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Abstract

In this paper we give perspicuous proofs of the existence of model descriptions for �nite Kripke

models and of Uniform Interpolation for the theories IPC� K� GL and S�Grz� using bounded bisim�

ulations�

� Introduction

Bisimulation and bounded bisimulation can be used to �visualize� the proofs of two classes of well known
results in intuitionistic and modal propositional logic� The �rst class consists of results guaranteeing
the existence of model descriptions for certain classes of �nite Kripke models� The other class consists
of interpolation and uniform interpolation results� The aim of this paper is to present proofs for results
in these two classes of theorems as clearly and perspicuously as possible�
A model description in modal or intuitionistic logic of a Kripke model K with designated node k

is a formula A such that every other node m in any other Kripke model M bisimulates with k if and
only if it satis�es A� We show the existence of model descriptions for transitive models both in the
modal and the intuitionistic �persistent� case� without explicitely programming the formulas��

Ordinary interpolation for a given theory T says that if T � A� B� then there is a formula I�A�B�
in the language containing only the shared propositional variables� say �q� such that T � A � I and
T � I � B� Uniform interpolation is a strengthening of ordinary interpolation in which the data in
terms of which the interpolant is to be speci�ed are weaker	 the interpolant can be found from either
A and �q or from �q and B� Thus� if uniform interpolation holds� there is� for every A and �q� a �post

interpolant� I�A� �q� such that� for all B such that T � A� B and such that the shared propositional
variables of A and B are among �q� we have T � A� I�A� �q� and T � I�A� �q�� B� Similarly there is
a pre
interpolant� As we will see� uniform interpolation is equivalent to the possibility of interpreting
certain propositional quanti�ers in T� Yet another way of viewing the phenomenon is as the existence
of quanti�er elimination for certain quanti�ers� In this paper I prove Uniform Interpolation for IPC
�Intuitionistic Propositional Calculus�� for K� for GL �L�ob�s Logic� and for S�Grz��

�No originality is claimed for the result� It was proved earlier by Silvio Ghilardi�
�Uniform Interpolation for IPC was �rst proved by Pitts using proof theoretical methods� It was proved by the

present method by Ghilardi and Zawadowski and� independently but later� by the author� Uniform Interpolation for
GL was �rst proved by Shavrukov� It was proved by the present method by the author� To give the due credit it should

�



� MODELS 

Uniform interpolation for S�Grz is rather surpising� since it fails for the closely related theory S��
We reproduce a version of the proof of Ghilardi and Zawadowski that Uniform Interpolation fails for
S� at the end of this paper�

� Models

We start with introducing the notion of Kripke model and specifying some notations� A �Kripke�
model is a structure K � hK��� j��Pi� Here	

� K is a non
empty set of nodes

� � is a binary relation on K

� P is a �possibly empty� set of propositional variables�

� j� is a relation between K and P

We can� alternatively� view a model K as a function that assigns to a �xed set of pairwise disjoint
labels fK��� j��Pg the appropriate objects� In this style we will write e�g� PK for K �P �� We will
say that K is a P
model if PK � P � Similarly for K� j�
model� etcetera� Similar conventions will be
employed for other kinds of models� De�ne	 PVK�k� 	� fp�PK j k j�K pg� Note that j� and PV are
interde�nable� �p� �q� �r will range over �nite sets of propositional variables� A model K is �nite if both
KK and PK are �nite� We will call the class of models Mod�
It is often pleasant to think in terms of a node in a model� It is worthwile to make this notion

explicit� A pointed model is a structure K � hK � � ki� where K � is a model� and k is a node of K � � A
pointed model hK � bi is called rooted if for all k � K	 b �� k� b is called the root� We can confuse a
class of models with its disjoint union� taking as new nodes the pointed models corresponding to the
models of the class� We de�ne� e�g�� hK � ki � hK � � k�i 	� K � K � and k �K k�� Thus� we can confuse
a pointed model hK � ki with a �free �oating� node k� Note that the disjoint union of all models is not
strictly speaking a model in our sense� The set of popositional variables that is declared to be present
need not be constant in di�erent �nodes�� It is essential for our purposes for this to be so� since we want
to study transitions between nodes in di�erent models that do not leave the set of variables present
constant� The totality of pointed models will be called Pmod and the totality of rooted models Rmod�
Suppose K is a �possibly pointed� P
model� Then K �Q� is the P �Q
model obtained by restricting
j�K to P �Q� For any k � K� K �k� is the rooted model hK �� k���� j���Pi� where K � 	� �k 	�
fk��K j k �� k�g and where �� and j�� are the restrictions of � respectively j� to K �� �We will often
simply write � and j� for �� and j���� In case we are using the convention of confusing a node k with
its pointed model� hK � ki� we will� e�g�� write k�Q� for hK �Q�� ki�
We will consider several properties of models� K will be said to be transitive if �K is transitive�

etcetera� K is persistent if PVK is monotonic w�r�t� �K and ��
It will be convenient to extend the natural numbers � with an extra element	� Let �� be � � f	g�

We let �� �� � � � range over ��� �� is equipped with the obvous ordering 
� We extend addition by	
	�� � ��	 �	� We extend cut
o� substraction in our structure by	 	�n �	� We will avoid
the question of what 	�	 is�
Transitive models are going to play a special role in this paper so we will need some some special

notions concerned with transitive models� Consider any transitive model K � De�ne	

� k �� k� 	� k � k� and not k� � k

be pointed out that the method here is very similar to the one used by Ghilardi and Zawadowski and� independently�
the author� to prove ther result for IPC� The result for S�Grz is� as far as I know� new in this paper�

�We take the set of propositional variables as �internal� to the models �and the languages�� because we want to think
about model extensions� which involve changing the set of variables of the model�

��� is the transitive re	exive closure of ��



� LAYERED BISIMULATION �
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Figure �	 The zig����property

� k � k� 	� k � k� or �k � k� and k � k��� So � means being in the same cluster�

� dK �k� 	� sup�f�dK �k�������� j k� � kg�

� If K is pointed with designated node k� we put	 d�K � 	� dK �k�

Note that if k �� k�� then dK�k
�� 
 dK�k�� �� k is a top node if it is a top node w�r�t� ��� Note that

k is a top node precisely if dK �k� � ��

� Layered Bisimulation

In this section we introduce bisimulation and bounded bisimulation� To avoid formulating most
de�nitions and theorems twice �once for bounded and once for ordinary bisimulation� we make use
of a portmanteau notion	 layered bisimulation��

Consider P
models K and M � We write K 	� KK and M 	� KM � A layered bisimulation or
��bisimulation Z between K and M is a ternary relation between K� �� and M � satisfying the
conditions speci�ed below� We will consider Z also as an ��
indexed set of binary relations between
K and M writing kZ�m for hk� ��mi � Z � We often write kZm for kZ�m� We give the conditions	

�� kZ�m� PVK �k� � PVM �m�

� k� K kZ���m� there is an m� with k�Z�m� M m� i�o�w� K �Z��� � Z�� M �

�� kZ���m �M m� � there is a k� with k �K k�Z�m�� i�o�w� Z���� �M � �K �Z�

Note that we allow �
bisimulations to be unde�ned on some nodes� They may even be empty� Note
also that �
bisimulations occur only between models for the same set of variables� We call �� the
zig����property �see �gure �� and ��� the zag����property� If � � 	 we simply speak of the zig

and the zag
property� A binary relation Z between K and M is a bisimulation between K and
M i� fhk�	�mi j kZmg is an �
bisimulation� We will simply confuse bisimulations Z with the
corresponding �
bisimulations� An �
bisimulation Z is a bounded bisimulation if for some natural
number n	 kZ�m� � 
 n�
Let IDK 	� fhk� �� ki j k � K� � � ��g� Suppose Z is an �
bisimulation between K and M and

that U is an �
bisimulation between M and N� We de�ne Z � U by	 �Z � U�� 	� Z� � U�� and bZ
by � bZ�� 	� ��Z��� where c��� is the usual inverse on binary relations� Z� is the relation given by	
Z�� 	� Z��� � We say that Z is downward closed if for all � � �	 Z� � Z�� The downward closure Z�
of Z is the smallest downwards closed relation extending Z � In the following theorem we collect the
necessary elementary facts�

�Bisimulation is used both in computer science and modal logic� See e�g� the papers in 
�� for an impression� In
model theory bisimulation and bounded bisimimulation appears in the guise of Ehrenfeucht games and back�and�forth
equivalence� See e�g� 
��



� LAYERED BISIMULATION �

Theorem ��� �� IDK is an ��bisimulation�

�� Z � U is an ��bisimulation between K and N�

�� bZ is an ��bisimulation between M and K �

�� Z� is an ��bisimulation�

	� The downward closure of Z is an ��bisimulation�


� Suppose Z is a set of ��bisimulations between K and M � Then
S
Z is again an ��bisimulation

between K and M � It follows that there is always a maximal ��bisimulation� �K�M between two
models� ����	 imply that for any ��

� IDK � �K�M

� �K�M � �M �N ��K�N

� �K�M is downward closed�

Note that� by the above� each of the �K�M� is an equivalence relation�

�� Consider k � K and m � M � Let Z �k�m� be the restriction of Z to �k � �m� Then Z �k�m� is
an ��bisimulation between K �k� and M �m��

�� Consider two transitive models K and M � Consider the relation W� given by�

kW�m 	� for some k��m� 	 k � k�Z�m
� � m and k �� m�

We have� W is an ��bisimulation� It follows� e�g�� taking M 	� K and Z 	� IDK� that � � ��

is an ��bisimulation on K �

We will often drop the superscript of �K�M In case � �	� we will drop the subscript of �K�M� �if no
confusion is possible�� We will say that k and m �considered as pointed models� n�simulate if k �n m
and that k and m bisimulate if k � m� Z� is full if it is both total and surjective as a relation between
K and M � We will say that K and M ��bisimulate �bisimulate� or� K ��� M �K �� M � if there is a
full �
bisimulation �bisimulation� between them� Z 	 K ��� M means that Z is a full �
bisimulation
witnessing that K ��� M � Note that for rooted models K and M � we have	 K ��� M � bK � bM �

�

We can collapse K to an ��irreducible �irreducible P
model� K� 	� Coll��K �� by dividing �� ����
out� The construction is as follows	

� �k�� is the �� equivalence class of k�

� K� 	� f�k�� j k � Kg� we let 	� 	� range over K��

� 	 j� p i� �k�	 k j� p

� 	 � 	� i� �k�	 �k��	� k � k�

We collect the simple facts about the collapse in a theorem�

Theorem ��� �� The mapping 
K 	 k �� �k�� is a full� functional ��bisimulation �a surjective
�
p
morphism from K to K� � note that 
 considered as a relation is precisely the relation ��

�� K� is ��irreducible� i�e�� if 	 �� 	�� then 	 � 	��

�� Suppose K ��� M � then �� is a bijection between K� and M � � It is an isomorphism of models
if � �	�

�Note the di�erence between �K ��� M � and �K �� M �� The �rst statement relates ordinary models and the
second one pointed models� saying that their points ��bisimulate�



� CHANGING VARIABLES �

Proof

�� It is easy to see that 
 is full� functional and that it preserves atoms� Moreover 
 has the full
zig�
property	 it is monotonic� De�ne� for � 
 �	 Z� 	� �K�K� �
� In other words	 kZ�	 i�
for some k�� k �� k� and k� � 	� We show that Z is an �
bisimulation between K and K� � We
check the zag direction� Suppose � � � 
 � and k� ���� k� � 	� � 	�� This means that there
are k�� k� such that	 k� ���� k� �� k� � k� � 	�� Since � is downward closed and closed under
composition� it follows that	 k� ���� k� � k� � 	�� Hence� by the zag���
property for �� we
�nd a k�� with	 k� � k� �� k� � 	��

k�
��

k�
�

	�

� � �

�K �K �K�

k�
����

k�
��

k�
�

	�

Clearly Z� is precisely 
� so we are done�

� Suppose 	 �� 	�� then for k � 	 and k� � 	�� we have

k �K�K
�

� 	 �K
� �K�

� 	� �K
� �K

� k��

Hence	 k �K�K� k�� and� thus� 	 � 	��

�� Suppose K ��� M � Consider 	 in K
� � Pick a k in 	� There is an m in M with k �� m� so	

	 �� k �� m �� �m�� and hence 	 �� �m��� Thus �� is total between K� and M � � Similarly
for the surjectiveness� Suppose 	 ��  and 	 �� �� It follows that  �� �� and hence  � ��
�� is structure preserving� since it is bijective and has the zig
 and the zag
property�

�

The following theorem tells us that the number of �n
equivalence classes on a model has a �xed �nite
bound that only depends on n�

Theorem ��� De�ne F �N� �� 	� N � F �N�n��� 	� F 	N�n
�N � Suppose jPj � N � then the number
of possible �n equivalence classes is smaller or equal to F �N�n��

Proof

By a simple induction on n� noting that the n��
equivalence class of a node k is fully determined by
the atoms forced in k and the n
equivalence classes of the nodes �seen� by k� �

� Changing variables

In this paper we are particularly interested in things like extending or even changing the forcing of
the propositional variables on nodes� We introduce the relevant notions� In this section k� k��m�m� � � �

will be pointed models�

� k ���Q m 	� Pk �Q � Pm �Q and k�Q� �� m�Q�� So� roughly� this means that k and m

�
bisimulate w�r�t� the variables in Q�



� PERSISTENT MODELS AND BISIMULATION ORDERINGS �

� k ����Q� m 	� k ���Qc m and Q � Pm� So� roughly� this means that k di�ers from m modulo
�� only at Q and m is at least a Q
node�

� k v��Q m 	� k ���Pk m and Q�Pk � � and Q�Pk � Pm� We will say that m is a Q� ��
bisimulation extension of k� In case � �	� we will speak of a Q�bisimulation extension�

� Persistent models and bisimulation orderings

Upwards persistent models play an important role in this paper� We give an illustrative example of
such a model and the application of the notions of the previous section to the model�

Example ��� We specify the model I� which is the Henkin model of the one variable fragment of
the Intuitionistic Propositional Calculus �IPC�� It is also the one point compacti�cation of the �

characterizing model �in the sense of ����� for IPC�

� KI 	� ��

� bI 	�	

� � � � 	� � � � � � or � � �

� PI 	� fpg

� � j� p 	� � � �

All facts proved here about this model follow directly from known results in combination with later
results of this paper� Since our purposes are illustrative� we prove the basic facts from scratch� In
�gure  we give a picture of I� It is easily veri�ed that �I is a weak partial ordering� Moreover I is
persistent� Below we collect some simple facts about I�

Theorem ��� I is irreducible� i�e� any bisimulation Z 	 I� I is the identity on ���

Proof

Consider any Z 	 I� I� We may assume that Z is symmetrical� Suppose that for some � and � 	 �Z�
and � �� �� Let � be �
minimal such that there is a � with �Z� and � �� �� Clearly � � � � 	�
Since � � �� it follows that ��� ���� � � and hence � � ��� ��� Since �Z�� there must be a �  �

with �Z�� � ��� By the �
minimality of �� we �nd that � � �� � ��� and hence �� � ��  �� Quod
non� �

De�ne �E�� 	� � � � or �� � � and � � ��

Theorem ��� E is an ��simulation between I and I�

Proof

We verify the zig
property� Suppose �  �E����� In case �  �� we have	 �E�� and �E�� � �� So we
are done� Suppose not �  �� It follows that � 
 ���� Moreover we have � �� � and hence � � ���
and � � � � �� It follows that � � � and � � �� We may conclude that	 �E�� and �E���� � ��
Again we are done� �
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Figure 	 The Henkin model of IPC�p



� THE BIG JUMP� FROM FINITE TO INFINITE �

De�ne the �shift right� function r on �� by	 r��� 	� the largest � such that �� 
 �� So r�	� �	�

Theorem ��� dI��� � r����

We state an evident fact about persistence�

Theorem ��� Consider two models K and M � Suppose that K is persistent and that K �� M � Then
M is persistent�

If we are studying persistence it is often more natural to think in terms of certain orderings related to
layered bisimulation� than in terms of layered bisimulation itself� We can think of these orderings as
a kind of extension of the ordering in the model� For the rest of this section we think about persistent
pointed P
models� We let k� k��m�m� � � � range over such models�

� k �� m 	� PV�k� � PV�m�

� k ���� m 	� PV�k��PV�m�� �m�m �k�k� k� �� m�

In case � �	 � we will drop the subscript�

Theorem ��� �� �� is a partial preordering on pointed� persistent P�models�

�� k � k� � k �� k��

�� � 
 � ��� ����

�� k �� m� k �� m and m �� k�

	� k �� m� for some k��k k� � m�

Proof

We prove ���� For � � � this is easy� Suppose � � �� ��� Easy� ��� Suppose k �� m and
m �� k� We show that U 	�� � fhk� ��mig is an �
bisimulation� and� hence� that k �� m� Clearly
PV�k� � PV�m�� The zig
property for U follows from the fact that m �� k� The zag
property for U
follows from the fact that k �� m� �

� The big jump� from �nite to in�nite

In some cases one can conclude that two nodes bisimulate from the fact that they n
bisimulate� This
information can be usueful� since �as we shall see� in some cases it yields a cheap proof of the
existence of formulas describing a model and formulas �omitting� a model� We will be particularly
interested in cases where the relevant n can be found by looking at one of the relevant models alone�
We will restrict ourselves in this section to transitive models� Consider two transitive P
models K
and M � Let Z be an �
bisimulation between K and M � We may assume that Z is downwards closed�
We may also assume that Z is cluster
preserving i�e�� �� �Z� ��� �� � Z � If not we replace Z
by �� �Z� ��� ��� This is again an �
bisimulation by theorem ���� Moreover� we have� by the
transitivity of �	

�� ���� �Z� ��� ���� ��� �� � �� � � �Z� � � ��� ��

� �� �Z� ��� ��

Theorem ��� De�ne�

� ��k�m� 	� dK �k� � dM �m�

� kUm 	� kZ�	k�m
��m

Then U is a bisimulation between K and M �



� THE BIG JUMP� FROM FINITE TO INFINITE �

Proof

We prove that U has the zig
property� Suppose k�kZ�	k�m
��m� Hence� for somem
�	 k�Z�	k�m
m

�m�
It follows that PV�k�� � PV�m��� In case k� � k and m� � m� we �nd	 dK�k

�� � dK�k�� dM �m
�� �

dM �m� and by cluster
preservation	 k
�Z�	k�m
��m

�� Hence� k�Z�	k��m�
��m
�  m� In case not both

k� � k and m� � m� we �nd that ��k��m�� � � 
 ��k�m� and hence� by downwards closure	
k�Z�	k��m�
��m

�m� �

In the transitive� re�exive� antisymmetric �i�e� wpo� case there is a marginal improvement�

Theorem ��� Suppose K and M are transitive� re�exive and antisymmetric� Let Z and � be as
before� De�ne� kUm 	� kZ�	k�m
m� Then U is a bisimulation between K and M �

Proof

We prove that U has the zig
property� Suppose k�  kUm� We are looking for m� with k�Um�  k�
In case k� � k we may take m� 	� m� In case k� � k� we have	 ��k�m� � � and hence for some n	
k�Z�	k�m
��n  k� Since ��k�� n� 
 ��k�m� � �� we �nd	 k�Z�	k��n
n  k� So we may take	 m� 	� n�

�

Example ��� Consider the model Iof example ���� Clearly I satis�es the conditions for theorem ���
Note that for i � �	 ��i� i � �� � r�i� � r�i � �� � i� Since i and i � � do not bisimulate�
for no �
simulation Z between I and I	 �i�Z�i�i � ��� On the other hand for i � �� we have	
�i�E�i���i� ��� So theorem �� is optimal�

In the transitive� irre�exive �i�e� spo� case there is a substantial improvement	

Theorem ��� Suppose K and M are transitive and irre�exive� Let Z be as before� De�ne�

� �k�m� 	� min�dK �k�� dM �m��

� kUm 	� kZ�	k�m
��m

Then U is a bisimulation between K and M �

Proof

We prove that U has the zig
property� Suppose k�  kUm� There is an m� with	 k�Z�	k�m
m
�  m�

Note that dK �k
�� 
 dK�k� � � and dM �m�� 
 dK �m�� �� Hence	 �k�m� � �k��m�� � �� So we �nd	

k�Z�	k��m�
��m
�  m� �

Theorem ��� shows that in the irre�exive case n need only depend on the depth of our node in� say�
K � Surprisingly this phenomenon extends beyond this trivial case to the general transitive case� We
�rst give the general argument� Then we give a sharper version for the case where K and M are
partially ordered� The estimate of the result was sharpened from �d�k��� to �d�k�� by Giovanna
d� Agostino�

Theorem ��� Suppose K and M are transitive models� De�ne kUm 	� k ���d	k
�� m� Then U is a
bisimulation between K and M �



� THE BIG JUMP� FROM FINITE TO INFINITE ��

Proof

Suppose kUm� Both in applying the zig
 and the zag
property� we will arrive at a constellation	
k � k� ��d	k
�� m�  m� Both the zig
 and the zag
property applied to k� ��d	k
�� m�� yield a
constellation	 k� � k�� ��d	k
 m

��  m�� Thus� we have �by transitivity in M �	 k ��d	k
�� m � m���

k��
�d	k


m��
�d	k
��

k�

� � �

� �

k�
�d	k
��

m� �

� �

� �

k
�d	k
��

m
�d	k
��

k

By the zig
property� we can �nd an k� such that	 k � k� ��d	k
�� m
��� It follows that	

k�� ��d	k
 m
�� ��d	k
�� k

�

By the downwards closure and transitivity of ��� we �nd	 k�� ��d	k
 k
�� We distinguish two cases�

�i� k��� k� belong to the same cluster in K � In this case we �nd	 k�� and k� bisimulate� since they force
the same atoms �by theorem ����� �ii� k�� and k� do not belong to the same cluster� In this case either
d�k��� � d�k� or d�k�� � d�k�� It follows that d�k����d�k���� 
 d�k�� Applying theorem ��� �with
K both in the role of K and of M �� we �nd	 k�� � k�� So� in both cases� we have� k�� � k�� We �nd�
k�� � k� ��d	k
�� m

��� and� hence� k�� ��d	k
�� m
��� We may conclude that k� and m� satisfy both the

zig
 and the zag
property for ��d	k
�� and� so� k
� ��d	k
�� m

�� and� a fortiori� k� ��d	k�
�� m
�� i�e��

k�Um�� �

In the following theorem we sharpen the result for the case of partial orderings�

Theorem ��� Suppose K and M are transitive� re�exive and antisymmetric� I�o�w� suppose that
their accessibility relations are �weak partial orderings� We will use � instead of � to stress this fact�
We use � for the corresponding strict ordering� Let Z be a downward closed ��bisimulation between
K and M � De�ne� kUm 	� �p kZ��d	k
��p � m and kZ��d	k
m Then U is a bisimulation between K
and M �

Note that by downward closure	 kZ��d	k
��m� kUm�

Proof

Suppose kUm with witness p� We �rst prove that U has the zig
property� Suppose k� � kUm� We
want an m� � m and a p� with p� witnesses k�Um�� In case k� � k� take p� 	� p and m� 	� m�
Trivially p� witnesses k�Um�� If k�  k we �nd that dK�k� � �� From kZ��d	k
m� we get an m� 
m with k�Z��d	k
��m

�� We have	 �dK�k
���� 
 �dK�k� � �� and hence k�Z��d	k�
��m

�� Moreover	
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k�Z��d	k�
n  m�� Ergo we may take p� 	� m��

k� � k
Z��d	k


m� � m k�
Z��d	k�
��

p� � m�

� � � �

� � �K �M

k
Z��d	k


m k
Z��d	k


m

� �

�
�
�
� �

�
��

�M

�
�
�
� �

�
��

�M

k
Z��d	k
��

p� � p k
Z��d	k
��

p

We check the zag
property� Suppose kUm � m�� We want a k� � k and a p�� where p� witnesses
k�Um�� We have p 
 m 
 m� and hence p 
 m�� Since kZ��d	k
��p� it follows that for some k

� � k	
k�Z��d	k
m

�� There are two possibilities	 k� � k or k�  k� In case k� � k take p� 	� p� In case k�  k�
take p� 	� m��

k� � k
Z��d	k


m� k�
Z��d	k�
��

p� � m�

� � � �

� �M �K �M

k
Z��d	k


m k
Z��d	k


m

� �

�
�
�
� �

�
��

�M

�
�
�
� �

�
��

�M

k
Z��d	k
��

p� � p k
Z��d	k
��

p

�

Example ��	 �� Consider the model I of example ���� Let i � �� We have �d�i� �� � �i� Let
Z be any �
simulation between I and I� Since i � � and i �  do not bisimulate� we cannot
have	 �i � ��Z�i���i� �� On the other hand we do have	 �i� ��E�i�i � �� So the index
in theorem ��� cannot be lowered�

� We illustrate that U with kUm 	� kZ��d	k
��m� is not generally a bisimulation and thus that
the proof of theorem ���� cannot be simpli�ed in this direction� Consider the weakly partially
ordered �
models K and M with	 K 	� fag� M 	� f�� �g� where the wpo on M is�generated
by	 � � �� Take Z 	� fha� �� �i� ha� �� �i� ha� �� �ig� Clearly Z is a downward closed �
simulation
between K and M � Evidently Z��d	�
�� is not a bisimulation�

For the case of persistent models there is a variant of theorem ���� that is easier to apply�

Theorem ��
 We consider persistent and partially ordered models and nodes �pointed models of the
same kind� The relation Z between K and M de�ned by�

kZm 	� k ���d	k
 m and k ���d	k
�� m

is a bisimulation� It follows that� k ���d	k
�� m� k �� m�
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Proof

Consider k�m with kZm� It is clear that k and m force the same atoms� We check the zig
property�
Suppose k � k�� In case k � k�� we choose m� 	� m� In case k �� k�� we apply k ���d	k
 m� to
�nd an m� � m with k� ���d	k
�� m�� Since� �d�k�� � � 
 ��d�k� � �� � � 
 �d�k� � �� we �nd�
k� ���d	k�
�� m�� Thus� a fortiori� k�Zm�� We check the zig
property� Suppose m � m�� Since�
k ���d	k
�� m� there is an k

� � k with k� ���d	k
 m
�� In case k � k�� we have k� � k ���d	k
�� m

��
Thus� k�Zm�� In case k �� k�� we �nd k� ���d	k�
�� m

�� Hence� k�Zm��
To prove the consequence� suppose k ���d	k
�� m� Since m � m� there is a k� � k with k� ���d	k
 m�

In case k � k�� we �nd k�Zm� In case k �� k�� we �nd k� ���d	k�
�� m� and hence k
�Zm� In both cases�

we have� k� � m� �

	 Some basic facts about IPC

In this section we present some basic facts about and constructions in IPC� The present section is not
a self contained introduction� It is intended to �x some notations and to establish soem convenient
lemmas� � will stand for derivability in IPC in this section� Consider any P � We de�ne Li�P� as the
smallest set such that	

� P � Li�P�� ��� � Li�P�

� if A�B � Li�P�� then �A�B�� �A�B�� �A� B� � Li�P��

PV�A� is the set of propositional variables occurring in A� Sub�A� is the set of subformulas of A�
A model is an IPC�model if it is transitive� re�exive� antisymmetric and persistent� Consider an IPC

P
model K we take j�i to be the smallest relation between K and Li�P� such that	

� k j�i p 	� k j� p� k j�i �

� k j�i A�B 	� k j�i A and k j�i B

� k j�i A�B 	� k j�i A or k j�i B

� k j�i A� B 	� �k�k �k� j�i A� k� j�i B�

We will omitt the subscript i� as long as it is su ciently clear from the context that the persistent
case is intended� Note that� by transitivity� the persistence for P extends to the persistence for Li�P��
De�ne further	

� k j� ! 	� for all A � ! 	 k j� A

� K j� A 	� for all k�K k j� A

A set X is P�adequate if X � Li�P� and X is closed under subformulas� A set ! is X
saturated �for
IPC� if	

�� ! � X

� ! �� �

�� �! � A and A � X�� A � !

�� �! � �B�C� and �B�C� � X�� �B � ! or C � !��
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We describe the Henkin construction for IPC� To lighten our notational burdens we will assume in
this section that we work with some �xed P � Consider a P
adequate set X � The Henkin model for X
is the model H 	� HX � where	

� KH 	� f" j " is X
saturatedg

� ! � " 	� ! � "

� PH 	� P �X

� ! j� p 	� p � !

It is easily veri�ed that H is an IPC
model�

Theorem 	�� for all A�X 	 ! j�H A� A � !�

If X is �nite� then HX is �nite� We say that M is a rooted Henkin model if it is of the form HX �"�
for some X
saturated "� We have	

Theorem 	�� �Kripke Completeness for IPC� For ! � Li�P� and A � Li�P��

! �P A� for all P�models K 	 ! j�K A�

In case ! is �nite� we can improve this to�

! �P A� for all �nite P�models K 	 ! j�K A�

Since depth of �nodes in� models will be important in this paper� we remark that a slightly di�erent
notion of Henkin model reduces depth in the IPC
case� De�ne GX like HX � except	

� ! � " 	� ! � " and for some �C � D� � X 	 C �� !� C � " and D �� "

The standard argument that for all A � X 	 ! j� A� A � !� works without change for our alternative
model� Note that e�g� for X � fpg the depth of HX is � and the depth of GX is ��
For IPC we have a distinctive result involving downward extensions of models� We �rst introduce

the necessary machinery� Let K be a set of IPC
models� M 	� M�K� is the IPC
model with 	

� M 	� fhk�K i j k � KK and K � Kg

� hk�K i � hm�M i 	� K � M and k �K m

� PM 	�
W
fPK j K � Kg�

� hk�K i j� p 	� k j�K p

In practice we will forget the second components of the new nodes� pretending the domains to be
disjoint already� Let K be a IPC P
model� B�K � is the �rooted� IPC P
model obtained by adding a
new bottom b to K and by taking	 b j� p 	� K j� p� Finally we de�ne Glue�K� 	� B�M�K���

Theorem 	�� �Push Down Lemma� Let X be adequate� Suppose " is X�saturated and K is an
IPC�model with K j� "� Then Glue�HX �"��K � j� "�
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Proof

We show by induction on A � X that b j� A � A � "� The cases of atoms� conjunction and
disjunction are trivial� If �B � C� � X and b j� �B � C�� then " j� �B � C� and� hence�
�B � C� � "� Conversely suppose �B � C� � "� If b �j� B� we are easily done� If b j� B� then� by
the Induction Hypothesis	 B � "� hence C � " and� by the induction hypothesis	 b j� C� �

Instead of using the Push Down Lemma we could have employed the Kleene slash� We say that " is
P�prime if it is consistent and for every �C�D� � Li�P�	 " � �C�D�� " � C or " � D� A formula
A is P�prime if fAg is P
prime� As usual� we will suppress the P �

Theorem 	�� Suppose X is adequate and " is X�saturated� then " is prime�

Proof

" is consistent by de�nition� Suppose " � C�D and " �� C and " �� D� Suppose K j� "� K �j� C�
M j� " and M �j� D� Consider Glue�HX �"��K �M �� By the Push Down Lemma �theorem ���� we
have	 b j� "� On the other hand by persistence	 b �j� C and b �j� D� Contradiction� �

Theorem 	�� Consider any formula A� The formula A can be written �modulo IPC�provable equiva�
lence as a disjunction of prime formulas C� Moreover these C are conjunctions of implications and
propositional variables in Sub�A��

Proof

Consider a Sub�A�
saturated "� Let IP�"� be the set of implications and atoms of "� It is easily seen
that IPC �

V
IP�"� 

V
"� Take	

D 	�
�
f
�

IP�"� j " is Sub�A�
saturated and A � "g�

Trivially	 IPC � D � A� On the other hand if IPC �� A � D� then by a standard construction there
is a Sub�A�
saturated set ! such that A � ! and ! �� D� Quod non� �


 Formula Classes and Model Descriptions for IPC

In this section all models will be IPC models� De�ne i 	 Li�P�� �� by	

� i�p� 	� i��� 	� i��� 	� �

� i�A�B� 	� i�A�B� 	� max�i�A�� i�B��

� i�A� B� 	� max�i�A�� i�B�� � �

� In�P� 	� fA�Li�P� j i�A� 
 ng

� I��P� 	� Li�P�

By an easy induction on n we may prove the following theorem�

Theorem 
�� In��p� is �nite modulo IPC�provable equivalence�

De�ne for X � Li�P�	
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� ThX�k� 	� fA�X j k j� Ag

� For K pointed with point k	 ThX �K � 	� ThX�k�

� Th�k� 	� ThLi	P
�k�

Theorem 
�� Suppose that Z is an ��simulation between the P�models K and M � Then�

kZ�m� ThI�	P
�k� � ThI�	P
�m��

Proof

By induction on A in I�� Suppose kZ�m� The cases of atoms� conjunction and disjunction are trivial�
Suppose� e�g�� k �j� �B � C�� Then� for some k�  k� k� j� B and k� �j� C� There is an m�  m� such
that k�Z���m� and hence by the induction hypothesis �applied for � � �� noting that if A � I��P��
then B�C � I����P��	 m� j� B and m� �j� C� Ergo m �j� �B � C�� �

Theorem 
�� Suppose k and m are P�nodes� Then�

k �� m� ThI�	P
�k� � ThI�	P
�m��

Proof

In case � � �� this is trivial� Suppose � � � and k �� m� The proof is a simple induction on
A � I��P�� The cases of atoms� �� � are trivial� Suppose A � �B � C� and m �j� �B � C�� Then
for some m� � m	 m� j� B and m� �j� C� There is a k� � k� such that k� ���� m� and� hence� by
theorem ��	 k� j� B and k� �j� C� Ergo k �j� �B � C�� �

We formulate a partial converse for theorem ���� It is well known that the converse for the case of
	� i�e� for the case where one would like to infer bisimulation from the relation of forcing the same
formulas of the full language� does not go through� There is a lot of work �for the analogous case of
modal logic� on better converses than the one given here� We refer the reader to ��� and ����

Theorem 
�� Suppose k and m are �p�nodes� Then�

ThIn	�p
�k� � ThIn	�p
�m�� k �n m�

Proof

Suppose k and m are �p
nodes� and ThIn	�p
�k� � ThIn	�p
�m�� We want to prove	 k �n m� In case
n � � this is trivial� Suppose n � �� De�ne� for k� in the model corresponding to k and m� in the
model corresponding to m	

k�Zim
� 	� ThIi	�p
�k

�� � ThIi	�p
�m
���

We check that Z is an �
simulation and that for every k� � k there is an m� � m with k�Znm��
Suppose i � � and k�Zim�� Clearly k� and m� force the same atoms� We verify e�g� the zig
property�

Suppose k� � k��� Let	

�i�k
��� 	� �

�
fB�Ii����p� j k

�� j� Bg �
�
fC�Ii����p� j k

�� �j� Cg��

Clearly k� �j� �i�k
��� and �i�k

��� � Ii��p�� Ergo m� �j� �i�k
���� But then for some m�� � m�	

m�� j�
�
fB�Ii����p� j k

�� j� Bg and m�� �j�
�
fC�Ii����p� j k

� �j� Cg�
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It follows that k��Zi��m
���

To show that for any m� � m there is a k� � k with k�Znm�� Note that m �j� �n�m
��� ergo

k �j� �n�m
��� and� thus� for some k�	

k� j�
�
fB�In����p� j m

� j� Bg and k� �j�
�
fC�In����p� j m

� �j� Cg�

Hence	 kZn��m� �

Let k be a �p
node� De�ne	

� Yn�k 	� Yn�k��p� 	�
V
fC�In��p� j k j� Cg

� Nn�k 	� Nn�k��p� 	�
W
fD�In��p� j k �j� Dg

Theorem 
�� k j� Yn�k and k �j� Nn�k�

Let m be a �p
node� We have	

Theorem 
�� k �n m� m j� Yn�k � k �j� Nn�m�

Theorem 
�	 For n 
 n��

�� IPC � Yn��k � Yn�k�

�� IPC � Nn�k � Nn��k�

Theorem 
�
 We have�

�� k �n m� IPC � Yn�m � Yn�k

�� k �n m� IPC � Nn�m � Nn�k

Proof

��� ��� Suppose k �n m� Let r be any �p
node with r j� Yn�m� It follows that m �n r and� hence�
k �n r� Ergo� r j� Yn�k� ��� Suppose IPC � Yn�m � Yn�k� Sincem j� Yn�m� it follows thatm j� Yn�k�
and� hence� k �n m�
�� ��� Suppose k �n m� Let r be any �p
node with r �j� Nn�k� It follows that r �n k and� hence�

r �n m� Ergo	 r �j� Nn�m� ��� Suppose IPC � Nn�m � Nn�k� Since k �j� Nn�k� it follows that
k �j� Nn�m and hence	 k �n m� �

Suppose k is a �p
node of �nite depth� De�ne	

� Yk 	� Y��d	k
���k

� Nk 	� N��d	k
���k

Let m also be a �p
node�

Theorem 
� �� Suppose k is a �p�node of �nite depth� k �� m� m j� Yk�

�� k �� m� k �j� Nm�
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Proof

��� ��� Suppose k �� m� It follows that k ���d	k
�� m� Hence� m j� Yk � ��� Suppose m j� Yk� It
follows that k ���d	k
�� m� Ergo by theorem ���� k �� m�
�� ��� Easy� ��� Suppose k �j� Nm� It follows that k ���d	m
�� m� Hence� since m � m� for

some k� � k� k� ���d	m
�� m� It follows that k
� � m� �

By inspecting the model of example ��� one can show that the esimate of theorem ������ is optimal�
Is it possible to improve upon ��#

Theorem 
��� �� k �� m� IPC � Ym � Yk�

�� k �� m� IPC � Nm � Nk�

Theorem 
��� For all n�

�� IPC � Yk � Yn�k�

�� IPC � Nn�k � Nk�

Proof

��� m j� Yk � k �� m� k �n m� m j� Yn�k� �� Similar� �

Theorem 
��� Yn�k is a prime formula�

Proof

It is easily seen that Yn�k is In��p�
saturated� Apply theorem ���� �

� Ordinary interpolation for IPC

We show ordinary interpolation by a quick and simple proof� The present proof has two sources�
In ���� I learned from Wim Ruitenburg a Henkin style proof of the ordinary interpolation theorem�
Much later in ����� when I started thinking about interpolation� I saw how to re�ne the proof to
get a bound on the complexity of the interpolant� In the meantime Gleit and Goldfarb in their ���
used characteristic formulas to prove interpolation for L�ob�s Logic� The present proof is close to the
Henkin style proof� but even closer to Gleit and Golfarb�s proof� the main di�erence being the use of
simulations rather than characteristic formulas�

Lemma �� Consider hK � k� i � Pmod�Q� �p� and hM �m� i � Pmod��p�R�� where Q� �p� and R are
pairwise disjoint� Let X � L�Q� �p� and Y � L��p�R� be �nite adequate sets� Take �q 	� Q�X and
�r 	� R� Y � Let	

 	� jfC�X j C is an implicationgj� jfC�Y j C is an implicationgj

Suppose that k� ����p m�� Then there is a �nite� pointed �q� �p� �r
model hN� n�i such that	 ThX�n�� �
ThX�k�� and ThY �n�� � ThY �m���
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Proof

Let Z be a downwards closed witness of	 k� ����p m�� De�ne $X from K to the Henkin model GX
and $Y from M to the Henkin model G Y as follows	

� $X�k� 	� !�k� 	� fB�X j k j� Bg

� $Y �m� 	� "�m� 	� fB�Y j m j� Bg

Warning	 $X need not be order
preserving% De�ne further for k in K and m in M 	

� dX �k� 	� dGX �!�k��

� dY �m� 	� dGY �"�m��

� ��k�m� 	� dX�k� � dY �m�

Note that for all k in K and m in M 	 ��k�m� 
 � Consider a pair h!�"i� where ! is in GX and "
is in G Y � De�ne	 k�m is a witnessing pair for h!�"i if k � K� m � M � ! � !�k�� " � "�m� and
kZ		k�m
m� De�ne N and n� as follows	

� N 	� fh!�"i j there is a witnessing pair for h!�"ig

� n� 	� h!�k���"�m��i

� h!�"i � h!��"�i 	� ! � !� and " � "�

� h!�"i j�N s 	� s � !�"

By assumption� k�Z�m�� Moreover	 ��k��m�� � dX�k�� � dY �m�� 
 � Hence	 k�Z		k��m�
m�� So
we can take k��m� as witnessing pair for n��
We show that for A � X 	 h!�"i j�N A � A � ! by induction on A� The case of Y and " is

similar� The atomic case is easy� noting that the existence of a witnessing pair guarantees that for
p � �p	 p � ! � p � "� The cases of � and � are trivial� Suppose A � �B � C�� First suppose
�B � C� � !� Consider h!��"�i � h!�"i and suppose h!��"�i j� B� By the Induction Hypothesis
we have	 B � !� and hence� since �B � C� � !�	 C � !�� Again by the Induction Hypothesis we
�nd	 h!��"�i j� C� So we may conclude	 h!�"i j� B � C� Conversely� suppose that �B � C� �� !�
In case B � !� we are easily done� Suppose not� Let k�m be a witnessing pair for h!�"i� We �nd
that k �j� B � C and hence there is a k� such that k� j� B and k� �j� C� Since kZ		k�m
m� there is
an m� � m such that k�Z		k�m
��m

�� Consider h!��"�i 	� h!�k���"�m��i� Since B� � !� and C �� !��
evidently in GX 	 ! � !� and hence ��k��m�� 
 ��k�m� � �� Hence by downward closure k��m� is a
witnessing pair for h!��"�i� So h!��"�i is in N and by the Induction Hypothesis	 h!��"�i j� B and
h!��"�i �j� C� It follows that h!�"i �j� B � C� �

Theorem �� �Ordinary interpolation� Suppose A � Li��q� �p� and B � Li��p��r� and IPC � A� B�
Let�

 	� jfC�Sub�A� j C is an implicationgj� jfC�Sub�B� j C is an implicationgj�

Then there is an I � I���p� with� IPC � A� I and IPC � I � B�
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Proof

Take	
I 	�

�
fC�I���p� j IPC � D � Bg�

Clearly IPC � I � B� Suppose to get a contradiction that IPC �� A � I � Let m be any �p��r
node
with m j� A and m �j� I � Let Y 	� Y��m��p� and N 	� N��m��p�� We claim that	 Y �� N�B� Note that�
by theorem ���� Y is prime� So if Y � N�B� then Y � N or Y � B� Since� Y �� N� it follows that
Y � B� But then� by de�nition� Y � I � Quod non� since m j� Y and m �j� I � Let k be any �q� �p
node
such that	 k j� Y and k �j� N�B� We �nd that k ����p m� Apply lemma ��� with Sub�A� in the
role of Y and Sub�B� in the role of X to �nd a �q� �p� �r
node n with	 ThSub	A
�m� � ThSub	A
�n� and

ThSub	B
�k� � ThSub	B
�n�� It follows that n j� A� but n �j� B� A contradiction� �

Lemma ��� lacks� in a sense� purity since it combines the method of simulations with a Henkin style
argument� The impurity has the advantage of e ciency� Of course we can at some cost �nd a pure
formulation of the lemma� Here we formulate a puri�ed weak version that follows immediately from
lemma ��� itself�

Corollary �� Consider two models K � Rmod�Q� �p� and M � Rmod��p�R�� where R� �p and R are
pairwise disjoint� Take �q 	� Q�X and �r 	� R� Y � Then	

�k ��K ��p� �� M ��p�� �N � Rmod��q� �p� �r��K �k N��q� �p� and M �k N��p��r����

�� Uniform Interpolation for IPC

Uniform Interpolation was proved for GL by V� Shavrukov �see	 ����� Shavrukov used the method of
characters as developed by Z� Gleit and W� Goldfarb� who proved the Fixed Point Theorem of Prov

ability Logic and the ordinary Interpolation Theorem employing characters �see	 ����� The methods
of Gleit & Goldfarb and later of Shavrukov can be viewed as model theoretical� For IPC� A� Pitts
proved Uniform Interpolation by proof theoretical methods� using proof systems allowing e cient
cut
elimination �see	 ������ developed� independently� by J� Hudelmaier �see	 ����� and R� Dyckho�
�see	 ���� Later S� Ghilardi and M� Zawadowski �see	 ����� and� independently but later� A� Visser�
found a model theoretical proof for Pitt�s result using bounded bisimulations�
We prove an amalgamation lemma� Note that the proof of lemma ��� follows the pattern of theo


rem ��� The proof of the present lemma is like the the proof of lemma ���� replacing the the argument
in the style of theorem �� by an argument in the style of theorem ����
In this section� we will use � for the weak partial orderings and � for the associated strict orderings�

Lemma ���� Consider disjoint sets of propositional variables Q� �p and R� Let X � Li�Q� �p� be a
�nite adequate set� Let hK � k� i � Pmod�Q� �p�� hM �m� i � Pmod��p�R�� Let	

� 	� jfC�X j C is a propositional variable or an implicationgj�

Suppose that k� ���
����p m�� Then there is a Q
extension hN� n� i of hM �m� i such that ThX�n�� �
ThX�k���

Proof

Let Z be a downwards closed witness of k� ���
����p m�� De�ne $X from K to the Henkin model H 	�
HX as follows	 $X�k� 	� "�k� 	� fB�X j k j� Bg� De�ne further for k in K 	 dX �k� 	� dH �"�k���
Note that	 dX�k� 
 ��
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Consider a pair h"�mi for " in H and m in M � We say that k�� k�m� is a witnessing triple for
h"�mi if	

" � "�k� � "�k��� k� � k� m� � m� k�Z��dX	k�
��m
�� kZ��dX	k�
m�

"
$X

k
Z�dX 	k�


m

�

�
�
�
� �

�
��

�
�
�
� �

�
��

�

"
$X

k�
Z�dX 	k�
��

m�

De�ne	

� N 	� fh"�mi j there is a witnessing triple for h"�mig

� n� 	� h"�k���m�i

� h"�mi �N h!� ni 	� " �H ! and m �M n

� h"�mi j�N s 	� " j�H s or m j�M s

Note that by assumption k�Z�
��m�� Moreover	 �dX�k���� 
 ����� Hence	 k�Z�dX	k�
��m�� So
we can take k�� k��m� as witnessing triple for n�� Let k

�� k�m� be a witnessing triple for h"�mi� Note
that for p � �p�X 	 " j� p� k j� p� m j� p� and hence	 h"�mi j� p� " j� p� m j� p� We claim	

Claim � n� ��p�R m��

Claim � For B � X 	 h"�mi j� B � B � "�

Evidently the lemma is immediate from the claims�

We prove Claim �� Take as bisimulation B with h"�miBm� Clearly� Th�p�R�h"�mi� � Th�p�R�m��
Moreover� B has the zig
property� We check that B has the zag
property� Suppose h"�miBm � n�
We are looking for a pair h!� ni in N such that " � !� Let k�� k�m� be a witnessing triple for h"�mi�
Since k�Z��dX 	k�
��m

� � n� there is a h such that k� � hZ��dX	k�
n� We take ! 	� "�h�� We need a
witnessing triple k��� k��m�� for h!� ni We distinguish two possibilities� First� " � !� In this case we
can take	 k�� 	� k�� k� 	� h� m�� 	� m��

! � "
$X

k� � h
Z�dX	k�


n

� � �

� �

� "
$X

k
Z�dX	k�


m

�

�
�
�
� �

�
��

�
�
�
� �

�
��

�

"
$X

k�� � k�
Z�dX	k�
��

m�� � m�

Secondly� " �� !� In this case we can take	 k�� 	� h� k� 	� h� m�� 	� n� To see this� note that� since
k� � h� we have	 " � "�k�� � !� Ergo dX�h� � dX�k

��� It follows that	 �dX�h� � � 
 �dX�k��� So�
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hZ��dX	k�
��n �and by downward closure also hZ��dX	k�
n��

!
$X

k�� � k� � h
Z�dX 	h
��

m�� � n

� � �

� �

� "
$X

k
Z�dX	k�


m

�

�
�
�
� �

�
��

�
�
�
� �

�
��

�

"
$X

k�
Z�dX 	k�
��

m�

Finally� clearly� bNBbM �

We prove Claim �� The proof is by induction on X � The cases of atoms� conjunction and disjunction
are trivial� We treat the case of implication� Suppose �C � D� � X � Consider the node h"�mi with
witnessing triple k�� k�m��
Suppose " �j� �C � D�� In case " j� C and " �j� D� by the Induction Hypothesis� h"�mi j� C

and h"�mi �j� D� So� h"�mi �j� �C � D�� Suppose " �j� C� Clearly� k �j� �C � D�� so there is
an h � k with h j� C and h �j� D� Let ! 	� "�h�� Since� " �j� C� we �nd	 " � ! and� thus�
k � h� Note that it follows that �dX�k

�� � � Since kZ��dX	k�
m and k � h� there is an n � m with
hZ��dX	k�
��n� Moreover	 �dX�h� � � 
 �dX�k

��� �� Ergo	 hZ��dX	h
��n� So h� h� n is a witnessing
triple for h!� ni� Clearly� h"�mi � h!� ni� By the Induction Hypothesis	 h!� ni j� C and h!� ni �j� D�
Hence� h"�mi �j� �C � D��

!
$X

k�� � k� � h
Z�dX 	h
��

m�� � n

� � �

� � �

"
$X

k
Z�dX 	k�


m

�

�
�
�
� �

�
��

�
�
�
� �

�
��

�

"
$X

k�
Z�dX 	k�
��

m�

Suppose h"�mi �j� �C � D�� There is a h!� ni in N with h"�mi � h!� ni and h!� ni j� C and
h!� ni �j� D� Clearly " � !� By the Induction Hypothesis ! j� C and ! �j� D� Ergo " �j� �C � D��
Thus we have proved Claim � �

Theorem ���� �Pitts� Uniform Interpolation Theorem� Here is our version of Pitts� Uniform
Interpolation Theorem�

�� Consider any formula A and any �nite set of variables �q� Let

� 	� �Sub	A
 	� jfC�Sub�A� j C is a propositional variable or an implicationgj

There is a formula ��q�A such that�
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�a PV���q�A� � PV�A� n �q

�b i���q�A� 
 �� � 

�c For all B � Li with PV�B�� �q � �� we have�

IPC � A� B � IPC � ��q�A� B�

�� Consider any formula B and any �nite set of variables �q� Let � 	� �Sub	B
� There is a formula

��q�B such that�

�a PV���q�B� � PV�B� n �q

�b i���q�B� 
 �� � �

�c For all A � Li with PV�A�� �q � �� we have�

IPC � A� B � IPC � A� ��q�B�

Note that in ��� we have estimate �� �  and in �� �� � �� Somehow I �nd this annoying� In
theorem ���� we will show how to get the marginal improvement to �� � � also for ����

Proof

��� Consider A and �q� Let �p 	� PV�A� n �q� Take	

��q�A 	�
�
fC�I��
����p� j IPC � A� Cg�

Clearly ��q�A satis�es �a� and �b�� Moreover� IPC � A� ��q�A� Hence all we have to prove is that for
all B with PV�B�� �q � �	

IPC � A� B � IPC � ��q�A� B�

Suppose� to the contrary� that for some B	 PV�B�� �q � � and IPC � A � B and IPC �� ��q�A � B�
Take �r 	� PV�B� n �p� Note that �p� �q� �r are pairwise disjoint� PV�A� � �q � �p and PV�B� � �p��r�
Let m be any �p��r
node with m j� ��q�A and m �j� B� Let Y 	� Y��
���m��p� and N 	� N��
���m��p� �see

section ��� We claim that	 A�Y �� N� If it did� we would have	 A � Y � N� And hence by de�nition	
��q�A�Y � N� Quod non� since m j� ��q�A�Y and m �j� N� Let k be any �q� �p
node such that	 k j� A�Y

and k �j� N� We �nd that k ���
����p m� Apply lemma ���� with Sub�A� in the role of X to �nd a
�q� �p� �r
node n with	 m ��p��r n and ThSub	A
�k� � ThSub	A
�n�� It follows that n �j� B� but n j� A� A

contradiction�
�� Consider B and �q� Let �p 	� PV�B� n �q� Take	 ��q�B 	�

W
fD�I��
����p� j IPC � D � Bg� Clearly

��q�B satis�es �a� and �b�� Moreover IPC � ��q�B � B� Hence all we have to prove is that for all A
with PV�A�� �q � �	

IPC � A� B � IPC � A� ��q�B�

Suppose that� to the contrary� for some A	 PV�A�� �q � � and IPC � A � B and IPC �� A � ��q�B�
Take �r 	� PV�A� n �p� Note that �p� �q� �r are pairwise disjoint� PV�B� � �q� �p and PV�A� � �p��r�
Let m be any �p��r
node with m j� A and m �j� ��q�B� Let Y 	� Y��
���m��p� and N 	� N��
���m��p��

We claim that	 Y �� N�B� Note that� by theorem ���� Y is prime� So if Y � N�B� then Y � N or
Y � B� Since Y �� N� it follows that Y � B� But then by de�nition	 Y � ��q�B� Quod non� since
m j� Y and m �j� ��q�B� Let k be any �q� �p
node such that	 k j� Y and k �j� N�B� We �nd that
k ���
����p m� Apply lemma ���� with Sub�B� in the role of X to �nd a �q� �p� �r
node n with	 m ��p��r n
and ThSub	B
�k� � ThSub	B
�n�� It follows that n j� A� but n �j� B� A contradiction� �

Theorem ���� �An improvement of theorem ����� We can replace the estimate ��� in the�
orem ������� by �� � ��
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Proof

By theorem ��� we can write A as a disjunction of prime formulas D with PV�D� � PV�A� and
�Sub	D
 
 �Sub	A
� Say the set of these disjuncts is D� For B with PV�B�� �q � � we have	

IPC � A� B � for all D�D IPC � D � B

� for all D�D IPC � ��q�D � B

� IPC �
�
f��q�D j D � Dg � B

Ergo we may take ��q�A 	�
W
f��q�D j D � Dg� It follows that it is su cient to prove theorem ������

with � � � for prime A�
So suppose A is prime� Let �p 	� Sub�A� n �q� De�ne	

��q�A 	�
�
fC�I��
����p� j IPC � A� Cg�

Suppose that for some B	 PV�B�� �q � � and IPC � A� B and IPC �� ��q�A� B� De�ne further	

� Y 	� Sub�A�� I�
����p�� " 	� fC�Y j IPC � A� Cg

� Z 	� Sub�B�� I��
����p�� ! 	� fD�Z j IPC � ��q�A� Dg�

Note that since fC�I��
����p� j IPC � A � Cg is I��
����p�
saturated� ��q�A is prime� We �nd that "
is Y 
saturated and ! is Z
saturated� Take	 hK � ki 	� H Y �"�� hM �mi 	� H Z �!�� It follows that for
C � I��
����p�	

" j� C � " � C � A � C � ��q�A � C � ! j� C�

Ergo k ���
�� m� k j� A� m j� ��q�A and m �j� B� From this point on the argument proceeds as in the
proof of ������� �

Theorem ���� �Semantical Characterization of Pitts� Quanti�ers� Consider a node m� Sup�
pose A � Li� We have�

�� m j� �q�A� �n m ��q� n and n j� A�

�� m j� �q�A� for all n with m ��q� n� n j� A�

Proof

��� ��� Trivial� ��� Let �p 	� PV�A� n fqg and � 	� �Sub	A
� Suppose m j� �q�A� where m is an

R
node with �p � R� Let Y 	� Y��
���m��p� and N 	� N��
���m��p�� As in theorem ������ A�Y �� N� Let
k be any q� �p
node such that	 k j� A�Y and k �j� N� We �nd that k ���
����p m� Apply lemma ���� to
k and m�R n fqg� with Sub�A� in the role of X � fqg in the role of Q� �p in the role of �p� R n ��p� fqg�
in the role of R� to �nd a q� �p�R
node n with	 m ��q� n and ThSub	A
�k� � ThSub	A
�n�� and� thus�

n j� A�
�� The proof of �� is similar� �

Theorem ��� is not formulated entirely in terms of �
simulations� The reason is that such a form
does not provide a very sharp estimate on uniform interpolants� But if we do not want to worry about
precise complexities a watered down version can be pleasant to have� By applying theorem ��� to
X 	� In��p� �q� we �nd	
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Corollary ���� For all disjoint �q� �p and numbers s� there is an N �multi
exponential in j�q� �pj � s��
such that	 for all k � Pmod��q� �p�� and all m � Pmod with �q �PM � � and �p � Pm� we have	

k �N��p m� there is an n � Pmod��q�Pm� with n �s��q��p k and n �Pm m�

We end this section with a result from ���� We illustrate that the increase of implicational complexity
in going to a uniform interpolant is unavoidable� It is an interesting problem to �nd both better upper
and lower bounds�

Theorem ���� Every formula of Li is equivalent to an I��formula preceded by existential quanti�ers
and to an I��formula preceded by universal quanti�ers�

Proof

Suppose A � Li��p�� Let �q be a set of variables disjoint from �p that is in �
� correspondence with the
subformulas of the form �B � C� of A� Let the correspondence be q� We de�ne a mapping T as
follows	

� T commutes with atoms� conjunction and disjunction

� T �B � C� 	� q�B � C�

De�ne	

� EQ 	�
V
fq�B � C� �T �B�� T �C�� j �B � C� � Sub�A�g

Note that EQ is I�� Finally we put	

� A 	� ��q�EQ�T �A��

� A� 	� ��q�EQ� T �A��

By elementary reasoning in second order propositional logic we �nd	 � A A and � A A�� �

�� Propositional Quanti�ers for IPC

There is a variety of ways to introduce propositional quanti�ers in IPC� A �rst idea is proof theoretical�
We add the obvious analogues of the rules for the quanti�ers for Predicate Logic to IPC� E�g�	

�R ! � A� ! � �p�A� provided that p does not occur in !

�L !� A�p 	� B� � C � !��p�A � C

�R ! � A�p 	� B�� ! � �p�A

�L !� A � C � !� �p�A � C� provided that p does not occur in !� C

We call the theory thus obtained IPC�� In a clear sense the quanti�ers thus introduced are minimal�
IPC

� is undecidable� as is shown by L�ob in ����� See also the papers by Gabbay� ��� and by Smory'nski�
���� Gabbay gives a semantics of sorts for these quanti�ers� Note that the undecidability of the
minimal system is not preserved by extensions that are conservative over IPC	 IPC with the Pitts
quanti�ers is a decidable conservative extension% A salient property of the minimal quanti�ers� which
is inherited by all extensions� is the de�nability of all connectives in terms of � and �� The de�nition
is as follows	
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� � 	� �p�p� � 	� �p�p� p�

� A�B 	� �p��A� �B � p��� p�

� A�B 	� �p��A� p���B � p��� p�

� �q�A 	� �p��q�A� p�� p�

The topological interpretation for second order IPC is given as follows� Let O be a topological space�
An assignment f sends the propositional variables to the open sets of O� De�ne	

� ��p�� f � f�p�� ����� f � O� ����� f � �

� ��A�B�� f � ��A�� f � ��B�� f

� ��A�B�� f � ��A�� f � ��B�� f

� ��A� B�� f � int�� ��A�� f�c � ��B�� f�

� ���p�A�� f �
S
f ��A�� f �p 	� P � j P is openg

� ���p�A�� f � int�
T
f ��A�� f �p 	� P � j P is openg�

For information about the topological interpretation� we refer the reader to the work by Tarski �see
����� by Kreisel �see ������ by Troelstra �see ����� by Po(lacik �see ����� ����� ������ Tomasz Po(lacik
shows that the topological interpretation is not identical to the Pitts interpretation�
A �subsemantics� of the topological interpretation is the semantics where one quanti�es over upward

persistent sets in Kripke models� This semantics is studied by Philip Kremer �see ����� He shows
that the valid principles of this interpretation are recursively isomorphic to full second order predicate
logic�
We turn to the Pitts quanti�ers� First let us note that� since Pitts quanti�ers can be de�ned in the

language of IPC the Pitts quanti�ers can be compared with any other quanti�ers� In fact� we have	
IPC

� � �p�A� �pittsp�A and IPC
� � �pittsp�A� �p�A�

Let UCpitts be the universal closure of a formula with Pitts quanti�ers� Clearly forA � Li� UCpitts�A�
translates to a closed IPC
formula� Thus it can �modulo provable equivalence� be only � or �� In
fact we have IPC � A� UCpitts�A� ! � and IPC �� A� UCpitts �A� ! ��
It is clear that the translations of the Pitts quanti�ers are computable� It follows that the extension

of IPC�� valid under the Pitts interpretation is decidable�� Thus� Pitts quanti�cation does not give
the same valid principles as the upwards closed sets interpretation� by the result of Kremer� Similarly�
it cannot be IPC� itself by the result of L�ob� These non
identities can also be established directly�
Consider �p�p�"p�� This formula is � under the Pitts interpretation� In other words "�p�p�"p� is
valid under the Pitts interpretation� Under the interpretation studied by Kremer� however� �p�p�"p�
just de�nes the top nodes of Kripke models�� Thus� "�p�p�"p� is not valid under the upwards closed
sets interpretation and� a fortiori� not under the topological or the minimal interpretation� We end
this section by verifying semantically a striking principle �present in Pitts� paper� valid for the Pitts
interpretation�

Theorem ���� Consider k� We have�

k j� �p�B�C�� k j� �p�B or k j� �p�C�

�IPC is PSPACE�complete� This is shown by Statman in 
��� I would guess that the principles valid under the
Pitts interpretation are also PSPACE� but nobody� to my knowledge� took the trouble of checking the complexity of the
algorithm given by Pitts�

�Note that being a top node is not bisimulation�invariant�
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Proof

We reason by contraposition� Suppose k �j� �p�B and k �j� �p�C� It follows that there are nodes m
and n� such that k ��p� m �j� B and k ��p� n �j� C� Let M and N be the models of� respectively� m
and n� Consider P 	� Glue�M �m��N �n��� Let the new bottom be b� It is easily seen that k ��p� b and

b �j� �B�C� �

�� Formula Classes and Model Descriptions in Modal Logic

We brie�y treat the connection between modal propositional formulas and bounded bisimulations�
Since these facts are similar to� but simpler than the corresponding facts for IPC I just state the
results without the proofs�
Let b�A� be the box
depth of a formula� Bk��p� is the set of formulas in the variables �p with

box
depth 
 k� Bk��p� is �nite modulo provable equivalence�
Consider �p
nodes k and m� Then	

k �n m� ThBn	�p
�k� � ThBn	�p
�m�

Let k be a �p
node� De�ne	 Yn�k 	�
V
ThBn	�p
�k�� Clearly� for any �p
node m	 k �n m � m j� Yn�k�

We have	 k �n m� K � Yn�m  Yn�k

Suppose k is a transitive �p
node of �nite depth� De�ne	 Yk 	� Y��d	k
���k Let m also be a transitive
�p
node� We have	 k � m� m j� Yk� It follows that	 k � m� K� � Ym  Yk�

�� Uniform Interpolation for K

Before considering uniform interpolation for more complicated modal systems like S�Grz� we do the
relatively easy proof for K� This theorem was �rst proved by Silvio Ghilardi� Uniform interpolation
for K follows from the amalgamation lemma below�

Lemma ���� Consider pairwise disjoint sets of propositional variables Q� �p and R� Let hK � k� i �
Pmod�Q� �p� and hM �m� i � Pmod��p�R�� Suppose that k� ����p m�� Then there is a Q
extension
hN� n� i of hM �m� i such that n� �� k��

Proof

Let Z be a downwards closed witness of k� ����p m�� We add a �virtual top� � to K and stipulate that
� satis�es no atoms� Let�s call the new model K� � We extend �� with a new bottom � to �����
De�ne Pd�n� �� 	� n� Pd��� 	� Pd��� 	� �� Pd�	� �	� Now de�ne the following model N	

� N 	� Z # fh����mi j m �Mg

� hk� ��mi �N hk�� ���m�i 	� k �K� k� and �� � Pd��� and m �M m�

� hk� ��mi j� s 	� k j�K s or m j�M s

We claim	

Claim � n� ��p�R m��

Claim � n� ���	Q��p
 k��
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We prove Claim �� Take as bisimulation B� with hk� ��miBm� 	� m � m�� Clearly� if nBm then
Th�p�R�n� � Th�p�R�m�� Moreover� B trivially has the zig
property� We check that B has the zag

property� Suppose hk� ��miBm � m�� If � � f���g� we can �nish the diagram with h����m�i� If
� � �� � � for �� � ��� we have kZ�m and� hence� there is a k� such that k �K k� and k�Z��m�� So
we can �nish the diagram with hk�� ���m�i�

We prove Claim �� Take as layered bisimulation S� with hk� ��miS�k� � k � k� �for � � ����
Clearly� if nS�k then ThQ��p�n� � ThQ��p�k�� We check that S has the zag
property� The zig
property
is analogous� Suppose hk� ����miS���k � k�� Since kZ���m� there exists m

�  m such that k�Z�m��
Hence hk�� ��m�i  hk� �� ��mi� and hk�� ��m�iS�k�� �

Theorem ���� �Uniform Interpolation� We prove uniform interpolation for K

�� Consider any formula A and any �nite set of variables �q� Let � 	� b�A�� There is a formula
��q�A such that�

�a PV���q�A� � PV�A� n �q

�b b���q�A� 
 �

�c For all B � Lm with PV�B�� �q � �� we have�

K � A� B � K � ��q�A� B�

�� Consider any formula B and any �nite set of variables �q� Let � 	� b�B�� There is a formula
��q�B such that�

�a PV���q�B� � PV�B� n �q

�b b���q�B� 
 �

�c For all A � Lm with PV�A�� �q � �� we have�

K � A� B � K � A� ��q�B�

Proof

We just prove ���� The proof of �� is analogous� �Alternatively� we may take ���q�B� 	� �"��q"B���
Consider A and �q� Let �p 	� PV�A� n �q� Take	

��q�A 	�
�
fC�I
��p� j K � A� Cg�

Clearly ��q�A satis�es �a� and �b�� Moreover� K � A � ��q�A� Hence� all we have to prove is that for
all B with PV�B�� �q � �	

K � A� B � K � ��q�A� B�

Suppose� to the contrary� that for some B	 PV�B�� �q � � and K � A� B and K �� ��q�A� B� Take
�r 	� PV�B� n �p� Note that �p� �q� �r are pairwise disjoint� PV�A� � �q � �p and PV�B� � �p��r�
Let m be any �p��r
node with m j� ��q�A and m �j� B� Let Y 	� Y
�m��p� and We claim that	 A�Y

is consistent� If it were not� we would have	 A � "Y� And� hence� by de�nition	 ��q�A � "Y� Quod
non� since m j� ��q�A�Y and b�"Y� � �� Let k be any �q� �p
node such that	 k j� A�Y� We �nd that
k �
��p m� Apply lemma ���� to �nd a �q� �p� �r
node n with	 m ��p��r n and m �
�	�p��r
 n � It follows that

n �j� B� but n j� A� A contradiction� �

The proof of the following theorem is fully analogous to the the proof of its twin for the case of IPC�

Theorem ���� Consider a node m� Suppose A � Lm� We have�

�� m j� �q�A� �n m ��q� n and n j� A�

�� m j� �q�A� for all n with m ��q� n� n j� A�
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�� Uniform Interpolation for GL

In this section we prove Uniform Interpolation for GL� It is well known that GL is sound and complete
for upward wellfounded Kripke models and that it has the �nite model property� Since GL
models are
irre�exive we use ��� for their accessibility relation and ��� for the corresponding weak partial order�
��� will stand for GL
derivability�
Let X be a �nite� adequate set of formulas� Adequate means	 closed under subformulas� The GL

Henkin model HX for X is constructed in the following way�

� The nodes are the subsets " of X that are saturated� i�e� if " proves some �nite disjunction of
elements of X then some disjunct is in "��

� " � "� i� �A � "� A��A � "�

Note that this model may contain non�trivial loops� and� thus is not a GL
model� �It is easy to
remove these loops� but for the present purposes� we need to keep them�� The height of a model is the
maximal depth� The height of the Henkin model is 
 �jfC�X j C is boxedgj� To see this� consider
"� �� "� �� "�� Clearly� going up the set of boxed formulas in the "i increases� Suppose we had
the same boxed formulas in "�� "� and "�� Suppose �A � "�� Then� ex hypothesi� �A � "��
Hence� A��A � "�� We may conclude that "� � "�� Quod non� So� necessarily� the boxed formulas
increase by at least one in going from "� to "�� It follows that if we have a strictly ascending chain
of length �n� then there are at least n boxed subformulas�
As in for IPC and K we start with an amalgamation lemma� Consider disjoint sets of propositional

variables Q� �p and R� Let hK � k� i � Pmod�Q� �p� and hM �m� i � Pmod��p�R� be pointed GL
models�

Lemma ���� Let X � Lm�Q� �p� be a �nite adequate set� Let	

� 	� �jfC�X j C is boxedgj�

Suppose that k� ���
����p m�� Then there is aQ
extension hN� n� i of hM �m� i such that N is a GL
model
and ThX�n�� � ThX �k���

Proof

Let Z be a downwards closed witness of k� ���
����p m�� De�ne $X from K to the Henkin model H 	�
HX as follows	 $X�k� 	� "�k� 	� fB�X j k j� Bg� De�ne further for k in K 	 dX �k� 	� dH �"�k���
Note that	 dX�k� 
 ��
Consider a pair h"�mi for " in H and m in M � Consider k�� k�m�� Let "� 	� $X�k

��� We say that
k�� k�m� is a witnessing triple for h"�mi if	

"� � "� k� � k� m� � m� k�Z��dX	k�
��m
�� kZ��dX	k�
m�

"
$X

k
Z�dX 	k�


m

�

�
�
�
� �

�
��

�
�
�
� �

�
��

�

"�
$X

k�
Z�dX 	k�
��

m�

De�ne	

� N 	� fh"�mi j there is a witnessing triple for h"�mig

	We consider � as the empty disjunction� So saturation implies consistency�
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� n� 	� h"�k���m�i

� h"�mi �N h!� ni 	� " �H ! and m �M n

� h"�mi j�N s 	� " j�H s or m j�M s

Note that by assumption k�Z�
��m�� Moreover	 �dX�k���� 
 ����� Hence	 k�Z�dX	k�
��m�� So
we can take k�� k��m� as witnessing triple for n�� Let k

�� k�m� be a witnessing triple for h"�mi� Note
that for p � �p�X 	 " j� p� k j� p� m j� p� and hence	 h"�mi j� p� " j� p� m j� p� It is easy
to see that N is a GL
model �even if HX need not be one�� We claim	

Claim � n� ��p�R m��

Claim � For B � X 	 h"�mi j� B � B � "�

Evidently the lemma is immediate from the claims�

We prove Claim �� Take as bisimulation B with h"�miBm� Clearly� Th�p�R�h"�mi� � Th�p�R�m��
Moreover� B has the zig
property� We check that B has the zag
property� Suppose h"�miBm � n�
We are looking for a pair h!� ni in N such that " � !� Let k�� k�m� be a witnessing triple for h"�mi�
We write "� 	� "�k��� Since k�Z��dX	k�
��m

� � n� there is a h such that k� � hZ��dX	k�
n� We take
! 	� "�h�� Clearly " � !� We need a witnessing triple k��� k��m�� for h!� ni We distinguish two
possibilities� First� " � !� In this case we can take	 k�� 	� k�� k� 	� h� m�� 	� m��

!
$X

k� � h
Z�dX	k�


n

� � �

� �

� "
$X

k
Z�dX	k�


m

�

�
�
�
� �

�
��

�
�
�
� �

�
��

�

"�
$X

k�� � k�
Z�dX	k�
��

m�� � m�

Secondly� " �� !� In this case we can take	 k�� 	� h� k� 	� h� m�� 	� n� To see this� note that�
since k� � h� we have	 " � "� � ! and� hence� " �� !� Ergo dX�h� � dX�k

��� It follows that	
�dX�h� � � 
 �dX�k��� So� hZ��dX	k�
��n�

!
$X

k�� � k� � h
Z�dX 	h
��

m�� � n

� � �

� �

�� "
$X

k
Z�dX	k�


m

�

�
�
�
� �

�
��

�
�
�
� �

�
��

�

"�
$X

k�
Z�dX 	k�
��

m�

Finally� clearly� bNBbM �
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We prove Claim �� The proof is by induction on X � The cases of atoms� conjunction and disjunction
are trivial� We treat the only non
trivial case	 the left
to
right case of the box� Consider �C � X

and consider the node h"�mi with witnessing triple k�� k�m�� Suppose �C �� "� Clearly� k �j� �C� so
there is an h�  k with h� �j� C� Let h be maximal in K with h  k and h �j� C� By maximality� we
�nd	 h j� �C� Let ! 	� "�h�� Since� �C �� " and �C � !� we �nd	 " �� !� Note that it follows
that dX�k

�� � �� Since� kZ��dX	k�
m and k � h� there is an n  m with hZ��dX	k�
��n� Moreover	
�dX�h��� 
 �dX�k����� Ergo	 hZ��dX	h
��n� So we can take k

�� 	� h� k� 	� h� m�� 	� n to witness
h!� ni� Clearly� h"�mi � h!� ni� By the Induction Hypothesis	 h!� ni �j� C� Hence� h"�mi �j� �C�

!
$X

k�� � k� � h
Z�dX 	h
��

m�� � n

� � �

�� � �

"
$X

k
Z�dX 	k�


m

�

�
�
�
� �

�
��

�
�
�
� �

�
��

�

"
$X

k�
Z�dX 	k�
��

m�

Thus we have proved Claim � �

We formulate Uniform Interpolation for GL� Its proof is fully analogous to the one of Uniform Inter

polation for K�

Theorem ���� �Uniform Interpolation� We state uniform interpolation for GL

�� Consider any formula A and any �nite set of variables �q� Let � 	� �jfC�Sub�A� j C is boxedgj�
There is a formula ��q�A such that�

�a PV���q�A� � PV�A� n �q

�b b���q�A� 
 �� � �

�c For all B � Lm with PV�B�� �q � �� we have�

GL � A� B � GL � ��q�A� B�

�� Consider any formula B and any �nite set of variables �q� Let � 	� �jfC�Sub�B� j C is boxedgj�
There is a formula ��q�B such that�

�a PV���q�B� � PV�B� n �q

�b b���q�B� 
 �� � �

�c For all A � Lm with PV�A�� �q � �� we have�

GL � A� B � GL � A� ��q�B�

The semantical interpretation of the propositional quanti�ers is fully analogous to the case of K�
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�� Uniform Interpolation for S�Grz

S�Grz� a logic called after Andrzej Gregorczyk� is K extended with	

T � �A� A

� � �A� ��A

Grz � ����A� �A�� A�� A

It is easy to see that T is super�uous� Note also that over KT� �� S��� Grz is equivalent to	

Grz� ����A� �A�� A�� �A

The logic is sound for weak partial orderings such that the associated strict ordering is upward
wellfounded� We will show that the completeness of the logic in �nite partial orderings� Since we
deal with re�exive structures in this section� we will use ��� for these relations� In case our relation is
a weak partial ordering we write ��� for the associated strict ordering� For weak partial preorderings
we will use�� for the associated strict version to stress the fact that also non
trivial loops are removed�
��� will stand for S�Grz
provability�
Let X be a �nite adequate set� We construct a Henkin model JX as follows� Let

X� 	� X � f�B � �B����B � �B� j �B � Xg�

Clearly� X is again adequate� De�ne	

� The domain J is the set of X�
saturated sets "�

� " � "� 	� " � "� or for all �C�"� �C � "� and for some �D�"�� �D �� "�

� " j� p 	� p � "

It is easily seen that JX is a �nite partial order� We show that for all A in X � " j� A� A � "� The
crucial feature here is that we do not prove this fact for all A in X�% The proof is by induction on A�
We consider the only interesting case� Suppose that A is �B and that �B �� X � We show " �j� �B�
We have to produce a "� with "� � " and "� �j� B� In case B �� "� and� hence� by the Induction
Hypothesis� " �j� B� we are immediately done� So suppose B � "� Note that ��B � �B� cannot be
in "� since� if it were� �B would be in "� We claim	

f�C j �C � "g� f��B � �B�g �� B�

If it did� it would follow by S�
reasoning that	

f�C j �C � "g � ����B � �B�� B��

Hence by Grz�� f�C j �C � "g � �B� and� thus " � �B� Quod non� By the usual methods we can
construct an X�
saturated set "� such that f�C j �C � "g� f��B � �B�g � "� and B �� "�� It
follows that " � "� �with ��B � �B� in the role of the D of the de�nition�� Since B �� "�� we have�
by the Induction Hypothesis� "� �j� B�
For our proof of Uniform Interpolation we will use a di�erent Henkin model HX � which is de�ned like

JX� dropping the clause involving D� which excludes non
trivial loops� The height of HX is estimated
by the number of boxed formulas in X�� which is two times the number of boxed formulas in X �
We start with a amalgamation lemma� Consider disjoint sets of propositional variables Q� �p and
R� Let hK � k� i � Pmod�Q� �p� and hM �m� i � Pmod��p�R� be S�Grz�models�

Lemma ���� Let X � Lm�Q� �p� be a �nite adequate set� Let	

� 	� �jfC�X j C is boxedgj�

Suppose that k� ���
����p m�� Then there is a Q
extension hN� n� i of hM �m� i such that N is a
S�Grz
model and ThX �n�� � ThX�k���
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Proof

Let Z be a downwards closed witness of k� ���
����p m�� De�ne $X from K to the Henkin model H 	�
HX as follows	 $X�k� 	� "�k� 	� fB�X� j k j� Bg� De�ne further for k in K 	 dX �k� 	� dH �"�k���
Note that	 dX�k� 
 ��
Consider a pair h"�mi for " in H and m in M � Consider k�� k�m�� Let "� 	� $X�k

��� We say that
k�� k�m� is a witnessing triple for h"�mi if	

"� � "� k� � k� m� � m� k�Z��dX	k�
��m
�� kZ��dX	k�
m�

"
$X

k
Z�dX 	k�


m

�

�
�
�
� �

�
��

�
�
�
� �

�
��

�

"�
$X

k�
Z�dX 	k�
��

m�

De�ne	

� N 	� fh"�mi j there is a witnessing triple for h"�mig

� n� 	� h"�k���m�i

� h"�mi �N h!� ni 	� h"�mi � h!� ni or �" �H ! and m �M n� or �" ��
H
! and m �M n�

� h"�mi j�N s 	� " j�H s or m j�M s

Note that by assumption k�Z�
��m�� Moreover	 �dX�k���� 
 ����� Hence	 k�Z�dX	k�
��m�� So
we can take k�� k��m� as witnessing triple for n�� Let k

�� k�m� be a witnessing triple for h"�mi� Note
that for p � �p�X 	 " j� p� k j� p� m j� p� and hence	 h"�mi j� p� " j� p� m j� p� It is easy
to see that N is a S�Grz
model �even if HX need not be one�� We claim	

Claim � n� ��p�R m��

Claim � For B � X 	 h"�mi j� B � B � "�

Evidently the lemma is immediate from the claims�

We prove Claim �� Take as bisimulation B with h"�miBm� Clearly� Th�p�R�h"�mi� � Th�p�R�m��
Moreover� B has the zig
property� We check that B has the zag
property� Suppose h"�miBm � n�
We are looking for a pair h!� ni in N such that " � !� In case m � n� we take h!� ni 	� h"�mi�
Suppose m �� n and� hence� m � n� Let k�� k�m� be a witnessing triple for h"�mi� We write
"� 	� "�k��� Since k�Z��dX	k�
��m

� � n� there is a h such that k� � hZ��dX	k�
n� We take ! 	� "�h��
Clearly " � !� We need a witnessing triple k��� k��m�� for h!� ni We distinguish two possibilities�
First� " � !� In this case we can take	 k�� 	� k�� k� 	� h� m�� 	� m��

!
$X

k� � h
Z�dX	k�


n

� � �

� �

� "
$X

k
Z�dX	k�


m

�

�
�
�
� �

�
��

�
�
�
� �

�
��

�

"�
$X

k�� � k�
Z�dX	k�
��

m�� � m�
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Secondly� " �� !� In this case we can take	 k�� 	� h� k� 	� h� m�� 	� n� To see this� note that� since
k� � h� we have	 " � "� � ! and� hence� since " �� !� " �� !� Ergo dX�h� � dX�k

��� It follows
that	 �dX�h� � � 
 �dX�k��� So� hZ��dX	k�
��n�

!
$X

k�� � k� � h
Z�dX 	h
��

m�� � n

� � �

� �

�� "
$X

k
Z�dX	k�


m

�

�
�
�
� �

�
��

�
�
�
� �

�
��

�

"�
$X

k�
Z�dX 	k�
��

m�

Finally� clearly� n�Bm��

We prove Claim �� The proof is by induction on X � The cases of atoms� conjunction and disjunction
are trivial� We treat the only non
trivial case	 the right
to
left case for the box� Consider �C � X

and consider the node h"�mi with witnessing triple k�� k�m�� Suppose �C �� "�
In case C �� "� we have� by the Induction Hypothesis� h"�mi �j� C and� hence� h"�mi �j� �C�
Suppose C � "� It follows that ��C � �C� is not in "� since� otherwise� �C would be in "�

Clearly� k �j� �C� so there is an h� � k with h� �j� C� Let h be maximal in K with h � k and
h �j� C� By maximality� we �nd	 h j� ��C � �C�� Let ! 	� "�h�� Since� ��C � �C� �� "
and ��C � �C� � !� we �nd	 " �� !� Note that it follows that dX�k

�� � �� Since� kZ��dX	k�
m

and k � h� there is an n � m with hZ��dX	k�
��n� Moreover	 �dX�h� � � 
 �dX�k
�� � �� Ergo	

hZ��dX	h
��n� So we can take k
�� 	� h� k� 	� h� m�� 	� n to witness h!� ni� Clearly� h"�mi � h!� ni�

By the Induction Hypothesis	 h!� ni �j� C� Hence� h"�mi �j� �C�

!
$X

k�� � k� � h
Z�dX 	h
��

m�� � n

� � �

�� � �

"
$X

k
Z�dX 	k�


m

�

�
�
�
� �

�
��

�
�
�
� �

�
��

�

"
$X

k�
Z�dX 	k�
��

m�

Thus we have proved Claim � �

The statement of uniform interpolation and the semantical interpretation of the propositional quan

ti�ers are fully analogous to the case of GL�
We show that Uniform Interpolation for S�Grz implies Uniform Interpolation for IPC� By itself this

is not so important� since we proved Uniform Interpolation for IPC directly� I feel� however� that the
methodology of such transfers is interesting by itself�
De�ne Nec�A� 	�

V
f��p � �p� j p � PV�A�g� The G�odel Translation ���� from Li to Lm is

speci�ed as follows�




� UNIFORM INTERPOLATION FOR S�GRZ ��

� ���� commutes with atoms� � and �

� �A� B�� 	� ��A� � B��

Lemma ���� �� IPC � A� S�Grz � Nec�A�� A��

� S�Grz � �Nec�A��A�� �A� for some Ai�Li� S�Grz � Nec�A�� �A Ai���

Proof

��� and �� are a well know facts� ��� is due to G�odel� �� is probably �rst due to Rybakov� We
prove ��� The proof is by induction on the length of A� Suppose S�Grz � �Nec�A��A� � �A� We
rewrite A to conjunctive normal form treating the boxed formulas as atoms� Schematically� this form
is	
V
f
W
f�B�"�C� p�"qgg� We �nd� in S�Grz� Nec�A�	

A  
�
f
�
f�B�"�C� p�"qgg

 �

�
f
�
f�B�"�C� p�"qgg

 
�
f�
�
f�B�"�C� p�"qgg

 
�
f��
�
f�C� qg �

�
f�B� pg�g

 
�
f��
�
f��C�i�� qg �

�
f��B�i�� pg�g

So we can take Ai 	�
V
f�
V
f��C�i� qg �

W
f��B�i� pg�g� �

Theorem ���� Uniform Interpolation for S�Grz implies Uniform Interpolation for IPC

Proof

Consider A in Li� Let �q be some subset of PV�A�� Let )A be the post
interpolant w�r�t� �q of Nec�A��A�

in S�Grz� Note that	 S�Grz � �Nec�A��A�� � � )A� Hence� by the properties of the post
interpolant	
S�Grz � )A � � )A� Thus� we can �nd an Li
formula )Ai� such that S�Grz � Nec� )A� � � )A  )Ai���
We show that )Ai is the desired post
interpolant� Note that� S�Grz � �Nec�A��A�� � )Ai�� We may
conclude	 IPC � A� )Ai�
Suppose IPC � A � B� where the shared variables of A and B are in �q� It follows that	 S�Grz �

Nec�A � B� � �A� � B��� Hence� S�Grz � �Nec�A��A�� � �Nec�B� � B��� Thus	 S�Grz � )Ai� �
�Nec�B�� B��� And so� S�Grz � �Nec� )Ai � B�� )Ai��� B�� Ergo� IPC � )Ai � B�
We turn to pre
interpolants� Consider B in Li� Let �q be some subset of PV�B�� Let B� be the

pre
interpolant w�r�t� �q of Nec�B� � B� in S�Grz� Take *B 	� �B�� We can �nd an Li
formula *Bi�
such that S�Grz � Nec� *B�� � *B  *Bi��� We show that *Bi is the desired pre
interpolant� Note that�
S�Grz � �Nec�B�� *Bi��� B�� We may conclude	 IPC � *Bi � B�
Suppose IPC � A � B� where the shared variables of A and B are in �q� It follows that	 S�Grz �

Nec�A � B� � �A� � B��� Hence� S�Grz � �Nec�A��A�� � �Nec�B� � B��� Thus	 S�Grz �
�Nec�A��A��� B�� And so� S�Grz � �Nec�A��A��� *B �since �Nec�A��A�� is self
necessitating�� So�
�nally� S�Grz � �Nec�A��A��� *Bi�� Ergo� IPC � A� *Bi� �

It would be interesting to �nd a similar argument to prove Uniform Interpolation for S�Grz from
Uniform Interpolation for GL�




� S� DOES NOT HAVE UNIFORM INTERPOLATION ��

�� S� does not have Uniform Interpolation

In their paper ��� Ghilardi and Zawadowski show that S� does not satisfy uniform interpolation� We
provide a version of the proof� In this section we use � for S�
provability� The models we consider
will be S�
models�

Theorem ���� �� The uniform interpolants �if they exist� are semantically quanti�ers w�r�t�
bisimulation extension for �nite models� Consider� e�g�� a formula A��p� �q�� Suppose A has a
uniform post�interpolant )A��q� for �q� Then� for any �nite �q�model K and k � K � k j� )A i� there
is a �p� �q�model M and an m � M such that k ���p� m and m j� A� �We can� but need not� restrict
the extending models to �nite models�

�� Suppose S� satis�es Uniform Interpolation� The uniform interpolants are semantically quan�
ti�ers w�r�t� bisimulation extension� Consider� e�g�� a formula A��p� �q�� Let the uniform post�
interpolant of A for �q be )A��q�� Then� for any �q�model K and k � K � k j� )A i� there is a
�p� �q�model M and an m � M such that k ���p� m and m j� A�

Proof

We prove ��� and �� simultaneously� plugging in the extra assumptions of �niteness and full Uniform
Interpolation� where needed� We treat the case of the post
interpolant� Consider A� )A� a uniform
post
interpolant of A for �q� K and k� Suppose �rst that there is a �p� �q
model M and an m � M such
that k ���p� m and m j� A� Clearly� since A � )A� we �nd	 m j� )A� Since )A � Lm��q� and since k and

m bisimulate w�r�t� Lm��q�� we have	 k j� )A�
For the converse� suppose k j� )A� Let X be the set of subformulas of A� Let� for k� � K �

"�k�� 	� fB�Lm��q� j k� j� Bg� We say that !� of X� k��saturated if

�� !� � X

� "�k���!� �� �

�� �"�k���!� � B and B � X�� B � !�

�� �"�k���!� � �B�C� and B�C � X�� �B � !� or C � !���

We specify M �

� M 	� fhk��!�i j !� is X� k�
saturatedg

� hk��!�i � hk���!��i 	� k� � k�� and for all �B � !�� we have	 �B � !��

� hk��!�i j� r 	� k j� r or r � !�

Clearly M is an S�
model� assuming that M is non
empty� We show that there is a !� consistent
with "�k�� such that A � !� Consider "�k�� A� If this set were inconsistent there would be a D in
"�k� �and� hence� in Lm��q��� such that A � "D� It follows� by the properties of the post
interpolant�
that )A � "D� But� this is impossible� since k j� )A� By the usual methods we may extend fAg to an
X� k
saturated !� Thus we have a node m 	� hk�!i in M � Note that if K is �nite� then so is M �
De�ne k�Bhk���!��i 	� k� � k��� We show that B is a bisimulation between K and M ��q�� It is easy

to see that B preserves the forcing on �q and satis�es the zag
property� We verify the zig
property�
Suppose k�Bhk��!�i and k� � k��� We claim that "�k���� f�B�X j �B � !�g is consistent� If it
were not� we could �nd a D in "�k��� such that D� f�B�X j �B � !�g is inconsistent� Clearly� �D
must be in "�k��� and� hence� it would follow that "�k���!� is inconsistent� Quod non� By the usual
methods we can extend f�B�X j �B � !�g to an X� k��
saturated !��� Thus we �nd	 k��Bhk���!��i
and hk��!�i � hk���!��i�




� S� DOES NOT HAVE UNIFORM INTERPOLATION ��

Finally we show that for all C in X 	 hk��!�i j� C � C � !�� The proof is by induction on C� We
treat the only non
tivial case� viz�� C � �E from left to right� Suppose� for all hk���!��i � hk��!�i� we
have hk���!��i j� E� By the usual arguments� it follows that	

for all k�� � k� 	 "�k���� f�B�X j �B � !�g � E�

Let F 	� �
V
f�B�X j �B � !�g � E�� We show that there is a �q
formula *F � such that for all k�� � k�

we have "�k��� � *F and *F � F � Here we split cases between ��� and �� of the theorem� Ad ���	
suppose K is �nite� By compactness� for each k�� � k� there is a D�k��� � "�k��� such that D�k��� � F �
We can take *F 	�

W
fD�k��� j k�� � k�g� Ad ��	 suppose S� has full Uniform Interpolation� Then�

F has a pre
interpolant �w�r�t� �q�� We take this pre
interpolant as *F � At this point the proofs of ���
and �� merge again� We have	 *F � f�B�X j �B � !�g � E� It follows that k� j� � *F � and� hence�
that "�k���!� � �E� Ergo� �E � !�
Thus� we may conclude	 k ��p hk�!i and hk�!i j� A� �

Exercise ���� Prove the converse of part �� of our theorem	 if S� has quanti�er elimination for the
bisimulation extension quanti�ers� then S� has uniform interpolation�

Consider the following formula A�p� q� r�	

p ���p� �q� ���q � �p� ���p� r� ���q � "r�

Suppose )A�r� 	� �p�q�A�p� q� r� exists� We have	

Theorem ���� Consider any �nite r�model K and k in K � Then� k j� )A i� there is in�nite sequence
k � k� � k� � � � �� such that k�i j� r and k�i�� j� "r� �Our sequence will contain loops� so the
underlying set of the ki need not be in�nite�

Proof

Suppose k j� )A� Then� by theorem ����� there is a p� q� r
model M and a node m in M such that	
k ��p�q� m j� A� We construct simultaneously sequences �ki�i	� and �mi�i	� such that	 m � m��
ki ��p�q� mi� m�i j� p� m�i�� j� q� ki � ki��� mi � mi��� Note that we get� m � mi� and so	
mi j� �p � r� and mi j� �q � "r�� Hence m�i j� r and so k�i j� r �as promised�� Similarly�
m�i�� j� "r and so k�i�� j� "r� First note that k� � k ��p�q� m � m� j� p� Suppose we have� e�g��
constructed k�i� m�i satisfying the conditions� We have m � m�i and� hence� m�i j� �p� �q�� Since�
by assumption� m�i j� p� there is an m�i�� � m�i� such that m�i�� j� q� Moreover� since k�i � m�i�
we can �nd a k�i�� � k�i� such that k�i�� ��p�q� m�i��� The �i� ��
case is similar�
For the converse� suppose K contains an in�nite sequence k � k� � k� � � � �� such that k�i j� r and

k�i�� j� "r� We extend the forcing of K with p� q as follows	

� k� j� p 	� k� � k�i for some i�

� k� j� q 	� k� � k�i�� for some i�

It is easy to see that the speci�ed model is the desired extension� �

Theorem ���� There is no formula B�r� � Rm�r�� such that for all �nite models K and all k in K �
k j� B i� there is in�nite sequence k � k� � k� � � � �� such that k�i j� r and k�i�� j� "r�




� S� DOES NOT HAVE UNIFORM INTERPOLATION ��

Proof

Suppose there is such a B� Suppose the box
depth of B is smaller or equal than n� Consider the
model following model N	

� N 	� f�� �� � � � � i� n��� n�g

� k � k� 	� k � k� or k � fi��� i�g

� k j� r 	� k is even

� r

�

�

��������
�����
n r

�

n��

�

�
n� r

De�ne further	 kBi k� 	� k � k� or �k ! k� �mod� and i 
 min�k� k���� We check that B is a layered
bisimulation� Suppose k� Bi k�� In case k� � k� we are easily done� so suppose� e�g� k� � k�� It
follows that i 
 k�� Clearly� k� cannot be in fn��� n�g and� so� k�  k�� Preservation of atoms is
immediate� Suppose i � �� We check the zig
property� If k�� � k�� then k

�
� � k�� So we can �nish the

zig
diagram by taking k�� 	� k��� We check the zag
property� Suppose k
�
� � k�� In case k

�
� 
 k�� we can

take k�� 	� k��� Suppose k
�
� � k�� In this case we take k

�
� 	� k� if k� ! k�� �mod� and k

�
� 	� k� � � if

k� �! k�� �mod �� �Remember that � � i 
 k��� It is easy to see that i�� 
 k��� � k�� � min�k
�
�� k

�
���

It follows that nB�n n�� From our assumption we get that n� j� B� It follows that n j� B�
A contradiction� �

We may conclude that S� does not have uniform interpolation�

Open Question ���� In ��� it is shown that in theories having Uniform Interpolation every �nite
substitution yields an exact formula� Is there a �nite substitution in S�� that does not yield an exact
formula#
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