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Abstract

In this paper we introduce a notion of context for Groenendijk & Stokhof’s Dynamic Predicate
Logic DPL. We use these contexts to give a characterization of the relations on assignments that
can be generated by composition from tests/conditions and random resettings in the case that
we are working over an infinite domain. These relations are precisely the ones definable in DPL
if we allow ourselves arbitrary tests as a starting point. We discuss some possible extensions of
DPL and the way these extensions interact with our notion of context.

1 Introduction

Dynamic Predicate Logic (DPL) was invented by Jeroen Groenendijk and Martin Stokhof (see [1], see
also our section 2) as a specification language (or better: as a module for a specification language)
of meanings for fragments of natural language. Most of the research concerning DPL has gone into
integrating it with versions of Montague Grammar (see [5]) and into integrating it with Frank Veltmans
Update Semantics (see [6]).

DPL is a theory of testing and resetting of variables/registers. These are fundamental operations
in computer science. Thus, apart from its use in Logical Semantics, DPL is a simple theory of these
basic operations.!

DPL is a natural variant of Predicate Logic. It mainly differs in the treatment of the scope of the
existential quantifier. Certain basic truths about variables in Predicate Logic, however, fail in DPL
(see section 2, see also [2] for similar observations on DPLE). The study of DPL and its kin makes the
dependence of these truths on the specific choice of scoping mechanisms in standard Predicate Logic
visible.

In the light of the varied interest of DPL, it seems a good idea to make a closer study of its
metamathematical properties. We focus on the closely related questions:

e Which relations between assignments are definable in DPL (in a sense we will specify later)?
e How does DPL treat its variables?

To throw some light on both questions a good notion of context in DPL is indispensable. When
studying classical DPL, which is based on total assignments, contexts appear as objets trouvés. They
are not part of the design of the language, but —as will become clear in the paper— can be viewed
as the result of ‘abstracting away’ or ‘erasing’ certain properties of the predicate logical language
(both vocabulary and structure), thus yielding an underspecified language. Underspecification simply
means here that the denotations or meanings of the contexts are properties of relations, rather than
relations.

1DPL is just one theory in a family of alternatives to predicate logic. In these alternatives ‘resetting a register’ is
replaced by other related actions, like ‘create a new register’. See section 7 for references.
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We can view what happens in the paper in a different light. Our deeper interest is in such grand
questions as:

e What should a general theory of information processing look like?
e What is the nature of the variable?

It seems to me that these questions are closely related and that ideas involving both Dynamics and
Contexts should play a role in the answer. The study of DPL, here, is analogous to the study of a
fruitfly in a laboratory situation. It allows us to focus on problems involving dynamics, variables,
information processing. Still, these problems remain feasible.

We end this introduction with a brief sketch of the paper. Section 2 is a straightforward introduction
to predicate logic. It contains all the technical material the reader needs to know. For a discussion of
the applications to discourse phenomena, however, the reader should consult [1]. Section 3 presents
our theory of contexts in DPL. We study contexts as mathematical objects in their own right and
establish their connections to language and semantics. Some materials concerning the information
ordering on contexts are placed in an appendix. In section 4, we treat the Switching Propery. This
property is characteristic for the DPL-definable relations. Section 5 contains the main result of the
paper: a relation over an infinite domain is DPL-definable iff it ‘has’ a context and satisfies the
Switching Property. In the next section, we touch on the subject of extending the DPL-language
with new operations such as conjunction and disjunction. We consider the question whether such
extensions support a good theory of contexts. We will produce two extensions that are complete for
all relations that have a context. In other words: all such relations are definable in those extensions.
Our last section 7 is devoted to the idea of making the context part of the semantics.

2 What is Dynamic Predicate Logic?

We provide the basic definitions of DPL. Nothing in this section pretends to be original. We start by
introducing some basic relational notions.

Definition 2.1 Let X be any non-empty set. Rel(X) is the set of binary relations on X, i.e.,
Rel(X) := p(X x X). Let R, S € Rel(X). We define:

1. The composition RoS of R and S is defined by: x(RoS)y :< 3z RzSy. Note that composition
is in the order of application.

2. The dynamic implication (R—S) between R and S is defined by:
2(R—S)y &z =y and Vz(rRz = Ju zSu).

Our use of — here overloads the symbol, since we also use it for implication in the objectlanguage.
We write —(R) for (R — 0)

3. id x is the identity relation. R is a condition or test if R C idx.
4. Consider Y C X. We define diag(Y) := {(y,y)eX x X |y € Y}.
5. dom(R) := {z€X | Jy xRy} and cod(R) := {yeX | Iz zRy}.
a

The notion of dynamic implication was first introduced by Hans Kamp in his pioneering paper [4].
Note that: =—(R) = (idx — R) = dom(R). The relations in the range of diag are precisely the
conditions. Writing (Y — Z) := (X\Y)U Z, we have:
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o diog(X) = idx
e diag(0) =

o diag(Y N Z) = diag(Y) o diag(Z) = diag(Y') N diag(Z)
e diag(Y UZ) = diag(Y')U diag(Z)

o diag(Y — Z) = diag(Y') — diag(Z2)

Thus, diag is a homomorphic embedding of the structure (pX;X,0, N, N, U,—) in the structure
(Rel(X);idx,0,0,n, U,—). We will sometimes confuse, in the relational context, the set X with
the relation diag(X). We need some further relational notions specifically concerned with relations
between assignments.

Definition 2.2 Let D be a non-empty domain and let Var be a set of variables. Let R€Rel(D"V%"),
Y CDV fe DV and V C Var. We define:

. 311” o dn is the result of changing the values of f on the v; to d;.
o fIyg & forall veV f(v) =g(v).
o [V]:=Zygn\v. We write [v] for: [{v}].

e Visan (V)-setif f € Y and fIyg = g € Y. Y is finitely restricted if Y is a (I)-set for some
finite I. A condition is finitely restricted iff it is the image of a finitely restricted set.

If we want to make the dependence of 7 or [.] on Var or D visible, we add them as subscripts. i}
We collect some simple facts concerning these notions. We have:

e Iy = [Var] = DV x DV Ty, = [0] = idpver

* Iy olw =Ivnw, [V]o [W]=[VUW]

e Iy NIy =Iyuw, [VIN[W] =[VnW]

e IyUZw CZynw, [VIu[W] C [VUW].

Note that the classical meaning of the existential quantifier as a ‘cylindrification’ can be given as:
F2(Y) := dom([z] o diag(Y")). We turn to the definition of DPL.

Definition 2.3 A DPL-language L is a structure (Pred, Ar, Var, Con), where Pred is a set of pred-
icate symbols; Ar is a function from Pred to the natural numbers (including 0); Var is a, possibly
empty, set of variables, Con is a, possibly empty, set of constants. Let Ref := Varu Con be the set
of referents. We will use v, w, . .. for variables, ¢, c, ... for constants and r, s, . .. for referents. The set
of L-formulas, For., is the smallest set such that:

e P(ry,-+-,ry) € Forg, for P € Pred with Ar(P)=n and ry,...,r, € Ref
e T, 1, r=s,3Jvarein Fory for r,s € Ref and v € Var
o If ¢,9 € For, then so are ¢.¢) and (¢ — )

I feel that it is more faithful to the semantics to leave out the brackets in the formation rule for
the dot officially, but nothing important hangs on this choice in this paper. We get an ambiguous
syntax, but still unique meanings, since the operation of composition —the semantic counterpart of
“”—1is associative. An alternative notation for Jv, is [v :=?] (random reset). We use =(¢) and Yv(¢)
as abbreviations of, respectively, (¢ — L) and (Jv — ¢). If z € Var and r € Ref and x and r are
distinct, we write [z := r] for: Jx.x = 7. Q
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Definition 2.4 A DPL-model 9 for a DPL-language L is a structure (D, I), where D is a non-empty
set, the domain of M; I is a function which assigns to each predicate symbol P of Pred, an Ar(P)-ary
relation on D and to each constant ¢ an element of D. Assyy, the set of assignments for 9, is DVo".

Consider r € Ref. We define:
Il 1= { f(r) ifre Var

I(r) ifre Con
The interpretation function [.]Jon : Fory — Rel(Assom) is given as follows.
o [P(r1, - mn)lm := diag({Ff€DY™" [ {|rilon,s, -+ Irnlon, ) € I(P)})
Tlom := idpver, [L]m :=0

We write ¢ =on ¢ for [¢lon = [¢]on. We define validity in DPL by:

¢ Fam ¥ = VL, 9(flglomg = b g[Y]omh).

As usual, ¢ = ¢ iff ¢ =on ¢ for all models 90t appropriate for the given language.
A binary relation R is definable in a DPL-model 9 for a language £ if there is an L-formula ¢,
which defines R, i.e., R = [¢]on. a

We will often suppress the subscript 9, when the model is clear from the context. We could extend
the DPL-language with function symbols by copying the way this is done in ordinary predicate logic.
However, for the kind of result we are after such an extension is immaterial, since the usual trick to
eliminate function symbols works also in DPL —with a small twist. E.g., P(f(g(x))) will be translated
to: ==(Fu.G(z, u).Fv.F(u,v).P(v)).

We remind the reader of Geach’s Donkey Sentence: If a farmer owns a donkey, he beats it. This
sentence can be translated into DPL in a compositional way as:

(Fz.farmer(z).Jy.donkey (y).owns(z,y) — beats(z,y)).

One striking feature of DPL is that it is not ‘structural’: the values the predicate symbols may
assume are not all the possible meaning objects provided by the semantics; we only allow tests. A
second striking feature is the time symmetry of resetting and composition, which constrast strongly
with our time asymetric intuition about, say, the meaning of P(z).3z.Q(z). The asymmetry of our
intuition may be explained by the fact that we tend to think more in terms of successful resetting,
ie, M E P(x).3z.Q(x), than just in terms of what the resetting relation is.

Ordinary predicate logic can be interpreted in DPL as follows. We suppose that the predicate
logical language has as connectives and quantifiers: T, L, A, —, 3z. We translate as follows:

e (.)* commutes with atomic formulas and with —
o (pny)" = ¢

* (J2(¢))" = —=(3w.¢")

We find: [¢p*|an = diag([#] o), where [.] is the usual valuation function of Predicate Logic. Our
translation is compositional. It shows that we may consider Predicate Logic as a subsystem of DPL.
There is also a kind of inverse translation (.)°, which satisfies: [¢°] o = dom([¢°]). This translation
involves renaming of variables and cannot be taken to show that DPL is a subsystem of Predicate
Logic.
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3 Contexts for Dynamic Predicate Logic

In this section, we study the notion of contexrt and its connections with relations and language. We
placed some materials concerning the information ordering on contexts in an appendix, since, on the
one hand, they are conceptually relevant and have a clear place in the total picture, but, on the other
hand, they have no direct bearing upon the main results of the paper.

3.1 Introductory remarks

To motivate our notion of contexts, we first give an intuitive discussion about substitution and kinds of
variable occurrences in DPL.? In Predicate Logic variables may occur in a formula in two ways: freely
and bound. The free variables admit (under certain conditions) substitution. The bound variables
may be renamed salva significatione (a-conversion). Let’s write o’ (¢) for: the result of substituting
t for z in ¢. In Predicate Logic we have, e.g.,

19 € [lm & f € [05(0)] -

What is the proper analogue of this fact for DPL? To simplify the discussion we will only treat a special
case and refrain from giving official definitions. Consider the DPL-formula P(z).3z.Q(z).3z.R(z). We
have:

1. f191P(2).32.Q(2).32.R(2)|ang & F[P(c).32.Q(z).3z.R(z))myg

2. f[P(%).32.Q(2).37.R(z)|am gt & f[P(z).32.Q(z).32.R(c)|ang

Meditation upon (1) and (2) suggests, that, in DPL, we have to distinguish two kinds of substitution
left substitution and right substitution and corresponding to these kinds two kinds of ‘free occurrence’:
left free and right free. We also speak of input occurrences and output occurrences. Following temporal
intuitions —ignoring the essentially time-symmetric character of resetting and composition— we may
also call the left free occurrences simply free and the right free occurrences actively bound. Now
consider the following formula, say ¢y, in which we have tagged occurrences of x with superscript

numerals.
P(x').322.Q(2*).32* .~ (32° .R(2%)).S (")

We see that z! is a (left) free or input occurrence. Left substitution for z will cause it to be replaced. If
we form T'(z°).4p, in the semantics the values assigned to 2° and z* will be unified. If we form 3x.¢y,
x! will be ‘bound’ or ‘initialized’ by the new ‘quantifier’. Symmetrically, =7 is right free or actively
bound. It will be in the scope of right substitution. If we form ¢o.7'(z°), the values of 27 and z° will
be unified, If we form ¢¢.3z, 27 will be ‘aborted’. Neither ' nor 7 are open to a-conversion salva
significatione. x> is not accessible for substitution, nor is it a-convertible: replacing =2, 2* and x* by,
say, y, will result in a formula that resets y, which ¢y doesn’t do. We call 2° a garbage occurrence:
it is something that ‘exists’, but is no longer ‘used’.®> z8 is also inaccessible for substitution, but in
addition it can be a-converted: replacing z° and 2% by y does not change the meaning of ¢y. We say
that z% is clasically bound. Finally, we consider 2%, z* and z°. These are ‘occurrences’ in a purely
syntactical sense only: they do not represent ‘files’ carrying information, but just signal that incoming
files labeled z should not be ‘unified” with outgoing files labeled z. We say that these ‘occurrences’
are blockers. = is not a blocker in ¢y as a whole.*

2The subject of kinds of variables and substitution would merit a far more extensive discussion. Regrettably, such a
discussion is beyond the scope of the present paper.

3The notion of garbage is studied in [8] and in [9]

4Even if Vermeulens DPLE (see [7]) is quite close to DPL, the discussion of kinds of occurrences would be very
different.
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Contexts, in our present set-up, signal the presence of input occurrences, of blockers and of output
occurrences.® They are abstract —in comparison with formulas— in the sense that they contain no in-
formation about the number or the place of these occurrences. Contexts can be studied independently
from their connection with the logical language.

Contexts are familiar from Predicate Logic. There the context associated to a formula ¢ is simply
the set F of free variables of ¢.5 A salient property of contexts in Predicate Logic is as follows.
Suppose F is a context for ¢, then [¢] o is F-restricted, i.e. f € [¢] m and fZrg, implies g € [¢] -
Most of the work in this section will be devoted to proving the appropriate DPL-analogue of this
property of Predicate Logic.

3.2 Contexts, considered by themselves

In this subsection, we treat contexts as mathematical objects in their own right. The natural connec-
tion with DPL will surface in the subsequent subsections.

Definition 3.1 A DPL-context is a triple (I, B,0), where I, B and O are finite sets of variables
and where I\B = O\B, or, equivalently, TUB = OUB. The set I is the input set, i.e., the set on
which the incoming assignments are constrained. The set O is the output set, i.e. the set on which
the outgoing assignments are constrained. Finally, the set B is the set of blocks. This is the set
of variables for which the identity between input and output value is cut through. The ‘block’ is a
barrier between past and future, breaking the link between input- and output-value. We write | for
is defined or converges, and T for is undefined or diverges. Define:

e i0:=(0,0,0)

(I, B,0) o (I', B',0') :i= (IU(I'\B), BUB',(O\B') U O)
(I,B,0) - (I',B',0") := (Iu(I'\B),0,Iu(I'\B))

(I,B,0) <(I'B,0") > ICT,0CO0, BCB CBUINO)

e N is a partial operation on contexts, defined by:

(INI',BNnB',OnO'Yy it BCB'U(INO)

(I, B,OYn{I',B',0") := and B CBU(I'n0'")
T otherwise
We will use ¢, 0, ...as variables over contexts. We write I, for the first component of ¢, etcetera. Q

The meanings of these objects, relations and operations will become apparent in subsection 3.3.

Lemma 3.2 The operations e, — and N are well defined. 1]

Proof

To see that e is well defined, note that:

(Iu(I'\B))u(BUB'") (IuB)u(I'uB')
= (OuB)U(O'uB’)

(O\B"YuO'u(BUB").

51n fact, there are good reasons also to put witnesses of garbage into the contexts. We will do not this in the present
paper, since it is not necessery for our results here. Moreover, adding garbage leads to considerable complication of the
framework and it necessitates bringing in Category Theory. We refer the reader further to [9].

6The reader is referred to [3] for a category-theoretical framework appropriate for the study of contexts in Predicate
Logic.
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It is trivial that — is well defined. For the proof that N is well defined we refer the reader to the
appendix. a

Theorem 3.3 The contexts with i0 and e form a monoid. Moreover, < is a partial ordering.

The proof of the theorem is easy. In the appendix we will show that N, if defined, is the infimum,
w.r.t. <.

Consider the monoid of contexts. It can be represented in an alternative way, as follows. The
monoid 2 is the monoid on two generators a and b, given by the equations: aea =a, b eb = b and
beaeb="0. The tabel of the monoidal operation e is a follows.

| o] ¢ | a [b[ab] ba | aba|
¢ ¢ a b | ab | ba | aba
a a a ab | ab | aba | aba

b b ba b b ba ba
ab ab | aba | ab | ab | aba | aba
ba || ba ba b b ba ba

aba || aba | aba | ab | ab | aba | aba

The monoid of contexts is now given as the set of functions from Var to 2 that are on all, but finitely
many arguments equal to e. We put: (f e g)(v) := f(v) @ g(v). A triple (I, B,O) ‘translates’ to a
function f with, e.g., f(z) = abiff x € I, z € B and z € O, etcetera. A function f translates to a triple
(I,B,0) with, e.g., z € Iiff f(z) € {a,ab,aba}, etcetera. It is easily seen that these ‘translations’
give us an isomorphism of monoids between the representations. 2 is in fact isomorphic to the monoid
of contexts in the case that Var = {z}. The alternative representation is possible by the fact that in
our monoidal operation treats all variables ‘independently’. It is not difficult to extend the structure
on a,b,..., to get a function representation also for —, < and N.

In this paper we will stick to the set representation, since this representation is closest to the
relational notions we will need to formulate our theorem on contexts and relations —the theorem that
tells us what the contexts do. The function representation, however, has two advantages. First, it
is easier to use for doing computations ‘in the head’. Secondly, its connection with the framework
developed in [9] to study contexts, is more perspicuous.

3.3 Contexts and relations

We turn to the connection between contexts and relations.” We show that this connection ‘commutes’
w.r.t. /o, »/— and </C. We fix a non-empty domain D.

Definition 3.4 Consider a relation R on DV*". R is an (I, B, O)-relation if R = (Z; o Ro Ip)N[B].
We say that ¢ is a context for R, if R is an c-relation. R is an IBO-relation if R is an (I, B,0)-
relation for some (I, B, 0). We assign to each context ¢ the property or ‘meaning’ [c]p, the set of all
c-relations on D V2", (We will often suppress the subscript D.) 1]

The heuristic for this property is as follows. R is (I, B,0) means that R is only concerned with the
values of the incoming assignment on I; R only cares about the values of the outgoing assingment on
O; all this under the constraint that in going from input to output only values of variables in B are
changed. Before proving some facts about the notion introduced above, we sample some immediate
insights.

"The semantics for contexts given here certainly does not exhaust all possible uses of contexts. E.g., the problem of
explaining what it is to be a variable occurrence of a certain kind is left untouched. Undoubtedly, contexts will play a
role in solving this problem.
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o {0,[B]} < fc}
o £(0.B,0)] = {0,[B]}
e Risa (I,D,I)-relation precisely if R is an (I)-condition.

We show that < on contexts describes the ‘information ordering’ on contexts. The idea is simply that
¢ is more informative than d if {c} C [0].

Theorem 3.5 1. ¢ <0 = {c] C [0].
2. Suppose |D| > 2. Then: [c] C o] = c<0.

Proof

Let ¢ = (I,B,0) and 0 = (I',B’,0"). We prove (1). Let ¢ < 9 and R € [c]. We want to show:
R = (Zr oRoZIp/)N[B']. Trivially, R is contained in (Z; o RoZp:) N[B’']. We show Iy o RoZp C R.
Suppose f'I; fRgZorg’ and f'[B'lg’. It is immediate, that f'Z;fRgZog’. We show that f[B]g.
Suppose v € B'\B. Then, v € I'n0O’. We find: f'(v) = f(v), since v € I'. Moreover, f(v) = g(v),
since fRg, R C [B] and v ¢ B. Finally, g(v) = ¢'(v), since v € O'. Since R is a c¢-relation, we may
conclude that f'Rg’.

We prove (2). We write X¢ for Var\X. Let |D| > 2 and [c] C [2]. Since, [B] € {c], we have
[B] € [o]. Hence, using the facts of page 3, we find:

[B] = (Zro[B]oZo)N[B]
= [(I''uBUO“)nB].

Since, |D| > 2 it follows that: B = (I'UBUO'“)nB’. Now it is immediate that: B C B’ C
Bu(I'n0O").

The arguments that I C I’ and that O C O’ are analogous to one another. We give the argument
for the I-case. Suppose, for a reductio, that v € I\I'. Let d and e be distinct elements of D. We
write [v = d] for the test: is f(v)=d?. Consider the relation R := [v = d] o [B]. Clearly, R € [c] and,
so, R € [0]. Consider f with f(v) = d. In case v € B’, we have: f¢Z1 fRgZo-g. Since, as we have
already shown, B C B’, we find: f¢[B']g. Hence, since R € [0}, we have f?Rg. Quod non. We turn
to the case that v ¢ B’. Since I'\B' = O'\B’, we find: v € O'. So: f¢ZIr fRgZo ¢S. Since B C B',
we find f¢[B']g¢. Thus, since R € [0]], we have f¢Rg?. Quod non. a

Theorem 3.5 shows clearly that contexts stand in a many-many relation to relations. Thus, the
question What is the context of R? has no definite answer. In the appendix we show that, but for one
notable exception, every relation has a most informative context. The next lemma may be used in
some cases to simplify the verification that a relation is (I, B, O).

Lemma 3.6 Ris a (I, B,O)-relation iff R = (ZroRoZpnp)N|[B]. a

Proof
It is clearly sufficient to show that for any R C [B]:

(Z[OROZO)Q[B] = (Z]OROZOQB)Q[B].

JFrom left to right is immediate, since Zo C Zpong. For the converse, suppose f'ZrfRgZon g’ and
f'[Blg’'. We have to show: gZpg'. Consider v € O. In case v € B, we have g(v) = ¢’(v). Suppose
v € O\B. Then, also v € I\B. We have: ¢'(v) = f'(v), since v € B. Moreover, f'(v) = f(v), since
v € I. Also f(v) = g(v), since fRg, R C [B] and v ¢ B. Putting the identities together, we find

g'(v) = g(v). Q
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The following lemma is quite useful in applications (see example 3.14). We write A := T U B.

Lemma 3.7 Suppose R is an (I, B, O)-relation and f'Z;fRg. Then there is a unique ¢’, such that
f'Rg'Ipg. This ¢’ has the following property: for any set of variables J, if f'Z;f, then ¢'Z;g. As a
consequence, we find that ¢'Z;g and, hence, g'Z4g. So, also, ¢'Tog. Q

Proof

Let R be an (I, B, O)-relation with f'Z;fRg. Any ¢' with f'Rg'Tpg, must satisty: f'[Blg'Zpg. So
the only possible choice of such a ¢" is: f' [ (Var\B)Ug [ B. We verify that ¢’, thus defined, satisfies
f'Rg’. Tt is sufficient to show that gZpg’. This, in its turn, follows immediately from the property in
the last part of the theorem.

Consider any set J such that f'Z;f. Suppose v € J. In case v € B, we have g(v) = ¢'(v). In case
v & B, we have, g(v) = f(v), since v ¢ B, Moreover, f(v) = f'(v), since v € J. Finally f'(v) = ¢'(v),
since v ¢ B. Putting things together, we find g(v) = g(v’), as desired. a

Note that in the lemma O plays no significant role. Due to the ‘forward looking’ and time asym-
metric nature, however, of the definitions of implication and validity in DPL, it is sufficient for most
applications. An immediate consequence of the lemma is that if R is an (I, B, O)-relation, then
dom(R) is an (I)-condition and (by symmetry) cod(R) is an (O)-condition.

Theorem 3.8 Suppose R is a c-relation and S is a 0-relation. Then Ro S is a ¢ e d-relation.

Proof

It is easy to see that: Ro S C (Zy# o (Ro S)oZpr)N[B"] For the converse, suppose that f'[B"]g’,
f'Zrnf, f(Ro S)g and gZong'. We have to show: f'(Ro S)g’. For some h, we have fRhSg. We
partition Var into three sets X; := OUl’, Xy := B\(OUI'uB’) and X3 := Var\((B\B')uOuUl').
Define: b’ := b1 X1 U¢ [XoU f'[X3. We show that f'Rh'Sg’. We first prove that f'Rh’. We check
the conditions for applying the fact that R is an (I, B, O)-relation.

1. f'Zy f and, hence, since I C I", f'Z;f.
2. fRh.

w

. hZoyrh' and, hence, hZph'.

4. We show that f'[B]h'. Consider a variable v not in B. We have to show f'(v) = h'(v). We can
only run into trouble in case v is not in X3, i.e., if v isin B\ B’ or in O UI’. The first possibility is
excluded, by the fact that v is not in B. Suppose v isin OUI’. Then: h'(v) = h(v), by definition.
R is an (I, B, O)-relation, so R C [B]. We may conclude that h(v) = f(v), since v € B. In case
v €O, wefind:ve O\B=I\BCICI" Incasev € I’ wefind: v € I'\B C I". So in both
cases: v € I'". Since f'Z;f, it follows that f(v) = f'(v). Composing the identities, we find
h'(v) = f'(v), as desired.

By (1)-(4), we may conclude that f'Rh’. Next, we check the conditions for applying the fact that S
is an (I', B', O')-relation.

1. We have hZpoyrh' and, hence, h'Z h.
2. hSg.

3. We have gZp~ ¢’ and, hence, since O' C 0", gZp/g'.
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4. We show that h'[B'lg’. Consider a variable v not in B’. We have to show A'(v) = g¢'(v).
Inspecting the definition of h’, we see that our desired identity can only fail if either v ¢ B or
v € Band v € OUI'UB'. We consider the case that v ¢ B. We already showed that f'[B]h'.
Moreover, we assumed f'[B"]g'. Hence: h'[B|f'[BUB'lg’. So, h'[BUB'lg’. Since v ¢ BUB’,
we find: h'(v) = ¢'(v). Next, we consider the case that v € B and v € OUI'UB’. Since,
we choose v outside of B’, we need only consider the possibility that v € OUI’'. We have, by
definition, h'(v) = h(v). Since v ¢ B’, we find h(v) = g(v). By our early assumption, gZp~g',
where O" = (O\B')uO'. If v € O, then clearly v € O\B’, and we find g(v) = ¢'(v). If v € I,
we have v € I'\B' = O'\B' C O, hence, again, g(v) = ¢'(v). Putting the identities together,
we find A'(v) = ¢'(v), as desired.

By (1)-(4), we have: h'Sy¢'. a

Theorem 3.9 Suppose R is a c-relation and S is a 0-relation. Then R — S is a c—0-relation.

Proof

Suppose R is a c-relation and S is a d-relation. Let ¢ = ([,B,0), o = (I',B’,0’) and (¢ — 0) =
(I",0,I"). Trivially, (R — S) C [#]. Moreover, since id C Z;», (R — S) C (Zyr o (R — S)o ;)

To prove the converse, suppose f'Z;/f and f(R — S)f. We have to show that f'(R — S)f'.
Suppose f'Rg’. By lemma 3.7, there is a g such that fRgZ;»ypgg'. It follows that ¢'Z;g. Since
f(R — S)f, we can find an h, such that gSh. Again applying lemma 3.7, we find an h' with ¢'Sh'.

a

We close this subsection with a language-free soundness result.

Definition 3.10 A relation on D"*" is DPL-definable over D iff it can be generated by composition
from resettings [v] and finitely restricted conditions over D a

Theorem 3.11 Every DPL-definable relation over D is an IBO-relation.

The proof is an obvious induction on the way the relation is generated.

3.4 Contexts and language

We turn to our discussion of how contexts are connected to formulas.

Definition 3.12 We assign to every DPL-formula ¢ a context cy. Define:
® Cpiry,rn) =(V,0,V), where V = {ry,---,r} N Var
e ctr=cy =(0,0,0), c,os = {({r,s}n Var,d,{r,s}n Var), c3, = (0, {v}, D)
® 5 =g ocy and cyy) = (cg — ¢y)
We write I, for I, etcetera. Q

Note that the definition correctly defines a function, by the associativity of e. We now prove the main
theorem of this section.

Theorem 3.13 For every formula ¢, [@] is a cy-relation on DVer,
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Proof

The proof is by induction on ¢ using theorems 3.8 and 3.3. The atomic cases are easy. Q

We obtain the following picture of the way contexts work: ¢ is mapped to ¢4 by abstracting both from
part of the vocabulary and part of the structure. ¢, is mapped to f[cg]p, a property of relations. Via
a different route ¢ is mapped to the relation [@]on. The two routes are connected by the theorem that
[¢lon € feo]p-

Note that ¢, is not always the <-minimal context of [¢]or, as is witnessed by the fact that c;—, =
({z},0,{z}) and that [z = z]gn is the identity on D"*" thus admitting the context (0,0, )

Example 3.14 We provide two examples of how theorem 3.13 in combination with lemma 3.7 can
be used to verify a valid principle for DPL. We first prove:

X'¢ ':gf), ifB¢ﬂI¢ :@.

Suppose By NI; = 0 and fx.¢]g. We have to produce an h with g[@]h. Since f[x.¢]g, we can find
a j with j[¢]g. By theorem 3.13: j[Bglg. Since, Bynly = 0, we find: ¢Z7,5. So, ¢Zr1,j[¢lg- By
theorem 3.13 and lemma 3.7 we can find an h with g[¢]h.

As a second example we prove:

XEoY=xEY, if Bgnl, =0

Suppose BgN Iy =0, x = ¢.¢ and f[x]g. We have to produce an h with f[¢)]h. By our assumptions,
there are ¢ and j such that f[@]i[¢]j. Hence, f[Bgli and so fZy,i. Thus, fZ7,i[¢]j. We may conclude
that there is an h with f[¢]h.

The examples demonstrate the role contexts must play in the formulation of schematic principles
for DPL. 1]

4 The Switching Property

In section 3 we introduced contexts or IBO’s as properties of relations and showed that every [¢] is an
IBO-relations. A first conjecture for characterizing the DPL-definable relations would be that these
are precisely the IBO-relations. We will see, however, that this conjecture is false. To characterize
the DPL-definable relations we need one extra property: the Switching Property. In the present
section we will prove that the DPL-definable relations do have the Switching Property (soundness).
In section 5 will will show that every IBO-relation on an infinite domain that has the Switching
Property is DPL-definable (completeness).

Definition 4.1 A relation R on D"*" has the switching property if it is either a condition or there
are variables z and y (not necessarily distinct), such that R = dom(R) o [z] o R o [y] o cod(R). If the
second case obtains, we call the variables z and y involved a pair of switching variables. There might
be more than one pair of switching variables. 1]

There are various other ways to define the Switching Property, but, I submit, the one presented here
is the most natural one. In the lemma below, we collect some helpful insights.

Lemma 4.2 Suppose R is a relation on D"er
1. R =dom(R)o Ro cod(R).

2. Suppose R is C o T o C', where C and C’ are conditions and where T is a relation. Then
dom(R) o C = dom(R) and C' o cod(R) = cod(R).
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3. Suppose C is a condition. Then, C o [z]oCo[z] =Coz] and [z] o Co[z] o C =[] o C.

The easy proof is left to the reader.
Theorem 4.3 FEvery DPL-definable relation over D has the switching property.

Proof

In case R is a condition, we are done. Suppose R is not a condition. As is easily seen, R must be of

the form C o [z] 0 S o [y] o C', for some variables z, y, some conditions C, C', and some relation S.

(In a formula ¢ defining R, x would correspond to the first existential quantifier occurring in @, y to

the last. Note that we allow z and y to be the same variable and even the first and last existential
quantifier occurrence to be the same occurrence.) We have, using lemma 4.2:

dom(R)o[z]oColx]oSolyloC'o[y]ocod(R) =
dom(R)oCofz]oColz]oSo[y|oC oly]loC" ocod(R)
dom(R)oCo[r]oSo[yloC' ocod(R) =
dom(R)o Rocod(R) = R

The results of section 3 and of this section combine to the obvious ‘soundness’-result:
Theorem 4.4 Every DPL-definable relation over D is an IBO-relation with the Switching Property.

Example 4.5 We show how to use the Switching Property to prove that certain relations are not
DPL-definable. Suppose |D| > 2.

e Let R := [z := y,y := z], where f[z :=y,y :=1z]g :& g = ;f,(;)’f(“). R is an IBQO-relation,
with context ({z,y},{z,y},{z,y}). Suppose R has the Switching Property. R is evidently not
a condition. Let v,w be a pair of switching variables. Let fRg, f(v) = d, and d # e. Using the
fact that the domain of R is the set of all assignments, we find:

fi(dom(R)) f7 [v] f Rg[w]g(cod(R))g.

Hence, by the switching property: f¢Rg. But R is obviously injective. So we have a contradic-
tion.

e Suppose our model 9 is the usual structure of the natural numbers. Let S := [z := z + 1],
where flz == 2+ 1]g :& g = fg{(m)ﬂ. S is an IBO-relation with context ({z},{z},{z}). S
does not have the Switching Property since: S is not a condition; S has as domain the set of all
assignments; S is injective.

e Let T := [(FzvIy)], where [(FzvIy)] := [Fz]U[Jy]. T is an IBO-relation. Surprisingly, the best
context we can find for it is ({z,y}, {z,y}, {z,y}).® Suppose that T has the Switching Property.
T is not a condition, so we can find switching variables v and w. By symmetry we may assume
that v # z. We can find f and g with fSg and f(x) # g(z). Choose d with d # g(v). Using the
fact that the domain of T is the set of all assignments, we find:

£ (dom(8)) f{[v] fTg[wg(cod(T))g.

By the Switching Property: f2Tg. But we have two distinct variables z and v such that
fi(z) = f(x) # g(x) and f%(v) = d # g(v). This is clearly impossible.

8We will discuss this fenomenon in more detail in subsection 6.3.
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5 The DPL-definable relations on an infinite domain

In sections 3 and 4 we have seen that the DPL-definable relations are IBO-relations with the Switching
Property. Here we show the converse —for the case that the domain, D, is infinite.

Theorem 5.1 Let D be an infinite set. Then the DPL-definable relations over D are precisely the
IBO-relations with the switching property on DVor.

Proof

One direction is by our previous results. Let R be an (I, B, O)-relation with the switching property.
In case R is a condition we are done. Suppose R is not a condition and let z, y be a pair of switching
variables. By the switching property R = dom(R) o [z] o R o [y] o cod(y). Note that dom(R) is an
(I)-condition and that cod(R) is an (O)-condition. Thus, it is sufficient to show that [x] o R o [y] is
DPL-definable. [z] o Ro [y] is an (I\{z}, B,O\{y})-relation, where z,y € B. After renaming, we
see that it is sufficient to prove that any (I, B, O)-relation R, with z,y € Band x ¢ I and y & O is
DPL-definable.

We will assume z # y. In case x = y, the proof is simpler. To increase readability, we will specify
R in a DPL-language that we introduce along the way. Suppose I = {iy,---,i}, B\O = {b1,---,b,}
and ONB = {o1,---,0p}. Here the i, are supposed to be mutually distinct and similarly for the
other sets. Since D is infinite there is a coding of finite sequences of elements of D in D. Par abus de
langage, we will confuse this coding with our ordinary sequences of elements of D. Our language has
an (m + 1)-ary predicate symbol P, where:

(di, - ,dm,e) € (P& 3f,g fRgand f(i1) =di,..., f(im) = dy and
e=(g(o1),---,9(0p))
Remember that [y := z] is short for 3y.y = z. The formula ¢ is given by:
dz.P(i1, -, im, x).[y :== x].301.- - .Fop.(y = (01, -+, 0p)).3b1.---.Tby

Here “y = (01,---,0p)” stands for the obvious condition. Note that [#] is an (I, B, O)-relation. We
claim that R = [¢]. Suppose first that fRg. Take:

o hy o= plEOD (o)
Remember that « & {i1, -, iy, }. We have:
hi[P(i1, - yim, )b < (h1(i1), -, h1(im), h1(z)) € I(P)
< (f(in), -+ f(im), (g(or), -+, g(0p))) € I(P)
Clearly, f and g witness that (f(é1),---, f(im), (9(01),- -, g(0p))) is in I(P). Next we set:
o hy = (hl)ég(mx--wg(op))

° h3 = (hz)g(ol)v---yg(on)

01 ,.00,0p,

b1)se.yg9(br
° h4 = (h3)gf7.1..),bn o)

We find (using y & {01,---,0p}):

fBzlhy ha[P(iv, - i, @) ha[ly = 2]]hs
hg[EIol.---.Elop]h3 h3[y:<01,"',0p>]h3 h3[§|b13bn]h4
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Since f[B]g, it is easy to see that g = hy.
For the converse, suppose f'[@]g’. Let hyi, ha, hg, be such that:

f'Balhy ma[P(iv, i, @)ha ha[ly := 2]]ho
h2[5|01."'.5|0p]h3 hg[y = (01,"',Op>]h3 h3[3b13bn]g’
We are going to apply the fact that R is an (I, B, O)-relation. By the fact that hy[P(i1, -, im,z)|h1
and by the definition of P, we can find f and g such that fRg, f(i1) = hi(i1),. .. f(im) = h1(im), and
(g9(01),---,9(0p)) = hi(x). Since = & {i1,---,im} and f'[z]hq, it follows that f'Z;f. Collecting what

we have, we see:
e fRg.
* f'[Bl¢'
o f'Irf.

By lemma 3.6 we need to check:

e 9ZonByY'.

Consider v € ONB. We have: hi(z) = (g(o1),---g(0p)) and, hence, hao(y) = (g(o1),- - g(op)). Since
y ¢ O, we find: hz(y) = (g9(01),---g(0p)). Since v € {01,---,0,} and hs[y = (01, -, 0p)]hs, we find:
hs(v) = g(v). Finally, v is not among the by, ---, b, and thus: ¢'(v) = g(v).

Putting the itemized insights together, we may conclude: f'Rg’. a

6 Extensions of the DPL-language

We consider three extensions of the DPL-language. One with conjunction interpreted as intersection
of relations, one with a new quantifier 3 and one with disjunction interpreted as union of relations. We
will show that our contexts work for each of these extensions. The contexts provided for disjunction
are not optimally informative and intuitively queer, however. We will give some hints on how we think
this apparent defect should be repaired. We show that 3 is definable using A and that in the system
with 3 all IBO-relations are definable.

6.1 Conjunction

We study the effect of adding intersection of relations to the DPL-repertoire. One way of of thinking
about RN S is as: reset simultaneously via R and via S, and compare the results. If they are equal,
make the output of our new relation the shared output, otherwise abort. At the syntactical level, we
reflect the new operation by extending the language of DPL by adding the clause:

o If ¢,9p € L, then (dry)) € L.

We will call the new language: £(A). The semantic clause is: [pa9)] := [¢] N [¢]. We define intersection
of contexts as follows.

o (I,B,O)A(I',B',0') :=
(IuI'u(OUO"\(BNB'),BNB',0u0'U(Iul'")\(BnB"))

Note that:

Iul'u(OuO")\(BNnB")u(BnB') Iur'uouO'u(BnB')
= OuO'u({Iul')\(BnB")u(BnB')

So A is a well-defined operation on contexts. We define:
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e (I,B,0) < (I')B",O"Y:I'"Cland BC B and O’ CO

Note the difference between < and <. It is easy to see that A is precisely the infimum with respect to
<.

Theorem 6.1 Let R be a c-relation and let S be a d-relation. Then, RN S is a (cAd)-relation.

Proof

Suppose that the conditions of the theorem are fulfilled. Let ¢ = (I,B,0), o = (I',B’,0') and
(erd) = (I",B",0"). Clearly, fZ;+f(RNS)gZo-. Suppose f(RNS)g. It follows that f([B]N[B'])g,
ie., f[BnB'lg. So:

(Rﬂ S) - (I[H o (RHS) OIOH)ﬂ [B"].
For the converse, suppose f'Z;+f, f(RNS)g, 9Zo~g', and f'[B"]g'. Evidently, f'Z;f, fRg, 9Z0¢’,
and f'[B]g’. Ergo f'Rg’. Similarly f’'S¢’. Hence f'(RNS)g". a

We extend the definition of ¢4 to the new language by adding the clause ¢y y) := cpacy. Theorem 6.1
immediately yields the next theorem.

Theorem 6.2 [¢] is a cg-relation for every pEL(A).

We consider an example. Let ¢, = (I, B,0). Suppose B = {b1,---,b,}. Let ¥ := (¢.3b1.---.FbpyaT).
We have: [¢] = [-=(4)] = [(T — ¢)]. We compute cy.

Cy =

(I,B,0) e (0,B,0))n(0,0,0)
I,B,0\B)n (0,0, 0)
Tupu(O\B\0),0,0\BU (I1\0))
,0,1)

(

(

(
=
Thus, in this example our conjunction on contexts, gives us the ‘intuitive result’, i.e., [¢] is an I-
condition.

Let’s say that the DPL(a)-relations over a given domain D are the relations on this domain generated
by finitely restricted conditions and resettings using composition and intersection. The results of the
present section show that the DPL(r)-relations are all IBO-relations. The results of the next section,
will imply that, conversely, every IBO-relation is DPL(A).

6.2 A new existential quantifier

We define: dz(R) := ([z]o Ro[z]) N Z{,}. In case R is an (I, B, O)-relation, we see that 3z(R) := ([z]o
Ro[z]) n[B\{z}]. It follows —by the result of subsection 6.1— that I(R) is an (I'\{z}, B\{z}, O\{z})-
relation.

We extend the language of DPL by adding the clause:

e If ¢ € £ and v € Var then Fv(¢) € L

Note the overloading of notations. The new language will be £(3). The new semantical clause is
the obvious: [Fvglon = Fv[@lon. Fv is definable in L£(a) as follows. Suppose ¢y = ([, B,0). Let
B\{z} = {b1, -+, b,}, then we can put (Iz.¢.3z A 3b;.---3b,) for ().

Theorem 6.3 For any non-empty domain D, the DPL(3)-definable relations are precisely the IBO-
relations.
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Proof

[Sketch] We have already seen that every DPL(3)-definable relation is IBO. For the converse, suppose
that R is an (I, B, O)-relation. Let I = {i1,---,in}, B\O = {b1,---,b,} and ONB = {01, --,0p}.
Here the i, are supposed to be mutually distinct and similarly for the other sets. Take a DPL(3)-
language with an (m + p)-ary predicate symbol P, where:

(d1>"'>dm761>"'7el7) EI(ZD)<:> EIf:.g ng and f(zl):dlaaf(zm):dm
and f(o1) =e1,..., f(op) =¢p

Let u; ...u, be variables disjoint from JU BUO. Let ¢ be given by:

EH’LLl(' - (EHUP(P(il, s ,im,ul, s ,up).Elol. s .ElOp.

0] =Up. " -.0p = upEIblElbn) )

Clearly, that [¢] is an (I, B, O)-relation. The verification that R = [¢] is along the lines of the proof
of theorem 5.1. Q

Example 6.4 We show how to define the three relations of example 4.5. We do a bit more than the
theorem promises, because we give explicit descriptions of the ‘P’.

e [z :=y,y := z] can be defined by:
Fu(Fv(z = u.y = v.32.Jy.y = u.x =v)).
Note that this gives us the expected context: ({z,y},{z,y}, {z,y}).

e [z := x + 1] can be defined by: Fv(z = v.3z.x = v+ 1). (Strictly speaking we are working
in a relational language, so z = v + 1 is a suggestive notation for, say, S(v,z).) The context
produced by the formula is as expected.

e We can define [(FzvIy)] by:
Fu(Fv(—(~(z = uv).~(y = v)).qz.Jy.x = v.y = v)).

This gives us the context ({z,y}, {z,y}, {z,y}). We will discuss this context in the next subsec-
tion.

1]

Since 3 is definable using A, the ‘expressive completeness’ of 3 w.r.t. the IBO-relations implies the
‘expressive completeness’ of A. Finally, we can translate Predicate Logic into DPL(a), by changing the
J-clause of our earlier translation to: (3(¢))* := F(¢*). Remarkably, the old and the new translation
produce precisely the same relations at the semantical level.

Operations like —, A, v and thereis are not themselves actions in the sense of our semantics. They
are transformers of actions. Yet there is a tendency to understand Jz(¢) dynamically as a sequence
of actions: reset z; execute ¢; set x back to its original value. The problem with this way of viewing
things is summarized with the question: where do we store the original value of z, so that we can
restore it at the end? DPL-semantics does not supply the right kind of ‘memory’ to realize I(¢) as a
sequence of actions. We can do that (or, rather, something very much like it) in the richer semantics
of Kees Vermeulen’s DPLE (see [7]), where under a variablename we do not store just one value, but
a stack of values. Here the original value of z is simply stored ‘under’ the new one.
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6.3 Disjunction

In this section we have a brief look at the problem of adding disjunction/union to DPL. Adding
disjunction/union evokes problems that are definitely beyond the scope of the present paper. So we
can only offer some tantalizing remarks.

One way of of thinking about RU S is as: Choose between R and S, and reset via the relation chosen.
At the syntactical level, we reflect the new operation by extending the language of DPL by adding
the clause:

o If ¢,9p € L, then (¢ve)) € L.

We will call the new language: £(v). The semantic clause is: [pve)] := [¢] U [¢].

What could be a context for [z]U[y]? Some experimentation shows that the best we can do is:
({z,y},{z,y}, {z,y}). This seems a wasteful way to represent the variable handling of this relation.
Our intuition tells us that [z] U [y] is a pure resetter and not something that ‘constrains’ w.r.t. z and
y. The resetting part of our contexts is somehow too crude to represent ‘choice’ well. The example
does not tell us that in any strict sense our present framework is wrong. It just suggests that, possibly,
we could do better. We might try out richer notions of context. The most obvious proposal is to take
as a context in the new sense a set of contexts in the old sense, where the set is given ‘disjunctive
reading’.? So, e.g., we would have:

C(3zvIy).P(z,y) = {<{y}> {l‘}, {l‘, y})v ({Z‘}, {y}> {l‘, y})}

Note that e.g. the second occurrence of z in (JzvIy).P(x,y) seems to be ambiguous between free
and actively bound. So what is an ambiguous occurrence and how do we handle it theoretically? We
propose to addres this question elsewhere.

7 Relations in context

In DPL meanings are relations. The contexts we studied appear as properties of these relations.
We could give an alternative semantics for DPL by building the context into the meaning. Thus
we take as meanings pairs (c, R), where R € [c]. Let’s call such a pair a c-relation. We define:
[Blon = (¢4, [¢lon).'° The new domain of meanings is, on the one hand, essentially richer than
the old one, since the same relation falls under several contexts. On the other hand, we threw all
non-IBO-relations away. We can ‘lift’ the notions intoduced in this paper to c-relations:

e (c,R)e(0,5) =(ced,R0S5).

e A c-condition is a c-relations of the form ((7,0, 1), R).

If R = ({I,B,0), R), then dom(R) := ({(I,0, 1), diag(dom(R))). Similarly for cod.
[B] := (0, B,0),[B]). We write [v] for [{v}].

A c-relation R has the Switching Property if it is either a c-condition or there are variables v
and w such that:
R =dom(R)e [v] eR e [w] e cod(R)

A c-relation is DPL-definable (over a given domain D) if it can be generated using e from
c-conditions and resettings [v] .

91n fact, I think, this proposal is in the right direction, but still not quite right.
10T am convinced that the enriched semantics is better than the usual one, but I will not argue the case here.
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In a similar way we can upgrade A and 3. Inspection of the proofs in this paper shows that, in
case D is infinite, the DPL-definable c-relations are precisely the ones with the Switching Property.
Moreover, all c-relations over the given domain —infinite or not— are DPL(3 )-definable. We consider
an example. Remember that:

0,0,0) < {«},0,{z}) < ({z},{z}, {2}).

Let a model with domain D be given. We assume that D has at least two elements. Let id := id pvar.
We consider three ¢-relations with associate relation ¢d.

L [T = (0,0,0),id),
2. [z =a] = ({z},0,{x}),id),
3. [Fu(u =z.Fz.u = z)] = (({z}, {z}, {z}), id).

(1) and (2) are c-conditions and, hence DPL-definable. In fact, they can be defined in the language
by T, respectively x = x. In contrast, (3) is not a condition. It is easy to see that (3) does not have
the Switching Property, since the domain of its internal relation id consists of all assignments and id
is injective. Hence (3) is not DPL-definable. Note that ({0, {z}, ), id) is not a c-relation at all.

A further step in modifying our semantics is to make the assignments ‘local’. The idea is that the
context ‘provides’ the files/discourse referents/variables on which the variables are defined. Thus,
our meaning objects would be of the form ((I, B,0), R), where R would be a relation taking input
assignments defined on I and yielding output assignments defined on O. This approach leads to a
semantics very much like Vermeulen’s Referent Systems (see [8]). One effect of this further modification
is that it leads to a somewhat different view of contexts. In the local approach, contexts are the central
‘engines’ that manage the flow of the files in the interactions of meanings. This more dramatic view
of contexts is elaborated in [9].

Concluding remarks

In this paper we introduced a notion of context and specified its connections with relational semantics
and language. We used these contexts to prove a characterization of the DPL-definable relations.
Moreover, we illustrated the usefulness of contexts both in formulating and in verifying valid sequents
of DPL. We illustrated the fact that ‘understanding of what is going on’ is not automatically preserved
if we extend the DPL-language. E.g., adding disjunction leads to ambiguous occurrences of variables.
This observation tells us that the study of extensions will provide us clues regarding the question:
what is it to be a variable occurrence of a certain kind?

So —apart from the concrete results— what general conclusions may we draw from the paper? A
first one is, surely, that a study of the elementaria of DPL is both necessary and rewarding. Questions
on the nature of variable occurrences, the proper notion of syntactic substitution, etcetera, appear in
a new light. The fruitfulness of the study of DPL is independent of the question whether DPL is really
the best choice as a medium for representing dynamic phenomena. One reason is that, in a sense, the
relational semantics of DPL is very simple and that it is, therefore, easier to make progress. A second
conclusion is that it is rewarding to engage in a study that stresses the differences between DPL and
Predicate Logic. Much effort has gone into integrating DPL into the classical Montague framework.
This project has unavoidably a conservative flavour. The result has been that the unfamiliarity, the
strangeness of DPL has been underadvertised. Precisely mastering the strangeness provides us with
better insight into the formerly familiar notions. My third conclusion is simply: contexts are essential
in the study of DPL and its kin. We may want to vary the contexts, e.g., we may want to add ‘garbage
elements’ or to ignore the O-component, but contexts per se are there to stay. Our third conclusion
points to a larger programmatic point: the study of contexts and the way they are contexts of their
contents should be one of the central endeavors of the study of Information Processing and Dynamics.
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A Appendix: Intersection of contexts

In this appendix we treat the properties of intersection of contexts.

Lemma A.1 n is well defined. Q

Proof

We have to prove: (INnI")\(BnB') = (0OnO")\(BnB') on the assumption that B C B'U(IN0O) and
B'C Bu(I'n0'"). We prove

(InI"\(BNnB') C(ONnO"\(BnB").

The converse direction is dual. Suppose v € INI’ and v € BN B’. We want to prove: v € On0O'. We
have: v ¢ B or v ¢ B'. Suppose v ¢ B. It follows that v € I\B and, hence, v € O\B, sov € O. If
v & B', we find v € O', and we are done. Suppose v € B’. We assumed that B’ C Bu(I'n0'). Since
v ¢ B, we get: v € I'nNO’, and, hence, v € O'. The case that v ¢ B’ is similar. a



A APPENDIX: INTERSECTION OF CONTEXTS 20

Next we prove that N produces the < minimum, whenever there is one.
Theorem A.2 1. 3<cand3; <0 cnNd |, 3<cN0.

2. ¢N0, whenever it exists, is the infinimum of ¢ and 0.

Proof

Let c=(I,B,0),o=(I',B'O’) and 3 = (J,C, P). Suppose 3 < cand 3 <d. We have: J CInI', P C
OnO',CCBNB',BCCU(InO)and B C Cu(I'n0"). It follows that B C (BNB")u(InO),
and, thus, B C B'U(In0O). Moreover, B' C (BNB')U(I'n0'), and so B’ C BU(I'NO"). We may
conclude that ¢cnd |, cno <cand ¢Nnd <0.

For the converse, it is sufficient to prove that if cn0 |, then ¢Nd < ¢ and ¢Nd < 0. So, suppose
cnNo |. We verify ¢cnd < ¢, the case of 0 being similar. The only problematic case to check is:
B C (BnB')U(INO). But this immediate from: B C B'U(INO). a

In the following theorem we show that one can always find a ‘best’ context for a given non-empty
IBO-relation.

Theorem A.3 Suppose |D| > 2. We have:
1. Suppose ) # R € [cJnfo]. Then ¢nd | and R € [cnd].
2. ¢cno = f[eno] = [ nfo].
3. Suppose ) # R. Let X := {r| R € [x]}. Suppose X # 0. Then X has a minimum.

Proof

Let ¢ = (I,B,0) and 0 = (I, B',0"). We prove (1). Suppose § # R € [c]nfo]. Suppose fRg. We
first prove that ¢nd |, i.e. B C B'U(INO) and B' C BU(I'n0"). By symmetry, we only need to
treat the first desideratum. Suppose, to obtain a contradiction, that for some v: v € B, v € INO and
v € B'. By the duality between I and O, we can restrict ourselves to the case that v € I. Pick d with
d # g(v). We have: f4Z;fRgZog and, since R C [B] and v € B, f¢[B]g. Hence f?Rg. It follows that
R ¢ [B'], a contradiction.

We show that R € [cnd]. Suppose f'ZrnrfRgZono g and f'[BnB'lg’. We have to show:
f'Rg’. Define:

o f*i=f1TuU f'|(Var\l).
e g-:=¢g[O Ug [ (Var\O).

Clearly, fZ;f*, and, since f'"Zrnp f, f*Zr f'. Similarly, gZpg* and ¢*Zo ¢’

We show f*[B]g*. Consider v ¢ B. In case v € I, we have v € I\B, and, hence, v € O\B and,
thus, v € O. We find: f*(v) = f(v), since v € I. f(v) = g(v), since fRg and R C [B]. g(v) = g*(v),
since v € O. So f*(v) = ¢g*(v), as desired. In case v ¢ I, we also have v ¢ O, since, otherwise
v € O\B = I\B. By the definitions of f* and ¢* we find: f*(v) = f'(v) and ¢'(v) = ¢g*(v). Moreover,
by the fact that f'[Bn B'lg', we get f'(v) = ¢'(v). Hence, f*(v) = ¢*(v).

Since f'[BNB’]g’, we have, a fortiori, f'B'g’. Collecting all previous insights, we may conclude:
f*ZrfRgZog* and f*[Blg*. Hence f*Rg*. It follows that f'Z; f*Rg*Zo'g' and f'[B’]g'. Hence f'Ry’.

We turn to (2). Suppose ¢Nd |. By theorem 3.5 and the fact that ¢cNd < ¢ and ¢Nd < 0, we have:
f[cno}] C [c]nfe]. For the converse, apply (1). Finally to prove (3), note that, since contexts are
finite, < is well-founded. Hence, X has a minimal element. Moreover, (1) implies that X is closed
under N. So the minimal element must be the minimum. Q
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Our last theorem corresponds to the familiar fact of ordinary Predicate Logic that if a set of assign-
ments F is finitely restricted, then one can find a C-minimal I, such that F is (I)-restricted. Note that
() in the DPL case corresponds to many <-incomparable contexts. Thus, it is hopelessly ambiguous,
in contrast to the predicate logical case.



