under ⊆ini. We show that it is closed
under concatenation. Suppose that x0 and x1 are in I and that y ⊆ini x0 ∗ x1,
say y ∗w = x0 ∗x− 1. We want to show: (†y) y = ε or ∃z (z = y ∗ a∨ y = z ∗ b)

By the editor axiom, there is a u, such that (1) y ∗ u = x0 and w = u ∗ x1,
or (2) y = x0 ∗ u and u ∗w = x1. In the first case, y ⊆ini x0 and, hence we have
†y. In the second case, u ⊆ini x1. So, we have †u. If u = ε, we find y = x0. So,
y ⊆ini x0 and †y. Otherwise, for some z, (2.1) u = z ∗ a or (2.2) u = z ∗ b. In
case (1.1) it follows that y = x0 ∗ u = x0 ∗ (z ∗ a) = (x0 ∗ z) ∗ a. Case (1.2) is
similar. We may conclude †y.

Our interpretation K : Qbin → TC is just relativization to I, where we set
Sax := x ∗ a and Sbx := x ∗ b.

We provide the reverse interpretation M : TC → Qbin. We work in Qbin. Let
I(x) :↔ ∀y, z (y ∗ z) ∗ x = y ∗ (z ∗ x). It is easy to see that I is closed under ε,
Sa, Sb, concatenation and under the predecessor functions corresponding to Sa

and Sb.

So relativization to I will give us an interpretation of Qbin plus the associativity
of concatenation. We proceed to work in this theory. Let:

J(x) :↔ ∀y, u, v (y∗x = u∗v → ∃z ((y∗z = u∧x = z∗v)∨(y = u∗z∨z∗x = v))).
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We define a := Saε and b := Sbε. Clearly, J is closed under ε. Suppose x = a,
y ∗ a = u ∗ v. If v = ε, we can take z := a. We have: y ∗ z = u and x = z ∗ v. If
v = Sav0, we can take z := v0. We have:

Sa(u ∗ z) = u ∗ v0 ∗ a = u ∗ v = y ∗ a = Say.

So, y = u ∗ z. Moreover, z ∗ x = v0 ∗ a = v. It is easily seen that the case that
v = Sbv0, leads to a contradiction. We may conclude that a is in J . By similar
reasoning, we find that b is in J .

We now show that J is closed under concatenation. Suppose x0 and x1 are
in J and y ∗ x0 ∗ x1 = u ∗ v. For some z0, we have (1) y ∗ x0 ∗ z0 = u and
x1 = z0 ∗ v, or (2) y ∗ x0 = u ∗ z0 and z0 ∗ x1 = v.

In case (1) we can take the desired z := x0∗z0. We have: y∗z = y∗x0∗z0 = u
and z ∗ v = x0 ∗ z0 ∗ v = x0 ∗ x1.

In case (2), we have a z1, such that (2.1) y ∗ z1 = u and x0 = z1 ∗ z0, or
(2.2) y = u ∗ z1 and z1 ∗ x0 = z0. In case (2.1), we can take z := z1. We have:
y ∗ z = y ∗ z1 = u and z ∗ v = z1 ∗ v = z1 ∗ z0 ∗x1 = x0 ∗x1. In case (2.2), we can
take z := z1. We have u∗z = u∗z1 = y and z∗x0∗x1 = z1∗x0∗x1 = z0∗x1 = v.

Finally, we define J?(x) :↔ ∀y ⊆ x J?(y). It is easily seen that J? is closed
under ε, a, b, and downwards closed under taking substrings. We show that J?

is closed under concatenation. Suppose x0 and x1 are in J? and y ⊆ x0 ∗ x1.
We have, for some w0, w1, that x0 ∗ x1 = w0 ∗ y ∗ w1. Since x1 in in J? and, a
fortiori, in J , there is a z0, such that (1) x0 ∗ z0 = w0 and x1 = z0 ∗ y ∗ w1, or
(2) x0 = w0 ∗ z0 and z0 ∗ x1 = y ∗ w1. In case (1), we have that y ⊆ x1, hence
y ∈ J .

In case (2), we use again that x1 is in J . We can find a z1, such that (2.1)
z0 ∗ z1 = y and x1 = z1 ∗ w1, or (2.2) z0 = y ∗ z1 and z1 ∗ x1 = w1. In case
(2.1), we note that, z0 ⊆ x0 and z1 ⊆ x1. Hence, z0 and z1 are both in J . Thus
y = z0 ∗ z1 is also in J . In case (2.2), we find that y ⊆ z0 ⊆ x0, so y ⊆ x0 and y
is in J .

Since, we can rewrite the editor axiom with substring-bounded quantifiers, it
is easily see that relativization to J? interprets TCε in Qbin plus the associativity
of concatenation.

C A Model without a Tally

Consider a non-standard model N of true arithmetic. We consider the binary
strings on its non-standard numbers. Since these strings can be coded in the
model, we obtain a non-standard model M of the true theory of finite binary
strings. Let’s say that the strings of this model are the n-strings. Now consider
the class A of n-strings with only standardly finitely many a’s. This class is
closed under empty string, atoms, concatenation and is downward closed under
substrings. Consider the submodel A of M determined by A. It is clear thatA
satisfies TCε and does not have a tally function.

We call a formula ∆⊆
0 is it only contains substring bounded quantifiers. A

formula is Π⊆
1 if it is given by a ∆⊆

0 -formula preceded by universal quantifiers.
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We see that A satisfies all Π⊆
1 -sentences true in M and, hence, true in the

standard model of binary strings. Thus, there is a model of TCε plus all Π⊆
1 -

sentences which are true in the standard model of binary strings, in which there
is no tally length function.

We note that the model M cannot be realized in decorated linear order
types. Consider a non-standard a-string σ. Let α be the decorated linear order
type associated with σ and let β be the decorated linear order type associated
with a. Since we can iterate the predecessor operation ω times on σ, we see
there is an decorated linear order type α0 such that α = α0 ∗ (β · ω̆). Since the
predecessor of σ will be associated with the same decorated linear order type,
we have a contradiction.
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