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1 Introduction

Friedman’s 35th problem was to give a decision procedure for the closed frag-
ment of the provability logic of Peano Arithmetic, PA. See [Fri75]. It was inde-
pently solved by van Benthem (see: [vB74]), Boolos (see: [Boo76]) and Bernardi
& Montagna (unpublished). The story of this result is told in [BS91]. The so-
lution of Friedman’s question would seem to be the end of the story of closed
fragments: the characterization given is simple and definitive. Moreover, as
we now know, it is amazingly stable. The same characterization works for all
Σ0

1-sound recursively enumerable extensions of Buss’ theory S1
2.

1 Very roughly
speaking, one could say that it works in all theories in which one can arithmetize
employing the usual recursive presentations of syntax. Thus, it almost works
for all theories for which the question makes sense at all.

However, the situation changes dramatically, when we go on to consider the
provability logics of constructive theories. New obstacles arise to the proof. We
proceed to the next level in difficulty. Different theories will have markedly
different closed fragments. In my preprint [Vis85], I gave characterizations and
corresponding decision procedures for the closed fragments of HA and HA?.2

The characterizations are reasonably simple. However, in the case of HA, the
verification of the characterization involves a complicated algorithm. I was not
happy with its presentation and tried to improve it in [Vis94]. Finally the result
was published in [Vis02]. Unfortunately, this final presentation still employs the
original unperspicuous algorithm.

In the present paper, I will give a new proof of my old result by formalizing
a Smoryński style Kripke model argument. It is somewhat surprising that the
possibility of such a formalization was so long overlooked. One reason that it
was so easy to overlook, is that one embeds classical methods inside a purely
constructive argument. The new proof, with minor adaptations, also yields a
characterization of the closed fragments of the provability logics of HA + MP
and HA + MPPR.

Why are these results interesting? We can view the question from two per-
spectives. The first perspective starts with the arithmetical theories. These
theories are natural theories. This study throws light on a salient property of
these theories. The second perspective is the perspective of the closed fragments
themselves. The description of the closed fragment is a direct generalization of
the second incompleteness theorem. In the context of the results for constructive
theories, the classical case appears in a new light. We understand it as a special
case of a more general pattern. Thus, enlarging the scope of our enquiry to the
constructive case tells us something essential about closed fragments. Finally,
apart from any specific perspective, one can say that a beautiful underlying
mathematical structure is revealed.

1The case where we do not have Σ0
1-soundness just gives rise to a trivial variation.

2For information about HA? see [Vis82], [dJV96], [Vis02] and [Vis06].
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Prerequisites

We presuppose a background in provability logic. See e.g. [Boo93] or [Smo85].
We also presuppose basic knowledge of constructive arithmetic. See e.g [Tro73]
or [TvD88]. The chapter [Smo73] of [Tro73] will be especially relevant.
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2 The Framework

The results of the paper fit a reasonably simple framework. In this section we
describe this framework.

The question we are studying is to characterize the closed fragments of the
provability logics of certain arithmetical theories. This introduces two kinds
of theories and their connection. We have closed constructive provability log-
ics and arithmetical theories. The connection between the kinds is formed by
translations of the language of modal logic without propositional variables into
the language of arithmetic. In our framework we will employ a third kind of
theories, to wit theories of degrees of falsity. The theories of degrees of falsity
are connected to closed provability logics via a translation of their language
into the language of modal logic without propositional variables. We proceed
to introduce these three kinds of theories and the relevant translations.

2.1 Degrees of Falsity

The intended arithmetical meaning of the degrees of falsity is: iterated incon-
sistency statements for the given arithmetical theory T .

Let ω+ := ω ∪ {∞}. We let α, β, . . . , range over the degrees of falsity.
We use m, n, . . . , for the finite degrees of falsity, i.e., the natural numbers.
We equip ω+ with the usual ordering and define ∞ + 1 := ∞. Note that the
successor function remains injective under this extension.

The language D of theories of degrees of falsity is the language given by:

• φ ::= α | (φ ∧ φ) | (φ ∨ φ) | (φ→ φ).

The theory Basic is given by intuitionistic propositional logic with 0 in the role
of ⊥ and ∞ in the role of >, plus the principles ` α→ β, for α ≤ β. A theory
of degrees of falsity is any extension of Basic in D. We will use ∆, Γ, . . . , to
range over arbitrary theories of degrees of falsity. We identify ¬φ with (φ→ 0).

An extension of Γ of Basic is called p-sound iff it does not imply any sentence
of the form α→ β, for β < α. We will be mainly interested in p-sound theories.
Here are some further important notions.
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• A theory Γ is decent if, for every φ and for every n larger than all finite
m occurring in φ, we have Γ ` n→ φ implies Γ ` φ.

• αΓ(φ) := max{α | Γ ` α → φ}. If there is no such maximum, αΓ(φ) is
undefined.

The decency of Γ is a rather natural sufficient condition for the totality of αΓ.

Theorem 2.1 If Γ is decent, then, for any φ, we have that αΓ(φ) is defined.
Moreover, αΓ(φ) is either ∞ or a finite k occurring in φ.

Proof

Suppose Γ is decent. Let n be the maximal finite number occurring in φ. In
case Γ ` (n+ 1) → φ, we have, by decency, that αΓ(φ) = ∞.

Otherwise, there is a maximal k ≤ n such that Γ ` k → φ. So αΓ(φ) = k.
We show that k occurs in φ. Let φ̃ be the result of replacing every occurrence
of any m ≥ k in φ by ∞. We have Γ ` k → (φ↔ φ̃). It follows that Γ ` k → φ̃,
and, hence, that Γ ` φ̃. Let k̃ be the smallest s ≥ k occurring in φ. Clearly,
Γ ` k̃ → (φ ↔ φ̃), and hence Γ ` k̃ → φ. So, by the maximality of k, we have
that k̃ = k, and, hence, that k occurs in φ. 2

Here are some salient extensions of Basic.

• Stronglöb := Basic + {((α→ β) → β) | β < α},

• Stable := Basic + {¬¬α→ α | α ∈ ω+},

• Classical := Basic + {α ∨ ¬α | α ∈ ω+}.

Each of these theories is p-sound and decent. (In this paper we will prove the
p-soundness and decency of Basic and Stable.)

2.2 Closed Constructive Provability Logics

We turn to closed constructive provability logics. The modal language L0
2 of

closed logics is given as follows.

• φ ::= ⊥ | > | (φ ∧ φ) | (φ ∨ φ) | (φ→ φ) | 2φ.

The theory iGL0, intuitionistic Löb’s Logic on zero variables, is the L0
2-theory

axiomatized by intuitionistic propositional logic plus the following axioms and
rules.

L1. ` (2φ ∧2(φ→ ψ)) → 2ψ,

L2. ` 2φ→ 22φ,

L3. ` 2(2φ→ φ) → 2φ,

L4. ` φ ⇒ ` 2φ.
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A closed provability logic is any extension of iGL0 in L0
2 that is closed under

L4. We let Λ, Θ, . . . , range over closed provability logics. We define the modal
degrees of falsity as follows.

• 20⊥ := ⊥,

• 2n+1⊥ := 22n⊥,

• 2∞⊥ := >.

We translate D into L0
2 via the translation emb0 given by the following clauses.

• emb0(α) := 2α⊥,

• emb0 commutes with the propositional connectives.

Consider any closed logic Λ. We define:

• TDFΛ := {φ∈D | Λ ` emb0(φ)}.
The theory TDFΛ is the theory of degrees of falsity of Λ.

• For φ, ψ in D: φ ∼Λ ψ :⇔ Λ ` 2 emb0(φ) → 2 emb0(ψ).

The relation ∼Λ is the relation of provably deductive consequence w.r.t.
Λ. We write ≈Λ for the induced equivalence relation.

Note that TDF is monotonic w.r.t. theory extension.

Since emb0 is a fixed embedding we will, when no confusion is possible, omit it.
Thus, e.g., we will treat TDFΛ as if it is a fragment of Λ. We will write αΛ for
αTDFΛ . We will say that Λ is p-sound if TDFΛ is p-sound and that Λ is decent
if TDFΛ is decent.

We prove a number of basic theorems. Consider any closed provability logic Λ.
Clearly, `TDFΛ and ∼Λ are preorders on the language of D of theories of degrees
of falsity. Moreover, ∼Λ extends `TDFΛ . I.o.w., the identity mapping supports
a functor πλ from the preorder category `TDFΛ to the preorder category ∼Λ.

Theorem 2.2 Consider any p-sound closed provability logic Λ. Suppose πΛ has
a left adjoint ΦΛ whose range consists of degrees of falsity. Then we have:

1. ΦΛ is a functor, i.e. ΦΛ is monotonic.

2. ΦΛ(φ) `TDFΛ φ.

3. φ ∼Λ ΦΛ(φ).

4. ΦΛ(φ) ≈Λ φ.

5. ΦΛ(β) = β.

6. The function αΛ is total and αΛ(φ) = ΦΛ(φ).
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Proof

Items (1), (2) and (3) are well known facts about adjunctions, noting that we
have suppressed πλ, since it is supported by the idenity mapping. See [Mac71].
Item (4) follows from (2) and (3).

We prove (5), By (2), we have ΦΛ(β) `TDFΛ β. So, by p-soundness, we have:
ΦΛ(β) ≤ β. Moreover, we have: β ∼Λ ΦΛ(β). So Λ ` 2β → 2 ΦT (β). I.o.w.,
Λ ` (β + 1) → (ΦΛ(β) + 1). By p-soundness, we have β + 1 ≤ ΦΛ(β) + 1, so
β ≤ ΦΛ(β).

We prove (6). It is sufficient to show that ΦΛ satisfies the conditions for αΛ.
First note that ΦΛ(φ) `TDFΛ φ. Suppose β `TDFΛ φ. It follows that β ∼Λ φ,
and, hence, ΦΛ(β) `TDFΛ ΦΛ(φ). Since β = ΦΛ(β) and Λ is p-sound, it follows
that β ≤ ΦΛ(φ). 2

We state a sufficient condition for the existence of a left adjoint of πΛ.

Theorem 2.3 Suppose Λ is a p-sound closed provability logic. Suppose further
that αΛ is total and, for all φ in D, we have φ ∼Λ αΛ(φ). Then, αΛ is the left
adjoint of πΛ.

Proof

Let Λ be a closed provability logic. Suppose that αΛ is total and φ ∼Λ αΛ(φ).

Suppose αΛ(φ) `TDFΛ ψ. Then, φ ∼Λ αΛ(φ) and αΛ(φ) ∼Λ ψ. We may
conclude that φ ∼Λ ψ.

Conversely, suppose φ ∼Λ ψ. Since, αΛ(φ) `TDFΛ φ, we have αΛ(φ) ∼Λ φ.
So, we find: αΛ(φ) ∼Λ φ and φ ∼Λ ψ and ψ ∼Λ αΛ(ψ). We may conclude:
αΛ(φ) ∼Λ αΛ(ψ). By the p-soundness, we find αΛ(φ) ≤ αΛ(ψ). We may
conclude αΛ(φ) `TDFΛ αΛ(ψ) and αΛ(ψ) `TDFΛ ψ. Hence, αΛ(φ) `TDFΛ ψ. 2

Remark 2.4 Note that the proof did not use all the data of the theorem. We
did not use the maximality of αT but only the fact that αΛ(φ) `TDFΛ φ.

Let Λ be a p-sound closed provability logic for which αΛ is a left adjoint of πΛ.
We define the function nfΛ : L0

2 → D.

• nfΛ(α) := α,

• nfΛ commutes with the propositional connectives,

• nfΛ(2φ) := αΛ(nfΛ(φ)) + 1.

We have the following theorem.

Theorem 2.5 Let Λ be a p-sound closed provability logic for which αΛ is a left
adjoint of πΛ. We have Λ ` φ↔ nfΛ(φ).
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Proof

The proof is a simple induction on φ, using Theorem 2.2. 2

Theorem 2.5 yields a characterization of a Λ that satisfies its conditions in terms
of nfΛ, since we have Λ ` φ iff nfΛ(2φ) = ∞. In its turn nfΛ is completely
determined by αΛ, which is fixed by TDFΛ. This result will be the central in
our characterization of the closed fragments of HA, HA + MP and HA + MPPR.

Remark 2.6 Note that we can view the result as follows. Suppose Λ satisfies
the conditions of Theorem 2.5. We can now enrich the language of Λ with
new constants α —now not considered as defined— and we can add axioms
` α↔ 2α⊥ to Λ. We extend the necessitation rule to the system with the new
axioms. Let’s call the resulting system Λ+. Now Theorem 2.5 tells us that we
have box-elimination in Λ+.

Consider any theory of degrees of falsity Γ for which αΓ is defined. We can
construct a closed provability logic from Γ in the following way. We first extend
the language of Γ with the modal operator 2. For any φ in D, we add an axiom
` 2φ ↔ (αΓ(φ) + 1). Next, we replace 0 and ∞ by ⊥ and >. Finally, we take
the reduct of the resulting theory to the language without 1, 2, . . . We call the
theory thus obtained ALΓ, the associated logic of Γ. It is easy to see that ALΓ

is a closed provability logic.

Example 2.7 The operation AL is not monotonic w.r.t. theory extension. E.g.,
we have ALBasic ` 2¬¬2⊥ → 22⊥, but ALStable 0 2¬¬2⊥ → 22⊥.

Here are the expected consequences of our definition.

Theorem 2.8 Suppose that Γ is p-sound and that αΓ is total. We have:

1. TDFALΓ = Γ,

2. αΓ is left adjoint to πALΓ ,

3. Λ = ALΓ iff αΓ is left adjoint to πΛ,

Proof

Item (1) is immediate since ALΓ is just a ‘definitional extension’ of Γ. Item (2)
follows from Theorem 2.3. Finally, (3) follows from (2) and Theorem 2.2. 2

Remark 2.9 The box of ALΓ is in a sense the minimal box of a closed prov-
ability logic which has Γ as its theory of degrees of falsity. Suppose αΓ is total.
Let Λ be any closed provability logic such that TDFΛ = Γ. We have, for φ in D:

Λ ` (αΓ(φ) + 1) → 2αΓ(φ)
→ 2φ

7



Open Question 2.10 Let Γ be p-sound and suppose that αΓ is total. Consider
all logics Λ with TDFΛ = Γ ordered by theory extension. It is easy to see that
iGL + {emb0(φ) | Γ ` φ} is the minimal element of this structure. Moreover,
since every formula of ALΓ is equivalent to emb0(φ) for some φ in D, we have, for
every strict extension Θ of ALΓ, that TDFΘ is a strict extension of Γ. Ergo, ALΓ

is a maximum of our structure. It would be interesting to have more information
about this structure. E.g., are there other maxima?

Open Question 2.11 Can we axiomatize ALBasic and ALStable? I conjecture
that such an axiomatization will demand extended schemes involving finite dis-
junctions and conjunctions of variable length.

2.3 Arithmetical Theories

Let T be any constructive ce theory with a designated interpretation K of iS1
2,

the intuitionistic version of Buss’ iS1
2. We write 2TA for the formalization

of: A is provable in T . This formalization is supposed to be executed ‘inside’
the interpretation K. We interpret the formulas of L0

2 in T , via an interpreta-
tion embT

1 that commutes with the propositional connectives and sends 2φ to
2T embT

1 (φ). We define the closed fragment of T as follows.

• CFT := {φ | T ` embT
1 (φ)}.

Note that CF need not be monotonic w.r.t. extension of theories. We define an
interpretation of embT

2 of D into the language of T by:

• embT
2 := embT

1 ◦ emb0.

The degrees of falsity of T are the formulas 2α
T⊥ := embT

2 (α). We write TDFT

for: TDFCFT
, and ∼T for: ∼CFT

.

We will study the closed fragments of three salient theories: HA, HA + MPPR,
and HA+MP. To prepare our results we will consider a specific class of theories
containing the target theories. Let’s say that T is a ha-theory if T is a theory in
the language of arithmetic that is HA-verifiably a Π0

2-conservative extension of
HA. Note that this notion is intensional: the arithmetical formula defining the
axiom set of a given theory should be part of the data specifying the theory. This
formula is needed to make sense of the question of a theory being a ha-theory.
We can easily provide examples of pairs of theories that are extensionally the
same of which one is a ha-theory and of which the other is not. For the theories
we are considering like HA + MP, we assume that they are defined by a natural
formula.

The ha-theories include HA, HA?, HA+MP, HA+MPPR, HA+ECT0, MA :=
HA + ECT0 + MP and PA. Note that ha-theories are Π0

2-sound. Note that it
follows that the closed fragment of any ha-theory is p-sound.

For all ha-theories U , V , and W , we have U ` 2α
V⊥ ↔ 2α

W⊥, since any
ha-theory is a HA-verifiably a Π0

2-conservative extension of HA. So, modulo U -
provable equivalence, the degrees of falsity of any of our theories are the same
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as the corresponding degrees of falsity of any other of our theories. This justifies
us in suppressing the embedding embT

3 in the context of any ha-theory. We will
treat TDFT simply as a fragment of T . We use αT for αTDFT

, etc.
For the theories HA, HA?, HA+MP, HA+MPPR and PA, all the information

about the closed fragment is contained in the theory of the degrees of falsity. In
fact, for each target theory T of this list, we have CFT = ALTDFT

. Here are the
theories of the degrees of falsity of our target theories.

1. TDFHA = Basic,

2. TDFHA? = Basic + {((α→ β) → β) | β < α} =: Stronglöb,

3. TDFHA+MP = DFHA+MPPR
= Basic + {¬¬α→ α | α ∈ ω+} =: Stable,

4. TDFPA := Basic + {α ∨ ¬α | α ∈ ω+} =: Classical.

We will provide a new proof for (1) (see also [Vis02]), and we will prove (3) for
the first time in this paper. For (2), see [Vis02]. Finally, (3) is an immediate
consequence of the classical answer to Friedman’s problem.

We will show that, for the theories HA, HA + MP, HA + MPPR, the mapping
αT is the left adjoint of πT . Moreover, αT is computable. This implies that nfT
is computable. Since we have, for φ in L0

2, that CFT ` φ iff nfT (2φ) = ∞, we
obtain a decision procedure for CFT .

For the proofs of the analogous facts for HA?, see [Vis02]. For PA, see the
classical literature.

3 Small Beer

In this section we collect some small facts in the environment of our main result.
This section can very well be skipped.

3.1 Structural Facts about Theories of Degrees of Falsity

A first observation is that αΓ, if defined, is monotonic in Γ.

One can show by a Kripke model argument that the theories Stronglöb and
Classical are maximal among p-sound theories.

Theorem 3.1 Classical is the unique maximal p-sound extension of Stable.

Proof

Let Γ be a p-sound extension of Stable. Suppose Γ ` φ. We have:

Classical ` φ↔
∧

(α→ β),

for some selection of pairs α, β. Since we have the principles of Classical inside
double negation, we find: Γ ` ¬¬

∧
(α → β). Ergo, Γ `

∧
(α → ¬¬β), and,

hence, Γ `
∧

(α → β), since Γ extends Stable. So, we find, by p-soundness,
α ≤ β, for each pair α, β in our conjunction. It follows that Classical ` φ. 2
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We may conclude that TDFMA ⊆ Classical, thus obtaining an upper bound. One
can show that TDFMA is strictly between Stable and Classical. Further study of
TDFMA —evidently the most exciting theory of degrees of falsity— will have to
wait for another paper.

Open Question 3.2 1. Are there more examples of maximal p-sound the-
ories?

2. Is Stable the mimimal theory that has Classical as unique maximal p-sound
extension?

3. Are there interesting subtheories of Stronglöb that have Stronglöb as unique
maximal p-sound extension?

3.2 Π0
2-sentences of Theories of Degrees of Falsity

Suppose HA ` φ↔ P , where P is Π0
2 and where φ is (a standard interpretation

of a sentence) in D. By reasoning in Basic, we have HA ` ¬¬φ↔
∧

(α→ ¬¬β),
where α, β ranges over a finite set of such pairs with β < α. We find that:
HA ` P → (α→ ¬¬β). Hence by the Friedman translation w.r.t. β:

HA ` P β → ((α ∨ β) → (((β ∨ β) → β) → β)).

Since P is Π0
2, we have HA ` P → P β . Ergo, HA ` P → (α→ β).

Conversely, we have HA `
∧

(α→ β) → ¬¬P . Say P is ∀x Sx, where Sx is Σ0
1.

By Friedman translating w.r.t. Sa, we get:

HA `
∧

((α ∨ Sa) → (β ∨ Sa)) → ((∀x (Sx ∨ Sa) → Sa) → Sa).

Hence HA `
∧

(α → β) → Sa, and, so, HA `
∧

(α → β) → P . Combining we
get: HA `

∧
(α→ β) ↔ P .

Note that our argument works for every ha-theory for which Friedman’s trans-
lation works with Σ0

1-formulas as ‘superscript formulas’. For ha-theories T that
are extensions of HA + MPPR we can reason more directly.

Let T be a ha-theory that extends HA + MPPR. Clearly for any Π0
2-formula

Q, we have T ` ¬¬Q↔ Q. Suppose T ` P ↔ φ, for P in Π0
2 and φ in L0. We

have T ` ¬¬P ↔ ¬¬
∧

(α → β), by elementary reasoning. Since both P and∧
(α→ β) are Π0

2, we find: T ` P ↔
∧

(α→ β).

3.3 TDF as a Mapping of Theories

We note that TDFT is monotonic in T .

Here is another simple insight. Let T be a ha-theory. Then, HA+TDFT is a ha-
theory and TDFHA+TDFT

= TDFT . It is important to note that to understand

10



the insight properly we have to think intensionally. E.g., the formula defining
the theory HA+TDFT goes into the verification of the fact that it is a subtheory
of T . We assume that this formula is an obvious formula involving the formula
defining the axiom set of T .

Open Question 3.3 If we run through ha-theories which theories of degrees
of falsity are assumed. I.o.w, what is the range of the mapping TDF? E.g., is
every ce r-sound theory of degrees of falsity extensionally equal to the TDFT of
a ha-theory T?

We provide a modest partial result.

Theorem 3.4 Let Γ be an intensionally given ce extension of Stable and sup-
pose that:

HA ` ∀α, β (2HA+MPPR+Γ(α→ β) → 2HA+MPPR
(α→ β) ).

Then, HA + MPPR + Γ is a ha-theory and TDFHA+MPPR+Γ = Γ.

Proof

We assume the hypothesis of the theorem. Reason in HA. Suppose P is Π0
2 and

that 2HA+MPPR+Γ P . Then, for some finite conjunction γ of formulas from Γ,
2HA+MPPR

(γ → P ). It follows that 2HA+MPPR
(¬¬ γ → P ). Moreover, for some

finite set of pairs α, β, we have 2HA+MPPR
(¬¬γ ↔

∧
(α → β)). So we have (i)

2HA+MPPR+Γ

∧
(α→ β) and (ii) 2HA+MPPR

(
∧

(α→ β) → P ). By our hypothesis,
we have from (i): 2HA+MPPR

∧
(α→ β). So, by (ii), we find 2HA+MPPR

P . Hence,
2HAP . We may conclude that HA + MPPR + Γ is a ha-theory.

Suppose HA + MPPR + Γ ` φ. Then, since Γ extends Stable, by the results of
the next section: Γ ` φ. So, Γ = TDFHA+MPPR+Γ. 2

4 The Main Result

We first provide Smoryński style Kripke arguments to characterize TDFHA,
TDFHA+MPPR

and TDFHA+MP. Then, by formalizing these arguments, we prove
the existence of a left adjoint of the embedding of `T into ∼T , considered as
preorderings on D, for T one of these three theories.

4.1 Kripke Model Arguments

We show that Basic provides a complete axiomatization of TDFHA. A Kripke
model for Basic is a Kripke model in the usual sense with α ∈ ω+ as atoms for
the atomic forcing. Here we use 0 in the role of ⊥ and ∞ in the role of >. We
demand: k 
 n and m ≥ n implies k 
 m. A Kripke model for Basic is finite
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iff it has a finite number of nodes and, for some number N , we have that N is
forced in all nodes.

Consider any Kripke model K for Basic such that K 1 φ. Let N be larger
than all finite atoms occurring in φ. We transform our model to a model K′ by
resetting the atomic forcing to: k 
′ n iff k 
 n or n ≥ N . It is easy to see
that K′ is again a model of Basic and K′ 1 φ. We collapse K′ by dividing out
the maximal bisimulation, thus obtaining a finite model J of Basic with J 1 φ.
We have shown:

Theorem 4.1 The class of all finite Kripke models for Basic is complete for
Basic.

It follows immediately that Basic is decent. We have:

Theorem 4.2 For all φ in D, αBasic(φ) is defined. Moreover αBasic(φ) is com-
putable by a multi-exponential algorithm.

Proof

The fact that αBasic is total, follows from decency.
Let N be the smallest finite degree of falsity not occurring in φ. We construct

a finite Henkin model for ordinary propositional logic for the formula ψ :=
(N ∧

∧
{(k → `) | k < ` < N}), where we take as the nodes of the model

saturated subsets of the subformulas of φ and ψ plus ∞. One may show that,
for k ≤ N , we have Basic ` k → φ iff H 
 k → φ. It follows that we can
determine αBasic(φ) by running through H. 2

We define, for finite Kripke models of Basic:

• νk is the largest n such that k 1 n.

Note that in a finite Kripke model the atomic forcing is completely determined
by the νk. Consider any D-formula φ. Suppose Basic 0 φ. We show that
HA 0 φ. Consider a finite Kripke model for Basic that does not force φ at the
root. We unravel this model to a finite Kripke tree, say T . We build a model
T ? of HA on the frame of T . We associate to every node k a model Mk of
PA + ¬ νk + (νk + 1) as follows.

To the root b we assign an arbitrarily chosen model of PA + ¬ νb + (νb + 1).
(Such a model exists by Löb’s Theorem and the Completeness Theorem.)

Suppose we have already assigned Mk to k. We will have insured that Mk

satisfies PA + ¬ νk + (νk + 1). Let ` be a direct successor of k. In case ν` = νk,
we put M` := Mk. In case ν` < νk, we proceed as follows. Note that ¬ νk is
PA-provably equivalent to con(PA + ¬ (νk − 1)). Since ν` ≤ νk − 1, we have:

Mk |= PA + con(PA + ¬ν`).

12



By Löb’s Theorem, it follows that:

Mk |= PA + con(PA + ¬ν` + (ν` + 1)).

By the Feferman-Henkin construction, we can find an interpretation

Hν`
: (PA + con(PA + ¬ν` + (ν` + 1))) � (PA + ¬ν` + (ν` + 1)).

We take M` := MOD(Hν`
)(Mk), i.e., the internal model of Mk given by Hν`

.
Clearly: M` |= PA + ¬ν` + (ν` + 1).

Since the cone above each node is internally definable in the model associated
to that node, we find, by Smoryński’s reasoning, that T ? 
 HA. See [Smo73].
Moreover, since, for Σ0

1-sentences S, we have k 
 S ⇔ Mk |= S, we find:
k 
 n ⇔ Mk |= n. By our construction, it follows that T is equal to T ? if
we restrict T ? to the degrees of falsity (modulo emb3). We may conclude that
T ? 1 φ.

We can easily adapt our argument to establish a similar result for HA+MP and
HA + MPPR. The proof of the finite model property for Stable is word for word
the same. It follows that Stable is decent.

Let’s say that a finite Kripke model for Basic is upwards reflecting if, for
every node k there is a top-node k′ ≥ k. such that k ` ¬ νk, i.o.w., such that
the atomic forcing of k′ is the same as the atomic forcing of k. By a simple
argument one can show that a finite Kripke model for Basic is a finite Kripke
model for Stable iff it is upwards reflecting. We may conclude:

Theorem 4.3 We have completeness for Stable in the class of finite upwards
reflecting Kripke models for Basic.

Also the argument for the multi-exponential computability of αStable is the same.

Theorem 4.4 We have: αStable is total and computable by a multi-exponential
algorithm.

We clearly have that Stable is a subtheory of TDFHA+MPPR
and TDFHA+MP.

Suppose Stable 0 φ. We show that HA + MP 0 φ. Let T be an upwards
reflecting finite Kripke tree such that the root of T does not force φ. Consider
the model T ? constructed above. Note that, by the construction, it has the
property that above each node k there is a top node k′ such that Mk′ = Mk.

We claim that T ? forces Markov’s Principle. Suppose k 
 ∀x (A0x∨¬A0x)
and k 
 ¬¬∃x A0x. Let k′ be a top node above k such that Mk′ = Mk.
Clearly, k′ 
 ∃x A0x. Let a be a domain element such that k′ 
 A0a. We find
that k 1 ¬A0a, and so, by decidability, k 
 A0a. Thus, k 
 ∃x A0x.

It follows that Stable provides a complete axiomatization for TDFHA+MP and
TDFHA+MPPR

.
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4.2 Formalization of Kripke Models

Our next step is to verify the completeness side of the two above proofs inside
HA. The result gets the form: HA ` 2Tφ → 2TαT (φ), where T is one of our
three target theories. By Theorem 2.3, this is precisely what we need to show
that αT is left adjoint to πT . Thus, we obtain the desired characterization.

To realize our program, we will have to eliminate the reference to models
and replace it fully by talk about interpretations. In fact we will view k 
 A as
an arithmetical formula B. Let T be any finite tree model of Basic which forces
some finite N . Let the ordering of T be �. We write ≺1 for: direct successor
in the �-relation. We define a translation as follows.

• Suppose k ≺1 `. Then, Hk` := ID, iff νk = ν` and Hk` := Hν`
, if ν` < νk.

Here Hν`
is as defined in Subsection 4.1. We write Fk` for (a formula

representing) the Dedekind embedding of ID into Hk`. I.o.w., Fk` is an
arithmetical formula that represents the initial embedding of the numbers
of the given extension of PA into the numbers of the interpretation Hν`

.

• Suppose k = `0 ≺1 `1 ≺1 . . . ≺1 `n−1 = k′. Then:

Hkk′ := H`0`1 ◦ . . . ◦ H`n−2`n−1 .

We write δkk′ for δHkk′ .

• It is convenient to give our definitions by restricting the given Kripke
model to the cone above a given node k. Thus, our definitions are for ‘the
model as it looks according to k’.

Suppose k � k′ = `0 ≺1 `1 ≺1 . . . ≺1 `n−1 = k′′. Then:

Fkk′k′′ := F
Hk`n−2
`n−2`n−1

◦ . . . ◦ FHk`0
`0`1

.3

Note that Fkk′k′′ is the Dedekind embedding of Hkk′ into Hkk′′ .

• We define a mapping (·) 
(·) (·) from pairs of nodes and arithmetical
sentences to arithmetical sentences.

H (k′ 
k P~x) :↔ (P~x)Hkk′ ,

H k′ 
k (·) commutes with ⊥, >, conjunction and disjunction.

H (k′ 
k (A~x→ B~x)) :↔∧
k′′�k′ ∀~y ((~xFkk′k′′~y ∧ k′′ 
k A~y) → k′′ 
k B~y).

H (k′ 
k ∀u Au~x) :↔
∧

k′′�k′ ∀u:δkk′′ ∀~y (~xFkk′k′′~y → k′ 
k Au~y).

H (k′ 
k ∃u Au~x) :↔ ∃u:δkk′ k
′ 
k Au~x.

Let Tk := PA + ¬νk + (νk + 1).

Fact 4.5 Suppose k � k′ � k′′ � `. We have in Tk:

i. Hkk′′ = Hkk′ ◦ Hk′k′′ .
3Note the reversal of order here. This is because the MOD-functor is contravariant.
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ii. δkk′′ = δ
Hkk′
k′k′′ .

iii. Fkk′` = Fkk′′` ◦ Fkk′k′′ .

iv. Fkk′′` = F
Hkk′
k′k′′`.

Proof

We treat (iv). Suppose k′′ = m0 ≺1 m1 ≺1 . . . ≺1 mn−1 = `. We have in Tk:

F
Hkk′
k′k′′` = (F

Hk′mn−2
mn−2mn−1 ◦ . . . ◦ F

Hk′m0
m0m1 )Hkk′

= (F
Hk′mn−2
mn−2mn−1)

Hkk′ ◦ . . . ◦ (F
Hk′m0
m0m1 )Hkk′

= F
Hkk′◦Hk′mn−2
mn−2mn−1 ◦ . . . ◦ FHkk′◦Hk′m0

m0m1

= F
Hkmn−2
mn−2mn−1 ◦ . . . ◦ F

Hkm0
m0m1

= Fkk′′`

2

Fact 4.6 Suppose k � k′ � k′′. We have: Tk ` (k′′ 
k A) ↔ (k′′ 
k′ A)Hkk′ .

Proof

Suppose k � k′ � k′′. The proof is by induction on A.

For the base case, we reason in Tk. We have: k′′ 
 P~x iff (P~x)Hkk′′ . But
Hkk′′ = Hkk′ ◦ Hk′k′′ . So, (P~x)Hkk′′ iff ((P~x)Hk′k′′ )Hkk′ iff (k′′ 
k′ P~x)Hkk′ .

The cases of ⊥, >, conjunction, disjunction and existential quantification are
easy.

We treat the case of implication. The case of the universal quantifier is similar.
Reason in Tk. We have:

k′′ 
k (B~x→ C~x) ↔
∧

`�k′′

∀~y ((~xFkk′′`~y ∧ ` 
k B~y) → ` 
k C~y)

↔
∧

`�k′′

∀~y : δkk′ ((~xFHkk′
k′k′′`~y ∧ (` 
k′ B~y)Hkk′ )

→ (` 
k′ C~y)Hkk′ )

↔ (
∧

`�k′′

∀~y ((~xFkk′′`~y ∧ ` 
k B~y) → ` 
k C~y))Hkk′

↔ (k′′ 
k′ (B~x→ C~x))Hkk′

2

Fact 4.7 Persistence: Suppose k � k′ � k′′. We have:

Tk ` ((~xFkk′k′′~y ∧ k′ 
k A~x) → k′′ 
k A~y).
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Proof

The proof is by a simple induction on A. The atomic case uses the fact that the
Dedekind embedding is an embedding of structures. 2

Fact 4.8 We have, verifiably in HA, that, for any finite Γ~x, if Γ~x `IQC A~x,
then:

Tk `
∧

k′�k

∀~x : δk′ ((
∧

B~x∈Γ~x

k′ 
k B~x) → k′ 
k A~x).

Proof

The proof is by induction on the number of steps in the IQC-proof. 2

Fact 4.9 Let a finite tree for Basic be given. We have, verifiably in HA, that,
for any k′ � k and for any axiom C of HA, we have Tk ` (k′ 
k C).

Proof

We treat, for example, the axiom ` ∀x Sx 6= 0. Reason in Tk. We have to show
that

∧
k′�k ∀x : δk′ ¬(k′ 
k Sx = 0). In other words, we want to show that:∧

k′�k

∀x:δk′ ¬(Sx = 0)Hkk′ .

But this is trivial, since Hk,k′ is an interpretation of PA.

We turn to the case of induction. We reason in HA. Suppose we have verified
Tk′ ` (k′′ 
k′ C), for all k′′ � k′ � k and for all instances of induction C. Fix
k and k′. Consider any Dx~y. We define:

• progx(Dx~y) :↔ D0~y ∧ ∀z (Dz~y → DSz~y).

• indx(Dx~y) :↔ (progx(Dx~y) → ∀x Dx~y).

We want to prove: Tk ` ~y : δkk′ → (k′ 
k indx(Dx~y)). We have, for k′′ � k,

Tk′′ ` (k′′ 
k′′ indx(Dx~y)).

Since, Hkk′′ is an interpretation of Tk′′ in Tk, it follows that:

(†) Tk ` ~y : δkk′′ → (k′′ 
k′′ indx(Dx~y))Hkk′′ .

We reason in Tk. Suppose that k′′ � k′ and ~y : δkk′′ and k′′ 
k progx(Dx~y).

Case 1: Suppose first that k′′ � k. It follows that (k′′ 
k′′ progx(Dx~y))Hkk′′ .
By (†), we have (k′′ 
k′′ ∀x Dx~y)Hkk′′ . Hence, k′′ 
k ∀x Dx~y.
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Case 2: Suppose k′′ = k. It follows that k′ = k. We have to show k 
k ∀x Dx~y.
Note that by persistence, we have, for any ` � k, and any ~z such that ~yFkk`~z,
that ` 
k progx(Dx~z). Hence, by Case 1, we find ` 
k ∀x Dx~z. So it is
sufficient to show that ∀x k 
k Dx~y. From k 
k progx(Dx~y), we can derive:
progx(k 
k Dx~y). Hence the desired result follows by the induction scheme of
the classical theory Tk. 2

Fact 4.10 Suppose S~x is a Σ0
1-formula. Then

Tk ` ~x : δkk′ → (SHkk′~x↔ (k′ 
k S~y)).

This fact is verifiable in HA.

Proof

The main part of the proof is by induction on the complexity of ∆0-formulas A.
The addition of the initial block of existential quantifiers is easy. We use the
fact that we already know that HA is forced in our finite model, that HA proves
the decidability of ∆0-formulas and the fact that, for decidable A,

HA ` ¬∀x<t Ax↔ ∃x<t ¬Ax.

We treat the case of the bounded universal quantifier. Suppose A is ∆0 and
satisfies the induction hypothesis. We reason in Tk. Suppose ~y : δkk′ and x is
not among the ~y.

k′ 
k ∀x<t~y Ax~y → ∀x:δkk′ ((x < t~y)Hkk′ → k′ 
k Ax~y )
→ ∀x:δkk′ ((x < t~y)Hkk′ → AHkk′x~y )
→ (∀x<t~y Ax~y)Hkk′

k′ 1k ∀x<t~y Ax~y → k′ 
k ¬∀x<t~y Ax~y
→ k′ 
k ∃x<t~y ¬Ax~y
→ ∃x:δkk′ ((x < t~y)Hkk′ ∧ k′ 
k ¬Ax~y)
→ ∃x:δkk′ ((x < t~y)Hkk′ ∧ k′ 1k Ax~y)
→ ∃x:δkk′ ((x < t~y)Hkk′ ∧ ¬AHkk′x~y )
→ (∃x < t~y ¬Ax~y )Hkk′

→ ¬ (∀x < t~y Ax~y )Hkk′

2
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Remark 4.11 There is an alternative proof of Theorem 4.10 following an idea
of Smoryński which avoids most of the inductive cases: one uses the fact that
Matijacevič’s theorem can be verified in HA. This proof has the advantage of
being simpler. It has the disadvantage of using a major theorem. Moreover, it
does not downwards generalize —as far as we know— to e.g. iI∆0.

Fact 4.12 Let a finite Kripke tree for Basic be given. We have, for k � k′,
verifiably in Tk, that k′ 1k νk′ and k′ 
k (νk′ + 1).

Proof

Reason in Tk. We have already seen that k′ 
k HA. We also have k′ 
k ν
′
k iff

ν
Hkk′
k′ . Since, Hkk′ interprets Tk′ , we have ¬ νHkk′

k′ . Ergo, k′ 1k ν
′
k. The other

case is similar. 2

Fact 4.13 Let a finite Kripke tree for Basic be given. Suppose k � k′. Suppose
k′ 
 φ. We have Tk ` (k′ 
k φ). Similarly, if k′ 1 φ, then, Tk ` (k′ 1k φ).

Proof

The proof is by induction on φ using Fact 4.12. 2

Theorem 4.14 Consider any φ in L0. We have: HA ` 2HAφ→ 2HAαBasic(φ).

Proof

In case αBasic(φ) = ∞, this is trivial. We assume that αBasic(φ) is finite. By
Kripke completeness, we can find a finite Kripke tree for Basic with root b, such
that and b 1 φ and νb = αBasic(φ). Reason in HA. Suppose 2HAφ. It follows
that 2Tb

(b 
b φ). On the other hand, since b 1 φ, we have: 2Tb
(b 1b φ).

Ergo, 2Tb
⊥. Hence, 2PA((νb + 1) → νb). By Löb’s Theorem, in combination

with the verifiable Π0
2-conservativity of PA over HA, we find that 2PAνb and,

thus, 2HAνb. In other words, 2HAαBasic(φ). 2

To adapt our proof to HA + MPPR and HA + MP. The only extra step is
to verify in that, for a finite upwards reflecting tree T , we have, in HA, that
k′ 
k (HA+MP). The argument needed to do that closely follows the argument
at the end of Subsection 4.1. So we have:

Theorem 4.15 Consider any φ in L0. Let U be either HA+MPPR or HA+MP.
We have: HA ` 2Uφ→ 2UαStable(φ).

We have proved the conditions of Theorem 2.3 for the pairs CFHA, Basic and
CFHA+MPPR

, Stable and CFHA+MP, Stable. This completes our characterization
of the closed fragments of HA, HA + MPPR, and HA + MP. We have:
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• CFHA = ALBasic,

• CFHA+MP = CFHA+MPPR
= ALStable.

Example 4.16 We provide an example of a theory that does not conform to
our pattern. Define T := HA + {(n → (1 ∨ ¬1)) | n ∈ ω}. Since T is between
HA and PA, we find that T is a ha-theory.

Suppose that T ` 2T (1 ∨ ¬1). It follows by the Π0
2-soundness of T that T `

1 ∨ ¬1. By a simple Kripke model argument we can show that T has the
disjunction property. So T ` 1 or T ` ¬1. Quod non.

Suppose that T ` 2T (1 ∨ ¬1) ↔ n. It follows that T ` (n+ 1) → n, and hence
T ` n. Quod non.

We may conclude that, for no β, we have T ` 2T (1 ∨ ¬1) ↔ β. Note that
TDFT is not decent, so the question remains for a decent example that does not
conform to the pattern.
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