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ABSTRACT: In this paper we study two (kinds of) systems of brackets in an algebraic way. Lazy

brackets have the same effect as introducing or eliminating `a sufficient amount' of ordinary brackets at

the same time. Quarrelsome brackets are brackets corresponding to different types of `levels': think e.g.

of term levels versus sentence levels. A modest framework is proposed to study these kinds of brackets

simultaneously.

I1 Introduction: In this paper I present a mildly abstract framework to introduce

and study stacking cells of different kinds. The idea of a stacking cell is simply this:

one way of viewing a bracket is as an instruction to introduce or throw away a file or

level or discourse object. A stacking cell is just the combined action of a number of

brackets, where we divide out subactions that cancel each other.

Stacking cells can be seen as closely related to the integers: an integer can be seen as the

action resulting from a number of additions and substractions. The difference is that in

the case of stacking cells we do not abstract away from the order of the actions. In an

earlier paper Visser[92a], I studied stacking cells algebraically in context where

(analogues of) the integers are present. In this paper we look at cases where stacking

cells are sensible objects, but no decent integer analogues exist.1

My two examples are lazy brackets and quarrelsome ones. A system of lazy brackets is

simply a system where some brackets have more weight than others. Let e.g. the round

brackets be the ones of least weight and let square brackets be heavier than round ones.

For example consider the formula of propositional logic: (((pAq)vr)->(pvs)). With the

help of lazy brackets we could rewrite it to e.g.: [pnq)vr)->(pvs]. The idea is that e.g. [

can be viewed as `a sufficient amount of ('s'.

I would conjecture that lazy brackets can be useful in theories of incremental generation

This is not a technical claim: I don't pretend to have a good analysis of what an integer analogue

is supposed to be. So a fortiori I have no proof that e.g. the ordinals with their usual addition

and ordering do not admit a good integer analogue. I just don't see how there could be one.
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of grammar. For example consider the sentence:

el U d yes taaem good ease 4 [t.
One would imagine that this sentence could be parsed as:

(((a calls) Mot") ta4ea. (quad eerie) (4rt))

Note that at the beginning we do not only have to realize that Speaker starts a new

sentence, but we also have to conjecture precisely how many levels are required. Or:

we have to backtrack later to add the appropriate number of ('s (i.e.: level introductions

or pushes). Also at the end we have to carefully close all the brackets that are still left

open (or: pop all the levels that are still left over). Clearly the obvious lazy represen-

tation doesn't ask for all this effort:

[a eAeU d) c aat4tx) ta"ea (9ood eau) (° tt]

The [ can be seen as the meaning of the capital: imagine a sufficient amount of

(stacked) levels to be present to store the information that will be produce in the

forthcoming sentence. The ] can be seen as the meaning of the point: throw away all

the levels that have not been thrown away yet.2

Quarrelsome brackets can be used when we feel a distinction between kinds of levels is

important. Consider e.g. the sentence:

'7I4e gaee &saw ex .Far fu« a ow" rAe lays deg t uWa tkat VAN.

In round bracket notation we could parse this as e.g.:

((t 4 ((tkat) fal (euos ere la, lellf))) cd *_ sad ((t e)'")))
But suppose that we wanted to keep sentence levels and term levels strictly apart. In

this case we could e.g. write:

{ (t,4e gcslek 6s a { (tkat) *-#a e d (Duos tAC &" day)) } ever ded (tke aa6Art { (WW) sarc }) }

Here parentheses enclose sentence levels and round brackets term levels. If an. opening

( is closed with a } we count this ungrammatical. Semantically we represent this by

going into the error state 0.3

In this paper I study stacking cells as interesting beasties in their own right. How to

apply them will be explained in my forthcoming paper Meanings in Time. The idea is

roughly as follows. (i) The basic format of meanings is context+content. (ii) One

function of contexts is to control the process of merging of contents. Thus `dynamic

2

3

This example is inspired by some questions by Henk Zeevat. Kees Vermeulen suggested the

bracketlike interaction of Capital and Point.

A more surprising and subtle use of (an extension of) quarrelsome brackets can be found in Kees

Vermeulen's forthcoming paper on incremental semantics for propositional texts.
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aspects' are located in the context. (iii) Files or discourse objects play a central role in

storing information. (iv) Both anaphoric machinery and syntactic structure can be

viewed as providing instructions for handling files. Thus the contexts will contain

certain traces of syntax or bits of syntactic memory. Stacking cells are such bits of

syntactic memory or at least central ingredients of such bits of syntactic memory.

2 The monoids of lazy brackets and of quarrelsome brackets: We start
with introducing a monoid for lazy brackets. Let 9-58 be the free monoid on generators

satisfying the following equations: [)=[(=[. (]_)]_], []=0=1. The idea is that

e.g. [ stands for an infinite number of ('s: ...(((. Note that we `count' our brackets

here from right to left. Similarly ] stands for: ))).... Now we count from left to right.

Obviously a term rewriting system can be based on the monoidal rules and our

equations. Just as clearly this system has the Church Rosser Property and is strongly

normalizing. An example of a normal form is:

Using the normal forms as. representations of the objects of our monoid, here is an

example of an identity: ]]1))(([[ ]]l)([ = ]]]])([.

Our next example is a monoid for quarrelsome brackets. Let be the free monoid on

generators (), (J } with extra constant 0 satisfying the following equations

0°x=x°0=0, 0={ }=1, {)=()=0.

The idea is that 0 is the error state.

A term rewriting system can be based on the monoidal rules and our equations. Just as

clearly this system has Church Rosser and is strongly normalizing. An example of a

normal form is: )))}))} } {(({ {(.

Using the normal forms as representations of the objects of our monoid, here are two

examples of identities: ) } } { { () } } } ((( _) ) } } (({ , ) } } { { () }) } ((.{=0.

3 Constructing stacking cells from an L-monoid: Consider a structure

=(M,1,, -), where P=(M,1,) is. a monoid. Define:

x<_y :a for some u: uy=x. We demand the following properties:

L1 xz=y.z x=y,

3
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L2 xby 1 y=1,

L3 a x<_z -y.

We call an CJJ satisfying these properties an L-monoid. - is the binary operation post-

implication.

Sometimes it is pleasant to add an 'error-state' 0 to an L-monoid. We then obtain an

L+-monoid. An L+-monoid is a structure satisfying: is

a monoid, OE M, L+2:=L2, L+3:=L3 and:

L+1 z#0 and x=y,

L+4

x=O or y=0,

(0 is the annihilator for )

Since the results on L-monoids can be obtained from the ones on L+-monoids by just

omitting the things pertaining to 0, we now assume that we are working in an L+-

monoid.

We will construct our stacking cells from 1t. But first we need some assorted facts on

L+-monoids.

We will sometimes write: u:x<_y, for u-y=x. Note that if y*O and u:x<_y, then u is the

unique witness of x<_y.

3.11 Fact
i) 5 is a partial ordering with top 1 and bottom 0.

ii)

iii) u5v = if x#O: uSv.

Proof: (i) We have:

u:x<y, v:y<_z

l:x<_x, x:x<_l, 0:05x.

Suppose u:x<y, v:y-<x. Then If then x=O and hence, since vx=y, y=O

and hence x=y. If then and hence so v=1 and x=y.

ii) v:vy<_y. (iii) Suppose w:u<_v, then Suppose x#0 and Then

and hence w'-v=u, so w':u<_v.

3.2 Fact
i) (x(-1)=x, (1-x)=1,. (x-O)=1, (x-x)=1, if x#0: (0-x)=O,

=>

=*

=>
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ii) if z*0:

iii) x<_y a (y*--x)=1,

iv) ((z*-y)-x).

Proof: E.g (ii): Suppose z#0, then:

u<_(YE-x)

3.3 Fact: We have (finite) infima:

Proof:
z<_(y*-x).x a for some u:

r for some v: vx=z and v<_(y*-x)

for some v: vx=z and vx<_y

z<x and z<_y.

3.4 Fact

i) ((Y^z)*-X) = ((Y+--x)A(z*-X))

iii) x<_y (x*-y):x<_y.

Q

U

Proof: E.g. (ii): If z=0 this is trivial. So suppose z*0. We have:

iii) xny = X.

3.5 Remark: We can characterize E- in terms of A, for note that:

(Y*-X) _ (Y+-x)Al = (Y<--x)A(X<-x) = ((xAY)*-X),

So in case (xny)A: y<--x is the unique witness of (xny)<_X. In case (xny)=0: Y<--X is 1

if x=0 and 0 otherwise.

Now suppose that we were given a structure satisfying L+1,L+2,L+4,

L+5 and:

L'3 x<_ynz b x<_y and x<_z.

5
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Define:

(y-x) := the unique u:(xny)<_x if (xny)#0,

:--0 if (XAY)--O and x#0

:=1 if x=0.

Note that in all cases:

We verify L3: in case (xny)#0:

vx<_y vx s (x^Y) =
for some w: vx =

for some w:

t= v<_(Y-x).

In case (xny)=0 and x#0:

vxsy a vx<_(xny)=0
< v<_0=(y-x).

In case x=0:

a v<_1=(y+-x).

3.6 Fact: if x#0, then: yz--x =

(y -(x-z))(Z+-x)x = (y-(x-Z))(xnz)
= (y-(x-Z))(X+z)z

= ((x-z)ny)z
= (x-z)znyz
= ZAXAyZ

= xnyZ

= (,Y-Z+-X)-X.

So: yz-x = (yE-(x<--z))(Z -x).

Now we are ready and set to introduce stacking cells.

a

3.7 Construction: Let SC:=((M\{O})x(M\{O}))u{(0,0)} and define on SC as

follows: (x',x)o(y',y) := ((y' -x)x',(x+-y')y). Note that if (xny')=O: (x',x)(y',y) =

(0,0) and if (xny')#0, then (x',x)(y',y)E (M\{ 0 })x(M\{0}). (If we would allow

a
a
t-*
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arbitrary elements of MXM we would get some undesired effects: e.g. for x'*O we

would have: (0,0) would not be an annihilator.)

Let 1:=(1,1), 0:=(O,O),

3.8 Theorem: SCssm is a monoid with annihilator 0.

Proof: the only non-trivial part is the associativity of . Consider:

(z',z). is (0,0), associativity is trivial. Otherwise we get by 3.6:

(z'

The other case is dual. QI

Note that associativity would be spoiled if we admitted elements of the form (O,u),

(u,0), where u*0. Suppose e.g. in the situation above X=y'=z'=O and x'=y=1. We get:

0 and 1.

Evidently if we start with an L-monoid we can obtain by our construction an ordinary

monoid without annihilator.

Note that:

(X',l)'(Y',l) _ (Y'°x',l),
(x',y),

(yE-x,x<-y').

In the next section we show how lazy brackets are an application of our construction.

4 An ordinal representation of lazy brackets: lazy brackets are in fact just

stacking cells on c)t. Here we develop stacking cells (as monoid) on an arbitrary limit

ordinal X.

Let an arbitrary limit ordinal A be given. as follows:

M={-alot<ordX }, l :=0ord, a'f3:=R+a.

Note that we get a<R a R<_orda and anf3:=maxord((x,i3). As is easily seen

satisfies L+1,L+2,'L'3,L+4,L+5 and hence we can define E- as in remark 3.5, thus

(l,x)'(Y',l) :_
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obtaining an L-monoid.

If we want to think in `ordinal' terms and not algebraically we write a- (3 (cut-off

substraction) for aF-(3. We have: a<ord[3+y a a-[3_<Ordy. Note that 3.6 translates to:

(a+R)-y = (a)+(13--(--a)) (*)

Let

X<(y,a) lord if 'Y-<orda

= Oord if a<ordy
In other words: let X< be the characteristic function of <_ord. Note that:

X<(-Y,00 = (lord-(y-(X)).
Comparing this last form of X< with (*) for (3:=lord, suggests the following alternative

definition for - by recursion:

0-y .= 0,
(a+1)-y (a- Y)+X<(Y,a),
µ-y := supord{a-yla<ordµ} for limit ordinals µ<ordk,

(The sup-step is correct since in the algebra for any set of elements Y: if inf(Y) exists,

then (inf(Y)F-x)=inf({y<--xIyE Y)).)

We will simply identify VX with k. Consider S(EX. We sometimes write element x of

CAE, as: (popX,pushx). Our monoidal operation on the stacking cells becomes:

(popx+(popy-pushy),pushy+(pushy-popy)).

From this point on in this section we will work in `ordinal' as opposed to `algebraic'

terms. Consequently we drop the subscript ord

4. 1 Examples
(0+(0-k),(o.n+(k-0)) = (O,w.n+k),

(a+(0-R),R+(0-a)) _ (a,R)

4.2 Theorem: SEW2 is isomorphic to 28.

Proof: Consider f :293-4S(SW2 generated by:

Note that:

f[( = (O,w) = f[,

f[) = (0+(1-w),0+(w-1)) (O,w) = fL

8
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and dually for )], (]. By easy inductions one shows that

f ]..])..)( ([[ = (w.n'+k',w.n+k),
where n',k',n,k are respectively the numbers of ]'s,)'s,['s,('s.

So f is a bijection and hence an isomorphism. [

5 A string representation of quarrelsome brackets: Let A be a finite
alphabet and let A* be the set of all strings of elements of A. Let be concatenation on

A* and let 1:=O:= the empty string. Note that w<_u means: u is an endstring of w. Add a

new element 0 to A*. We stipulate: It is easily seen that the structure thus

defined admits a residuation operation:

w-v := u if
1 if for some u'

:= 0 otherwise.

(Alternatively note that O#w, w<_u and wSv implies that v<_u or u__v. So if the only w

below u and v is 0, take unv:=0; if there is some non-zero w below u and v take

unv:=u if u<_v and unv:=v if v5u.)

The stacking cells defined on our structure model precisely the quarrelsome brackets.

For example take A:={a,b}. We can assign:

( -a (O,a), ) - (a,O), { (o,b), } - (b,O).

Closely analogous (in our context) to strings- are the morphisms of the simplicial category with the

operation + as defined in Mac Lane[71], pl7l. We can take: 1:=O:O- O, f g=f+g or and add 0

in the obvious way. Both choices of yield an L+=monoid (with the additional property: O#w, w<_u,

w5v implies that u__v or v<_u). I admit that I have no idea how to apply the stacking cells obtained

from these monoids.

6 Stacking cells as an update algebra: The notion of update algebra was
introduced in Visser[92a]. Consider any monoid R Let S be a subset of N, the domain

of W, with lE S. S is considered as a set of `states' in W. To each element n of W we

assign an update function (Da:SOS as follows (in post-fix notation):

s(Da is undefined otherwise.

(W,S) is called an update algebra if (o is function composition read in the

order of application: s(Dao ,=(s(Da),). We have:

9
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6.1 Theorem: (2,S) is an update algebra iff (J ,S) satisfies the OTAT Principle:

for all

(OTAT means: once a thief, always a thief.It tells us that if something is not a state,

then whatever you add later, it never will become a state. The principle can be viewed

as a principle of error propagation.)

Proof: See Visser[92a] or [92b].

Now consider an L+-monoid Vt. We take as states the non-zero elements of M. Clearly

the algebra thus obtained is an update algebra. Now consider SLsV. As states we take

S:={(l,s)Is*O}. We have:

6.2 Theorem: (SCSR,S) is an update algebra.

Proof: Suppose (x',x).(y',y) is in S, then: (y' So 1<_(y' so

x'=l. Ergo (x',x) is in S.

7 Stacking cells as partial isomorphisms: For purposes of application we

need to describe what the `levels' present in a stacking cell are and how these levels

move when two stacking cell are merged. To do this we first associate certain partial

bijections to stacking cells.

Let TZ be an L+-monoid. To a stacking cell (x,y) on Tt we associate a partial bijection

*(X,y).=f:M\{ 0 } -4M\{ O } by stipulating (in post-fix notation):

zf is defined if z<_x, (for u#0).

O is well defined because of L+l. Clearly O Aa.Oa is injective. If f=O(X,y), we will

sometimes call this x popf and y pushf.

7.1 Fact: O is an injective morphism from SEP to the monoid of partial bijections

on M\{ O } with operation o, with as unit the identity function and with annihilator the

nowhere defined function 0.

Proof: We leave the verification that (1, 1) is mapped to the identity function and that

and (0,0) is mapped to the nowhere defined function to the industrious reader. Suppose

a,b are non-zero stacking cells. Let f:=Oa and g:=Ob. We find:

10
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x(fog) 1 <--> for some u: and

t* for some u: and u<_(popgE-push f)

a X5(popg<-pushf)popf.

(u(popg+-pushf)popf)(fog) _ (u(popg+-pushf)pushf)g

= (u(pushf+-popg)popg)g

= u(pushfE-popg)pushg. Q

Define acb :a for some u: u:popa<-popb, u:pusha<-pushb. Define also: ,y Y,

7.2 Fact

i) acb t=> OacOb,

ii) Oa is the inverse of Oa.

^:-

Proof: (ii) is trivial. We prove (i):

"=>" Suppose: a:popa<-popb and u:pusha<-pushb. Consider x<--popa, then certainly

x<--popb. Say x=vpopa. We have:

.x0b=(vpopa)Ob- =(vu*popb)Ob- =v0upush =vpusha=(vpopa)Oab =x0a
Suppose Oag0b, then clearly for some u: u:popa<-popb. We find:

pusha=popaOa (upopb)Ob=upushb. U

We will conveniently confuse stacking cells with the associated bijections. The ordering

on stacking cells will be c. We state some simple facts about , (.)^ and c.

7.3 Fact
a) ()^ is monotonic .and is monotonic in both arguments.

b) (aob)^=b^a^.

c) a^^=a.

d) aa^cl, a^oacl.

Proof: Trivial. Q

Note that (d), implies 1^=1.1^c1 and hence by (c),(a) 1=1^^cl^. Ergo 1=1^.

8 Levels: We want to assign levels/files/discourse objects to our stacking cells

11



and explain how these levels travel when cells are fused. This assignment will work via

the association with partial bijections of section 7. Let an arbitrary non empty set X be

given with 00 X. We assign sets of files to partial bijections on X. Define for any partial

bijection R on X:

R2:=Ru { (0,0) } u { (x,0)Ix dom(R) } u { (O,y)IyV_ range(R) }.

The idea is that every element of X is a potential `file' both on the input and on the

output side. R links up or identifies certain input and output files. The identified input-

output files are represented just by the pairs of R. Files not in the domain of R are input

files that come in, but are not passed on: i.o.w. they are popped. These files are

represented by (x,0): the second component is `error' to symbolize that x is not passed

on. Similarly the y not in the range of R are pushed. They are represented by: (O,y).

Finally (0,0) is an ideal element to smooth the presentation. Generally this construction

produces far more levels than needed: these levels should be viewed as just virtually

present or als sleeping.

We may call (as in Visser[92b]):

R=:STEMR, .t (x,O)I xO dom(R) } :=POPR, { (O,x)lxe range(R) } =:PUSHR,

{ (0,0) } : =GARBR.

Let 91:=Oo2 (i.e. first O, then 2). So J assigns levels or files to stacking cells.

A morphism 4:a--+a' between stacking cells is a pair of stacking cells (b,b') that

satisfies certain conditions. This pair represents a function )9t between the correspon-

ding sets of levels. The conditions on (b,b') can be best explained by reflecting on the

specification of this function.

For any partial bijection G on M\{0}, let G+ on M be given by:

xG+ :=xG if x*O and xG is defined

:=0 otherwise.

Note that G2=G+uG^+^. An easy case-checking yields: (GoH)+=G+oH+.

Let F:=bO and F':=b'O, R:=aO, R':=a'O. Define: (x,x')( t) := (xF+,x'F'+). For

this definition to make sense we need: X91:0-*a'j.

12



8.1 Motivating Fact: precisely if for all x,x' in R:

a) If xF, xF' are defined, then (xF,x'F)E R',

b) If xF is defined and (xF)R'y', then x'F'=y',

c) If x'F' is defined and yR'x'F, then xF=y.

Proof: From left to right is trivial. Suppose for the converse that our conditions are

fulfilled. Consider (x,x') in R. In case xF+*O and x'F'+*O, we find that xF and x'F'

are defined, so (xF,x'F)E R'cR'2. Suppose e.g. xF+=O. In case x'F'+ is also 0; we

are done since (0,O)E R2. So suppose x'F'+=y'*O, and thus x'F'=y'. If y' were in the

range of R', say yR'y, then by our third condition xF=y. Quod non. So y' is not in the

range of R' and thus (xF+,x'F+)=(O,y')E R'2.

Note that 8.1(a) is equivalent with: F^oRoF'cR'; that 8.1(b) means that if x(FoR')y',

then x(RoF')y' and thus FoR'cRoF'; that 8.1(c) means: F'oR'^cR^oF. Thus we are

lead to the following definition. A morphism is a pair of SSC's (b,b') such

that: (a) (b) (c) (N.B.: full specification of a

morphism requires its dom and cod.)

Let (b,b):a-5a' and (c,c):a'-sa". Define: (b,b')o(c,c') := Note that:

c c
b'-C'-a"^ c b'-a'^-Cg

c c c^-a'-c' c a",

So is indeed a morphism. Clearly morphisms are associative in the usual

way.

Let id(a) be given by (1,1). We leave the simple check that id(a) functions as an identity

morphism to the reader.

Clearly we have defined a category `,J:=(9(CSE

8.2 Fact: 91 is a functor from `,J to the category of Sets with functions as

morphisms.

Proof: Jt commutes with o, since: (bO)+o(cO)+

13



8.3 Fact: 4):a->b is an isomorphism iff a=b and 4=id(a).

Proof: trivial.

Define inl(a,b) := (l,b), in2(a,b) := (aA,l). since:

c
1-(a-b) c and c

Moreover: since:

aAAobo1 c

c and c

8.4 Fact: (aYt)(inl(a,b) Jt)u(bit)(in2(a,b) ) =

Proof: Let F:=aO, G:=bO. Note that:

(x,y)E (a9l)((l,b) ) r for some z,u: x(ID+A)z(F2)u(G+)y

x(F+oG+)y or x(FA+AoG+)y.

(Since F2=F+uFA+A.) Similarly:

(x,y)E (bJt)((aA,1)It) a for some z,u: x(FA+A)z(G2)u(ID+)y

b x(FA+AOG+)Y or x(FA+AOGA+A)Y

Moreover:

(x,y)E a x(FoG)+y or x(FoG)A+Ay

b x(F+oG+)y or x(FA+AoGA+A)y

We already know the left to right inclusion (by the well-definedness of the in), so we

are done. (Alternatively suppose e.g. x(FA+AOG+)y and not x(F+oG+)y, then x=0,

y#0 and for some u#0: x(FA+A)uG+y. But then uGy and hence: u(GA+A)y, so
x(FA+AoGA+A)y.)

`,J has some pleasant properties introduced in Visser[92b] w.r.t. the interaction of the

categorical structure and the . These properties are:

Cl if inj(a,b)o4=inl(a,b)oi, for i=1,.2 then 4=l

C2 There is a (unique) isomorphism a satisfying:

(i) inl(x,y)oinl(x-y,z)oa(x,y,z) =

(ii)

(iii)

C3 inl(x,1) and in2(l.,y) are isomorphisms, inl(1,1)=in2(1,1)=id(1).

14
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C4 If 4 :xi-4x'i for i=1,2 are isomorphisms in `,3J, then there is an isomorphism

41.42:x1 x2-x such that for i=1,2: c)ioini(x'1,x 2) =

We call a category satisfying C1-C4 an m-category.

8.5 Theorem: Z is an m-category.

Proof: We check Cl. Consider (c,c') and (d,d') such that ini(a,b)o(c,c') _
ini(a,b)o(d,d') for i=1,2. We have:

(c,boc') = (l,b)o(c,c') = (l,b)o(d,d') = (d,bod'), so c=d;

(aoc,c') = (a,1)o(c,c') = (a,1)o(d,d') = (aod,d'), so c'=d'.

We turn to C2. We take the wittnessing morphism simply 1. We find:

(1,b)o(l,c) =

(a^,1)o(l,c) (a^,c) _ (1,c)o(a^,1) = in, (b,

in2(a.b,c) = (b^,1)o(a^,1) =

C3 is evident since in1(a,l) = in2(l,b) _ (1,1). C4 is also evident since the id(a) are the

only isomorphisms. L
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