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Abstract

In this paper we give perspicuous proofs of the existence of model descriptions for finite Kripke
models and of Uniform Interpolation for the theories IPC, K, GL and S4Grz, using bounded bisim-
ulations.

1 Introduction

Bisimulation and bounded bisimulation can be used to ‘visualize’ the proofs of two classes of well known
results in intuitionistic and modal propositional logic. The first class consists of results guaranteeing
the existence of model descriptions for certain classes of finite Kripke models. The other class consists
of interpolation and uniform interpolation results. The aim of this paper is to present proofs for results
in these two classes of theorems as clearly and perspicuously as possible.

A model description in modal or intuitionistic logic of a Kripke model K with designated node k
is a formula A such that every other node m in any other Kripke model M bisimulates with k if and
only if it satisfies A. We show the existence of model descriptions for transitive models both in the
modal and the intuitionistic (persistent) case, without explicitely programming the formulas.

Ordinary interpolation for a given theory T says that if T+ A — B, then there is a formula I(A, B)
in the language containing only the shared propositional variables, say ¢, such that T+ A — I and
T F I — B. Uniform interpolation is a strengthening of ordinary interpolation in which the data in
terms of which the interpolant is to be specified are weaker: the interpolant can be found from either
A and ¢ or from ¢ and B. Thus, if uniform interpolation holds, there is, for every A and ¢, a ‘post-
interpolant’ I(A, ¢) such that, for all B such that T+ A — B and such that the shared propositional
variables of A and B are among ¢, we have T+ A — I(A,q) and T - I(A,q) — B. Similarly there is
a pre-interpolant. As we will see, uniform interpolation is equivalent to the possibility of interpreting
certain propositional quantifiers in T. Yet another way of viewing the phenomenon is as the existence
of quantifier elimination for certain quantifiers. In this paper I prove Uniform Interpolation for IPC
(Intuitionistic Propositional Calculus), for K, for GL (Léb’s Logic) and for S4Grz.?

INo originality is claimed for the result. It was proved earlier by Silvio Ghilardi.

2Uniform Interpolation for IPC was first proved by Pitts using proof theoretical methods. It was proved by the
present method by Ghilardi and Zawadowski and, independently but later, by the author. Uniform Interpolation for
GL was first proved by Shavrukov. It was proved by the present method by the author. To give the due credit it should
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Uniform interpolation for S4Grz is rather surpising, since it fails for the closely related theory S4.
We reproduce a version of the proof of Ghilardi and Zawadowski that Uniform Interpolation fails for
S4 at the end of this paper.

2 Models

We start with introducing the notion of Kripke model and specifying some notations. A (Kripke)
model is a structure K = (K, <, |=, P). Here:

e K is a non-empty set of nodes

e < is a binary relation on K

e P is a (possibly empty) set of propositional variables®
e = is a relation between K and P

We can, alternatively, view a model K as a function that assigns to a fixed set of pairwise disjoint
labels {K, <, }=, P} the appropriate objects. In this style we will write e.g. Pk for K(P). We will
say that K is a P-model if Px = P. Similarly for K, }=-model, etcetera. Similar conventions will be
employed for other kinds of models. Define: PVk(k) := {p€Px | k =k p}. Note that |= and PV are
interdefinable. p,q, 7 will range over finite sets of propositional variables. A model K is finite if both
Kk and Pk are finite. We will call the class of models Mod.

It is often pleasant to think in terms of a node in a model. It is worthwile to make this notion
explicit. A pointed model is a structure K = (Ko, k), where Ky is a model, and % is a node of Ky. A
pointed model (K, b) is called rooted if for all k € K: b <* k* b is called the root. We can confuse a
class of models with its disjoint union, taking as new nodes the pointed models corresponding to the
models of the class. We define, e.g., (K k) < (K k') :& K =K and k <x k'. Thus, we can confuse
a pointed model (K, k) with a ‘free floating’ node k. Note that the disjoint union of all models is not
strictly speaking a model in our sense. The set of popositional variables that is declared to be present
need not be constant in different ‘nodes’. It is essential for our purposes for this to be so, since we want
to study transitions between nodes in different models that do not leave the set of variables present
constant. The totality of pointed models will be called Pmod and the totality of rooted models Rmod.

Suppose K is a —possibly pointed— P-model. Then K[Q] is the P n Q-model obtained by restricting
Ek to PnQ. For any k € K, K[k] is the rooted model (K', k,<',|=',P), where K' := tk :=
{k'eK | k <* k'} and where <" and [=' are the restrictions of < respectively |= to K'. (We will often
simply write < and = for <’ and ='.) In case we are using the convention of confusing a node k with
its pointed model, (K, k), we will, e.g., write k[Q] for (K[Q], k).

We will consider several properties of models. K will be said to be transitive if <k is transitive,
etcetera. K is persistent if PV is monotonic w.r.t. < and C.

It will be convenient to extend the natural numbers w with an extra element co. Let w®™ be wuU {oo}.
We let a, 3, ... range over w™>. w™ is equipped with the obvous ordering <. We extend addition by:
00+ a = a+ oo =o00. We extend cut-off substraction in our structure by: co —n = co. We will avoid
the question of what co — oo is.

Transitive models are going to play a special role in this paper so we will need some some special
notions concerned with transitive models. Consider any transitive model K. Define:

o k<TEk :k<k' andnot k' <k

be pointed out that the method here is very similar to the one used by Ghilardi and Zawadowski and, independently,
the author, to prove ther result for IPC. The result for S4Grz is, as far as I know, new in this paper.

3We take the set of propositional variables as ‘internal’ to the models (and the languages), because we want to think
about model extensions, which involve changing the set of variables of the model.

42* is the transitive reflexive closure of <.
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Figure 1: The zig,1-property

o kmk':©k=F or (k<k and k < k). So =~ means being in the same cluster.
o dx (k) :=sup({(dx(k')+1)ew™> | k' =T k})
e If K is pointed with designated node k, we put: d(K) := dx (k)

Note that if ¥ < &', then dx (k') < dg(k) — 1. k is a top node if it is a top node w.r.t. <*. Note that
k is a top node precisely if dk (k) = 0.

3 Layered Bisimulation

In this section we introduce bisimulation and bounded bisimulation. To avoid formulating most
definitions and theorems twice —once for bounded and once for ordinary bisimulation— we make use
of a portmanteau notion: layered bisimulation.®

Consider P-models K and M. We write K := Kg and M = Ky. A layered bisimulation or
£-bisimulation Z between K and M is a ternary relation between K, w*™ and M, satisfying the
conditions specified below. We will consider Z also as an w™-indexed set of binary relations between
K and M writing kZ,m for (k,a,m) € Z. We often write kZm for kZ..m. We give the conditions:

1. kZam = PV (k) = PVy(m)
2. k' =g kZ4y1m = there is an m’ with k' Z,m' =y m; i.o.w. =g 02,11 C Z40 =)
3. kZar1m <yym' = thereis a k' with k <x k'Z,m/; i.o.w. Z4110 <y C <k 02,

Note that we allow /-bisimulations to be undefined on some nodes. They may even be empty. Note
also that ¢-bisimulations occur only between models for the same set of variables. We call (2) the
Ziga+1-property (see figure 1) and (3) the zagai1-property. If o = oo we simply speak of the zig-
and the zag-property. A binary relation Z between K and M is a bisimulation between K and
M iff {(k,00,m) | kZm} is an {-bisimulation. We will simply confuse bisimulations Z with the
corresponding f-bisimulations. An {-bisimulation Z is a bounded bisimulation if for some natural
number n: kZ,m = a < n.

Let IDg := {(k,a,k) | k € K, a € w>®}. Suppose Z is an {-bisimulation between K and M and
that ¢ is an (-bisimulation between M and N. We define Z o U by: (Z olU)y := Z4 0 Uy,, and zZ

by (Z)a = (/Za\), where (.) is the usual inverse on binary relations. Z¢ is the relation given by:
Z§ 1= Zayp. We say that Z is downward closed if for all @ < 8: Zg C Z,, The downward closure Z|
of Z is the smallest downwards closed relation extending Z. In the following theorem we collect the

necessary elementary facts.

5Bisimulation is used both in computer science and modal logic. See e.g. the papers in [18] for an impression. In
model theory bisimulation and bounded bisimimulation appears in the guise of Ehrenfeucht games and back-and-forth
equivalence. See e.g. [8].
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Theorem 3.1 1. IDx is an £-bisimulation.

2.

Z ol is an C-bisimulation between K and N.

. Z is an (-bisimulation between M and K.

3
/.
5
6

Z% is an (-bisimulation.

. The downward closure of Z is an (-bisimulation.

. Suppose Z is a set of (-bisimulations between K and M. Then |JZ is again an £-bisimulation

between K and M. It follows that there is always a mazimal £-bisimulation, ~M between two
models. (1)-(5) imply that for any a:

e IDx C ~KM
o KM 5 AMN c AKN

o ~EM s downward closed.
Note that, by the above, each of the ~*™ is an equivalence relation.

Consider k € K and m € M. Let Z[k,m] be the restriction of Z to Tk x tm. Then Z[k,m] is
an (-bisimulation between K[k] and M[m].

Consider two transitive models K and M. Consider the relation W, given by:
EW.m :& for some k',m': k= k'Zom' ~m and k ~o m.

We have: W is an £-bisimulation. It follows, e.g., taking M := K and Z := IDy, that % N >~
is an C-bisimulation on K.

We will often drop the superscript of ~ In case a = oo, we will drop the subscript of ~5M (if no
confusion is possible). We will say that k£ and m (considered as pointed models) n-simulate if k ~, m
and that k and m bisimulate if kK ~ m. Z, is full if it is both total and surjective as a relation between
K and M. We will say that K and M a-bisimulate (bisimulate), or, K 22, M (K = M) if there is a
full a-bisimulation (bisimulation) between them. Z : K 2, M means that Z is a full a-bisimulation
witnessing that K =, M. Note that for rooted models K and M, we have: K =, M < bg ~ by.5

We can collapse K to an a-irreducible (irreducible) P-model, K* := Coll,(K), by dividing ~, (~u)
out. The construction is as follows:

[k]a is the ~, equivalence class of k.

o K®:={[k]a | k € K}; we let k, k' range over K.

e xl=piff Ikex k=p

o k< k' iff JkexIk'ex’ k<K

We collect the simple facts about the collapse in a theorem.

Theorem 3.2 1. The mapping ¢x : k — [k]o is a full, functional a-bisimulation (a surjective

a-p-morphism) from K to K*; note that ¢ considered as a relation is precisely the relation €.
K*® is a-irreducible, i.e., if K ~4 k', then kK = K'.

Suppose K =, M, then ~, is a bijection between K* and M*. It is an isomorphism of models

if = o0.

6Note the difference between “K 22, M’ and “K ~, M”. The first statement relates ordinary models and the
second one pointed models, saying that their points a-bisimulate.
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Proof

1. It is easy to see that ¢ is full, functional and that it preserves atoms. Moreover ¢ has the full
zigo-property: it is monotonic. Define, for v < a: Z, := 2§K o¢. In other words: kZ,k iff
for some k', k ~, k' and k' € k. We show that Z is an (-bisimulation between K and K*. We
check the zag direction. Suppose d + 1 < a and kg ~s54+1 k1 € k2 < k3. This means that there
are ko, k3 such that: ko ~s41 k1 ~a k2 < k3 € k3. Since ~ is downward closed and closed under
composition, it follows that: kg ~s11 k2 < ks € k3. Hence, by the zagsi-property for ~, we
find a ky, with: ko < k4 ~5 k3 € K3.

=5 S
k4 _________________ k?) - h:3
A
<K <K ~<Ke
' =641 ~ €
ko k1 - k2 k2

Clearly Z, is precisely ¢, so we are done.

2. Suppose K ~, k', then for k € k and k' € «/, we have

e e R 8

Hence: k ~K k' and, thus, k = &'.

3. Suppose K =, M. Consider s in K*. Pick a k in k. There is an m in M with k& ~, m, so:
Kk ~o k ~, m ~, [m], and hence k ~, [m],. Thus ~, is total between K* and M®. Similarly
for the surjectiveness. Suppose k ~, p and & ~, u'. It follows that u ~, ', and hence p = pu'.
~ is structure preserving, since it is bijective and has the zig- and the zag-property.

Q

The following theorem tells us that the number of ~,-equivalence classes on a model has a fixed finite
bound that only depends on n.

Theorem 3.3 Define F(N,0) := 2N, F(N,n+ 1) := 2FWNV+N | Suppose |P| = N, then the number
of possible ~,, equivalence classes is smaller or equal to F(N,n).

Proof
By a simple induction on n, noting that the n 4+ 1-equivalence class of a node k is fully determined by
the atoms forced in k and the n-equivalence classes of the nodes ‘seen’ by k. Q

4 Changing variables

In this paper we are particularly interested in things like extending or even changing the forcing of
the propositional variables on nodes. We introduce the relevant notions. In this section k, k', m,m’...
will be pointed models.

ok ~y,om:& PrnQ = P,nQ and k[Q] ~o m[Q]. So, roughly, this means that & and m
a-bisimulate w.r.t. the variables in Q.



5 PERSISTENT MODELS AND BISIMULATION ORDERINGS 6

o k~,0m:& k~y0mand Q C Pp. So, roughly, this means that k differs from m modulo
~, only at @ and m is at least a Q-node.

ek Coom: = k~y,p, mand QNPr = 0 and QUP, = Pp,. We will say that m is a Q,a-
bisimulation extension of k. In case a = oo, we will speak of a Q-bisimulation extension.

5 Persistent models and bisimulation orderings

Upwards persistent models play an important role in this paper. We give an illustrative example of
such a model and the application of the notions of the previous section to the model.

Example 5.1 We specify the model I, which is the Henkin model of the one variable fragment of
the Intuitionistic Propositional Calculus (IPC). It is also the one point compactification of the 1-
characterizing model (in the sense of [19]) for IPC.

o Kj:=w*™

e b=
sa<pf:ef+l<aora=p
o Pr:={p}
eafEp:&ea=0

All facts proved here about this model follow directly from known results in combination with later
results of this paper. Since our purposes are illustrative, we prove the basic facts from scratch. In
figure 2 we give a picture of I. It is easily verified that <p is a weak partial ordering. Moreover I is
persistent. Below we collect some simple facts about I. 1]

Theorem 5.2 I is irreducible, i.e. any bisimulation Z : 1 ~1 is the identity on w.

Proof

Consider any Z : I ~ I. We may assume that Z is symmetrical. Suppose that for some o and 8 : «Zf3
and a # . Let a be <-minimal such that there is a # with a«Z8 and a # . Clearly 0 < a < oo.
Since a < 3, it follows that (¢« —1) +1 < 8 and hence 8 < (a—1). Since aZ(, there must be a v = «
with vZ(a — 1). By the <-minimality of «, we find that v = (o — 1), and hence (o — 1) = a. Quod
non. Q

Define aE,3:< a = or (a >y and 3> 7.

Theorem 5.3 E is an {-simulation between I and 1.

Proof

We verify the zig-property. Suppose 6 > aE, 1. In case § > 3, we have: dE,6 and aE,3 < 6. So we
are done. Suppose not § = G. It follows that 3 < § + 1. Moreover we have a # 3 and hence a > v+ 1
and 8 > v+ 1. It follows that 3 > v and § > 7. We may conclude that: JE,3 and aFE,+108 < S.
Again we are done. Q
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Op 1
A A
2 3
A A
4 5
A A
6 7
A A
00

Figure 2: The Henkin model of IPC(p)
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Define the ‘shift right’ function v on w® by: t(a) := the largest 8 such that 2.8 < a. So t(co0) = oco.
Theorem 5.4 di(a) = t(a).
We state an evident fact about persistence.

Theorem 5.5 Consider two models K and M. Suppose that K is persistent and that K = M. Then
M is persistent.

If we are studying persistence it is often more natural to think in terms of certain orderings related to
layered bisimulation, than in terms of layered bisimulation itself. We can think of these orderings as
a kind of extension of the ordering in the model. For the rest of this section we think about persistent
pointed P-models. We let k, k', m,m’ ... range over such models.

o k <om:& PV(k) CPV(m)
o k <ap1 m:e PV(E)CPV(m), VYm's=m3Ik'~k' k' ~, m'
In case a = 0o , we will drop the subscript.
Theorem 5.6 1. <, is a partial preordering on pointed, persistent P-models.
2. k<K =k, K.
3. a<f==25C <.
4. k~ome k<.mandm <, k.

5. k 2o m & for some k'=k k' ~m.

Proof

We prove (4). For « = 0 this is easy. Suppose a > 0. “=” Easy. “«<” Suppose k =<, m and
m =< k. We show that & :=~ U{(k,a,m)} is an £-bisimulation, and, hence, that k ~, m. Clearly
PV (k) = PV(m). The zig-property for U follows from the fact that m <, k. The zag-property for U
follows from the fact that k& <, m. a

6 The big jump: from finite to infinite

In some cases one can conclude that two nodes bisimulate from the fact that they n-bisimulate. This
information can be usueful, since —as we shall see— in some cases it yields a cheap proof of the
existence of formulas describing a model and formulas ‘omitting’ a model. We will be particularly
interested in cases where the relevant n can be found by looking at one of the relevant models alone.
We will restrict ourselves in this section to transitive models. Consider two transitive P-models K
and M. Let Z be an {-bisimulation between K and M. We may assume that Z is downwards closed.
We may also assume that Z is cluster-preserving i.e., (&% oZo ~)n ~¢ C Z. If not we replace Z
by (= oZo =)Nn =. This is again an ¢-bisimulation by theorem 3.1. Moreover, we have, by the
transitivity of ~:

RomxoZomxoR)N

N 1N

(RoZomr)N
Theorem 6.1 Define:

e §(k,m) :=dg(k) + dm(m)

o kUM & kZs m)s1m

Then U is a bisimulation between K and M.
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Proof

We prove that ¢ has the zig-property. Suppose &'~k Zs (g, m)+1m. Hence, for some m': k' Z5( pym'>=m.
It follows that PV(k') = PV(m'). In case k' = k and m' ~ m, we find: dg(k') = dg(k), du(m') =
dyi(m) and by cluster-preservation: k'Zs(x,m)+1m'. Hence, k' Z5 pry41m' = m. In case not both
k' =~ k and m' =~ m, we find that §(k',m') + 1 < §(k,m) and hence, by downwards closure:
k'Z(;(kr’mr)+1m'>m. a

In the transitive, reflexive, antisymmetric (i.e. wpo) case there is a marginal improvement.

Theorem 6.2 Suppose K and M are transitive, reflezive and antisymmetric. Let Z and 6 be as
before. Define: kUm & kZsk mym. Then U is a bisimulation between K and M.

Proof

We prove that U has the zig-property. Suppose k' = kUUm. We are looking for m' with k'Um’ = k.
In case k' = k we may take m’ := m. In case k' =T k, we have: §(k,m) > 0 and hence for some n:
k' Z5(k,m)—1n > k. Since §(k',n) < 6(k,m) — 1, we find: &' Z5s nyn > k. So we may take: m' := n.

a

Example 6.3 Consider the model I of example 5.1. Clearly I satisfies the conditions for theorem 6.2.
Note that for i € w: (2,2 + 1) = ¢(2¢) + v(2i + 1) = 2i. Since 2i and 2i + 1 do not bisimulate,
for no f-simulation Z between I and I: (2i)Z;(2i + 1). On the other hand for ¢ > 0, we have:
(2i)E2;—1(2i + 1). So theorem 6.2 is optimal. a

In the transitive, irreflexive (i.e. spo) case there is a substantial improvement:

Theorem 6.4 Suppose K and M are transitive and irreflezive. Let Z be as before. Define:
o u(k,m) := min(dk(k),dm(m))
o kUm & kZ,(km)+1m

Then U is a bisimulation between K and M.

Proof

We prove that U has the zig-property. Suppose k' = kldm. There is an m' with: k'Z, nym' = m.
Note that dg(k') < dk(k) — 1 and dy(m') < dx(m) — 1. Hence: u(k,m) > u(k',m') + 1. So we find:
k’Z#(kr7m/)+1ml - m. a

Theorem 6.4 shows that in the irreflexive case n need only depend on the depth of our node in, say,
K . Surprisingly this phenomenon extends beyond this trivial case to the general transitive case. We
first give the general argument. Then we give a sharper version for the case where K and M are
partially ordered. The estimate of the result was sharpened from 2.d(k) + 3 to 2.d(k) + 2 by Giovanna
d. Agostino.

Theorem 6.5 Suppose K and M are transitive models. Define kUm & k ~5 g(j)42 m. Then U is a
bisimulation between K and M.
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Proof

Suppose kUUm. Both in applying the zig- and the zag-property, we will arrive at a constellation:
k < k' ~3q(k)4+1 m' = m. Both the zig- and the zag-property applied to &' ~s4x)41 m/', yield a
constellation: k' < k" ~44) m" = m'. Thus, we have (by transitivity in M): &k ~5q(x)42 m < m".

2d(k) 2d(k)+1

kll o mll o k

A A A

< =< |

, 2d(k)+1 , :
—m 1<

A A 1

< < |

2d(k)+2 2d(k)+2 |

m k

By the zig-property, we can find an k* such that: k& < k* ~y4(4)41 m". Tt follows that:
K" a0y m" ~aqk)41 K

By the downwards closure and transitivity of ~,, we find: k" ~,4) k*. We distinguish two cases.
(i) k", k* belong to the same cluster in K. In this case we find: k" and k* bisimulate, since they force
the same atoms (by theorem 3.1). (ii) " and k* do not belong to the same cluster. In this case either
d(k'") < d(k) or d(k*) < d(k). It follows that d(k")+d(k*)+1 < 2d(k). Applying theorem 6.1 (with
K both in the role of K and of M), we find: k" ~ k*. So, in both cases, we have, k' ~ k*. We find,
E" ~ k* ~y401)41 m", and, hence, k" ~54(4)41 m”. We may conclude that &' and m' satisfy both the
zig- and the zag-property for ~y )12 and, so, k' ~5q(x)42 m', and, a fortiori, k' ~5qk1)42 m', ie.,
EUm'. a

In the following theorem we sharpen the result for the case of partial orderings.

Theorem 6.6 Suppose K and M are transitive, reflexive and antisymmetric. Io.w. suppose that
their accessibility relations are (weak) partial orderings. We will use < instead of < to stress this fact.
We use < for the corresponding strict ordering. Let Z be a downward closed £-bisimulation between
K and M. Define: kUm & Ip kZ q(py+1p 2 m and kZ; gym Then U is a bisimulation between K
and M.

Note that by downward closure: kZ5 g(x)+1m = kUm.

Proof
Suppose kUm with witness p. We first prove that I/ has the zig-property. Suppose k' = kidm. We
want an m' > m and a p' with p’ witnesses k'Um’. In case k' = k, take p’ := p and m' := m.

Trivially p’ witnesses k'Um'. If k' = k we find that dx(k) > 0. From k25 4ym, we get an m' >
m with k'Z5 gky-1m’. We have: 2.dx(k')+1 < 2.dx(k) — 1, and hence k'Z5 4(41)41m'. Moreover:
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E'Zy agryn = m'. Ergo we may take p' := m/'.

Za.d(k Z.d(k)+1
K=k ----- “. m' =m L (——)——p':m’
A A
= = <K I'jM
ZQ.d k : ZQ_d k :
k (k) m 1 (k) m
- =M - =M
2y d(k)+1 Z2.d(k)+1
. (k) S ip . () )

We check the zag-property. Suppose kUUm < m'. We want a k' > k and a p’, where p’ witnesses
E'Um'. We have p < m < m' and hence p < m/. Since kZ; 4(1)11p, it follows that for some k' > k:
k'Zy acym'. There are two possibilities: k' =k or &' = k. In case k' = k take p' := p. In case k' = k,

take p’ :=m'.

Z2.d(k) Zy.d(k)+1

E =k --------loo_- m' Ko p=m'
A § A A

= =M <K: =M
: Z3.d(k) : Z3.d(k)
: k m \ k m
\ k \ A
L =M D =M
| Z2.d(k)+1 | 25 d(k)+1
k p=p k p

Q

Example 6.7 1. Consider the model I of example 5.1. Let i € w. We have 2.d(2i + 1) = 2.1. Let
Z be any (-simulation between I and I. Since 2i + 1 and 2i + 2 do not bisimulate, we cannot
have: (2i 4+ 1)Z3;4+1(2i + 2). On the other hand we do have: (2i + 1)E2;(2i + 2). So the index
in theorem 6.6 cannot be lowered.

2. We illustrate that U/ with klUm & kZ5 g4(r)41m, is not generally a bisimulation and thus that
the proof of theorem 6.6. cannot be simplified in this direction. Consider the weakly partially
ordered (-models K and M with: K := {a}, M := {0,1}, where the wpo on M is.generated
by: 0 < 1. Take Z := {{a, 1,0), (a,0,0),{(a,0,1)}. Clearly Z is a downward closed ¢-simulation
between K and M. Evidently Z; 4(2)4; is not a bisimulation.

a

For the case of persistent models there is a variant of theorem 6.6, that is easier to apply.

Theorem 6.8 We consider persistent and partially ordered models and nodes (pointed models) of the
same kind. The relation Z between K and M defined by:

kZm &k =9 gy m and k =5 g(r)41 M

is a bisimulation. It follows that: k <5 4r)41 M = k 2o m.
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Proof

Consider k,m with kZm. It is clear that k£ and m force the same atoms. We check the zig-property.
Suppose k X k'. In case k = k', we choose m' := m. In case k # k', we apply k ~ g m, to
find an m’ = m with k' >~ g)—1 m'. Since, 2.d(k') + 1 < 2.(d(k) — 1) + 1 < 2.d(k) — 1, we find,
k" ~y a@ry41 m'. Thus, a fortiori, k'Zm'. We check the zig-property. Suppose m =< m'. Since,
kE =2.4(k)+1 m, there is an k' = k with &' ~5 44y m'. In case k = k', we have k' = k =<5 g(p)41 m/'.
Thus, k'Zm'. In case k # k', we find k' ~ 4(41)41 m'. Hence, k'Zm/.

To prove the consequence, suppose k <3 g(x)4+1 m. Since m < m, there is a k' = k with &' . d(k) M-
In case k = k', we find ¥'Zm. In case k # k', we find k" ~ 4x)41 m, and hence k'Zm. In both cases,
we have, k' ~ m. Q

7 Some basic facts about IPC

In this section we present some basic facts about and constructions in IPC. The present section is not
a self contained introduction. It is intended to fix some notations and to establish soem convenient
lemmas. F will stand for derivability in IPC in this section. Consider any P. We define £!(P) as the
smallest set such that:

e PCLYP), L, T € LYP)
o if A, B € Li(P), then (ArB), (AvB), (A — B) € Li(P).

PV(A) is the set of propositional variables occurring in A. Sub(A) is the set of subformulas of A.
A model is an IPC-model if it is transitive, reflexive, antisymmetric and persistent. Consider an IPC
P-model K we take |=; to be the smallest relation between K and £'(P) such that:

kEipeoklEp k=T

o ki ANB: & k|l=; Aand k =; B

ok AvB: & kl=;Aork = B

e ki A—» B:oVE-k (K E; A=k E; B)

We will omitt the subscript i, as long as it is sufficiently clear from the context that the persistent
case is intended. Note that, by transitivity, the persistence for P extends to the persistence for L*(P).
Define further:

e kET:o forall AcT:kEA
e KEA:w forallkeK kEA

A set X is P-adequate if X C L(P) and X is closed under subformulas. A set I' is X-saturated (for
IPC) if:

.TCX
2. TH L
3. TFAand AeX)= A€l

=

(TH(BvC) and (BvC)€e X)= (Be€T or CeT).
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We describe the Henkin construction for IPC. To lighten our notational burdens we will assume in
this section that we work with some fixed P. Consider a P-adequate set X. The Henkin model for X
is the model H := Hx , where:

Ky :={A | A is X-saturated}
e I'<A:sTCA
o Py:=PnX

F'=Ep:epel
It is easily verified that H is an IPC-model.
Theorem 7.1 for all AeX : T Eg A< A€l

If X is finite, then Hy is finite. We say that M is a rooted Henkin model if it is of the form Hx [A]
for some X-saturated A. We have:

Theorem 7.2 (Kripke Completeness for IPC) For I' C L{(P) and A € L}(P):
I'kp Ae for all P-models K : T g A.
In case T is finite, we can improve this to:
Pkp A< for all finite P-models K : T' = A.

Since depth of (nodes in) models will be important in this paper, we remark that a slightly different
notion of Henkin model reduces depth in the IPC-case. Define Gx like Hy , except:

eI'<A:eT'CAandforsome (C—-D)e X:C¢gTl',CeAand D¢gA

The standard argument that forall A € X: T' = A & A € T', works without change for our alternative
model. Note that e.g. for X = {p} the depth of Hx is 1 and the depth of Gx is 0.

For IPC we have a distinctive result involving downward extensions of models. We first introduce
the necessary machinery. Let K be a set of IPC-models. M := M(K) is the IPC-model with :

M := {(k,K) | k € Kg and K € K}

(k,K) < (m,M) :& K=M and k <x m
Pum = \/{P}K | Ke K}.
(h,K) Ep:ekl=p

In practice we will forget the second components of the new nodes, pretending the domains to be
disjoint already. Let K be a IPC P-model. B(K) is the (rooted) IPC P-model obtained by adding a
new bottom b to K and by taking: b = p:& K = p. Finally we define Glue(K) := B(M(K)).

Theorem 7.3 (Push Down Lemma) Let X be adequate. Suppose A is X -saturated and K is an
IPC-model with K = A. Then Glue(Hx [A], K) E A.
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Proof

We show by induction on 4 € X that b F A & A € A. The cases of atoms, conjunction and
disjunction are trivial. If (B — C) € X and b = (B — C), then A = (B — () and, hence,
(B — () € A. Conversely suppose (B — C) € A. If b = B, we are easily done. If b = B, then, by
the Induction Hypothesis: B € A, hence C' € A and, by the induction hypothesis: b = C. Q

Instead of using the Push Down Lemma we could have employed the Kleene slash. We say that A is
P-prime if it is consistent and for every (CvD) € L{(P): A+ (CvD) = A+ C or A+ D. A formula
A is P-prime if {A} is P-prime. As usual, we will suppress the P.

Theorem 7.4 Suppose X is adequate and A is X -saturated. then A is prime.

Proof

A is consistent by definition. Suppose A F CvD and A I/ C and A i/ D. Suppose K E A, K | C,
M = A and M £ D. Consider Glue(Hx (A),K,M). By the Push Down Lemma (theorem 7.3) we
have: b = A. On the other hand by persistence: b = C' and b [# D. Contradiction. a

Theorem 7.5 Consider any formula A. The formula A can be written (modulo IPC-provable equiva-
lence) as a disjunction of prime formulas C. Moreover these C are conjunctions of implications and
propositional variables in Sub(A).

Proof

Consider a Sub(A)-saturated A. Let IP(A) be the set of implications and atoms of A. It is easily seen
that IPC - A IP(A) < A A. Take:

D:=\/{/\IP(A) | A is Sub(A)-saturated and A € A}.

Trivially: IPCF D — A. On the other hand if IPC I/ A — D, then by a standard construction there
is a Sub(A)-saturated set I" such that A € I and I' i/ D. Quod non. a

8 Formula Classes and Model Descriptions for IPC

In this section all models will be IPC models. Define i : £{(P) — w, by:
e i(p):=i(L):=i(T):=0
e i(AAB) :=i(AvB) := maz(i(A4),1(B))
e i(A — B) :=maz(i(4),i(B)) +1
o I.(P) = {A€Li(P) | i(A4) < n}
o I.(P):=L{(P)
By an easy induction on n we may prove the following theorem.

Theorem 8.1 I,,(p) is finite modulo IPC-provable equivalence.

Define for X C Li(P):
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e Thx(k):={AeX |k E A}
e For K pointed with point k: Thy (K) := Thx (k)
e Th(k) := Thzi(p (k)
Theorem 8.2 Suppose that Z is an {-simulation between the P-models K and M. Then:

kZ,m = Th]a (P) (k) = Th]a (P) (m)

Proof

By induction on A in I,. Suppose kZ,m. The cases of atoms, conjunction and disjunction are trivial.
Suppose, e.g., k = (B — C). Then, for some k' > k, k' |= B and k' [~ C. There is an m' > m, such
that k'Z,—_1m' and hence by the induction hypothesis (applied for o — 1, noting that if A € I,(P),
then B,C € I,_1(P)): m' = B and m' [£ C. Ergom £ (B — C). a

Theorem 8.3 Suppose k and m are P-nodes. Then:

k 2o m = Thy p)(k) C Thy, (p)(m).

Proof

In case @ = 0, this is trivial. Suppose a > 0 and k <, m. The proof is a simple induction on
A € I,(P). The cases of atoms, A, v are trivial. Suppose A = (B — C) and m [~ (B — C). Then
for some m' = m: m' |= B and m' }£ C. There is a k' > k, such that k¥’ ~,_1 m' and, hence, by
theorem 8.2: k' = B and k' [£ C. Ergo k £ (B — C). a

We formulate a partial converse for theorem 8.3. It is well known that the converse for the case of
00, i.e. for the case where one would like to infer bisimulation from the relation of forcing the same
formulas of the full language, does not go through. There is a lot of work (for the analogous case of
modal logic) on better converses than the one given here. We refer the reader to [7] and [9].

Theorem 8.4 Suppose k and m are p-nodes. Then:

Thfn(if) (k‘) - Thfn(ﬁ) (m) =k =<, m.

Proof

Suppose k and m are g-nodes, and Thy (5 (k) C Thy z(m). We want to prove: k <, m. In case
n = 0 this is trivial. Suppose n > 0. Define, for k' in the model corresponding to k& and m’ in the
model corresponding to m:

k‘IZiml = Th]i(ﬁ) (k:l) = Th]i(ﬁ) (m')

We check that Z is an ¢-simulation and that for every k' = k there is an m' = m with k' Z,,m/.
Suppose i > 0 and k' Z;m’. Clearly k' and m’ force the same atoms. We verify e.g. the zig-property.
Suppose k' < k. Let:

ni(k") == (N\{BELi1(7) | K" = B} = \[{CELi1(§) | K" £ OY).
Clearly k' [~£n; (k") and n; (k") € I;(p). Ergo m' & n;(k"). But then for some m'" > m':

m" = N{BEL_1(p) | k" |= B} and m" [ \/{CEL,_1(p) | k' ¥ C}.
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It follows that k" Z;_1m".
To show that for any m' = m there is a k' > k with k'Z,m'. Note that m £ n,(m'), ergo
k ¥~ n,(m'), and, thus, for some k':

K \BEL-1(9) | m' = B} and k' £ \/{C€L,1(p) | m' |~ C}.
Hence: kZ,,_1m. a

Let k£ be a p-node. Define:
o Yok = You@) = MCEL () | k= C}
o Not 1= Noi () = VIDEL () | K} D}
Theorem 8.5 k=Y, 1 and k = N, .
Let m be a p-node. We have:
Theorem 8.6 k<, memEY,r < kENpm.
Theorem 8.7 Forn <n':
1.IPCEF Yk = Y.
2. IPCF Ny g — Ny g
Theorem 8.8 We have:
1. k=X, m&IPCFYhm = Yok
2. k=<, m&IPCFN, ., — Ny

Proof

(1) “=” Suppose k =, m. Let r be any p-node with r = Y,, ,,,. It follows that m =<, r and, hence,
k<, r. Ergo,r =Y. “<” Suppose IPCF Yy — Yo . Since m = Yoy i, it follows that m = Yo i,
and, hence, k <,, m.

(2) “=” Suppose k <, m. Let r be any p-node with r & N, ;. It follows that r <,, k& and, hence,
r <X, m. Ergo: r £ Ny, “<” Suppose IPC - N, ., = N, . Since k& & N, 4, it follows that
k £ Ny, and hence: k <, m. Qa

Suppose k is a p~-node of finite depth. Define:
o Yy = Yo q)+1,k
o Ng:= No )2,k
Let m also be a p-node.
Theorem 8.9 1. Suppose k is a p-node of finite depth. k <o m & m = Y.

2. k=2ccm&kEN,.
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Proof

(1) “=” Suppose k < m. It follows that k <, 4x)+1 m. Hence, m |= Y;. “<” Suppose m |= Y. It
follows that k <5 4(r)41 m. Ergo by theorem 6.8, k <o m.

(2) “=” Easy. “«<” Suppose k £ N,,. It follows that k <5 4(m)42 m. Hence, since m < m, for
some k' = k, k' ~5 q(m)4+1 m. It follows that &' ~ m. Q

By inspecting the model of example 5.1 one can show that the esimate of theorem 8.9(1) is optimal.
Is it possible to improve upon (2)?

Theorem 8.10 1. k<,om&IPCFY,, = Y.
2. k <o m < IPCEFN,, = Ng.

Theorem 8.11 For all n:
1.IPCFYr = Y.
2. IPCF N, — Ng.

Proof

mEYy=>kom=k=2,m=m|=Y,. (2) Similar. a

Theorem 8.12 Y, ; is a prime formula.

Proof
It is easily seen that Y, ; is I, (p)-saturated. Apply theorem 7.4. Qa

9 Ordinary interpolation for IPC

We show ordinary interpolation by a quick and simple proof. The present proof has two sources.
In 1980 I learned from Wim Ruitenburg a Henkin style proof of the ordinary interpolation theorem.
Much later in 1993, when I started thinking about interpolation, I saw how to refine the proof to
get a bound on the complexity of the interpolant. In the meantime Gleit and Goldfarb in their [6]
used characteristic formulas to prove interpolation for Lob’s Logic. The present proof is close to the
Henkin style proof, but even closer to Gleit and Golfarb’s proof, the main difference being the use of
simulations rather than characteristic formulas.

Lemma 9.1 Consider (K, ky) € Pmod(Q,p) and (M,mo) € Pmod(p,R), where Q, p, and R are
pairwise disjoint. Let X C £(Q,p) and Y C L(p, R) be finite adequate sets. Take ¢ := QN X and
7:=RNY. Let:

p:=|{CeX | C is an implication}| + |[{C'€Y | C is an implication}|

Suppose that kg ~, 7 mo. Then there is a finite, pointed ¢, j, #model (N, ng) such that: Thx(ny) =
Thx (ko) and Thy (ng) = Thy (myg). a
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Proof

Let Z be a downwards closed witness of: kg ~, 5 mo. Define ®x from K to the Henkin model Gx
and ®y from M to the Henkin model Gy as follows:

e Oy (k):=T(k):={BeX |k |= B}
o &y (m):=A(m) :={BeY | m = B}
Warning: ®x need not be order-preserving! Define further for k in K and m in M:
o dx (k) = dey (T(K))
o dy(m) = dg, (A(m)
o ((k,m) :=dx (k) + dy(m)
Note that for all ¥ in K and m in M: ((k,m) < p. Consider a pair (I', A), where I is in Gx and A

is in Gy . Define: k,m is a witnessing pair for (T,AY if k € K, m € M, T =T'(k), A = A(m) and
kZ¢(k,mym. Define N and ng as follows:

e N := {(I', A) | there is a witnessing pair for (I'; A)}
* no := (I'(ko), A(mo))

o (I,A) < (I"A"Y: T CI"and A C A’

e I'NA)Ens:eselTuA

By assumption, koZ,mo. Moreover: ((ko,mo) = dx (ko) + dy(mo) < p. Hence: koZ¢(ky,me)Mo- SO
we can take kg, mg as witnessing pair for ng.

We show that for A € X: (I',;A) Ey A & A € T by induction on A. The case of ¥ and A is
similar. The atomic case is easy, noting that the existence of a witnessing pair guarantees that for
pep pel < pe A The cases of A and v are trivial. Suppose A = (B — (). First suppose
(B — C) €T'. Consider (I",A") = (I', A) and suppose (I'",A’) = B. By the Induction Hypothesis
we have: B € I and hence, since (B — C) € I': C € IT'. Again by the Induction Hypothesis we
find: (I",A’) | C. So we may conclude: (I',A) = B — C. Conversely, suppose that (B — C) ¢ T.
In case B € T', we are easily done. Suppose not. Let k,m be a witnessing pair for (I'; A). We find
that k& £ B — C and hence there is a k' such that &' = B and k' [£ C. Since kZ;(, m)m, there is
an m' > m such that k'Z¢( m)—1m'. Consider (I, A") := (T'(k’), A(m')). Since B’ € I and C € I,
evidently in Gx: I' < I'" and hence ((k',m') < ((k,m) — 1. Hence by downward closure k',m' is a
witnessing pair for (I",A’). So (I",A’) is in N and by the Induction Hypothesis: (I, A") = B and
(I, A"y £ C. Tt follows that (I'y A) £ B — C. Q

Theorem 9.2 (Ordinary interpolation) Suppose A € L'({,p) and B € L' (p,7) and IPC+ A — B.
Let:
p = |{C€eSub(A) | C is an implication}| + |[{C€Sub(B) | C is an implication}|.

Then there is an I € I,,(p) with: IPCH A — I and IPCH I — B.
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Proof

Take:
I:=\/{CeL,(p)|IPC+D — B}.

Clearly IPC - I — B. Suppose to get a contradiction that IPC / A — I. Let m be any p,7node
with m = A and m £ I. Let Y := Y, ;1 and N := N, .,z We claim that: Y I/ NvB. Note that,
by theorem 8.12, Y is prime. So if Y - NvB, then Y - N or Y - B. Since, Y ¥ N, it follows that
Y + B. But then, by definition, Y F I. Quod non, since m =Y and m [£ I. Let k be any ¢, p~node
such that: & =Y and k = NvB. We find that k¥ ~, 7 m. Apply lemma 9.1 with Sub(A) in the
role of Y and Sub(B) in the role of X to find a ¢, p,7node n with: Thsuba) (m) = Thsuba) (n) and

ThSub(B)(k) = Theybs) (n). Tt follows that n |= A, but n &£ B. A contradiction. a

Lemma 9.1 lacks, in a sense, purity since it combines the method of simulations with a Henkin style
argument. The impurity has the advantage of efficiency. Of course we can at some cost find a pure
formulation of the lemma. Here we formulate a purified weak version that follows immediately from
lemma 9.1 itself.

Corollary 9.3 Counsider two models K € Rmod(Q,p) and M € Rmod(p, R), where R, p' and R are
pairwise disjoint. Take ¢:= QN X and #:=RNY. Then:

VE Iu(K(F) ~, M(5) = IN € Rmod(q, 7, 7)(K =~ N(7,5) and M =~ N(7,7))).

10 Uniform Interpolation for IPC

Uniform Interpolation was proved for GL by V. Shavrukov (see: [20]). Shavrukov used the method of
characters as developed by Z. Gleit and W. Goldfarb, who proved the Fixed Point Theorem of Prov-
ability Logic and the ordinary Interpolation Theorem employing characters (see: [6]). The methods
of Gleit & Goldfarb and later of Shavrukov can be viewed as model theoretical. For IPC, A. Pitts
proved Uniform Interpolation by proof theoretical methods, using proof systems allowing efficient
cut-elimination (see: [14]), developed, independently, by J. Hudelmaier (see: [10]) and R. Dyckhoff
(see: [2]). Later S. Ghilardi and M. Zawadowski (see: [4]), and, independently but later, A. Visser,
found a model theoretical proof for Pitt’s result using bounded bisimulations.

We prove an amalgamation lemma. Note that the proof of lemma 9.1 follows the pattern of theo-
rem 6.2. The proof of the present lemma is like the the proof of lemma 9.1, replacing the the argument
in the style of theorem 6.2 by an argument in the style of theorem 6.6.

In this section, we will use < for the weak partial orderings and < for the associated strict orderings.

Lemma 10.1 Consider disjoint sets of propositional variables Q, 7 and R. Let X C L(Q,7) be a
finite adequate set. Let (K, ko) € Pmod(Q, ), (M, mg) € Pmod(p, R). Let:

v:=|{CeX | C is a propositional variable or an implication}|.

Suppose that kg ~3,11 57 mo. Then there is a Q-extension (N,ng) of (M, mg) such that Thx(ng) =
Thx (ko). 0

Proof

Let Z be a downwards closed witness of kg ~5 41,5 mo. Define ® x from K to the Henkin model H :=
Hyx as follows: ®x (k) := A(k) := {BeX | k = B}. Define further for k in K: dx (k) := du(A(k)).
Note that: dx (k) < v.
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Consider a pair (A,m) for A in H and m in M. We say that k', k,m’ is a witnessing triple for
(A, m) if:
A= A(k) = A(kl)a kl = k7 ml = m, klZ2.dX(k’)+1ml7 kZ2.dX(k’)m'

il Zod (k!
A—X P
- < )
A oy " Zodx (k') +1 o

Define:

N = {(A,m) | there is a witnessing triple for (A, m)}
Nog ‘= <A(k0),m0>

(A;m) =y (T)n) :& A =g and m <m n

(A,m) Ens e AEgsorm s

Note that by assumption kg Z2,11m0. Moreover: 2.dx (ko)+1 < 2.v+1. Hence: koZaqy (kg)+1M0- SO
we can take ko, ko, mo as witnessing triple for ng. Let k', k,m’ be a witnessing triple for (A, m}). Note
that for p e pnX: AEpe kEp<e mEp,and hence: (A;m) Ep & AEpe mEp We claim:

Claim 1 ng ~zr mo.
Claim 2 For B€ X : (A,m) =B & B € A.

Evidently the lemma is immediate from the claims.

We prove Claim 1. Take as bisimulation B with (A,m)Bm. Clearly, Thyz((A,m)) = Thzg(m).
Moreover, B has the zig-property. We check that B has the zag-property. Suppose (A, m)Bm < n.
We are looking for a pair (I',n) in N such that A < T. Let k', k,m' be a witnessing triple for (A, m).
Since k'Z5 4, (er)41m' =X n, there is a h such that k' <X hZ, 4, (xryn. We take T' := A(h). We need a
witnessing triple &'*, k* m'* for (I',n) We distinguish two possibilities. First, A =T'. In this case we
can take: k™ := k', k* := h, m"™ :=m/.

) Zodx (k'
P=A coeo-: A X A . n
A A A
| jl. <
_ A % k Fadx#)
1 : A
L T <
A —¢I>X e ': o Zodx (k)+1 R

Secondly, A # T'. In this case we can take: k'™ := h, k* := h, m'* := n. To see this, note that, since
k" < h, we have: A = A(k') <T. Ergo dx(h) < dx(k'). It follows that: 2.dx(h) + 1 < 2.dx(k'). So,



10 UNIFORM INTERPOLATION FOR IPC 21

hZ; 4. (k)+1n (and by downward closure also hZ5 4, (k/)7)-

) Zad (h)+1
F _________ X _ kl* — k* — h ________ X _( _) ____________ ml* =n
N N \
: <. <
i : ) Zod (k!
=< A : X k X( ) m
1 ! A
L l = <
AI by y Zodx (k)+1 o

Finally, clearly, bxBbw.

We prove Claim 2. The proof is by induction on X. The cases of atoms, conjunction and disjunction
are trivial. We treat the case of implication. Suppose (C' — D) € X. Consider the node (A, m) with
witnessing triple &', k, m’.

Suppose A [~ (C — D). In case A | C and A [~ D, by the Induction Hypothesis, (A,m) | C
and (A,m) = D. So, (A,m) = (C — D). Suppose A = C. Clearly, k = (C — D), so there is
an h = k with h | C and h [£ D. Let ' := A(h). Since, A £ C, we find: A < T and, thus,
k < h. Note that it follows that 2.dx (k') > 2. Since k2, 4, (rym and k = h, there is an n > m with
hZ; 4. (ky—1n. Moreover: 2.dx (h) + 1 < 2.dx (k') — 1. Ergo: hZ; 4y (n)+1n- S0 h,h,n is a witnessing
triple for (I, n). Clearly, (A,m) < (I',n). By the Induction Hypothesis: (I',n) = C and (I',n) ¥~ D.
Hence, (A,m) [~ (C — D).

® Zodx (h)+1
F X— kl* — k* — h o _X_( _) - I* =n

A

< <‘ <

® Zodx (i :

A o k kB

= < <

A oy " Zadx (k')+1 o
Suppose (A,m) = (C — D). There is a (I',n) in N with (A,m) < (I',n) and (I',n) E C and
(T,n) = D. Clearly A < T'. By the Induction Hypothesis I' = C' and T" = D. Ergo A }- (C' — D).
Thus we have proved Claim 2. Q

Theorem 10.2 (Pitts’ Uniform Interpolation Theorem) Here is our version of Pitts’ Uniform
Interpolation Theorem.

1. Consider any formula A and any finite set of variables ¢. Let
Vi=VSuba) = [{CeSub(A) | C is a propositional variable or an implication}|

There is a formula 3¢.A such that:
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(a) PV(37.A) CPV(A)\ ¢
(b) i(37.A) <2.v+2
(¢c) For all B € L' with PV(B)NnG =0, we have:

IPCFA—- B&IPCH30A— B.

2. Consider any formula B and any finite set of variables q. Let v := VSub(B)- There is a formula
Vq.B such that:

(a) PV(V@.B) CPV(B)\ ¢
(b) i(V@.B) <2v+1
(c) For all A € LP with PV(A)ng =0, we have:

IPCFA—-B&IPCHA—VEB.

Note that in (1) we have estimate 2.v + 2 and in (2) 2.v + 1. Somehow I find this annoying. In
theorem 10.3 we will show how to get the marginal improvement to 2.v + 1 also for (1).

Proof
(1) Consider A and ¢. Let p':= PV(A) \ §. Take:

3G.A == N{C€L,12(p) | IPCH A - C}.

Clearly 37" A satisfies (a) and (b). Moreover, IPCF A — 37.A. Hence all we have to prove is that for
all B with PV(B)n¢ = 0:
IPCHA— B=IPCF3J7A— B.

Suppose, to the contrary, that for some B: PV(B)Nn¢ =0 and IPCF A — B and IPC/ 3§.A — B.
Take 7:= PV(B) \ §. Note that §, 7,7 are pairwise disjoint, PV(A) C Ju i and PV(B) C puUr.

Let m be any p,7-node with m |= 3¢.4 and m & B. Let Y := Yy, 11 m[p) and N := No 11 5[5 (see
section 8). We claim that: A,Y I/ N. If it did, we would have: A+ Y — N. And hence by definition:
3¢ A,Y F N. Quod non, since m = 37.A,Y and m [~£ N. Let k be any ¢, p-node such that: k |= A,Y
and k [~ N. We find that k£ ~5 415 m. Apply lemma 10.1 with Sub(A) in the role of X to find a
¢, p,™-node n with: m ~3n and Thguba) (k) = Thsuba) (n). It follows that n [=# B, but n E A. A
contradiction.

(2) Consider B and §. Let §:= PV(B)\ ¢. Take: V¢.B := \/{D€I> ,41(p) | IPC+ D — B}. Clearly
V7.B satisfies (a) and (b). Moreover IPC - V¢@.B — B. Hence all we have to prove is that for all A
with PV(4)ng = 0:

IPCFA—B=IPC-A—V{B.

Suppose that, to the contrary, for some A: PV(A)n§= 0 and IPC+ A — B and IPC I A — V{.B.
Take 7:= PV(A) \ §. Note that p, 7, ¥ are pairwise disjoint, PV(B) C ¢,p and PV(A) C g, 7.

Let m be any g, ™node with m = A and m [£ V@.B. Let Y := Yy 41 mp and N := No i1 -
We claim that: Y I/ NvB. Note that, by theorem 8.12, Y is prime. So if Y + NvB, then Y F N or
Y F B. Since Y ¥/ N, it follows that Y F B. But then by definition: Y F V§.B. Quod non, since
m =Y and m £ V@.B. Let k be any ¢, p-node such that: k¥ =Y and k %= NvB. We find that
k ~5 41 3 m. Apply lemma 10.1 with Sub(B) in the role of X to find a ¢, P, -node n with: m ~3n
and ThSub(B)(k) = Thsubs) (n). It follows that n = A, but n [£ B. A contradiction. a

Theorem 10.3 (An improvement of theorem 10.2) We can replace the estimate 2.v+ 2 in the-
orem 10.2(1), by 2.v + 1.
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Proof

By theorem 7.5 we can write A as a disjunction of prime formulas D with PV(D) C PV(A) and
YSub(p) < YSub(a)- Say the set of these disjuncts is D. For B with PV(B)N{§ = () we have:

IPC-A— B <« forall DeD IPCFD — B
& forall DeD IPCH3IGD — B

< IPCH\/{3¢D|DeD} > B

Ergo we may take 3¢.A := \/{34.D | D € D}. It follows that it is sufficient to prove theorem 10.2(1)
with 2v + 1 for prime A.
So suppose A is prime. Let p:= Sub(A) \ ¢. Define:

37.A = N{C€L.,1() | IPCH A = C}.

Suppose that for some B: PV(B)n¢ =0 and IPC+ A — B and IPC I/ 37.A — B. Define further:
o V :=Sub(A)Uly41(p), A:={CeY |IPCF A — C}
o Z:=Sub(B)UIL,41(p), T :={DeZ |IPCF 37.A — D}.

Note that since {C€I5,4+1(P) | IPCH A — C} is I, 41(p)-saturated, 3. A is prime. We find that A
is Y-saturated and T is Z-saturated. Take: (K k) := Hy[A], (M,m) := Hz[I']. It follows that for

CGIQ.,,+1([_)‘)Z
AEC&SAFCS AFC eI TAFC T EC.

Ergo k ~5 ,41m, k= A, m |E 3¢.A and m [~# B. From this point on the argument proceeds as in the
proof of 10.2(1). Q

Theorem 10.4 (Semantical Characterization of Pitts’ Quantifiers) Consider a node m. Sup-
pose A € LP. We have:

1. mE3gAsInm~gnandn = A
2. m |EVq.A & for all n with m ~n, n |= A

Proof

(1) “«<” Trivial. “=" Let p:= PV(4) \ {¢} and v := YSub(a)- Suppose m |= 3q.A, where m is an
R-node with 7 C R. Let Y := Y5 11z and N := Ny 4 mpz- As in theorem 10.2(2), A,Y 7 N. Let
k be any ¢, p-node such that: k = A,Y and k [~ N. We find that k ~5 41,57 m. Apply lemma 10.1 to
k and m[R \ {¢}] with Sub(A) in the role of X, {¢} in the role of Q, 7 in the role of p, R\ (puU {q})
in the role of R, to find a ¢, p, R-node n with: m ~[, n and ThSub(A) (k) = ThSub(A) (n), and, thus,
n | A.

(2) The proof of (2) is similar. Q

Theorem 10.2 is not formulated entirely in terms of ¢-simulations. The reason is that such a form
does not provide a very sharp estimate on uniform interpolants. But if we do not want to worry about
precise complexities a watered down version can be pleasant to have. By applying theorem 10.2 to
X = I,(p, q) we find:
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Corollary 10.5 For all disjoint ¢, and numbers s, there is an N (multi-exponential in |7, 7] + s),
such that: for all k € Pmod(q, p), and all m € Pmod with ¢nPy = § and 5 C P,,,, we have:

k ~nzm = there is an n € Pmod(q, Pr,) with n ~, ;7 k and n ~p,, m.
1]

We end this section with a result from [25]. We illustrate that the increase of implicational complexity
in going to a uniform interpolant is unavoidable. It is an interesting problem to find both better upper
and lower bounds.

Theorem 10.6 Every formula of L is equivalent to an I-formula preceded by existential quantifiers
and to an Iz-formula preceded by universal quantifiers.

Proof

Suppose A € Li(p). Let ¢ be a set of variables disjoint from ' that is in 1-1 correspondence with the
subformulas of the form (B — C) of A. Let the correspondence be q. We define a mapping 7 as
follows:

e 7 commutes with atoms, conjunction and disjunction

e T(B—C):=q(B—C)
Define:

e EQ=A{yB—=C)«< (T(B)=>T(C))| (B—C)€eSub(A)}
Note that EQ is I». Finally we put:

o A% := AFEQAT (A))

o A% :=VGEQ — T(A))

By elementary reasoning in second order propositional logic we find: - A ¢+ A# and F A « A%, QO

11 Propositional Quantifiers for IPC

There is a variety of ways to introduce propositional quantifiers in IPC. A first idea is proof theoretical.
We add the obvious analogues of the rules for the quantifiers for Predicate Logic to IPC. E.g.:

VR I'+ A= TF Vp.A, provided that p does not occur in T’

VL I'A[p:=B]FC=T,VpA-C

JRI'FAp:=B]=TF3p.A

dL I'AFC = T',dp.A C, provided that p does not occur in I', C'

We call the theory thus obtained IPC%. In a clear sense the quantifiers thus introduced are minimal.
IPC? is undecidable, as is shown by Lob in [13]. See also the papers by Gabbay, [3] and by Smoryniski,
[21]. Gabbay gives a semantics of sorts for these quantifiers. Note that the undecidability of the
minimal system is not preserved by extensions that are conservative over IPC: IPC with the Pitts
quantifiers is a decidable conservative extension! A salient property of the minimal quantifiers, which
is inherited by all extensions, is the definability of all connectives in terms of V and —. The definition
is as follows:
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o L :=Vpp, T :=Vp(p—p)

e ANB :=Vp((A— (B — p)) = D)

o AvB :=Vp((A = p)A(B — p)) = p)
e dg.A :=Vp(Vg(A = p) = p)

The topological interpretation for second order IPC is given as follows. Let O be a topological space.
An assignment f sends the propositional variables to the open sets of O. Define:

e Plf=f), [T1f=0, [L]f=0

[ArB] f = TA] f n [B] f

[AvB] f=[A] fu [B]f

[A— Bl f =int(([A] /) v [B] f)

[Bp.-A] f = U{[A] flp := P] | P is open}

o [Vp.A] f =int(N{[A] flp:= P]| P is open})

For information about the topological interpretation, we refer the reader to the work by Tarski (see
[23]), by Kreisel (see [11]), by Troelstra (see [24]), by Potacik (see [16], [17], [15]). Tomasz Potacik
shows that the topological interpretation is not identical to the Pitts interpretation.

A ‘subsemantics’ of the topological interpretation is the semantics where one quantifies over upward
persistent sets in Kripke models. This semantics is studied by Philip Kremer (see [12]). He shows
that the valid principles of this interpretation are recursively isomorphic to full second order predicate
logic.

We turn to the Pitts quantifiers. First let us note that, since Pitts quantifiers can be defined in the
language of IPC the Pitts quantifiers can be compared with any other quantifiers. In fact, we have:
IPC* - 3p.A — Fpinep-A and IPC* F Vpiap. A — Vp. A.

Let UCypus be the universal closure of a formula with Pitts quantifiers. Clearly for A € £, UCpiy5(A)
translates to a closed IPC-formula. Thus it can —modulo provable equivalence— be only T or L. In
fact we have IPCH A & UCpiu(A) = T and IPCH A & UC, 4 (A4) = L.

It is clear that the translations of the Pitts quantifiers are computable. It follows that the extension
of IPC?, valid under the Pitts interpretation is decidable.” Thus, Pitts quantification does not give
the same valid principles as the upwards closed sets interpretation, by the result of Kremer. Similarly,
it cannot be IPC? itself by the result of Lob. These non-identities can also be established directly.
Consider Vp(pv—p). This formula is L under the Pitts interpretation. In other words —Vp(pv-p) is
valid under the Pitts interpretation. Under the interpretation studied by Kremer, however, Vp(pv-p)
just defines the top nodes of Kripke models.® Thus, =Vp(pv—p) is not valid under the upwards closed
sets interpretation and, a fortiori, not under the topological or the minimal interpretation. We end
this section by verifying semantically a striking principle (present in Pitts’ paper) valid for the Pitts
interpretation.

Theorem 11.1 Consider k. We have:

k EVp(BvC) =k |EVp.B or k =Vp.C.

7IPC is PSPACE-complete. This is shown by Statman in [22]. T would guess that the principles valid under the
Pitts interpretation are also PSPACE, but nobody, to my knowledge, took the trouble of checking the complexity of the
algorithm given by Pitts.

8Note that being a top node is not bisimulation-invariant.
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Proof

We reason by contraposition. Suppose k [~ Vp.B and k |£ Vp.C. Tt follows that there are nodes m
and n, such that k ~p,) m £ B and k ~[;) n [ C. Let M and N be the models of, respectively, m
and n. Consider P := Glue(M[m],N[n]). Let the new bottom be b. It is easily seen that k ~, b and
b= (BvC) Q

12 Formula Classes and Model Descriptions in Modal Logic

We briefly treat the connection between modal propositional formulas and bounded bisimulations.
Since these facts are similar to, but simpler than the corresponding facts for IPC T just state the
results without the proofs.

Let b(A) be the box-depth of a formula. By(p) is the set of formulas in the variables § with
box-depth < k. By(p) is finite modulo provable equivalence.

Consider p-nodes k and m. Then:

k~pm & Thp, (k) = Thp, z(m)

Let k be a prnode. Define: Y, := A Thg (k). Clearly, for any p-node m: k ~, m < m = Y, .
We have: k ~, m < KE Yy ¢ You

Suppose k is a transitive p-node of finite depth. Define: Yy, := Y5 4(1)41,% Let m also be a transitive
p-node. We have: k ~m < m = Y. It follows that: k ¥~ m < K4kEY,, < Y.

13 Uniform Interpolation for K

Before considering uniform interpolation for more complicated modal systems like S4Grz, we do the
relatively easy proof for K. This theorem was first proved by Silvio Ghilardi. Uniform interpolation
for K follows from the amalgamation lemma below.

Lemma 13.1 Consider pairwise disjoint sets of propositional variables Q, p’and R. Let (K ko) €
Pmod(Q,p) and (M, mg) € Pmod(p,R). Suppose that ko ~, 5 mo. Then there is a Q-extension
(N, ng) of (M, mg) such that ng ~, ko. Q
Proof

Let Z be a downwards closed witness of kg >~ 5 mo. We add a ‘virtual top’ T to K and stipulate that
T satisfies no atoms. Let’s call the new model K. We extend w® with a new bottom L to w®t.
Define Pd(n + 1) := n, Pd(0) := Pd(L) := L, Pd(co) = co. Now define the following model N:

e N:=ZU{(T,L,m)|me M}
o (k,a,m) <y (k',a',m') :& k <t k' and o/ = Pd(a) and m <y m/
o (k,am)yEs:okFEgsorml=ys

We claim:

Claim 1 ng ~zr mo.

Claim 2 No 2017(9713) k‘o.
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We prove Claim 1. Take as bisimulation B, with (k,«,m)Bm' < m = m'. Clearly, if nBm then
Thsr(n) = Thzr(m). Moreover, B trivially has the zig-property. We check that 5 has the zag-
property. Suppose (k,a,m)Bm < m'. If a € {0, L}, we can finish the diagram with (T, L, m'). If
a=cda +1for o € w™, we have kZ,m and, hence, there is a k' such that k <x k¥’ and ¥’ Z,m/. So
we can finish the diagram with (k',a’,m’).

We prove Claim 2. Take as layered bisimulation S, with (k,a,m)S.k" & k = k' (for a € w™).
Clearly, if nSyk then Thg 5(n) = Thg 5(k). We check that S has the zag-property. The zig-property
is analogous. Suppose (k,a+1,m)Sy 1k < k'. Since kZ,+1m, there exists m' > m such that k' Z,m/'.
Hence (k',a,m') = (k,a 4+ 1,m), and (k¥',a,m')S, k' a

Theorem 13.2 (Uniform Interpolation) We prove uniform interpolation for K

1. Consider any formula A and any finite set of variables . Let v := b(A). There is a formula
37.A such that:
(a) PV(37.A) CPV(A)\ ¢
(b) b(37.4) < v
(c) For all B € L™ with PV(B)Nn§= 0, we have:
KFA—-> B KF37.A— B.

2. Consider any formula B and any finite set of variables ¢. Let v := b(B). There is a formula
Vq.B such that:
(a) PV(V@.B) CPV(B)\ ¢
(b) b(YT.B) < v
(¢) For all A € L™ with PV(A)Nnq =
K

0, we have:
FA—->B&sKEFA—VYB.

Proof

We just prove (1). The proof of (2) is analogous. (Alternatively, we may take (V¢.B) := (-3¢—B).)
Consider A and ¢. Let §:= PV(A) \ ¢. Take:

3G.A = N{CeL(®) |KF A - C}.
Clearly 3¢ A satisfies (a) and (b). Moreover, K - A — 37.A. Hence, all we have to prove is that for

all B with PV(B)n¢g = 0:
KFA—-B=KF3J7.A— B.

Suppose, to the contrary, that for some B: PV(B)ng=0 and K A — B and K/ 37.A — B. Take
7:= PV(B) \ p. Note that p,q, 7 are pairwise disjoint, PV(A) C Jup and PV(B) C pUF.

Let m be any p,7-node with m = 37.4 and m & B. Let Y := Y, .51 and We claim that: A,Y
is consistent. If it were not, we would have: A F =Y. And, hence, by definition: 374 F =Y. Quod
non, since m = 3¢.A,Y and b(—=Y) = v. Let k be any ¢, p-node such that: k = A,Y. We find that
k ~, 5 m. Apply lemma 13.1 to find a ¢, p,™node n with: m ~;zn and m ~, 57 n . It follows that
n & B, but n |E A. A contradiction. a

The proof of the following theorem is fully analogous to the the proof of its twin for the case of IPC.
Theorem 13.3 Consider a node m. Suppose A € L™. We have:

1. mE3gAsInm=gnandnE A

2. m EVq.A & for all n withm ~n, n |E A
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14 Uniform Interpolation for GL

In this section we prove Uniform Interpolation for GL. It is well known that GL is sound and complete
for upward wellfounded Kripke models and that it has the finite model property. Since GL-models are
irreflexive we use ‘<’ for their accessibility relation and ‘=<’ for the corresponding weak partial order.
‘+> will stand for GL-derivability.

Let X be a finite, adequate set of formulas. Adequate means: closed under subformulas. The GL
Henkin model Hx for X is constructed in the following way.

e The nodes are the subsets A of X that are saturated, i.e. if A proves some finite disjunction of
elements of X then some disjunct is in A.°

e AAIffO0Ac A= A 04 A

Note that this model may contain non-trivial loops! and, thus is not a GL-model. (It is easy to
remove these loops, but for the present purposes, we need to keep them.) The height of a model is the
maximal depth. The height of the Henkin model is < 2.|{CeX | C is boxed}|. To see this, consider
Ag < Ay <t As. Clearly, going up the set of boxed formulas in the A; increases. Suppose we had
the same boxed formulas in Ag, A; and Ay. Suppose A € Ay, Then, ex hypothesi, A € Ay.
Hence, A,JA € A;. We may conclude that Ay < A;. Quod non. So, necessarily, the boxed formulas
increase by at least one in going from Ay to A,. It follows that if we have a strictly ascending chain
of length 2.n, then there are at least n boxed subformulas.

As in for IPC and K we start with an amalgamation lemma. Consider disjoint sets of propositional
variables Q, p'and R. Let (K ko) € Pmod(Q, p) and (M, mg) € Pmod(p, R) be pointed GL-models.

Lemma 14.1 Let X C £™(Q,p) be a finite adequate set. Let:
v:=2]{CeX | C is boxed}|.

Suppose that kg ~5 41 57 mo. Then there is a Q-extension (N, ng) of (M, mg) such that N is a GL-model
and Thx (ng) = Thx (ko). i}

Proof

Let Z be a downwards closed witness of kg =~ 41,5 mg. Define ®x from K to the Henkin model H :=
Hyx as follows: ®x (k) := A(k) := {BeX | k = B}. Define further for k in K: dx (k) := du(A(k)).
Note that: dx (k) < wv.

Consider a pair (A,m) for A in H and m in M. Counsider k', k,m’. Let A" := & x(k'). We say that
k' k,m' is a witnessing triple for (A, m) if:

A, ~ A, kl j k, m' j m, klZQ_dX(k/)+1ml, k:ZQ_dX(k/)m.

) Zodx (b
A X k () m
= = <
A o " Zodyx (k)+1 o

Define:

e N :={(A,m) | there is a witnessing triple for (A, m)}

9We consider L as the empty disjunction. So saturation implies consistency.
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e ng := (A(ko), mo)
o (A,m) <y (I',n) :& A <gTand m <y n
e (Am)|Ens: & AEmsorm by s

Note that by assumption ko Z2,11m0. Moreover: 2.dx (ko)+1 < 2.v+1. Hence: koZaqy (kg)+1M0- SO
we can take ko, ko, mo as witnessing triple for ng. Let k', k,m’ be a witnessing triple for (A, m). Note
that for pe PN X: AEpe klEpe mEp, and hence: (A,m) Epe Al=p<e mEp. It is easy
to see that N is a GL-model (even if Hy need not be one). We claim:

Claim 1 ng ~zr mo.
Claim 2 For Be X : (A,m) =B & B € A.

Evidently the lemma is immediate from the claims.

We prove Claim 1. Take as bisimulation B with (A,m)Bm. Clearly, Thyz((A,m)) = Thzg(m).
Moreover, B has the zig-property. We check that B has the zag-property. Suppose (A, m)Bm < n.
We are looking for a pair (I',n) in N such that A < T'. Let k', k,m' be a witnessing triple for (A, m).
We write A’ := A(k'). Since k'Z; 4, (k)+1m' < n, there is a h such that &' < hZ, 4, (yn. We take
I := A(h). Clearly A < I'. We need a witnessing triple &, k* m'* for (I',n) We distinguish two
possibilities. First, A ~ I'. In this case we can take: k"™ := k', k* := h, m'* :=m/.

) Zodx (k'
| A X ooy T . n
A A A
| <I. <
- A Oy k Fadx#)
I | ]
Lo ! = <
AII x B — ZZdX(k’)Jrl m* =m'

Secondly, A # I'. In this case we can take: k'™ := h, k* := h, m'* := n. To see this, note that,
since k' < h, we have: A ~ A’ < T and, hence, A <T I". Ergo dx(h) < dx(k'). It follows that:
2dX(h) + 1 S QdX(kl) SO, hZQ.dX(k’)Jrln‘

) Zad (h)+1
F _________ X _ kl* — k* — h ________ X _( _) ____________ ml* =n
N N \
| < <
| : Z '
<+ A ! x k 2dx ()
1 ! A
B ! = <
AI’ dx kl' Zodx (k') +1 o

Finally, clearly, bxyBby.
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We prove Claim 2. The proof is by induction on X. The cases of atoms, conjunction and disjunction
are trivial. We treat the only non-trivial case: the left-to-right case of the box. Consider OC € X
and consider the node (A, m) with witnessing triple k', k,m'. Suppose OC ¢ A. Clearly, k [~ OC, so
there is an h' &= k with A’ £ C. Let h be maximal in K with h > k and h = C. By maximality, we
find: h E OC. Let I' := A(h). Since, OC ¢ A and OC € T, we find: A <* T'. Note that it follows
that dx (k') > 1. Since, kZ5 4, (wym and k < h, there is an n > m with hZ, 4, ()—1n. Moreover:
2.dx(h)+1 < 2.dx (k') —1. Ergo: hZ; 4 (n)+1n- So we can take k'™ := h, k* := h, m"* := n to witness
(T,n). Clearly, (A,m) < (I';n). By the Induction Hypothesis: (I',n) = C. Hence, (A, m}) = OC.

@ Zodx (h)+1
r— X pr—pr=p i m'™* =n

A

<t <‘ <,

) Zodx (k' :

A X k ) m
=~ < <

A Py y Zodyx (k)+1 o

Thus we have proved Claim 2. Q

We formulate Uniform Interpolation for GL. Its proof is fully analogous to the one of Uniform Inter-
polation for K.

Theorem 14.2 (Uniform Interpolation) We state uniform interpolation for GL

1. Consider any formula A and any finite set of variables . Let v := 2.]{C'€Sub(A) | C is bozed}|.
There is a formula 37.A such that:

(a) PV(30.A) CPV(A)\ ¢
(b) b(I7.A) <2wv+1
(¢) For all B € L™ with PV(B)N{§ =0, we have:

GLFA—- B< GLF3¢.A— B.

2. Consider any formula B and any finite set of variables . Let v := 2.|{C€Sub(B) | C is bozed}|.
There is a formula Vq.B such that:

(a) PV(V@.B) CPV(B)\ ¢
(b) b(V.B) <20 + 1
(c) For all A € L™ with PV(A)Nn§ =0, we have:

GLFA—- B GLFA—V{B.

The semantical interpretation of the propositional quantifiers is fully analogous to the case of K.



15 UNIFORM INTERPOLATION FOR S4GRZ 31

15 Uniform Interpolation for S4Grz

S4Grz, a logic called after Andrzej Gregorczyk, is K extended with:

TFHOA— A

4 FOA - 0O0OA

Grz FO(OA—-04) - A) - A

It is easy to see that T is superfluous. Note also that over KT4 (= S4), Grz is equivalent to:
Grz’ O0O(A - OA4) - A) - 0OA

The logic is sound for weak partial orderings such that the associated strict ordering is upward
wellfounded. We will show that the completeness of the logic in finite partial orderings. Since we
deal with reflexive structures in this section, we will use ‘<’ for these relations. In case our relation is
a weak partial ordering we write ‘<’ for the associated strict ordering. For weak partial preorderings
we will use <% for the associated strict version to stress the fact that also non-trivial loops are removed.
‘+” will stand for S4Grz-provability.

Let X be a finite adequate set. We construct a Henkin model Jx as follows. Let

Xt:=Xu{(B—0OB),0(B—0B)|0B € X}.
Clearly, X is again adequate. Define:
e The domain J is the set of X T-saturated sets A.

e A=<A":& A=Aorforall OCeA, OC € A’ and for some ODeA’ OD ¢ A)
e AEpeopeA

It is easily seen that Jx is a finite partial order. We show that for all Ain X, A= A< A € A. The
crucial feature here is that we do not prove this fact for all A in X! The proof is by induction on A.
We consider the only interesting case. Suppose that A is OB and that OB ¢ X. We show A [ OB.
We have to produce a A" with A’ = A and A’ £ B. In case B ¢ A, and, hence, by the Induction
Hypothesis, A [~ B, we are immediately done. So suppose B € A. Note that O(B — OB) cannot be
in A, since, if it were, 0B would be in A. We claim:

{OC |OC € Ayu{O(B - 0OB)} ¥ B.
If it did, it would follow by S4-reasoning that:
{OC |OC € A} - O(O(B — OB) — B).

Hence by Grz’, {OC | OC € A} + OB, and, thus A F OB. Quod non. By the usual methods we can
construct an X t-saturated set A’ such that {0C | OC € A}u{O(B - 0OB)} C A’ and B¢ A'. It
follows that A < A’ (with O(B — OB) in the role of the D of the definition). Since B ¢ A'; we have,
by the Induction Hypothesis, A’ [~ B.

For our proof of Uniform Interpolation we will use a different Henkin model Hy , which is defined like
J x, dropping the clause involving D, which excludes non-trivial loops. The height of Hy is estimated
by the number of boxed formulas in X *, which is two times the number of boxed formulas in X.

We start with a amalgamation lemma. Consider disjoint sets of propositional variables Q, p and
R. Let (K, ko) € Pmod(Q,p) and (M, mo) € Pmod(7, R) be S4Grz-models.

Lemma 15.1 Let X C £L™(Q,p) be a finite adequate set. Let:
v:=2]{CeX | C is boxed}|.

Suppose that ko ~.,415 mo. Then there is a Q-extension (N,ng) of (M, mg) such that N is a
S4Grz-model and Thx (ng) = Thx (ko). a



15 UNIFORM INTERPOLATION FOR S4GRZ 32

Proof

Let Z be a downwards closed witness of kg =~ 41,5 mg. Define ®x from K to the Henkin model H :=
Hx as follows: ®x (k) := A(k) := {BeX™ | k |E B}. Define further for k in K: dx (k) := dg(A(k)).
Note that: dx (k) < wv.

Consider a pair (A, m) for A in H and m in M. Consider k', k,m'. Let A’ := ®x(k'). We say that
k' k,m' is a witnessing triple for (A, m) if:

A= A, kl < k, m' < m, kIZ2.dX(k/)+1ml, kZldX(k/)m.

il Zod (k!
A% o
~ = <
A by " Zodx (k) +1 o

Define:

N := {(A,m) | there is a witnessing triple for (A, m)}
Nog ‘= <A(k0),m0>

(A,m) =y (T,n) :& (A,m) = (T',n) or (A =g T and m <p n) or (A < I and m < n)

(A,m) Ens: e AEgsorm s

Note that by assumption kg Z2,11m0. Moreover: 2.dx (ko)+1 < 2.v+1. Hence: koZaqy (kg)+1M0- SO
we can take ko, ko, mo as witnessing triple for ng. Let k', k, m’ be a witnessing triple for (A, m}). Note
that forp e PnX: A=pe kkEp<e mEp,and hence: (Am) Epe AEp<e mEp. It is easy
to see that N is a S4Grz-model (even if Hx need not be one). We claim:

Claim 1 ng ~5r mo.
Claim 2 For B€ X : (A,m) =B & B € A.

Evidently the lemma is immediate from the claims.

We prove Claim 1. Take as bisimulation B with (A,m)Bm. Clearly, Thyz((A,m)) = Thzg(m).
Moreover, B has the zig-property. We check that B has the zag-property. Suppose (A, m)Bm < n.
We are looking for a pair (I',n) in N such that A < T'. In case m = n, we take (I',n) := (A, m).
Suppose m # n and, hence, m < mn. Let k', k,m’' be a witnessing triple for (A,m). We write
A" := A(K'). Since k'Z5 4, (k)+1m' =2 0, there is a h such that k' < hZ5 4, (x1yn. We take I := A(h).
Clearly A < T". We need a witnessing triple k"™, k*,m'* for (I',n) We distinguish two possibilities.
First, A ~ I'. In this case we can take: k™ := k', k* := h, m"™* :=m/.

) Zody (k'

T oo X ooy T x®) n
N N \
| jll <
i : ) Zod (k!

~ A : X k () m
1 ! A
B ! = <
' Py ' Zady (k)+1

AI kl* — kl ml* — ml
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Secondly, A % T'. In this case we can take: k'™ := h, k* := h, m'* := n. To see this, note that, since
k" < h, we have: A ~ A’ < T and, hence, since A % ', A <* I'. Ergo dx(h) < dx(k"). It follows
that: 2dX(h) + 1 S QdX(kl) SO, hZQ.dX(k’)Jrln‘

) Zad (h)+1
| A R L xMFL . m* =n
A A A
: <. <
| : Z .
<+, A ! Px k 2dx ()
1 ! A
: Y | <
1 1 - j
AI’ 3% kl' Zady (k') +1 o

Finally, clearly, noBmy.

We prove Claim 2. The proof is by induction on X. The cases of atoms, conjunction and disjunction
are trivial. We treat the only non-trivial case: the right-to-left case for the box. Consider OC € X
and consider the node (A, m) with witnessing triple k', k, m’. Suppose OC ¢ A.

In case C' ¢ A, we have, by the Induction Hypothesis, (A, m) £ C' and, hence, (A, m) |= OC.

Suppose C € A. It follows that O(C — OC) is not in A, since, otherwise, OC would be in A.
Clearly, k = OC, so there is an h' > k with A’ = C. Let h be maximal in K with A = k and
h & C. By maximality, we find: h = O(C — OC). Let I' := A(h). Since, O(C — OC) ¢ A
and O(C — 0OC) € T, we find: A <* I'. Note that it follows that dx (k') > 1. Since, kZ5 4, (x/ym
and k =< h, there is an n = m with hZy 4, (xy—1n. Moreover: 2.dx(h) +1 < 2.dx (k') — 1. Ergo:
hZ5 4y (h)+1n- So we can take k'™ := h, k* := h, m"* :=n to witness (I',n). Clearly, (A,m) < (T',n).
By the Induction Hypothesis: (I',n) & C. Hence, (A, m) = OC.

) Zadx (h)+1
r—= A

N

<+ =< <,

® Zodx (k' !

A a k S,
= = <

A Dy " Zodx (k)41 o

Thus we have proved Claim 2. a

The statement of uniform interpolation and the semantical interpretation of the propositional quan-
tifiers are fully analogous to the case of GL.

We show that Uniform Interpolation for S4Grz implies Uniform Interpolation for IPC. By itself this
is not so important, since we proved Uniform Interpolation for IPC directly. I feel, however, that the
methodology of such transfers is interesting by itself.

Define Nec(4) := A{O(p — Op) | p € PV(A)}. The Godel Translation (.)* from L® to L™ is
specified as follows.
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e (.)* commutes with atoms, A and v
e (A— B)*:=0(A* - B¥)
Lemma 15.2 1. IPCF A & S4Grz - Nec(A) — A*.
2. S4Grz I (Nec(A)rA) — OA = for some A'€L?, S4Grz - Nec(A4) — (A < A™).

Proof

(1) and (2) are a well know facts. (1) is due to Go6del. (2) is probably first due to Rybakov. We
prove (2). The proof is by induction on the length of A. Suppose S4Grz F (Nec(4)nA) — OA. We
rewrite A to conjunctive normal form treating the boxed formulas as atoms. Schematically, this form
is: A{V{OB,-0C,p,—~q}}. We find, in S4Grz + Nec(A):

A4« A{\V{OB,-0OC,p,~q¢}}
« OA{\/{OB,-0OC,p,~q}}
« A{o\/{OB,-0OC,p,~q}}
& NOA{OC, ¢t - \/{OB,p})}
& NOAL@O)™, ¢} = \/{OB)™,p})}

So we can take A := A{(A{(OC)%, ¢} — V{(OB)}, p})}. Q

Theorem 15.3 Uniform Interpolation for S4Grz implies Uniform Interpolation for IPC

Proof

Consider A in £?. Let ¢ be some subset of PV(A4). Let A be the post-interpolant w.r.t. §of Nec(A)rA*
in S4Grz. Note that: S4Grz F (Nec(A)aA*) — OA. Hence, by the properties of the post-interpolant:
S4Grz - A — OA. Thus, we can find an £-formula A’, such that S4Grz - Nec(4d) — (A & A™).
We show that A? is the desired post-interpolant. Note that, S4Grz - (Nec(A)rA*) — A™. We may
conclude: IPC - A — Al

Suppose IPC - A — B, where the shared variables of A and B are in ¢. It follows that: S4Grz -
Nec(A — B) — (A* — B*). Hence, S4Grz - (Nec(A)rA*) — (Nec(B) — B*). Thus: S4Grz - A™* —
(Nec(B) — B*). And so, S4Grz - (Nec(A? — B)aA™) — B*. Ergo, IPC+ A* - B.

We turn to pre-interpolants. Consider B in £!. Let ¢ be some subset of PV(B). Let B’ be the
pre-interpolant w.r.t. ¢ of Nec(B) — B* in S4Grz. Take B := OB'. We can find an £i-formula B’
such that S4Grz F Nec(B) — (B « Bi*). We show that B’ is the desired pre-interpolant. Note that,
S4Grz - (Nec(B)aB#*) — B*. We may conclude: IPC - B — B.

Suppose IPC - A — B, where the shared variables of A and B are in ¢. It follows that: S4Grz I
Nec(A — B) — (A* — B*). Hence, S4Grz - (Nec(A)rA*) — (Nec(B) — B*). Thus: S4Grz
(Nec(A)rA*) — B'. And so, S4Grz  (Nec(A)rA*) — B (since (Nec(A)aA*) is self-necessitating). So,
finally, S4Grz b (Nec(4)nA*) — B™*. Ergo, IPC+ A — B'. ]

It would be interesting to find a similar argument to prove Uniform Interpolation for S4Grz from
Uniform Interpolation for GL.



16 S4 DOES NOT HAVE UNIFORM INTERPOLATION 35

16 S4 does not have Uniform Interpolation

In their paper [5] Ghilardi and Zawadowski show that S4 does not satisfy uniform interpolation. We
provide a version of the proof. In this section we use F for S4-provability. The models we consider
will be S4-models.

Theorem 16.1 1. The uniform interpolants —if they exist— are semantically quantifiers w.r.t.
bisimulation extension for finite models. Consider, e.g., a formula A(p,q). Suppose A has a
umform post-interpolant A((j) for @. Then, for any finite g-model K and k € K, k |= A iff there
is a P, -model Ml and an m € M such that k ~;; m and m |= A. (We can, but need not, restrict
the extending models to finite models).

2. Suppose S4 satisfies Uniform Interpolation. The uniform interpolants are semantically quan-
tifiers w.r.t. bisimulation extension. Consider, e. -9, @ formula A(p,q). Let the uniform post-
interpolant of A for § be A(7). Then, for any §-model K and k € K, k = A iff there is a
P, q-model Ml and an m € M such that k ~z; m and m = A.

Proof

We prove (1) and (2) simultaneously, plugging in the extra assumptions of finiteness and full Uniform
Interpolation, where needed. We treat the case of the post-interpolant. Consider A, A, a uniform
post-interpolant of A for ¢, K and k. Suppose first that there is a p, Z-model M and an m € M such
that k ~[; m and m = A. Clearly, since 4 F A, we find: m | A. Since A € £™(§) and since k and
m bisimulate w.r.t. £™(§), we have: k = A.

For the converse, suppose k = A. Let X be the set of subformulas of A. Let, for ¥’ € K

A(E") :={BeL™(q) | k' E B}. We say that ['' of X, k'-saturated if
1. TVCX
2. A(K), Tt/ L
3. (A(K),["-Band BE X)= Bel'
4. (A(K"), "+ (BvC) and B,C € X) = (BeI'or C €T").
We specify ML
o M :={(K,T') | I"is X, k'-saturated}
o (K'\T"Y < (K',T") : = k' X k" and for all OB € I", we have: OB € T
o ('\I"YErekkErorel

Clearly M is an S4-model, assuming that M is non-empty. We show that there is a ', consistent
with A(k), such that A € T'. Consider A(k), A. If this set were inconsistent there would be a D in
A(k) (and, hence, in £™(q)), such that A+ =D. It follows, by the properties of the post-interpolant,
that A F —D. But, this is impossible, since k = A. By the usual methods we may extend {A} to an
X, k-saturated T'. Thus we have a node m := (k,I') in M. Note that if K is finite, then so is M.

Define k'B{k",I"") :& k' = k"". We show that B is a bisimulation between K and M(q). It is easy
to see that B preserves the forcing on ¢ and satisfies the zag-property. We verify the zig-property.
Suppose k'B{k',I") and k' < k". We claim that A(k")u{dBeX | OB € I"} is consistent. If it
were not, we could find a D in A(k") such that D,{0BeX | OB € I"} is inconsistent. Clearly, &D
must be in A(k'), and, hence, it would follow that A(k'),I[" is inconsistent. Quod non. By the usual
methods we can extend {O0B€X | OB € I''} to an X, k"-saturated I'"". Thus we find: k"B(k",T")
and (k', Ty < (K", T").
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Finally we show that for all C' in X: (k',T") E C & C € I". The proof is by induction on C. We
treat the only non-tivial case, viz., C = OF from left to right. Suppose, for all (k" ,T") = (k',T"), we
have (k"”,I'""} |= E. By the usual arguments, it follows that:

for all k" = k' : A(K")u{0OBeX |OB€el'}E.

Let F := (A\{OBeX | OB € I'"} - E). We show that there is a ¢-formula F', such that for all k" > k'
we have A(k") F F and F + F. Here we split cases between (1) and (2) of the theorem. Ad (1):
suppose K is finite. By compactness, for each k" = k' there is a D(k") € A(k") such that D(k") - F.
We can take F := \/{D(k") | K" = k'}. Ad (2): suppose S4 has full Uniform Interpolation. Then,
F has a pre-interpolant (w.r.t. §). We take this pre-interpolant as F'. At this point the proofs of (1)
and (2) merge again. We have: F',{0BeX | OB € I'} + E. It follows that k' = OF, and, hence,
that A(k"),I" F OFE. Ergo, OF € T

Thus, we may conclude: k ~5 (k,T') and (k,T) = A. a

Exercise 16.2 Prove the converse of part (2) of our theorem: if S4 has quantifier elimination for the
bisimulation extension quantifiers, then S4 has uniform interpolation. Q

Counsider the following formula A(p, q,r):
pAaO(p — Og)a0(g — Op) Ad(p — r)A0(g — —7)
Suppose A(r) := IpIq.A(p, q,r) exists. We have:

Theorem 16.3 Consider any finite r-model K and k in K. Then: k |= A iff there is infinite sequence
k=ky X ki =< ..., such that ke; = r and kaix1 |E —r. (Our sequence will contain loops, so the
underlying set of the k; need not be infinite.)

Proof

Suppose k |= A. Then, by theorem 16.1, there is a p, g,r-model M and a node m in M such that:
k ~pq m = A We construct simultaneously sequences (k;)ie, and (m;)ie. such that: m = my,
ki ~[pq mi, M2i E p, M2it1 = q, ki X kip1, mi < miy;. Note that we get, m < m;, and so:
m; = (p = r) and m; = (¢ — -r). Hence mg; = r and so kz; |= r (as promised). Similarly,
mai1 = —r and 8o kzip1 = . First note that ko = k ~[, ;; m = mo = p. Suppose we have, e.g.,
constructed ko;, mo; satisfying the conditions. We have m < ma»; and, hence, m»; = (p = <q). Since,
by assumption, ms; = p, there is an ma;11 > ma;, such that moe;11 = ¢. Moreover, since ko; ~ mo;,
we can find a kz;1 = ka;, such that ki1 ~[p g m2ip1. The (20 + 1)-case is similar.

For the converse, suppose K contains an infinite sequence k = ko < k1 < ..., such that ko; = r and
k2iy1 E —r. We extend the forcing of K with p, ¢ as follows:

o k' Ep:& k' = ko for some i.
o k' |: gk = ka;y1 for some 1.

It is easy to see that the specified model is the desired extension. Q

Theorem 16.4 There is no formula B(r) € R™(r), such that for all finite models K and all k in K:
k = B iff there is infinite sequence k = ko < k1 < ..., such that ks; = r and ko1 | —r.
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Proof

Suppose there is such a B. Suppose the box-depth of B is smaller or equal than 2n. Consider the
model following model N:

o N:={0,1,...,2i,2n+1,2n+2}
e k=K :=k>kK orke{2i+]1,2i+2}

o k=r:okiseven

[y

2n+1

2n+2 r

Define further: kB; k' :< k= k' or (k = k' (mod2) and ¢ < min(k, k')). We check that B is a layered
bisimulation. Suppose ki B; k2. In case k; = ks we are easily done, so suppose, e.g. ki < ko. It
follows that ¢ < k. Clearly, k1 cannot be in {2n+1,2n+2} and, so, k; > k2. Preservation of atoms is
immediate. Suppose i > 0. We check the zig-property. If k] = ki, then &} = ko. So we can finish the
zig-diagram by taking k) := k}. We check the zag-property. Suppose kj = ko. In case k) < k1, we can
take ki := kb. Suppose kb > k;. In this case we take k{ := k if k; = k) (mod2) and k] :=k; — 1 if
k1 #Z k4 (mod2). (Remember that 0 < i < ky). It is easy to see that i —1 < k; —1 = k] = min(k], k).

It follows that 2n Ba, 2n+2. From our assumption we get that 2n+2 = B. It follows that 2n = B.
A contradiction. a

We may conclude that S4 does not have uniform interpolation.

Open Question 16.5 In [1] it is shown that in theories having Uniform Interpolation every finite
substitution yields an exact formula. Is there a finite substitution in S4, that does not yield an exact
formula? Q
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