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Abstract

In this note we study the relation between belief functions of Dempster-..

Shafer theory and inner measures induced by probability functions. In,
[3,4] Joe Halpern and Ron Fagin claim that these classes of functions are
essentially the same, or, more precisely, that.they-are exactly the same in
case the functions are defined on formulas rather than- sets. We show that=,-
when the functions are defined on sets only a proper subclass off the belief
functions over aframe S corrsponds to the class of inner measures induced
by a probability mea-surer on .some-algebra, on-S. However, belief functions,
over S do correspond to inner measures induced by probability measures

'defined on algebras on refinements of S. fact that in general refine-
meats of S are needed to obtain all belief functions over S is shown to be
obscured ;by the particular way- formulas are. assigned- probabilities 'or,
weights in. [3]. r4

1. Introduction

In [4] Joe Halpern- and Ron Fagin claim that: belief ;functions ~of-.Dempster-
Shafer theory (DS theory) are=essentially inner measures ,induced- by abilr c
ty function. They refer to [3] for support of their claim. In that paper it is shown
that the inner measure induced by a probability
(finite) sample space is a-belief function :over S: They remark that the conver-
se is not true: not every belief function over S is the inner measure of some pro-
bability- function. on some _algebra on S. v, e

However, they maintain that belief functions and inner meaaures:anduced by
probability functions are precisely the same if their domains are:considered to be
formulas rather than sets. This latter claim is made precise in a theorem stating
the equivalence of probability structures and DS -structures; where probability
structures and DS structures are two kinds of weight structures which assign
weights to formulas using inner measures and belief functions, respectively.
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We will argue that the validity of this theorem depends on the fact that the
weight structures considered in [3] do not satisfy some reasonable constraint,
namely that indistinguishable states should not be distinguished by the proba-
bility_ functions, inner belieffunctions, Wegh:t-structures satisfying

7. Z71 77
this constraint do not equate belief functions with inner measures.

By not identifying indistinguishable states one in fact allows inner measures
to be induced by probability functions on refinements of the sample space or
frame induced by ;the formulas of the language., It can be shown that, even
when defined on sets and not on formulas, belief functions"-over- S correspond
precisely to restrictions to S of inner measures induced by probability functions
on refinements of S.

Therefore, the correspondence between belief functions and inner measures
is not reserved to functions defined on formulas, since it a' lies equally well to
functions defined on sets.Eowever, the correspondence is only, valid when the
inner measures are -allowed to be induced by probability functions on refine-
merits of the frame `over which=the belief functions are defined.

The rest of the paper is organized as follows. In section 2, we summarize
some. definitions and results from= probability theory and DS theory., In section 3
we discuss the claim that belief func`tion`s and inner measures induced by°pioba-
bility functions are ,precisely the their domains are formulas rather thanI -'I
sets. In =section 4 we show. that belief functions- over =ar=frame S,. correspond to

inner measures induced by probability functions on refinements of S.

Probability theory and DS theory

In thus" section-we recall some relevant basic" definitions and results- of
probability theory and DS -theory, closely following the notation of [3,4].

A finite probability-space, is, a ttiple° (S,X P) where
S is a finite sample space, i.e., a"finite exhaustive set-of mutually exclusive
possibilities _ . ;

X is an algebra on S, i.e., a set of subsets ofi5S containing Sand 'closed
nder union and under complementation relative to S -- pu

P is a probability-function on X, i.e., P is a function X - [01:1] satisfying

ix}Rl"= P(X)?O, for allXE=X
P2 v P(S)..1
P3 * , - P _ U 1').`= P +: P(Y); if X r-) Y

2.



Throughout this paper we will only consider finite probability` spaces. Here
the notions of probability function,and probability measurecoincide. The basis
Y of an algebra Xis the°setof mimmal`elements of X. The elements of X are
precisely the unions of some-elements of the basis of X Thus, -by P3, a proba-,
bility function on X is completely deterinined by its values on the basis 1J. of X-

°' °The' elernents`of X are;.called the measurable sets of S,X,P). There are two
standard extensions of P (i.e., the'`=set of all subsets of S), 'namely the
inner measure P* and the outermeasureP* defined as follows:

P*(A) sup[P(X) IX;cA, X e X)
P*(A) inf(P(X) I X A,.X e X).

Since we restrict ourselves to finite probability spaces, P*.(A) is equal to P(B),
where B is the largest measurable set contained in A, and P*(A), is the value of
P(B), where B is-the smallest measurable set containing A.

The Dempster-Shafer theory of evidence [8] is an alternative for prpbability
theory. The central notion of DStheory is the notion of a belief function over a
sample space S. In DS theory a sample space is called a frame of discernment,

Belief functions are easier understood in terms of mass functions (also
called basic`probability assignments). A mass function m over S is a function
2S - [0,1] satisfying

The belief function Bel induced by a

BM Bel(A) m (B) .

mass function m is given by

=

= D

or simply frame. A belief function over S is a function 2S --> [0,1] satisfying

B1 Bel(O) = 0
B2 Bel(S) = 1

B3 Bel(AI v ... V An) ? (-1)III+1Bel(nie I Ai)
0#Ic (I...n}

Ml m(O) = 0

M2 I m(A) = 1.
A c S

= I
B c A
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Hence the belief in a set,A is the. sum of the masses, assigned to-its subsets. In
addition, to mass functions and belief -functions, DS theory also considers
plausibility functions: the plausibility function PI induced by a belief function
Bel is given by Pl(A) = 1 Bel(A )),,where X .is the complement of A,

Mass functions, belief functions and plausibility functions represent exactly.,
the same information, since each function in one, of the three categories induces
aunique function in one, each of the other two,categories. For example, the
mass function m induced by, a belief fuctions Bel.is given by:

MB rre(A) _ (-1)! - BI Be.l(B)
cA

If m(A) > 0, then A is called a focal element of Bel. (Here, as in the rest, of
the paper, we implicitly assume that Bel is the belief function corresponding to
the mass function, m. If all focal elements of a. belief function Bel over S are,,
singleton then Bel Pland Bel is a probability function on 2 Such belief
functions are called Bayesian ,belief functions.

If (S,X,P) is ce, then the inner ,;measure Pis a belief func-
tion over S (and the outer measure P* is the corresponding plausibility func-
tion). Not every belief function over S is the inner, measure induced by a proba-
bility function on an algebra on S. This is only true for belief functions which
have pairwise disjoint focal elements (m(A) > 0, m(B) >,O, A n B = QS). Let
us call such belief functions disjoint.

Proposition 2;1 (Fagin and Halpern [3])
(1) If (S,X,P) is a probability space, then the inner measure P* is a dis-

joint belief function over S.
(2) If Bel,is a disjoint belief function over S, then Bel is the inner mea-

sure of some probability function P on an algebra X on S. _ .. ,

Proof. (1) Assume that (S,X,P) is a, probability space. Let 1, j. be the basis for
X Let Bel be the belief function corresponding to the mass function m given by
m(A) = P(A),: for all A E Y. Then Bel is disjoint and-Bel = P*.
(2) Assume that Bel is a disjoint, belief function over S Let X be the algebra on
S with as basis the set 1J. of focal elements of Bel and let P be the probability
function on X determined by P(A) = m(A), for all A E Y. Then Bel = P*.

In [8] it is admitted that perhaps not all belief fuctions are appropriate for the
representation of evidence. That is the reason why .several special classes of be-

A

-
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lief functions are considered: support: functions, separable support -functions;
and simple support functions. (Each class is contained in the preceding one.) A
typical example of simple support function is a belief function corresponding
to evidence supporting a 7single'pr-oper-subset of the frame to a degree s' < 1
(For example; the belief function induced by m(A) --0.7, m(S) 0:3.)

Since a typical simple supportfunction has two focal elements which., are not
disjoint, it is not ardisjointfbelief function.; Hence the class of disjoint' belief
functions does not contain the belief functions which are considered appropriate
for representing evidence Shafer.-Nevertheless, one can argue that the
disjoint belief functions form an interesting' subclass of belief functions, since
they can be understood completely in terms of standard probabilistic notions.

There is another relation between belief functions and standard- probabilistic
notions. The class of belief functions over S -is a'properfsubset of the class of
lower envelopes of closed sets off probability -functions on 2S, where Plow is
called a lower envelope of the=closedset,P of probability-functions iff Plow(X)
= mint P(X) I P E , P}. (See for example [5].) Such lower envelopes of closed`
sets of probabilityyfunctionsare-sometimes1cal=led,- lower probability functions.
Hence the class- of belieffunctions can be approximated from above and from-
below by classes ; of standard functions of probability theory. °See Fig. 1.

lower envelopes of closed sets of probability functions on 2

belief functions over S

inner measures induced by a probability
function on some algebra on 'S

probability functions on 2 S
J

1

J

Fig. J. The class of belief functions in relation to, classes of standard 'Probabilistic functions.

In _the following section, we look. at the argument -given, in [-3j for con-,
sidering belief functions to be essentially inner measures.,

5 -*
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3. Probability structures

In [3] probability structures; are. introduced to give a.meaning= to the, notion
of a probability of a formula (rather than a set). :Let L be the propositional
languange. built up from the finite set PL of proposition letters and the logical
connectives A, n A, probability, -structure (for .L); is a'trple (S,XP,ir), Where
(S,X,P) is a probability space and i is a truth assignment SxPL {;true,

If ;n(s,p) ru ; ahen,p is said to be true at s: s,.)x can be extended to
a truth assignment defined on-the whole languange in the.standardway

If M- (S,XP,) is a probability, structure, then rpm denotes; the set of
states of Min which. (p-jstrue , i.e., (PM = {s=E. S) ir(s, p),,, tP ue} if 0- is;

measurable, then, one can take the (probability or) weigthWM(rp) of Tp to be
P(q 1);. If qp is not measurable, then one cannot talk about thee probability;of-pp,,
but one can still =assign a weight ;using .the inner measure induced by P: WM((p)

P*(cpM). A is called measurable for,.

every-Iformula-0.
Completely analogous to the notion of probability structure, one.can-define

the notion of DS structure as a triple'? _ (S,Bel,x), where Be! is a belief
function over S and 7t is. a truth assignment as- before. The weigth WM((p) of rp.;

can now simply be taken to be Bel(cpM), since belief functions over S are
defined on all subsets of -S. Both probability structures and DS structures are
called' weight structures. Weight structures M and N are called equivalent iff.
WM(tp)'= WN(o)., for every formula co.

Proposition 3.1 (Fagin and Halpern
(1) For every probability structure -for l there is an equivalent ' DS

structure for. L.
(2) For every DS structure for- L the is an equivalent <probability,

:structure forL:

Proof.
(1) is an immediate consequence of.2.1(1).- a.-{

(2) Let M = (S,Bel,,t) be a DS structure. Define S` _ { (A,s) i A c S, s *E A-),
A* . {{(A,s)-I s.E A). Let X be the algebra on Y with basis {A* I AC S), and
let P be the probability` function on X given by P(A*) = m(A). Finally, let for
all p r=- PL ir'((A,s),p) =x,r(s,p Then N = (S',X,P,ir) is a probability struc-
ture which is equivalent to M:

=

=

=

probability
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The second part of proposition 3.1 is not true for measurable probability
structures. According to Fagin and Halpern.`the proposition shows "that `belief
functions and inner measures induced by probability functions are precisely the
same when they are e defined on formulas rather than on sets `and this iis'why
they call belief functions to be--essentially inner measures

However, we will argue that in the; second-part of 3.1 the inner measure
corresponding' to the belief fuctloi is a1 arrihner measure of'a`proba
ability function defined on some-algebra on-a proper=refinement of, the frame over
-which the belief function is defined In the following section - we give a precise°
description of this refinement. The fact that in general a refinement, of`the'frame-

,is necessary-is more bscured by- the particular way formulas areas-
,e some notions bor-

rowed from modal logic
Let S bet the set of states of a probab%lity structure or -a `DS` structure for L#.

-Two,°states, `"s=and t;of S are --calied'distinguishable iff there is =a formula rP e L ,
such that the truth value of (p at ;s is different from the truth value of rp at t:=A`
p obability_structure or,DS structure is called distingu sl a ble iff all is states are'
pairwise distinguishable.,,

%
Propostroai"=`.

-(1) For every , measurable `probability` structure for L there is an''
equivalent distinguishable measurable proability structure for f.

(2) For every DS structure for -4 there is an equivalent distinguishable
DS structure for L.

Proof.
(1) Let M = (S,X,P;)r) be a measurableprobabil tystrue are for. and lets = t4
denote.th t;s and t are indistinguishable.-Define for s, ,E S[s]=' = {t E'. S I: s-= t}
and for X c S X = { ;L s E X ] ..Define M where X.
{X I.X,(=- X}, P is given by P=(X=) =:P,(Vs,E ,y and ?tr([s]_,p) = true
(false) iff Vt [s.] rt(t,p), true (false),,, .,,(Notice that Us E-x [s]_ is measu-
rable, since US ,E x [s] a ,:for some rp EL,.) Then M_ is ,,distinguishable
measurable probability structure for L which is equivalent to-M. "-
(2) Let Y, =;(S,&el,ir) be a measurable-'probability ,structure for L. Define M ,,
(S-,Bel_,rt-_), where Bel is given by Bel(X) Bel(X), forall.X c S=, and
rt=([s]=,p) = true (false) iff Vt E [s-]= rt(t,p) =true (false). (Notice that each:
subset of S_ is equal to X., for some X c S.) Then M. is a distinguishable -DS,
structure for f which is equivalent to:M. ...., .

signed weights. In order to support this claim we

Proposition

= =
I X

E =

_
=
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Proposition 3.2, does not, hold ,for pnobability,,structures. in- general. An
argunientis given in the following example.

3.3 Suppose some sensor indicates;, that a valve is closed. Assume
that the sensor=is reliable in 80% of the cases and that in the remaining 20% it,
either indicates that the valve is closed or .that it is open;..independentof:the
actual state- of the valve. Given the evidence, there are three possible states: s in
which the, valve is closed and zthe- sensor is reliable, t=in which the valve is_
closed and. the valve is unreliable, and u in which the valve- is ,open-.and the
sensor. is, unreliable.

Let f be built up from PL.= {c} where c stands for "the valve is closed."
Define -M where $ {s,t u); ,Y is the;;>algebr-a ;with basis y -=m

{ (s),{t,u} }-, P is determined by P({s}) P({'t,u}).- 0.2 =and.jr is given

;by ,r(s,c) .=.Tr.(t,c) =true and jr(u,c),= false. Then- M is-a'_ :probability 'structure
for l which represents the evidence. above. However, M is -not distinguishable,
since s and t Notice, that in fact the probability, function/,
represents information about some,issue-threliabrltyof the sensor-that cannot
be expressed in the languange L < r

M is not equivalent to, any distinguishable :probability- structure IV fort, L,
since such a structure. N has exactly twoszstates: sc in which c is true-and s,-,c in
which c is false. if, ,WN(c.) = 0,$, then {s }, is- measurable:,. But then'N is mea-
surable, and W-N(c v_.-. W,u(c) ± WN.(- C),,, However, WMM(c) +uWM(-,c) _

_ .. . < 'a .0:$ +'O #. WM(c. v -,c) ='J'.-

;:The equivalence of probability structures and DS structures mentioned in
3.1 nor, longer holds for distinguishable structures: not every distinguishable DS '-
structure for f has an equivalent distinguishable probability, structure for L.
(Otherwise, by 3..1(1) and 3.2(2), probability structure would`be''11
equivalent toa.distinguiihable one ),The- situation is summarized in Fig. 2.

Distinguishable structures are` used `lay -several authors, (e:g., [6,7]) for
assigning weights; -Also;, using distinguishable structures is trivia°llyz '

equivalentxo,assignin weights via (probability or belief) functions defined on
the algebra which` is most naturally associated with a languange, namely the v
Lindenbaum algebra. (See e,&.' [1] for a definition of t_--indenbatjm'algebra.)`

Nevertheless, there may be good re-sons for ndtrequiring weight structure
to,be,distinguishable, but one should of-the, fact=that onethen'iallows
the structures, to represent probabilistic rnforrnationabout---isstuesthat c'annot`be
expressed in the langauge under consideration. '(Cf.,Min example 33.)

8
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DS structures

distinguishable
DS -structures.,

measurable
probability
structures

structures

distinguishable-
-'measurable
probability

Fig. 2. The relations between classes"` of, weight structures. An arrow from one class to another
indicates that for every structure in the first class there is an equivalent one in the second class.

,A consequence of proposition 3.2-is that the completeness results for
measurable probability structures and DS structures mentioned: in [3] remain
valid. when the structures are requited to be distinguishable. In that case; the
system for inner measureso-npeds of course to be enriched with an axiom stating
essentially that inner measures are disjoint belief functions. -

4. Refinements, compatibility, and aruul>civaluesl Mappings

In, this section we show that a belief function over S is the inner treasure in-
duced by some probability function on an algebra on a refinement of S. We use
an adaptation of the original definition of belief functions given by Dempster [2]
and some notions from [9]

Amultivalued,mapping: G . from.S-to.Tis a°functionS )-27which satisfies
Vs E S G(s) :# o and Vt e, '1'3s e S t E G(s). The, function Bel on 2T.in-l
duced by a probability function P on 2S and-a multivalued mapping, G from S. to
,P is the, function Bel given by Bel(A) = P({s E S I G(s),c B}) ,The-'class of
belief functions over Tis the class of functions on 29'induced by a probability
function P on 25 and a'multivalued mapping G from S to

A compatibility relation C(S, I between SandTis a subset of Sx Twhich-
satisfies Vs.E: S 3t e,. '(s,t) E C(5,,, and dtr-E E S (s,t) C(S,9) .

The compatibility relation C($ -induced; by a multivalued, snapping G from S
to°:; ' s=the.set {(s,t) E:SS,x ;t E G(,s)}.; S is called a coarsening of :T and'g a
refinement of S, if there exist a =ri ultivai--aced .mapping G: from S to Isuch that

probability
structures

distinguishable
probability
structures

E
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t E Tthere is only one s ' S which satisfies t E G(s). Such a G wild;.for every
be called acoarsening from. S to 2;

Notice that C(S, TJ is a refinement of both S and ' Jr The algebra generated-
by S on C(S,Z is the algebra={ C(5,. -n,(A-x2) I A c S},. Themrestriction of a
-function F on C(S, 2) to Tis the function F l Ton -2 -given by .F I (A)

F(C(S,9). n (SxA)).-

Proposition `4.1
(1) For every pair -of frames S and'?; comparability relation.C(S 1 ,

and probability function P on the algebra generated by S on C(S, ,

the function. P* l Tis a belief function over
(2) For every belief =function Bel over there exist °a frame S, a com

patibility relation C(S,2), and a' probability function P on the al
gebra generated by S on C(S,?) such that Bel P* I T

Proof.
(1) By 2.1(1), P* is abelief fuction over C(S,Z, and by theorem 6.8`of [8],
.the restriction of a belief function over a frame-to a coarsening of that frame is
again, a belief function:

(2) Assume, that Bel is a belief function over T By Dempster s definition, there
exist a frame S, a multivalued mapping G from S to 2, and a probability func-
tion P' on 2S such =that for every A c TBel (A) P'({ s it S I G(s) c A I), Let
C(S, T be the compatibility relation induced by G, and let P Ibe the probability
function on the algebra-generated by Son C(S I defined by P(C(S,T n
(BxZ).= P'(B), for All B` C S. They, forevery A c Twe have that Bel(A) _
P'({s E >S I G(s) c A,}) P({(s,t) E C(S I"I G(s) c A)) = P (C(S, I) n
(SxA)). Hence Bel _=_P* 17,

Proposition 4l generalizes12.1, since belief functions induced by a probability
function P a coarsening G from S to Tare disjoint belief functions,
and-C(S,Z induced-bysuch'a coarsening`G'is isomorphic to T The following

47;-.,,r,1 i,,n ,:C,, , ,., .,,,,,.o --1 *o,.. -ll.,se tii e y,ns as

F..

Corollary 4.2
(1) For every probability function P on an algebra on a refnemen S of-

a frame Tthe function ever 2J "
(2) For every belief function Bel over Tthere is a probability function P

on,an.algebra on come refinement S of Tsuch that Bel = P*,laT

c=

_

T

=

=

=

slightly

P*
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5. Conclusion

Belief functions over S are exactly in-ner'rieasures (restricted to S) induced
by probability functions on algebras onrefinements of S. Allowing-refinements
is essential, since inner measures induced by probability functions on algebras
on S form only a proper subset of the belief functions over S. , -

The claim made by Fagin and Halpern [3,4] that belief functions are exactly
inner measures when the functions are defined on formulas rather than sets is"
misleading. If the inner measures are allowed 'to be induced by probability',,,"
functions on refinements of the frame over which the belief functions are de-
fined, then the correspondence not only holds`° for functions defined on formu-
las, but also for functions defined on sets. If refinements are not allowed,, then
it can be argued that one- should not assign weights to formulas in,the way it is
done in [3], but one should use distinguishable ;weight.structures, which do not
equate-belief functions and inner measures ; °-
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