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A simple model is presented that allows calculation of the small-angle X-ray

diffraction patterns of perfect colloidal crystals. The model is based on the

Wentzel–Kramers–Brillouin approximation and permits a straightforward

evaluation of multibeam interactions. Results are illustrated by several

examples.

1. Introduction

Colloidal suspensions display spontaneous formation of crys-

tals driven by the excluded-volume entropy (Hoover & Ree,

1968; Pusey & van Megen, 1986). They provide simple model

systems for atomic and molecular phase transitions (Hoover &

Ree, 1968; Pusey & van Megen, 1986; Pusey et al., 1989;

Schaetzel & Ackerson, 1993; Harland & van Megen, 1997;

Zhu et al., 1997; Davidchack & Laird, 2000; Polson et al., 2000;

Cheng et al., 2002; Auer & Frenkel, 2003; Pronk & Frenkel,

2003) and have recently re-entered the spotlight because of

their possible photonic applications (Imhof & Pine, 1997;

Asher et al., 1998; Wijnhoven & Vos, 1998; Blanco et al., 2000;

Rengarajan et al., 2001; Vlasov et al., 2001; Velikov, 2002;

Hoogenboom et al., 2003; Yethiraj & van Blaaderen, 2003).

In the case of hard spheres, the formed crystals commonly

show a random hexagonal close-packed (r.h.c.p.) structure

(Sanders, 1968; Liu et al., 1993; Verhaegh et al., 1995; Zhu et al.,

1997; Dux & Versmold, 1997; Pronk & Frenkel, 1999; Kegel &

Dhont, 2000; Martelozzo et al., 2002; Petukhov et al., 2002,

2003; Versmold et al., 2002), even though calculations indicate

that colloidal hard spheres should prefer a face-centered cubic

(f.c.c.) structure (Bolhuis et al., 1997).

The local structure and ordering of these crystals can be

investigated using confocal microscopy (van Blaaderen et al.,

1997; Verhaegh et al., 1995; Gasser et al., 2001; Elliot et al.,

2001), while the long-range order can be conveniently inves-

tigated using scattering techniques. In particular, small-angle

X-ray diffraction (SAXD) can be used to characterize the

internal three-dimensional structure of colloidal crystals (Vos

et al., 1997; Wijnhoven et al., 2001; Petukhov et al., 2002, 2003;

Versmold et al., 2002; Megens & Vos, 2001), as well as to probe

their corresponding long-range order parameters (Petukhov et

al., 2002). Even though the diffraction angles are extremely

small, SAXD patterns can be clearly resolved using synchro-

tron sources that allow for sufficient angular resolution, of the

order of a microradian (Drakopoullos et al., 2005; Petukhov et

al., 2006). In comparison with light scattering (Cheng et al.,

2002; Henderson & van Megen, 1998; Zhu et al., 1997; Dux &

Versmold, 1997; Kegel & Dhont, 2000), the most important

advantage of X-rays is their intrinsically low refractive index

contrast (the difference in index of refraction is of the order of

10�6). As a result, the occurrence of multiple scattering is

reduced significantly and a much wider range of scattering

vectors is available with X-rays. This significantly broadens the

range of crystals that can be studied with SAXD including

photonic band-gap materials which strongly interact with

visible light.

As a direct result of the low contrast, scattering is weak and

the Rayleigh–Gans–Debye (RGD) theory often suffices to

describe the SAXD intensities. However, in single colloidal

crystals possessing perfect periodic order over large distances,

strong diffracted waves can be built so that the RGD can no

longer be applied and the more complicated dynamic theory

(James, 1965; Zachariasen, 1946), which accounts for the

interactions between incident and diffracted waves, has to be

used. In particular, two clear dynamic effects have been

observed: diffraction spots of magnitude comparable with the

zeroth-order beam (Petukhov et al., 2004) along with the

appearance of so-called secondary Bragg rods at Bragg-rod-

forbidden diffraction orders (Petukhov et al., 2003). Here we

present a simple model that allows the straightforward

evaluation of the SAXD patterns even in the strongly dynamic

diffraction limit. To illustrate the results, SAXD patterns were

simulated for a number of examples.

2. Model

In the hard X-ray (>10 keV) range, the index of refraction of

matter is determined mainly by electron density (Feigin &

Svergun, 1987). For a typical colloidal system [for instance

silica spheres immersed in a hydrocarbon solvent, as described

by Petukhov et al. (2004)], the phase contrast (the real part of

the difference in indices of refraction) is of the order of 10�6,

while the absorption contrast (the imaginary part) is two

orders of magnitude smaller (see http://www-cxro.lbl.gov/

optical_constants/). As a result, phase contrast dominates over

absorption contrast in this energy range.
‡ Present address: Max Planck Insitute for Metal Research, Heisenbergstrasse
3, 70569 Stuttgart, Germany.
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Moreover, with the small phase contrast, all refraction can

be neglected. Under these circumstances, the diffraction of a

plane electromagnetic wave on a sample can be modeled by

the Wentzel–Kramers–Brillouin (WKB) approximation. This

model, which found prior application in quantum mechanics

(Sakurai, 1994), visible optics (Deirmendjian, 1957) and non-

linear optics (Roke et al., 2004), treats the experimental

sample as a pure phase object. Thus, when irradiated with a

plane wave, the wave emerging from the sample is assumed to

still be completely parallel, but modulated by a phase factor

proportional to the pass lengths of the wave through different

compounds (with different, non-complex, indices of refrac-

tion). In practice, the WKB approximation is especially

suitable to SAXD with its low contrast and very small

diffraction angles (typically of the order of 10�3–10�4 rad).

The emerging phase-modulated wavefront (see also Fig. 1)

is then allowed to propagate over a large distance. When

analyzed in the Fraunhofer (i.e. far-field) approximation, a

diffraction image is obtained that is proportional to the

(squared modulus of a) two-dimensional Fourier transform of

the field immediately after the sample. Since both phase

modulation and the Fourier transform are energy conserving,

the total power of the direct beam together with all the

diffracted peaks is equal to the energy of the incoming beam.

In this work, we will use the WKB approximation to form a

diffraction model that describes diffraction from a (perfect)

r.h.c.p. lattice, consisting of perfectly round identical spheres.

We will look at the diffraction pattern for a situation where the

incident beam is perpendicular to the close-packed layers, and

a situation where the incident beam is parallel to the close-

packed layers. We are able to derive the diffraction pattern

analytically for one orientation (the perpendicular orienta-

tion), though we are still able to draw important conclusions

from the results for the other orientation. Of course, for any

orientation other than the two mentioned, the diffraction

patterns can still be simulated numerically, though that is

beyond the scope of this paper.

3. Perpendicular orientation

We first consider an X-ray wave perpendicular to the close-

packed layers of a r.h.c.p. crystal. When the incident plane

wave travels through a single layer, every point in the plane

wave becomes multiplied by phase factors that are propor-

tional to the amount of matter encountered in this layer. These

phase factors are typical for the type of layer (A, B or C).

Should the (now modified) plane wave encounter another

layer of the same type, every point is multiplied by the same

phase factors as before. Therefore, in the perpendicular

orientation, the exact sequence of layer types is of no impor-

tance; only the number of occurrences of each layer type is.

The phase modulation can be described as

�ðx; yÞ ¼ ’NA
A ðx; yÞ’NB

B ðx; yÞ’NC

C ðx; yÞ; ð1Þ

where ’A;B;C is the phase modulation for a given point (x, y) in

the close-packed layer A, B or C, and NA;B;C is the number of

layers of the respective type.

If we now calculate the diffraction patterns for each of the

single layer types, we can calculate the full diffraction pattern

by convoluting these results with each other. Furthermore,

because each layer type is shifted over a well defined distance

and direction with respect to the other layer types, it will

suffice to calculate the Fourier transform for one type and add

the proper shift factors for the other types. Similar to classical

diffraction theory, the structure of a single plane can be

described as a convolution of a unit cell and a (two-dimen-

sional) lattice. The Fourier transform of the lattice will yield

the reciprocal-lattice points, while the Fourier transform of the

unit cell will yield the form factor, which holds the information

we are interested in.

3.1. Scattering from a single sphere

As a simple example, we first calculate the scattering

pattern of a single sphere. To maintain a clear connection with

the following examples, the pattern is calculated for a stack of

hexagonal layers in the same lateral position A and containing

NA layers. The only difference is that the convolution with the

lattice is not performed and the Fourier components are

calculated for continuously varying values q of the scattering

wavevector q. The result thus represents the Fourier pattern of

a two-dimensional unit, which is simply a line of NA spheres

obscuring one another. This, in turn, is equivalent to the

scattering field of a single sphere with an NA-fold contrast of

the refraction index. We should also note that in most of the

simulation results in this section, the contrast is somewhat

exaggerated in comparison with the conditions encountered in

an X-ray scattering experiment.
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Figure 1
Schematic view of a wavefront hitting a sphere. As the wavefront travels
through the sphere, it develops an advanced phase compared with the rest
of the wave, which manifests as a wavefront distortion.
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For such a sphere, the maximum phase difference an

incoming plane wave incurs is [following the approach taken

by Roke et al. (2004)]

 ¼ 2K0NARs�n; ð2Þ
where K0 is the value of the wavevector of the incident wave,

Rs is the radius of a sphere and �n is the difference in index of

refraction between sphere and solvent.

For a 10 keV beam, K0 is 5 � 109 m�1, so for spheres with

radii of the order of 100 nm and an index of refraction contrast

of �n ’ 1 � 10�6, a number of layers NA of the order of 102–

103 are needed for diffraction to leave the RGD regime.

When we express the phase modulation field for a single

particle in a transformed coordinate system by mapping the

top hemisphere of the particle to the projection plane by the

coordinates � (for azimuth) and ’ (for altitude), the scattered

electric field strength becomes

EAðqRÞ ¼ R2
s

Z2�
0

Z�=2

0

½expði sin ’Þ � 1� exp½iqRRs cos � cos ’�

� sin ’ cos ’ d’ d�; ð3Þ

with qR the radially symmetric diffraction vector. By

expanding both exponentials, integrating and re-summing the

results, this equation can be solved and written as (for a similar

treatment, see van de Hulst, 1981)

EAðqRÞ ¼ 2�
R2

s

qRRs

Xþ1
n¼1

ði Þn
n!

�
n

2
þ 1

� � 2

qRRs

� �1=2
" #n

� Jn=2þ1ðqRRsÞ; ð4Þ
with � being Euler’s gamma function and Jn the Bessel func-

tion of the first kind. This expression represents the scattering

from a single sphere in a solvent, so the model should, in the

low-contrast limit, correspond to classical scattering models.

For small values of  , all terms beyond the first of this equa-

tion can be neglected. Furthermore, the first term can be

rewritten as

EAðqRÞ ¼ 2�i R2
s

sin qRRs � qRRs cos qRRs

ðqRRsÞ3
� �

; ð5Þ

which is the RGD expression for scattering from a single

spherical particle (see also van de Hulst, 1981).

In the RGD regime, at large qR the mean scattered intensity

diminishes (q�4
R ) according to Porod’s law. Equation (4) seems

to follow this behavior even at very high contrast. This is

clearly visible in a log–log plot presented in Fig. 2. Despite the

significant modifications of the dependence at smaller angles,

it switches to a straight-line decay with a slope of �4.

Furthermore, when equation (4) is tested against Mie theory

calculations (van de Hulst, 1981), good correspondence is

observed for values of  up to 20 (see Fig. 3).
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Figure 2
Log–log plots of scattered intensity as a function of scattering angle for
different values of  . It can clearly be seen that, although a higher  
causes a later onset of the q�4

R dependence, it is still visible for values that
are at the limit of the validity of our current model.

Figure 3
Comparison of Mie scattering (red dots) and the current model (black
line) for different values of  . Only at higher values of  can a significant
deviation be observed.
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3.2. An f.c.c. crystal

From the expression of a single sphere, it is now possible to

derive the expressions for single close-packed layers of the

three types (A, B, C) present in r.h.c.p. stackings, by multi-

plying equation (4) with the reciprocal lattice for a close-

packed layer. For the B and C type layers, an additional phase

factor is added because of the real-space translation of these

layers compared with the A type.

As noted before, the exact sequence of layers is irrelevant in

the WKB approximation and only the amount of layers of

each type is of importance. As a result, the layers in the r.h.c.p.

structure (e.g. ABACBCB) can be rearranged in such a way

that a single f.c.c. crystal is formed, with any surplus layers

added separately at the end (for the previous example:

ABCABC B). Finally, the f.c.c. part can then be restacked into

three zones with one layer type each (AA BB CC B). We can

now calculate the diffraction pattern for an f.c.c. crystal and

convolute the result with the expressions of the surplus layers

to obtain the r.h.c.p. result. The f.c.c. diffraction pattern, in

turn, can be calculated by convoluting the expressions for the

three layers types. The numbers of layers of each layer type

are equal, and the translational shift of the B or C layer with

respect to the A layer is �2Rs=ð31=2Þ, which in the Fourier

domain gives rise to a phase factor expð�i2�=3Þ so that the

expression for the convolution [adopting a two-dimensional

(hk) Miller index notation] becomes

EFCC hk ¼
X1

h00¼�1

X1
k00¼�1

EA ðh00k00 Þ exp½ið2�=3Þðh00 � k00Þ�

�
X1

h0¼�1

X1
k0¼�1

EA ð½h0�h00 �½k0�k00 �Þ

� expf�ið2�=3Þ½ðh0 � h00Þ � ðk0 � k00Þ�gEA ð½h�h0 �½k�k0 �Þ;

ð6Þ
where EA hk is the value of equation (4) for the diffraction

vector corresponding to index (hk). The occurrence of the

factor expði2�=3Þ is such that for any h�k not divisible by

three, the value of EFCC hk is zero, which is a well known

property of the f.c.c. diffraction.

From the series expansion of equation (6), a diffraction

spectrum of the f.c.c. crystal can be simulated. Simulation of

the relative intensity of the 11 peak with respect to the

primary, undiffracted beam at increasing values of  shows

that there is a point where the primary beam is depleted up to

a point where the intensity of the 11 diffraction is of

comparable magnitude (see Fig. 4). As mentioned before, the

WKB approximation conserves energy, which in this case

means that a significant drain on the primary beam occurs,

because all six first-order diffraction spots have the same

intensity.

Furthermore, as the primary beam is depleted with

increasing  , the first-order diffraction spots also shows a

frustrated growth, due to both multiple scattering to higher

orders and the lack of ‘supply’ from the lowered intensity of

the primary beam. Finally, if we look at the evolution of the

diffraction pattern with increasing  , we note that before the

11 diffraction reaches an intensity comparable with the

primary beam, the 30 reaches an intensity comparable with the

11 diffraction. In the overall picture we notice, as expected, an

increasing amount of energy scattered to higher orders.

3.3. An r.h.c.p. crystal

The final step in describing diffraction from an r.h.c.p.

stacking is to convolute the result for f.c.c. stacking with the

expressions for the surplus layers mentioned above. Typically,

the number of surplus layers will be very small, which means

that for these layers the condition  < 1 is observed. As a

result, the RGD equation (5) can be used as the expression for

the scattering. One can see that the intensities of the peaks

existing in an f.c.c. diffraction pattern are hardly altered due to

the dominant contribution of the 00 value of the surplus layers.

The intensities of the peaks that are zero in the f.c.c. expres-

sion, on the other hand, increase quadratically with the

number of surplus layers, as can be seen in Fig. 5.

4. Parallel orientation

If we now switch the setup in order for the beam to be incident

parallel to the close-packed layers, another picture is obtained.

The structure of the crystal is not as straightforward to

describe as in the previous orientation. It is possible, however,
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Figure 4
The intensities of the four lowest order non-zero f.c.c. diffraction peaks
with increasing  . As  increases, relatively more energy is diffracted to
higher orders

Figure 5
The influence of a number of surplus layers on the diffraction intensity of
the 10 and 11 diffraction peaks. The intensity of the 10 peak increases
with quadratic dependence on the phase difference caused by the surplus
layers, while the influence of the surplus layers on the 11 peak is
negligible.
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to calculate an average diffraction pattern based on the

chances of a certain layer stacking occurring. For this, we

create a variation on the method described by Wilson (1949).

The unit element can be defined as the upper half of one

close-packed layer combined with the lower half of the

neighboring layer. Because these elements are fully periodical

in one direction, we expect well defined diffraction orders in

this direction (to which we will refer as the intralayer direc-

tion). In the other direction (to which we will refer as inter-

layer direction), however, the lattice is only semi-periodical,

and we expect Bragg rods to occur.

In our crystal, six combinations of half-layer pairs are

possible (AB, BC, CA, BA, CB and AC, where the first letter

denotes the lower half of a half-layer pair). Of these six

combinations, two (BC and CA) are translations of the pair

AB, while the remaining three (BA, CB and AC) are mirror

images of the previous three.

In Fourier space, the translation leads to a phase factor

expð�in2�=3Þ (where n is the diffraction order in the intra-

layer direction). Mirroring leads to the inversion of one of the

two coordinates, i.e. FABðqx; qyÞ = FACð�qx; qyÞ, where FAB is

the diffraction pattern for unit element AB, and x and y are

the intralayer and interlayer directions, respectively.

Because the crystal is periodical in the intralayer direction,

we can suffice with picking only those values of qx that

correspond with a diffraction spot. The diffraction intensity

for the entire crystal then becomes

Iðqx; qyÞ ¼
XN=2

n¼�N=2

Fðqx; qyÞn expðiqydynÞ
�����

�����; ð7Þ

with N the number of layers and dy the distance between two

close-packed layers. The expression can be expanded to obtain

(omitting the qx and qy)

Iðqx; qyÞ ¼
XN=2

n¼�N=2

XN=2

m¼�N=2

FnF �m exp½iqydyðn�mÞ�; ð8Þ

which in effect sums all interactions between layers. We can

apply a change of summation order by creating a summation

parameter that sums over the difference n0 = n�m, which will

replace one of the summation parameters. We can eliminate

the other summation parameter by stating that all N layers are

equal, so that only the number of realizations of a certain

difference between layers count. This leads to a factor N � n0

that replaces the second summation. The next step is to

replace the term FnF �m by an expression that represent the

change of a certain half-layer pair combination occurring a

distance n0 from a given half-layer pair. Given a vector v

holding the F values for all half-layer pairs, and a matrix P that

gives the chance for a certain half-layer pair being followed by

a certain second half-layer pair, the expression for the

diffraction becomes

Iðqx; qyÞ ¼
XN

n¼1

1

6
vPnv�ðN � nÞ expðiqydynÞ þ N

6
jvj2

þ
XN

n¼1

1

6
vðPTÞnv�ðN � nÞ expð�iqydynÞ: ð9Þ

The matrix P is rather sparse, as for every half-layer pair only

two possibilities exist: either the stacking is f.c.c. (with chance

�) or it is hexagonally close packed (h.c.p., with chance 1� �).

For � = 0.5, the value of vPnv� is such that the equation above

splits into two parts: one for orders nx of qx divisible by three,

and one not divisible by three. For orders divisible by three,

Iðqx; qyÞ ¼
N

2
jFABj2 þ jFACj2
� 	
þ 1

2
Re

XN

n¼1

jFAB þ FACj2�N½expðiqydyÞ�
( )

¼ jFAB þ FACj2
sin2ðNqydy=2Þ
4 sin2ðqydy=2Þ

þ N

4
jFAB � FACj2 ð10Þ

with �N the arithmetic geometric progression

�NðxÞ ¼
XN

n¼1

ðN � nÞxn

¼ xNþ1 � Nx2 þ Nx� x

ðx� 1Þ2 : ð11Þ

Even for a low number of layers, the expression shows quite

sharp peaks with periodicity 2�qydy.

For the zeroth order in the x direction, FAB = FAC, so it can

be easily seen that irrespective of the value of the contrast  
(which is incorporated into FAB), a secondary Bragg rod [i.e. a

continuously distributed intensity between the sharp Bragg

peaks (Petukhov et al., 2003)] will not appear.

For diffraction orders that are not divisible by three, the

solution looks less elegant:

Iðqx; qyÞ ¼
N

2
jFABj2 þ jFACj2
� 	

� Re


�jFABj2 expð�inx2�=3Þ þ jFACj2 expðinx2�=3Þ

þ 2Re½FABF �AC expð�in2�=3Þ���N½�expðiqydyÞ=2�


;

ð12Þ
but when plotted, clearly shows a Bragg rod structure.

Instead of considering the diffraction pattern of stacking

parameter � = 0.5, we can also look at the diffraction pattern

for arbitrary � in the interval [0, 1]. The values in the matrix P

take on rather complicated forms, but for orders nx divisible by

three, the expression for vPnv� takes on the relatively simple

form of

vPnv� ¼ 3

2
jFAB þ FACj2 þ ð2�� 1ÞnjFAB � FACj2
� �

; ð13Þ
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which changes equation (10) by adding a factor

jFAB � FACj2Ref�N ½ð1� 2�Þ expðiqydyÞ�g=2, which is also zero

for nx = 0. For this order, no matter what the exact stacking

sequence is, the intensity profile will always be identical.

Finally, for orders nx not divisible by three and arbitrary �,

we can write the expression for vPnv�

vPnv� ¼ 3

2

ð�n
þ þ �n

�Þ
2n

ðjFABj2 þ jFACj2Þ

þ 3�

2ð�1=2Þ
ð�n
� � �n

þÞ
2n

½expðinx2�=3Þ
� expð�inx2�=3Þ�ðjFABj2 � jFACj2Þ

� 6Re
1� �
�

ð�n
� � �n

þÞ
2n

FABF�AC expð�inx2�=3Þ
� �

;

ð14Þ

� ¼ ð4� 8�þ �2Þ1=2; ð15Þ

�þ ¼ ��þ �; ð16Þ

�� ¼ ��� �: ð17Þ
Because of the complexity of the final expression we will not

give it here. We are able, however, to show the development of

the Bragg rods by examining the influence of the terms

|FAB|2 + |FAC|2, |FAB|2� |FAC|2 and Re½FABF �AC expð�inx2�=3Þ�.
If we evaluate the above expression for FAB = FAC = 1, we

obtain a result (as can be seen in Fig. 6) that is identical to the

results found in the treatment of Wilson (1949). The minus

and real-part terms adjust the structure of the peaks, where

the minus term has the most influence on the structure of the

f.c.c. side (� > 1/2) and the real-part term mostly influences the

h.c.p. side (� < 1/2).

5. Conclusion

We have shown that the phase-only WKB approximation is a

suitable tool to model dynamic diffraction in colloidal crystals.

The model is consistent with diffraction theory for low

contrasts and offers a satisfying explanation for the occurrence

of high-magnitude diffraction peaks found earlier (Petukhov

et al., 2004).

However, not all effects can be explained by the theory. It is

lacking in the explanation of the occurrence of secondary

Bragg rods (Petukhov et al., 2003), which presumably originate

from dynamic effects for which the model is not suited. First of

all, the present model does not take the curvature of the

Ewald sphere into account, which may play a role. Further-

more, the present model deals only with ideal colloidal crystals

and neglects possible lattice disorder. For example, the effect

of the particle fluctuations around the ideal lattice positions on

the Bragg peak intensity and the diffuse scattering (Slama et

al., 2006) in the strongly dynamic diffraction can significantly

deviate from the result of the Debye–Waller theory.
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