Relational Validity & Dynamic Predicate Logic

Albert Visser

Department of Philosophy, Utrecht University
Heidelberglaan 8, 3584 CS Utrecht, The Netherlands

email: Albert.Visser@phil.ruu.nl

Abstract

In this paper we prove that the principles in the language with relation composition and dynamic
implication, valid for all binary relations, are the same ones as the principles valid when we restrict
ourselves to DPL-relations, i.e., relations generated from conditions (tests) and resettings.

1 Introduction

Consider a domain, i.e., a non-empty set of objects D. Consider some set R of binary relations over D.
There are two operations on relations, we want to focus on. The first is ordinary relation composition
and the second is dynamic implication (to be defined below). We close our relations under these
operations. The relations so obtained, together with the operations form a structure. Here we count
the relations of our original set R as ‘constants’. We call such structures mDIL-models. The sequents
valid for mDIL-models were studied by Patrick Blackburn and Yde Venema in their [3]. Now, suppose
our domains are sets of assignments, functions from some specified set of variables to some given
non-empty set B, i.e. D = EV% and let’s restrict our set of basic relations to relations that are
generated by composition from finitely restricted tests (or: finitely restricted conditions) and random
resettings of single variables. Here a test or condition is a subrelation C of the identity relation —in
other words: a relation without ‘dynamic powers’. A test is finitely restricted if there is a finite set of
variables W such that:
fCf and fIW =g[W = gCg

We often confuse C with the set {geDV?" | gCg}. Thus, the conditions function as the appearance
classical sets of assignments have in the dynamic setting. Resettings of variables are relations of the
form [3z], where

f[3z]g = f and g are the same on all variables except possibly z.

The relations thus generated by tests and resettings are DPL-relations, i.e., relations typically definable
in the language of DPL, a variant of predicate logic invented by Jeroen Groenendijk and Martin Stokhof
(see [4]). Which mDIL-principles are valid for the restricted set of relations?

In this paper we will make this question precise and prove that the same sequents are valid in both
cases.!

Here is a sketch of the argument. One first shows that if two structures are bisimilar, then they
satisfy the same sequents. This is immediate by the well known fact that composition and dynamic
implication are safe for bisimulation. Then one shows that for every structure 91, there is a structure
£ which is bisimilar to 9t and in which every relation can be generated from conditions and resettings.

I This result provides a partial confirmation of a conjecture of Johan van Benthem and Giovanna Ceparello. See [2],
conjecture 9.

2 THE PROBLEM STATED 2

The domain of O is the cartesian product of the domain of 9 with itself. A relation R of 9 is mapped
to a relation R of O, where: R
{a,b)R(c,d) :< aRc and ¢ = d.

These relations R can be specified in the DPL-language by:
dy.R(z,y).qz.(x = y)

This formula means: reset y arbitrarily and then test whether it gives an appropriate output for R. If
S0, reset x to the value of y. The presence of formula shows that DPL has the resources to transform
a static representation of a relation to a dynamic one. To do this we need the auziliary variable y.
We will see that this is unavoidable. It is typical for DPL that it does not have truly local variables,
i.e., variables that can be used for temprary storage and then can be restored to their original content
—unless we use some other variable to store this content, but then this variable

The work in the present paper illustrates the usefulness of notions like bisimulation and safety in
thinking about relational languages. Moreover, the paper shows one way one could think about the
use of auziliary variables in DPL: they are things to be divided out modulo bisimulation.

2 The problem stated

We provide the necessary definitions to make a precise statement of our problem possible at all. We
start with introducing some useful relational notions.

Definition 2.1 Let X be any non-empty set.
1. Rel(X) is the set of binary relations on X, i.e., Rel(X) := p(X x X)
2. Let R, S € Rel(X). The composition Ro S of R and S is defined by: z(R o S)y :< 3z xRzSy
3. Let R, S € Rel(X). The dynamic implication (R—S) between R and S is defined by:
z(R—S)y & z =y and Vz(zRz = Ju zSu).
Our use of — here overloads the symbol, since we also use it for implication in the objectlanguage.

4. idx is the identity relation. A relation R is a condition if R C idx.

Q

The notion of dynamic implication was first introduced by Hans Kamp in his pioneering paper [6].
We turn to the definition of DPL.

Definition 2.2 1. A DPL-language L is a structure (Pred, Ar, Var), where Pred is a set of predi-
cate symbols; Ar is a function from Pred to the natural numbers (including 0); Var is a, possibly
empty, set of variables.

2. The set of L-formulas, For., is the smallest set such that:

e P(v1,-+-,vy,) is in Forg, for P € Pred with Ar(P)=n and vy,...,v, € Var
e T, 1, v=w,dvarein For, for v,w € Var
o If ¢,9) € For, then so are ¢.¢) and (¢ —)

2 THE PROBLEM STATED 3

I feel that it is more faithful to the semantics to leave out the brackets in the formation rule
for the dot officially, but nothing important hangs on this choice in this paper. We get an
ambiguous syntax, but still unique meanings, since the operation of composition is associative.
We use —(¢) and Yv(¢) as abbreviations of, respectively, (¢ — L) and (v — ¢). If z and y
are distinct variables, we write [z := y] for: Jz.z = y. An alternative notation for Jv, is [v :=7]
(random reset).

3. A DPL-model 9 for a DPL-language L is a structure (D, I), where D is a non-empty set, the
domain of M; I is a function which assigns to each predicate symbol P of Pred. an Ar(P)-ary
relation on D.

4. Let a DPL-model 90 be given. Assgy, the set of assignments for M, is DVo".

5. Let a DPL-model M for a DPL-language £ be given. We define an interpretation function
[Jon : Forz — Rel(Assm) as follows.

o f[P(vi, -+, vn)]mg & f =g and (f(v1), -+, f(vn)) € I(P)
[Tlmg = f=g
[Llmg & f# f
[v=w]mg & f=gand f(v) = f(w)
[Fv]omg & Ywe Var\{v} f(w) = g(w)
o [-¢]an = [¢lom 0 [¢)]om
o [(¢ = V)l = ([¢lom—[¢]on)

6. A model 9 satisfies a formula ¢ at an assignment f or M, f = ¢ iff g€ Asson f[Plomg, i.0.w., if
[#]on accepts f.

7. We define validity in a given DPL-model M by: ¢ |=m ¢ :& Vf, g(fld]lmg = Th g[v]amh) As
usual, we define ¢ |= 9 if ¢ F=on 9 for all models M that are appropriate for the given language.

8. A binary relation R is definable in a DPL-model 91 for a language L if there is an L-formula ¢,
which defines R, i.e., R = [¢]m.-
a

We will often suppress the subscript 91, when the model is clear from the context. We could extend
the DPL-language with function symbols by copying the way this is done in ordinary predicate logic.
However, for the kind of result we are after such an extension is immaterial, since the usual trick to
eliminate function symbols works also in DPL —with a small twist. E.g., P(f(g(x))) will be translated
to: ==(Fu.G(z, u).Fv.F(u,v).P(v)).

Example 2.3 [with Kees Vermeulen] We show that in no DPL-model with at least two elements in
D we can define the relation # as resetting relation. Suppose we could. Say, ¢ is the defining formula.
Since # is not a condition ¢ must contain at least one Fv (not confined in an implication). Let Jx
be the first such. So, ¢ has the form C.3x.x, where C stands for a condition. Since every f can be
succesfully continued via #, no f is weeded out in advance. Hence, C' must be equivalent to T. So we
may write ¢ as 3z.y. Consider any f and ¢g with f # ¢g and f[dz]g. (Since our domain has at least
two elements such f and g exist.) We have f[dz.x]g. But, then, we also have g[3z.x]g, contradicting
the assumption that our formula defines #. (For a more extensive discussion of the question which
relations are DPL-definable see [7].) a

2 THE PROBLEM STATED 4

A typical feature of DPL is that the predicate symbols do not take all possible DPL-meanings as
possible values. As a consequence, we do not generally have: ¢ |= 9 = ¢[P := x| |= ¢[P := x|, where
P is a predicate symbol and where no free variables in x are bound in ¢,%. The simplest example is
as follows. We do have P | P, but not Qz.3z.-Qz = Qz.Jz.-Qx.

We now introduce relational models, where every possible relation can occur as atomic meaning.

Definition 2.4 We define the relational theory minimal Dynamic Implication Logic, mDIL, as follows.

1. An mDIL-language K is a structure (Rels), where Rels is a, possibly empty, set of atomic relation
symbols.

2. The set of K-formulas, Fory, is the smallest set such that:

e Risin Fory, for R € Rels
e | 6 arein Forg
o If ¢,7) € Fori, then so are ¢.¢p and (¢ —)

3. An mDIL-model 2 for a mDIL-language K is a structure (D, I), where D is a non-empty set,
the domain of 9M; I is a function which assigns to each atomic relation symbol R of Relx a
binary relation on D

4. Let an mDIL-model 9 for an mDIL-language /C be given. We define an interpretation function
[Jt : Forx — Rel(D) as follows: [R] := I(R), [1] := 0, [6] := idp, [¢.¥] := [¢] o [¢], [(¢ —
¥)] = ([¢]—-¥])

5. An mDIL-model 9 = (D, I) is DPL-definable (Dd), if there is a DPL-model 90, such that D is
(isomorphic to) Assgp and each I(R) is definable in 1.

6. We define validity in mDIL by: ¢ |=m ¢ & Vf, g(f[dlmg = Ih g[Y]nh). ¢ = ¢ if ¢ Ex ¢ for
all models D for the appropriate language. ¢ |Epq ¢ iff ¢ =, ¢ for all DPL-definable models
N, appropriate for the given language.

1]

Let me briefly comment on a subtle notational difference between DPL-language and mDIL-language.
The DPL-predicate symbols, including T and L range over sets/conditions. Thus T stands for the
largest condition in the subset ordering. When viewed as a binary relation, the denotation of T is
simply the identity relation. In mDIL the atomic letters, stand for binary resetting relations. Thus
here T would, reasonably, stand for the universal relation. Hence, we use ¢ for the identity relation
in mDIL.

mDIL was studied by Patrick Blackburn and Yde Venema in their paper [3]. They provide a system
of reasoning for mDIL. A DPL-definable mDIL-model 9 is just an mDIL-model in which the atomic
relations can be generated from conditions and resettings. Note that it follows that all relations of
91 can be generated from conditions and resettings. Finally we have reached the stage, where we can
officially state our problem:

Do we have |=pq=|= for mDIL?

We end this section by describing an equivalent way of introducing |=pg. Let a mDIL-language K
be given. A translation (.)* from K to a DPL-language £ is a function from the formulas of K to the
formulas of £, such that (.)* commutes with L, . and — and sends § to T. We have for formulas ¢, 9
in K: ¢ =¢ & forall (.)* (with domain K) ¢* = ¢*.

To solve our problem we will need some facts about transition systems and bisimulations. These
are presented in the next section.

3 TRANSITION SYSTEMS 5

3 Transition Systems

To solve our problem we will need some facts about transition systems and bisimulations. These are
presented in the present section.

Definition 3.1 1. A transition system & is a structure (S, A,—). Here, S is a non-empty set,
the set of states. A is a (possibly empty) set, the set of labels. — is a function from A to the
binary relations on S. We write s — ¢ for: (s,t) € — (a). Note that our transition systems
are “unrooted”.

2. Consider two transition systems & and . Suppose As = Ag. A bisimulation B between &
and § is a relation between Sg and Sg, such that whenever sBs’ and s ——¢ t, there is a t'
with tBt’ and s’ %> t' (the zig property) and such that whenever sBs’ and s’ % t', there
is a t with tBt' and s —>g t (the zag property). B is total if dom(B) = Se. B is surjective if
range(B) = Sg. B is full if B is total and surjective.

3. Let & and $ have the same set of labels. Define:

e B:8 < $:& Bis a total bisimulation between & and $
e b<9HforsomeB B:B =<9
eB=HoB<HandH <G
Q

It is easy to check that —for transition systems on a fixed set of labels— < is a partial pre-ordering.
Bisimulations are closed under union and converse. So when & = §), then there is a full bisimulation
between & and $.

Fix an mDIL-language K. Consider an mDIL model 9. We associate two transition systems
& :=TH(MN) and H := T1(N) to N by taking:

e Sp =S54 :=Dy

o Ap := Relx, Ay := Forg

o —gi=In, —g=[]n
We state some simple facts.

Theorem 3.2 Consider two K-models M and O. Suppose To(N) < To(O). Then, T1(N) < T1(D).

Proof

The verification is immediate. The basic insight is that ‘adding the identity transition’, ‘adding the
empty transition’, composition and dynamic implication are safe for bisimulations. (The fact that,
e.g., o is safe, means that if B is a bisimulation for the transitions a and beta, then it also a bisimulation
for a o beta.) Safety is studied and characterized in [1] and [5]. a

We write 91 < O for: Tpo(N) <X TH(O).

Theorem 3.3 Consider two K-models M and O. Suppose N X O. Then, Eo C .

4 THE PROBLEM SOLVED 6

Proof

Let B witness 91 < . Note that we have: B : T1(9) < T1(9D). Suppose ¢ |=o ¥ and d[gp]me. Since
B is a total bisimulation, we can find d',e’ with: dBd', eBe' and d'[¢]pe’. Since ¢ o 1, there is an
f" with e'[Y)]o f'. We have eBe’ and €'[¢)]o f', so, by the zag property, there is an f with fBf' and
elYlmf. Q

4 The problem solved

We want to show that =ps=|=. By theorem 3.3 it is sufficient to show that for every K-model 9t
there is a DPL-definable model O such that 9t = ©O.
Consider an mDIL-model D for K. We write Ry for Iy(R), etcetera. We construct O as follows.

e Dy := Dy X Dyy. We conveniently ‘identify’ Dy with Dé{c’y}, where x and y are distinct
variables.

e Ro := Ry, where (a, b)}/fg(c, d) & aRycand ¢ =d

Let aB(b,c) :< a = b. Clearly B is a full bisimulation witnessing % = ©O. Finally we show that O is
DPL-definable. Consider the DPL-language £ and the £-model 99T given by:

Pred, := Relsx

o Arp(R):=2

[] []
T <
g 8
o
Il I
S —~
RS

N

[S——;

Im(R) := In(R)

Note the crucial subtlety that R stands for a set of pairs in 91, but for a resetting relation in 9. We
can now define the resetting relation Ry in 9, by: dy.R(x,y).dx.x = y, or, using an abbreviation:
dy.R(z,y).[r := y]. We leave the easy check that this formula does deliver the promised goods to the
reader.

Our formula effects a static-dynamic conversion. It does this by employing an auxiliary variable y.
Note that the original contents stored under y are irrevocably lost. We proceed to illustrate, that the
use of an auxiliary variable cannot be avoided. We have considered the DPL-definable relations. This
class can be refined in a natural way by counting the number of variables in the DPL-language we
are considering. Thus we can talk about the DPL-1-definable relations (1Dd), the DPL-Ry-definable

relations (NgDd), etcetera. Clearly, we have shown that: Ea.pg = |=. The result is is preserved if
we look at numbers bigger than 2, since for any n > 2: |= C [Eupd C |=2ps € . We do not have
FE1pd = |=, as is shown by the following theorem.

Theorem 4.1 We have =—=(¢.¢) E1pg ¢.¢.¢, but not ~=(¢.¢) |= ¢.4.¢.

Proof

To prove the first half of the result, we work in a language with one variable x and in a model
for this language. Suppose ¥ stands for a condition. By a remark of Kees Vermeulen, we have:
[Fz.4p.3z] = [-=(Fz.p).3x]. It follows that ¢ can —salva significatione— be rewritten as C.3z.C",
where C' and C’ stand for conditions. Now it is easy to see that both ¢.¢ and ¢.¢.¢ are equivalent to
¢.——(Jz.C".C). ;From this insight, the first half of our result is immediate. The second half is proved

by considering countermodel: o 205 Q

REFERENCES 7

Remark 4.2 We provide some remarks and formulate some questions.

1. Note that our result still works for any extension of mDIL with bisimulation safe operations.
Thus we could extend our language with U (union of relations, indeterministic choice). On the
other hand N is not safe. So what happens, when we add N? The operations that are safe for
(partial) bisimulations were characterized by Johan van Benthem in [1]. We have a bit more
here, since full bisimulation is the relevant notion. For example, ‘adding the universal relation’
is safe for full bismimulation, but not for (partial) bisimulation.? So we could add T, where T
stands for the universal relation, to the mDIL-language, preserving our result.

2. If we replace [in our question by C (the subset relation between binary relations), the above
argument does not work any more, since the analogue of theorem 3.3 fails. What happens in
this case?

3. An alternative route would have been to take: (a, b)ﬁ;(c, d) :& aRyc and define this relation
by: Jy.R(z,y).Jz.x = y.Ty.

4. Our result illustrates that modulo bisimulation is a good way of thinking about auziliary variables
in DPL.

References

1]

J.F.AK. van Benthem. Program constructions that are safe for bisimulation. CSLI report 93-
179, CSLI, Stanford University, Stanford, July 1993. to appear in Proceedings Logic Colloquium.
Clermont Ferrant 1994, North Holland, Amsterdam.

J.F.AK. van Benthem and G. Ceparello. Tarskian variations. dynamic parameters in classical
semantics. CS R9419, CWI, Amsterdam, March 1994.

P. Blackburn and Y. Venema. Dynamic squares. Logic Group Preprint Series 92, Department
of Philosophy, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, June 1993. to appear in
Journal of Philosophical Logic.

J. Groenendijk and M. Stokhof. Dynamic predicate logic. Linguistics and Philosophy, 14:39-100,
1991.

M. Hollenberg. General safety for bisimulation. unpublished manuscript, 1995.

H. Kamp. A theory of truth and semantic representation. In J. Groenendijk et al., editors, Formal
Methods in the Study of Language, Amsterdam, 1981. Mathematisch Centrum.

A. Visser. Contexts for dynamic predicate logic. Logic Group Preprint Series 143, Department of
Philosophy, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, October 1995.

2Marco Hollenberg has proved that the operations safe for full bisimulation are obtained by adding the universal

relation to the basic repertoire in van Benthems result. (See [5].)

