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ABSTRACT: This paper -consists of two parts: the first is contained in section 1. It reviews,

perhaps too briefly, some basic philosophy on meaning, information, information state,

information ordering and the like. In the remaining sections two interwoven problems are

considered: the first is how to view update functions as partial states (or more generally partial

'actions'). Partial states (actions) are viewed as states (actions) under a presupposition. The second

problem is how the merger of meanings interacts with the synchronic information ordering. We

explore some consequences of the hypothesis that this interaction is described by a Residuation

Lattice.
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stimulating discussions. (Both readings of the previous phrase are correct.) I thank Marcus Kracht
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Es kommt mir darauf an zu zeigen, day3 das Argument nicht mit zur Funktion

gehort, sondernn mit der Funktion zusammen ein vollstdndiges Ganzes bildet; denn

die Funktion fur rich allein is unvollstdndig,-' ergdnzungsbedurftig oder ungesdttigt

zu nennen. Und dadurch unterscheiden sich die Funktionen von den Zahlen von

Grund aus. (Frege[75], 21-22).

Partial actions and states, that is what this paper is about. A partial action is viewed

as something unsaturated or etwas erganzungsbediirftiges. We model the partial

objects as certain partial update functions which can in their turn be represented by

pairs of total objects. The first component of such a pair can be seen as a test: if you

satisfy the test you can plug the hole. Consequently you can benefit from the
resulting total object. This total object is given by the second component. As we

shall see, this construction is quite similar to the familiar construction of the integers
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from the natural numbers.

1 Pictures &Updates
This section is an attempt to place the paper in the somewhat broader, but hazy context of research

in dynamic and discourse semantics. Some notations and basic notions are introduced. -

1.1 Setting the stage: Consider two simple-minded pictures of meaning or,

perhaps, _information . ontent. The first is the DRT-view (DRT = Discourse
Representation Theory; it is primarily due to Heim and Kamp): a meaning is like a

picture, is like a structured database, is like a mental state. These meanings are

called DRS's (= Discourse Representation Structures). The second is the imagery

of Update Semantics (primarily due to Gardenfors and Landman & Veltman): a

meaning or information item is (or can be represented as) an update function of

mental states. The purpose of this paper is to study the relationship between these

pictures (or more accurately: certain aspects of this relationship).

Prima facie these views are quite different. The DRT-view provides static objects,

while the essence of the Update picture is meaning-as-something-dynamic. Also

there must be far more updates of mental states, than there are mental states. Our

basic idea to resolve the tension between the two views is (i) to consider only a

restricted class of update functions and (ii) to represent these functions as partial

states or states under a presupposition. The original states or total states are
embedded in a natural way among their partial brethren. -

1.22 Monoids for Merging Meanings: Databases or pictures can be put
together or merged. Update functions can be composed. In both cases there is a

fundamental operation: the merger .respectively function composition. These

operations are associative. We stipulate the presence of an unit element 1 for these

operations. The identity is the empty database respectively the identity function. We

assume that 1 is a, (total) state: the state of absolute ignorance or tabula rasa.

We use the expression merger for whatever basic associative function glues
meanings together, thus viewing function composition as a special case of the mer-

ger:

We take the merger as in some sense the basic or fundamental operation on
meanings. Other operations are either defined in terms of it or in some wider sense
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derived from it. Of course, in the light of the generality of our present discussion,

taking the merger as fundamental is only a schematic step. °Yet° it serves already to

distinguish the present approach from Montagovian Semantics, where the basic

operation is Function Application.

In view of the foregoing discussion we see that meanings form a monoid2 =
We take the mental states to be a subset of the meanings. Thus we define: a

merge algebra 9 is a structure where 1_E S(--M and where is a

monoid.

1.2.1 Conventions: We let x,yz,... range over M and s,t,... over S.

We use postfix "notation ` for` function application. Our notation for function

composition is in line with this convention: xFoG:=(xF)G."

If F and G are partial functions-we write e.g. wF=uG for either sF and uG are `both'

defined and have the same value, or both are undefined:: We write sF_uG for sF

and uG are both defined and their values are equal. O

We associate update functions to our algebra in the obvious way. An update
function on a merge algebra 92 is a partial function from S to S. To each x in M we

associate an update function cb as follows: -

if S, s(b is ' undefined-otherwise,.-,

We say that 9R is an update algebra if the map (b with (b(x)=(I)X is a horn drphis'ny'r

from to (the update functions on M,o,ID), where ID is the identity function
.on' S.

Under what conditions is a merge algebra an update algebra? The answer is that the

-algebra has to satisfy the OTAT-principle.

1.2 .-2 The OTAT-Principle: a merge algebra 92 satisfies OTAT if:

-for all x,yE M: x.yE_.S = xE S.

OTAT means: once a ,thief, -always_a thief. If something fails to be a state,, then it

will never become a state whatever happens afterwards.

We have also a local version of OTAT. An element y of M has the OTAT property

iff for all xE M: xryE S ; xE S.

3
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We have the following theorem-,

1.2.3 Theorem: T? is an update algebra iff satisfies OTAT.

The theorem is an immediate corollary of:

1.2.4 Lemma: Consider yE M

VsE S`dxE M s(DX(Dy=s(:Dx.y y has the OTAT property.

Proof of 1.2.4: "=*"Suppose VsE SVxE M s(x(y=s(D X,y. Consider any x in M

and suppose S. It follows that lx.y is defined and hence (ex hypothesi) so is

1(D (D
Y
.Thus l; ,must-be-defined, which means that xE S.

It Suppose y has the OTAT-property. Consider any s and y. If SOX(Dy is

defined then and s-x-yE S. Hence s(DX,y is defined and s(DX,y-=sOxoy.

Conversely suppose is defined. In this case sX. and S. By

the OTAT property we-find that s(DX is defined. -Since,s(DX sx_

also sd)XCDy is defined and s(Dx(Dy U_ -

The
OT-AT-principle

suggests. that -the partiality, of: the-- non-states is something

backwards -looking, a kind of lack= on the input side rather than at the-output-side. ,In.

other words the OTAT principle suggests that meanings have a presuppositional

structure..

1.. 3 = T=he true and the proper nature- of states: What is a state? The con-,
notations of the word state- suggest that u state is something static. Thus, the notion-

of-states would haveits-proper-place--in the static-dynamic opposition.- A state would-

be something like a test or a condition.

I disagree with this idea-. First etymology -can be rnisle-ad-ing:-Thirikof e g. state of

motion versus state of rest to illustrate that even if a state is a something-a-thing-

is-in-at-a-particular-moment, a state is not-necessarily something -that has no 'active'

properties. A state may contain the germs of the next state -an-d may even be said

be one of the causes of the next state. Secondly the OTAT-principle suggests that

states find their natural home within the saturated-unsaturated distinction.- A state is

something that is saturated towards the past, =i.o.w sort ethi-hg that carries =-no

T?

<-*

OTAT-principle

4



presupposition.

Let's consider some examples. In our first batch of examples we choose to ignore.

all possible sources of unsaturatedness, other than those arising from anaphoric

phenomena (at the surface level).

i) -A man comesl in.`

ii) He smiles.

iii) =All men smile.

iv) =A men comes in. He`siniles at her.

I would say that (the meaning of / the content of) (i) is a state. No referents need to

be supplied from previous discourse:

Of course calling (i) -a state, `carries the suggestion that '(i) - could- be the whole

knowledge-content of an organism. I'm inclined to think that if logical possibility

is intended here, this is` true. On the other hand such radical claims -in -spite of their

exciting character- are not really at-issue-in-the present discussion. We could easily

stipulate that state here is intended as part or aspect of the total holistic (pardonnez

lemot)- state of an organism, that can be considered as standing on its own relative

'toa certain kind of analysis carrying its own degree of resolution (etc.).

Note that (i) is saturated when seen from the past, but not- so when seen from the

future -traveling for a short moment backwards in time-, since it -exports--`a referent

to later discourse. (i) is not a test or condition,- since it exports a new referent to

later discourse.

(ii) is not a state 'since it is unsaturated or, with Frege's -beautiful expression,
Ergdnzungsbeduftig towards the past (and in this case the' future too). On the other

hand (ii) is static, since it neither creates nor destroys a referent. Thus we may say

that (ii) is a test (for smiliness). - {

We leave it to the industrious reader to see that (iii) is both a state and -a test and that

(iv) is neither state not test.

1.3.I, Excursion: Let's briefly glance at some possible paraphrases of (i)-(iv)-in.thc-language

of DRT/DPL (DPL = Dynamic Predicate Logic, a variant of Predicate Logic-introduced by Groe=

riendijk & Stokhof):

Pi)- ' 2x.MV N((x).COME-IN(x)

5
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pii) SMILE(x)

piii) Vx(MAN(x)-*SMILE(x)) [or: (3x.MAN(x)-*SMILE(x)) ]

piv.). -3x.MAN(x).COME IN(x).FEMALE(y),SMILE AT(x,y)°

In (pi) the quantifier 3x introduces a new variable, but unlike in ordinary Predicate Logic the

(possible) scope-of this variable is not constrained to the formula given. We-can- go -on. and 'merge'

(the "." stands for the merge here) e.g. SMILE(x) with the formula (pi). The variable x will in this

case get bound. The whole formula (pi) functions as a quantifier where values ofthe variable x are

constrained to incoming men. -Thus: x-is bound, but active= A -symptom;-of this :phenomenon is

that a-conversion does not preserve meaning- here., On the other hand x,in {pii) is not bound, but

still active: x 'asks' for a value to -be imported from previous -discours_e and sends this value on to,

later- discourse.: The variable x in the formula (piii) is bound but not .active. Thus it is a classical

bound variable as in Predicate Logic. The reader is invited to draw her own conclusions on (piv)..

A variable occurrence is bound in a formula if it is not 'visible' from the past, like x:in-3x.A(x).-

Dually, a. variable is trapped if it is not, visible from the future, travelling backwards. in time.

Examples here-.would be the 'occurrence of x- in -Vx(A(x)) or the first occrrence of, x- in

A(x); x B(x). =A variable that is both bound and trapped is, non-active and fully analogous to the

bound variables of classical logic.

In the dynamic world. there are really two candidates for correspondence- to the classical notion of

sentence in.Predicate - Logic .(rather like the classical concept-of mass divides into two°in

Relativity. Theory): formulas in =which all variables are bound-and variable in which all variables

are both bound and trapped. On our view sentences in the first sense are what describes states. Note

that in contrast to sentences in Predicate Logic and to sentences in the second sense in DPL/DRT

sentences. in the first sense have more interesting meanings than just a.truthvalue w::r.t..the given

Model
_ -- ti

.Our examples purported to illustrate the notion of_statefocus sing on anaphoric

phenomena. These are not the only relevant kind of phenomena. The processing of

syntactic- structure can be treated in, an analogous- way (at least for the admittedly

modest fragments I have been considering). The simplest kind of model in_ this

direction is what one gets when- abstracting from what is between the brackets,

i.o.w. when one just considers strings -of brackets. Here. a state is any string that

has- survived the bracket-test, i.e.-an string h the bracket count, counting

as +1 and as - 1.,- has not sunk below 0.. So these strings don't 'ask' for s at

the beginning. This is saturation towards the past. We don't ask similar saturation

O

")"
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towards the future. The OTAT-principle. simply. tells us that when -the bracket count

has sunk below 0, nothing that comes after will set it right. The SSC's will be
extensively discussed in section 6.4 of this paper.

1.4 The silly side of (our version of) Update Semantics: As we set it
up in section 1.2 as soon as the- output of a candidate update is not a state, the result

is undefined. This to be definitely unrealistic. If I hear a fragment of
conversation He was smiling, not knowing whom they are talking about, it would

by simply ridiculous to 'become' undefined. For one thing it would provide people

with overly simple ways of getting other people out of the way.} The realistic way of

handling the fragment is to set the problem of interpreting he aside as something to

My hunch is that one should first get the silly model of updating straight before

building more realistic models to describe how we actually handle semantically

incomplete information. One hopeful sign is that the silly model more or, less

automatically leads to the notion of partial state. Perhaps setting aside the problem

of interpreting something can be described as going into a partial state. (Still even

partial, states do not give us error recovery: _the OTAT principle blocks this.)

1.5 Information Orderings: Till now we have just been thinking about the
merging behaviour of meanings or information contents. But definitely the picture

is incomplete if there are not ways to compare information contents. We will handle

this problem by assuming. that our meanings come with .an ordering: the information

ordering.

We write our information orderings in the Heyting Algebra style: so more
informative is smaller. The top is the least informative item, the bottom ,the most

informative one (in most situations the bottom is even-overinforrna

There are in fact two kinds -of information ordering. The first one is the synchronic

information ordering. For example I have two pieces of paper in my pocket. One

states Jan is wearing something new, the other Jan is wearing a new hat. Evident-

ly the first piece of paper is less informative than the second' one. Whatever infor-

mation state someone is in, being offered the second piece will leave her at least as

informed as being offered the first. So we compare the effects of the pieces of paper

when offered at the same time to the same person in different possible situations.

be dealt with later.
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The second ordering is 'the diachronic ordering. Consider Genever is a wonderful

beverage. Not only the Dutch are fond of it. Now the-information content of both

Genever is a wonderful beverage and of Not only the Dutch are fond of it are part

of the information content of Genever is a wonderful beverage. Not only the Dutch

are fond of it.-But-they are part by virtue of being brought into the whole via the

process of consecutive presentation. Synchronic comparison of e.g. Genever is a

wonderful beverage. Not only the Dutch are»fond of it and Not only the Dutch are

fond of it is a rather pointless exercise.

Both in the case'-of the synchronic ordering and of the diachronic ordering we-may

wish to distinguish ways in which one item is more informative than another one.

This leads us to studying labeled orderings or categories, rather than ordinary orde-

rings.

In this paper xwe-will only study the synchronic unlabeled ordering. We will assume

that the synchronic ,ordering together with the merger gives rise to the rich structure

of aresiduation lattice. This assumption is unfortunately not based an informally

rigorous analysis, but just on the fact that some important examples satisfy it. So in

a later stage of research we may have to retrace our steps.

Our basic structure is a reduced residuation lattice Define:

a<_b_ :<-* avb=b.

Let W satisfy:

(A,v,n) is a lattice, where we do no assume the top and the bottom;

is a monoid;

a<c-b < b<a-*c; _

is left residuation or post- implication. .-_ is right residuation or pre-i=mp...li-
cation. We will consider the 'real order. of the arguments of post-implication to be

Oppositeto the displayed; one.

We left out the_top.and bottom just for temporary convenience _we- could have left

-them, but that would make some formulations later Ma bit heavy.

There. are two intuitions about the synchronic ordering. We first takes presuppositi-

ons to. be informative, the second takes presuppositions to be anti-informative. So

_

<-*

<--
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according to the second intuition the more information a content presupposes the

less informative it is. As we "will see later on these two--intuitions correspond
respectively to viewing undefined as deadlock or error and to viewing undefined

as not sufficient.

In this paper the second intuition will be our choice. So according to us a presuppo-

sition will be on a negative place. (Clearly it could turn out that the right approach is

to keep both options at the same time. This could lead to- a treatment a bit like

bilattices)

Our.choice,leads immediately to a pleasant definition -of the set;of-states in terms-of

the algebra. Remember that 1 is the tabula rasa mental state:°it asks for nothing; it

contains nothing. The items that are more informative than 1 are precisely the ones

that presuppose less than 1 and contain at least as much (static) information as 1,

i.e. precisely the ones that presuppose nothing, i.e. precisely the states. So we take:

will range jover-A and s,s',u,u', . will range over S. Note that b

has the OTAT-property precisely if for all a: a<_1, i.o;w: precisely if

-(1-e--b)<_1- 0 (if present) has the OTAT-property just in case 1=T.

Let's consider -information_orderings in terms of update functions.- An update

function is a partial function F:S-S. Given an information ordering on S we can

define two induced orderings, corresponding to the options we just discussed, on

the update functions:

F<1GVs`(sFJ. sG. arid'sF<sG),

F<_2G :iam`b's (sG1 = sF.- and sF<_sG).

Clearly these are partial orderings.

Suppose for the moment that we would like to expand the ordering on the states

with a new element 'undefined' or T in such a way that respectively 52,

becomes the pointwise induced ordering. Consider the <_1-case. Noting e.g. that the

nowhere defined function is the bottom, the unique way of achieving this is making

T a new bottom. Similarly in the <_2 case T should be made a new top. In the <_i-

case T" is even `more- informative than 'overdetermined' or 'false'. One way of

understanding this is to view T as an error state or a deadlock. In the -case T is

even less informative than 'tabula rasa' or 'true'. One way of understanding this is

9
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-to view T as the-not- sufficient-state, something that strives to be a state, but needs

something extra-to be that. (It would be-somewhat-misleading to. say that T is open-

ended, since the insufficiency is more naturally thought of as being. on the side of

the past'.)

In this paper we will study -a specific set of update functions: the ones that update

by merging with a fixed element a of our residuation lattice and -whose domain is

given as the set of all s below or equal to a fixed a'<_l. The idea is that a'
represents a condition on the states: states below a' carry sufficient information to

get-access to the-updating.element- a. (Note that the word condition is used here

from;thevo ternaa-pointnof view of the theoretician, not.from the internal point of

view of the framework.)

It may: seem somewhat .strange that no-intrinsic connection ise demanded_betwee;

a' and a, but this can be understood by realizing that the update functions are
supposed to be semantical objects. The coming together of presupposition state and

update action is flows from the level of language use. If for example someone-tells

-me The present king of France is bald -the information -contained in this sentence

can only be processed by-those. having states providing _a present -king- of France.

The update simply has the form: x is bald. No intrisic connection is called for
between kings of France and baldness.

We pickup the theme of u tes a ain_in section I

1.6 Excursion: Validity and implication: One of -the major problems of the

DPL/DRT approach is to gain an algebraic. understanding of validity and implication., To give the

reader some feeling for the problem let's briefly consider the problem in the case of Groenendijk &

Stokhofs DPL.

DPL-meanings are relations -between assignments. The merger simply becomes relation

composition. We need also dynamic implication -+, where

f(R-S)g := f=g and `dh (fRh 3i hSi). -

Given a classical model Z we may define:

f113X11g :< for all variables y different from x yf=yg,

11111 _ :- o -

1-0

=*

flIxllg f=g and xfe IIPI1,
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0o ...,0n-i m,fV :a Vg (fII00IIo...oll4n-IIlg 3h gllxvlih)

Vx(o) can e.g. be considered as-an abbreviation of: (3x-40).

At first sight some very 'basic progress is made here: we have before us a definition of (a form of)

Predicate Logic that is a genuine special case of the corresponding version of propositional logic.

The existential, quantifier is just an atom, linked with the rest of the text by the propositional

connectives. Granted, this is true. On the other hand, however, the propositional 'algebra we have

here is definitely unattractive. (i) As far as I know we have no axiomatization of the logic of o and

- for the binary relations over an arbitrary domain. (ii) --> not only handles 'negative place' .but

also throws away internal values assigned to variables. (iii) -> is non-transitive. (As is -illustrated

by van Benthem's example: Everyone who has a house, has a garden. Everyone who has a garden

.sprinkles it. But riot: Everyone who has a house. sprinkles -it.) (iv) Repetition of Ex with the

same variable, is an obnoxious bug in the system; since it has the effect of throwing away all

information about the values of the first occurrence of x.

Similar problems haunt also other related semantics like the one of DRT..

Johan van Benthem suggests to define --> in terms of other more basic operations. This suggestion

is surely, on the right track, but just as surely not every definition can count as sutcces. E.g. in the

residuation lattice of relations over a given domain extended with the converse-operation ^ -> can

be defined as follows: R-->S := ln((TaS^)F-R).

Proof: u(1-n((SAoT)F-R))v u=v.and Vw (vRw -u(ToS^)w)

<= u=v and Vw (uRw = Elz uTzS^w)

u=v and Vw (uRw Elz zS^w)

u=v and Vw (uRw = 3z wSz)

I submit, however, that this definition is too ad hoc to be enlightening. The problem is what Henk

Barendregt calls, slightly adapting a Zen usage, a Koan. This means that what the problem is only

becomes fully clear when we see the solution.

Open problem: Can --> be defined in the residuation lattice of relations (without using A)?

(Lysbeth Zeinstra in her masters thesis defines (in a slightly; different" setting)`+ from a-binary

11
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connective "so". In this approach the 'trapping' of the variables in -implications is effected by

explicit 'downdates'. Still most of the problems of - also plague "so".)

In the present paper we will touch on the problems surrounding validity and implication only in

passing.

2- . Some =elementary facts concerning resi°duation lattices
In this section some simple constructions in residuation lattices are described. More information

on residuation algebras and' action algebras can be found in Pratt[90] and Kozen[92].

Residuation -lattices 'have obvious connections to category theory and linear logic (for the last see

°e.g. Abrusci[91]). Other close relatives are the bilattices due to Ginsberg (see e.g.-Fitting[?]);-in

facttthe'constbction-describedin=thatpaper:bears=some-siinil-arity to our work in section 3).

(as introduced in

1.5). Define: -

a<_b :<--* avb=b;

bl-a :_ (b-a)A1;
S:={ aE Ala<_1 }.

_a,b,c,a,b',c',... will range over A. and ,s',u,u',....will range -over. S.

For ' completeness' We state some principles valid in a (reduced) residuation lattice

without proof. We only state-principles for F=, but of course the corresponding

ones for - also hold. The statements involving 0 and T only apply, when 0 is

present.

0+x = 0,

x<-(yvz) _ (x<--y)A(x<-z),

(xny)<-z (x<-z)A(y<--z),

x<-yz = (x<-z)<-y,

x<-0 = T<--x = T, x<-1 = x,
(X<-y),y x,

(x Y)'(YF- z)_ C (x<-z).

We will amply use the following proof-generated property:-

12
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0 and s<_s' =

S is- equivalent to:

s<s' =

-So says in a sense that in case` of repetitions of states on the left before and after

an inequality the occurrence on the negative place is the one that weights heavier:

We give an example of a residuation lattice not satisfying Q. Let A:= { 0,1t, b,1 } ,

where O<u<b<1, and It is easy to verify that this
'determines a residuation lattice (even an action lattice). Q fails because

but

Truthtables for our example

There is a property that is somewhat more natural (but pria facie stronger) than Q, a

strengthening of Modus Ponens in case the antecedent is a state: SMP is the
property: SMP1 is SMP for a<_1.

2. 1 Fact: (i) Q follows from SMPI; (ii) SMP follows from SMPi;

Proof: (i) Suppose SMP1 and and u<_s. Then and

hence (ii) Suppose SMPI. Then:

=;sna.

Any set S' that (i) satisfies Q (in the sense that. we let the variables s and s' in the

statement of Q range over S'), that (ii) has -a maximum -m, (iii) is closed under ,

(iv) is downwards closed and (v) contains 1, is equal to S. In other words: m=1.

Simply note that: Apply Q with s:=m and s':=l, using

and 1<_m. We find: =m=1-n<_1.1=1._

13
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0 U b 1

0 0 0 0 0

U 0 0 0 U

b 0 0 b b

1 0 U b 1

--). 0 U b 1

0 1 1 1 1

U b 1 1 1

b U u 1 1

1 0 U b l



2.2 The algebra gym: Suppose 1!-<m and 2Cm is the (reduced)
residuation lattice obtained by restricting the domain to Am:={ala_<m}- and by taking

V,A, ,l as, before- (it is easily ,seen..,thatthis. can. be done) -and by taking as
residuations -gym, and M<-, where

a-*mb := (a-*b)Am, and bm<-a := (b-a)Am.

Itis easily, verified that the resulting algebra is as desired

The specific -example we will meet later is of course . X i. As is easily -seen .the

construction under consideration also preserves Kleene's *, so if we start with a

action lattice we get a new action lattice.

2.3 Thexelation <_d: We collect some facts about the ordering <_d, which will

be useful later.

Define: a<db and a_=db : Clearly <d is a preordering with

induced equivalence relation =d. Below we will now and then conveniently confuse

<d with its induced ordering on the =d equivalence classes. Note that a<_b a_db.

Define Nd is a.closure operation. We have:
-

a_db = a<Nd(b)

--dtadfNd(b) <_dmb

,= a<_db:-

So NO) is the maximal element of to =d-equivalence class- of-b-

avb is the <_d-suprememum=of a and b, since,:--

avb<_dc a

a-<dc and b<dc.

Nd(a)ANd(b) is the <_d-infimum of a and b, since:

c<_dNd(a)ANd(b) = c<_dNd(a) and c<dNd(b)

c<Nd(a) and c<_Nd(b)

c<_Nd(a)ANd(b)

- = cSdNd(a)ANd(b).

Moreover is a kind of post-implication for <,

14
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Note however that is an operation modulo =d only in the first argument.

Finally in the presence of SZ we have yet another desirable property. Suppose Q and

s<u<1, then:
c<uNs(a) c<sNs(a)

c<NS(a)

c-<,Ns(a).

Ergo: c<NS(a) c-<Ns(a) c<NuNs(a),

and partial actions
In this section- we present the main- construction of partial actions, and.-prove. its- basic propertied`..

The. partial actions can be viewed (except for a few special elements) as update functions. on states.

Fix a reduced residuation lattice 2I. Consider the update functions on Vt. We will

consider these as ordered by <_2 of 1.5. We will designate <_2 Simply by <.-

Remember that with every element a we associate its canonical update function (Da,

given by: if S, s(I)aT otherwise. Note that:

S s<_1E--a

(Reminder: b1*-a (bF-a)n l.) Thus l1°*-a =is the canonical presupposition for

updating with a.We define: pre(a):= 11*--a The class of canonical update functions

is not always a ,good class: e.g. if OTAT fails for W it may not be closed under

composition.

We will study a somewhat larger class of update functions. These will be given by

a presupposition state and an update action. Such updates can be considered as

partial actions. (As we will see in section 3.5 this is slightly misleading, for even if

there is a 'canonical embedding' of PLC into the algebra given by these updates,

and function composition, this embedding need not be a morphism of reduced resi-

duation lattices.)

Consider a pair a:=(a',a) where a'E S and a'-ac= S (or: a'<_pre(a)). Let T :S- S be

given by: s`P if s<_a', :=T that s so S.="

==>

=*

<-* <=>

--* --> ,-*

=:

<_

15



Note that a='P(pre(a),a)

Let U:={(a',a)I aE S}. X:={'Pa:S-*SI(xE U}. We, show that X is closed

under o. : _ -

3'. 1 :':Fart: X is closed under o

Proof:

s '(a' a)oT , b) L s_a' and

t=:> s<_a'n(b' -a).

Moreover if s'II(a',a)°'I`(b';b)1, then s'P(a; a)o'T So:

T(a',a)°T(b',b) =

It will be convenient to talk about the pairs (a',a) instead of about the corresponding

update functions. To do .this .we need--,to, know _the- induced merger and-the-induced

preorder and corresponding equivalence relation on the pairs. Define:

3.2 Fact: 'P(a',a)°'P(b',b)

To- get a nice- characterization of our preordering and equivalence relation we

stipulate. as our STANDING ASSUMPTION that % satisfies Q

Define:

(a',a)<(b',b): t=> b'<_a' and

=(b',b): a'=b' and -vr _.

We. have:

3.3 Fac

b),_LL(a',a)S(b' b:) (a, a)
(a',a)_(b',b) ,P(a'a)=,P(b

b)

Proof:

a)<T(b, b) 'ds<_b' (s_a' and sa<_sb)

16
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b'<_a' and

a. =b' and
b',b) (a',a)<_(b',b) and (b',b)<_(a',a)

We work with the representatives (a',a). But, of course, the real objects we are

considering are the equivalence classes of = and via these the elements of X!

Let Y:= Xv{O} if _ has a bottom, = Xu{O,T } otherwise, We extend <_ on Y by

making 0, the bottom and (in the second case) T the top. Define
please don't worry about the

top and bottom at this point. Why they are=added in this- specific way will become

clear in the proof of 3.4.)

Let The main result of this section is:

3.4 Theorem: Let s be a reduced residuation lattice satisfying Q, then:

i) There is- a unique residuation lattice U(s2I) = (Y,v,n,0,0,1,-4 -), extending

1U0(sI), i.e. there is a unique residuation lattice II(s) _

such that the order based on v is the ordering <_ of U0(s2I) and is the same in

U(W) and U0(S2I).

ii) If S2I is an action lattice then R0(s2l) can be extended in a unique way to an action

lattice IZ*(%%I).

We will be forced to introduce 0 and T even if we were only aiming to find a
reduced residuation lattice.

Proof: It is well known that if a structure of the form U0(S2I) can be extended to a

residuation (action) lattice (in the sense given above), then such an extension is

unique. So the only thing we need to do to prove the theorem is to 'compute' the

desired operations.

We first treat n and v for the pairs (the treatment for 0 and T being selfevident

Define:

(a',a)v(b',b) := (a'nb',avb)

(a',a)n(b',b) := (a'vb',Na (a)ANb'(b))

It is easily seen-that the values are in U.

17
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v is the supremum w.r.t. <_ and n is the infimum: let a=(a',a), 13=(b',b), y=(c',c)

since:

av(3<_y > cSa'nb' and- ayb<C-11

c'<_a', c'<_b', a<_C,c, b<_C,c

a<y and

a'vb'<c'- and c<_a,vb'Nat(a)ANb'(b)

a'Sc', b'Sc', c<avb' Na,vb,Na,(a)ANa,vb,Nb'(b)

b'<c', c<_Navb,Na,(a) and C<Na'vb'Nb'(b)

b'<_c', c<_Na(a) and c<_Nb,(b)

(c',c)<_(a',a) and (c',c)<_(b',b).

(The reader is referred to 2.3 for the relevant facts on N which are used here.)

What about top and bottom in the new algebra? Since we always add a fresh bot-

tom, the bottom can give no problems. If W. has no bottom, we add -a new top. So

again- no problems. Suppose -finally has a bottom -0, Clearly OE S, and so

(0,O)E U. We get: (a',a)<_(O,O) -O<_a' . and So (0,0) becomes the top of

our new algebra. We will in=the last case, perhaps confusingly, also designate (0,0)

3.4.1 Excursion: In case 0 is present in W, we also have:

(1,0)(a,a) a'<_1 and a'-0<_a'-a.

So (1,0) the least of the pairs. We have:

(ln(b'F-O),O.b) _ (1,0),

(a',0) (remember that

The last equation tells us that (1,O) is not an annihilator for and that thus (l,0) can

not play the role, of the 0 of a residuation algebra. Hence adding the new bottom is.

really necessary. O

We turn to the unit element of the merger. Let 1:=(1,1

and

since a'-a<_1 and hence a'<_l<--a.

We have

3.4.2 Excursion: In case -our algebra has a bottom 0, (0,0) has the role of top..

18
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t-* R<y;

y_<anj3 -*
<=>

a'<_c',

a'<_c',
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We have:

(0,0) = T,

(a',a) T =
So the non-added top, doesn't quite behave like the added top! O

We proceed with the' computation of the residuations. Fiist the "basic equation

c'<_a'A(b' -a) and

We 'solve' (a',a) from the rhs.:

c'<_a' and and

c'Sa' and

We prove the non trivial part of the second equivalence: let P be:

Suppose and then a__c'-*b' and Ergo:

and hence P.

"4= Suppose P. Then c'-a< c'-(c'->b') b' -anti

c'-(c'-4(c'-c+_-b))-<_ c'-c<--b,

hence cab S c'-c.

Define:

(c',c)<-(b`,b)

Clearly:

(a',a)<_(c',c)-(b',b) > c'<_a' and

We 'solve' (b',b):

c'<_a' and and

-!<_.a' and and

Here we meet a problem: what to do with the clause c'<_a', which is independent of

b' and b? The solution is use our new bottom 0. Set:

(a',a)-4(c',c) if c'Sa', = 0 otherwise.
In case c'<_a we have:

(b',b)_(a',a)-*(c',c) and,

In case not c'<_a':

19
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(b ',b)<_(a',a)- * (c',c) (b,b)<_0.

Combining these we find the desired: -

(b',b)S(a',a)->(c',c) C:* c'"<_a' and and

How is 0 going to behave w.r.t. "-E-? It is easy to see that `we should have for

aE Uu { 0, T } (where the top may be either added or-constructed):

a<--0 := T; OF-a := 0 for a#0.

If we have a new top, we still must define its interaction with the residuations. A

simple computation shows that we must set:

aE-T := 0 for a# T; Tea := T.

3..4.3= Summary: We restrict ourselves to the- case where anew top is- added. We

give the connectives by specifying the corresponding operations on the representing

pairs (a',a). The values of the operations on arguments involving {0,T } are

fled in` truthtables.

(a',a)v(b',b) = anb';avb},-
(a',a)n(b',b) -.=

(a'vb'3Na (a)ANb'(b)),

(b',b'-> (a'A(b'b<-a))),

(a',a)-(b',b) if b'<_a',_ := 0 otherwise..

We give the promised truthtables:-

Truthtables for 0 and T

The truthtables for --)'and happen to be the same, so we only give -*. a

20
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0 1 of T

0 0 0 0 0

1 0 1 of T

« 0 ot - T

T 0 T T T

0 1 ot T

0 T T T T
1 0 1 cx T

a 0 - - T

T 0 0 0 T

speci-
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represents the 'generic' element.

.3.4.4 Question: Does our new algebra still satify.S ?--

o

Finally suppose W is an action lattice: We give Kleene's *' in R( C). Define:

(a',a)*:=(a'i_-a*,a*),

T*:=T (in case T is added).

Note that In case 2C has bottom 0, we
have::-

T * =-(0,0)* = (01F-0*,O*)

We check that * has the desired properties on the pairs, leaving the other elements

to the industrious reader:

_(l`,`1)<_(a',a)*,- ince a'i ._a*<1°alld

since 1<_a*.

And:

(lA(a'E-a*)A(1

Finally:

(a',a)<_(a',a)*, since

and hence -(a'F-a*)<_(a'f-1)=a', and a<_a*.

Consider any (b',b) and suppose:

(1,1)<_(b',b), (a',a)<_(b',b) and

Then: 1<_Nb,(b), a<_Nb.(b) and so a*<_Nb,(b). Moreover

b'<_b'A(b'<--b) and hence b'-b<b'. Since a*<_Nb'(b), we have

so b'<_a'1F-a*. It follows that (a',a)*<_(b',b).

How does the old algebra fit into the new one? Consider any element a,of .

Consider the update function Remember that pre(a):=11-a, and that spa is

defined iff s<_pre(a). Thus. (Da T(pre(a),a) The natural embedding from=<I. into u(I)

is given by: emb(a):= (pre(a),a).

21A=.

0*:=1,

have:

_ (01F-1,1) _ (0,1)- T.

(a',a)*(a',a)* _

_

_ (a'1F-a*,a*a*) (a'<l,

< (a', a)*.

(Da.



3.5 . Special elements in A: The mapping a H (Da induces an equivalence
relation on W. Let N(a):=NP e(a)la). We show that N(a) is the. maximal element

equivalent to a. We have a<_N(a) and so pre(N(a))<_pre(a). Note that (pre(a),a)

(pre(a),N(:a)) and hence= pre(a)oN(a)<_1. Thus pre(a)<_pre(N(a)). It_ follows that

Are(a)=pre(N(a)). So emb(N(a))=emb(a). On the other hand if emb(b) _ (pre(a),b)

(pre(a),a), then b<_N(a). -1 1

3. 6 . _ Some properties of emb; In general emb doesn't behave like a mor-
phism. We do have:.:

emb(avb) _ (11-(avb),avb) =((11F-a)n(1.1-b),avb) = emb(a)vemb(b).

So, a fortiori, emb is order preserving.

Let c := (11 a)v(11F-b), then

erab(aAb) = (1.1 --(anb),anb) (b),=, emb(a)nemb(b)..

3.6.1 Example: To see that we cannot do better consider e.g. the algebra with

domain 0,1,a,b, T. The ordering relation is given by the following picture:.

We stipulate that =x,-for x:;4-0:1

It is easy to check =that=these-stipulations: determine a

residuation lattice (even an action lattice) satisfying Q. Note that is commutative

and idem-potent;

We find that emb(anb)=emb(1)=(1,1)=1., emb(a)=(O,a)T=_(0,b)=emb(,b) -and

-thus emb(a)nemb(b)-T.,

22
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Below we give the truthtables of --and -4.

Truthtables for. and ,

0

We -turn to the merger:_--

e ((11-b)1E a,a°b)

If we have the OTAT property for b we find: (1-b)<_1 and hence

(11F-b)a. So in this case: _emb(a-b)=emb(a)-emb(b)x

3.6.2 Example: Let 3.-Ie the structure (Z- (So min
n-m = n-m). Note that our ordering is the converse of the usual ordering on the

integers: (We use boldface to emphasis that arithmetical objects and operations =are

ended, and -not -those=of the--algebra: So e.g. x+-y=rnir (x;y)--and x.y=x-+y.) It is

not difficult to see that 3 is a reduced residuation lattice,-- satisfying S2: We have: ; - -

emb(-1) = (1,-1), emb(O) = (0,0),

:m=b(-1+1)-==(0,0) =-1, -

(max(1,0=4)
-

0)-=

Note that (00) < (1,0):

Clearly -1+1=0, represents a flagrant violation of OTAT, since -1 is not a state,

-but 0 is. More on B in section 6.4:.= _ `= Y D_

Finally suppose W is a (reduced) action lattice. We have:-.,_

errib(a)* =.(pre(a) a)* =.((1=1+--a)L4'=aa*)

Now (11 _a)IE-a* = (1i -a*)n(11 a*, so

23

0 1 a b T

0 0 0 0 0 0

1 0 l a b T

a 0 a a T T

b 0 b T b T

T 0 T T T T

0 1 a b T

0 T T T T T
1 0 1 a b T

a 0 0 a 0 T

b 0 0 0 b T

T 0 0 0 0 T

-4

_
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(11F-a)j<--a* = 11<-a* = pre(a*).

Ergo emb(a*)=emb(a)*.

3.7 Eh b`on`states: Let sT1 e a state of W. As is easily seen;emb(s)=(l,s). On

the other hand if (a',a)5(1,1), then" 1Sa'Sl and So (a',a) is of the form

(l,s). So emb maps the states of SLC surjectively on the states of U(W) minus 0.

Obviously emb is injective modulo =. We have:

emb(svu) = emb(s)vemb(u),

emb(svu) _ (1,snu) _ (1,N1(s)AN1(u)) emb(s)nemb(u),

(1,u)F-(1,s) _ (1,(1 (1,ulF-s) = emb(u1F-s)

(1,s)-3(1,u) (s,s-4i):°

Note that:

(1,s) -* l) (l,u) _ (sv1,N1(1)AN1(s-4u)) _ (1,s-1u) = emb(s-->

We may conclude that a,a. (1 nemb(a)) is an isomorphism between Sal and
1Z()1/{0).

A trivial consequence of the results of 3.7-is:.,

3.4 Fact: SMP1 (and hence SMP) is preserved under U.-

What happens when we repeat U? Under the right circumstances we get nearly the

same .algebra. The precise identity is spoiled by the addition of new bottom
elements in the construction=

To make our question sensible we must make sure that the circumstances that make

U meaningful and possible pare -preserved by 11. Since we don't -know whether S is

preserved, the most reasonable option is to assume that the principle SMP1 (which

is preserved and implies Q) holds in_ W. So assume s2C satisfies _SLP1;.

Consider the transitions W -> U( )- - 1III(s)._Let's label the, corresponding
embeddings by superscript 1 respectively 2.

Let's compute pre2((a',a)). (Remember that a'<_l<-a.)

(1,1)F-(a' a) _(1,,x(1- (1;,a'^(1<-a)) = (1,a?

24
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Since (1,a) is already -a state, We find.. pre2((a';a))=(1,a')-`
24

Let's assume U(I)- has a new top. Now the elements of UU(W) have one of the

forms:

(0,T) (note `that pre2(T)=0),

((l,s),(a';a)) with-(ls)<pre2((a',a)), i.e. s<_a',

or ((1,s),O), or (0,(a',a)), or (0,0) or;O.

Trivially for any c of the appropriate' kind: -(O,(x)=(0;(3): So we-may ignore the

elements of the form (0,(a',a)) and (O, T )iii favor of (0,0). ((l;s),0) = ((l,s},
precisely if a=0.

3.9 Fact: for s<_a': ((l,s),(a',a)) ((l,s)(s,a)).

Proof (s,a) is of the -right form, since s),(s,a)) is of the right form

since: We check the equivalence:

We find:

Emb2((s,a)) = (pre2((s,a}),(s,a3)== ((1;s),(s a)j. = ,

Also:

Emb2(0) _ (pre2(0),0)

And:

Emb2(T) = (pre2(T),T) = (0,T) = (0,0).

So the image of II(W) covers UU(I) except>for the -elements'of=the, form ((1=,s),O)

for s#l.

If had a bottom 0, then the top of_1.( f).would-be (0;0) and-Emb2((0,O))=

((1,0),(0,0)). -So in this case (0,0) of U1L(A) would not be in the image of

since it is above the image ((1,0),(0,0)) of the top of 11(W).

4 Further Properties
We study some-specific properties further constraining residuation lattices.

4:.1 S-injectivity: S-injectivity is; the property: x5b. Note that this

is equivalent to: (s- 4s-b)=.b- Q is _a.trivial consequence of S-injectivity. Note that

for (a',a) and (b',b) in U: (a',a)<_(b',b) b'Sa' and a<_b. Clearly S-injectivity is

25
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only a reasonable property if- I -has= no ,bottom: the only residuation lattice with

bottom. satisfying S-injectivity is the degenerated one.

Our primary example of a_ reduced residuation is the algebra 3° of example 3.6.2,

see further e.g. section 6.4.

How does U(DC) look if K satisfies S-injectivity-_?

4. l.1 Lemma: --a)) bra.

Proof:
--a)) t-* s-x<_s*b<--,a,

<-*t
As is easily seen using 4. 1. 1 our results simplify to:

(a',a)v(b',b) (a'nb',avb)

(a'.,a)n(b',b) (a'vb,anb)._.

(b',b)F-(a',a) := .(b',(b'-aa')n(b<-a))

(a',a)-3(b',b) := 4b) if b'<_a', := Q otherwise.

It is immediate that here emb commutes' also with n

4.2 S-idempotency: S-idempotency is the property: VsE S A primary

example of an S-idempotentresiduation lattice is any Heyting Algebra k) with W=A.

Another example-is°the residuation lattice Net of binary relations on a given non-

empty domain with order c and as merger relation composition. Yet- another
example is the algebra of 3.6.1. -

A noteworthy fact is that under certain and n will coincide.``

4.2.1 Fact:

Proof: Clearly:
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1,=s and

so

Note that 4.2.1 tells us that PLC 1 is in fact a'Heyting Algebra! We show that S-

idempotency implies SMP (and hence Q).

4.2.2 Theorem: (a1 -S-AS sna (and similarly for

-Proof: (a1 and (a so Also by our

previous lemma: (a1F-s)ns =-(a-=s)As _ ans

We show that under, S-idempotency there are very pleasant designated representati-

eves of our -'=equivalence classes:

X4.2.3 Theorem: For any (a',b)E U, there is a unique a<a', such that

Proof: -Consider any (a',b)E U. We have -so (a',b)

(a',a'nb). Take _.a:=a'nb. Clearly, (a',a)E U. Finally suppose that for some c<_a'

a = (a'Aa) = =_(a'Ac_)= c.

For, representing the update functions in X, we can replace .-U _ by-_ U

{(a',a)la<_a'<l }. We will do this in our representation of the operations in H(2).

A simple calculation shows that the new-operations are:

(a',a)v(b',b)- (a'Ab.%.(avb)Aa'Ab')

-(a',a)A(b',h) (a'vb',(a'vb')A(a'-a)A(b'-->b))-

(a'A(b' -a),anb)

(b',b)<-(a',a) (b',b'c(b'->-a')A(b'->(b*-a))) = (b',-b'Aa'A(bf-a))

a`';a).= (b',b) :(b' a,bna);i£sb'<-a', .(1=otherwise.

Note that becomes- idempotent (and thus S-idempotency-is preserved by JU) Note

also=,that-U(%) is completely .determined by 4 -i-o w. U(A) is isomorphic to

1Z(41X1): As:we=noted-W1 is a Heyting Algebra: _- -=

27

(a',b)

(a',a).

_

:=

:=



6 Examples
In this section we introduce some motivating examples.

6.1 The simplest cases: Consider the trivial one point Heyting Algebra
X-rib. It is easily seen that 11(Zrib) is precisely the two point Heyting Algebra

Era-- of Classical Logic, where. +=A. Let's look at lI( ra). The elements are
T:=(0,0), 1:=(1,1), a:=(1,0) and 0, where 0<a<1<T. We give the truthtables for

Truthtables for

Another salient four point algebra has the same elements and the` same ordering as

Moreover the merger is also the same except that These data determinethe free commuta-

tive and idempotent residuation (action) algebra (lattice) on zero generators. (In this business even

free algebras on zero generators tend to get fairly complicated. Our example here is the only simple

one that I am aware of.)

6.2 A DRT-like Semantics for the positive part of Predicate Logic
Let Dref be a (finite or infinite) set of Discourse Referents (or: Variables). Let a non

empty domain D be given. An assignment is a-partial-function from Dref to D. The

set of assignments is Ass. We write f<_g for g extends f-.--A subset F of Ass is

persistent if: fE F and fSg- gE F.

Let AssV:=(flVcDom(f)}. The objects of our algebra are pairs 6=(V,F), where V is

a- finite set of discourse referents and where F is: a- -persistent -set of partial

assignments fE AssV. We call these pairs M-states and we call the set of these pairs

M. The idea is that V forms a:context: it contains the mental objects that are present.

The set F is a constraint on these objects, which codifies the actual information.
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0 a 1 T -4 0 a 1 T <__ 0 a 1 T

0 0 0 0 0 0 T T T T 0 T T T T
a 0 a a a a 0 T T T a 0 1 1 T

1 0 a 1 T 1 0 a 1 T 1 0 a 1 T

T 0 T T T T 0 0 0 T T 0 a a T

11(0a).
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We do not demand: fE F = frVE F (Downwards Projection Property or DPI').
The reason is that a collection .of M=states with this extra property would (with the

obvious ordering; see below) not-form a reduced residuation lattice. Absence of the

DPP means that some variables, are constrained even if they are not present in V.

One could say that these variables are virtually present.

Define:

(V',F') <_ (V,F) :<=> VV ' and F'cF.,

Define:

(V,F)A(V',F') _ (VuV',Fr)F'),

(V,F)v(V',F') (Vr)V',FuF').

It is easy to see that A and v are indeed inf and sup for our ordering. (Note that A

preserves the DPP, but v does not.).

We take :=A. We see that we may take 1:=(1 ,Ass). Note-that r1=eT- w:r t our

ordering, so M is really a set of states in our sense.

We show that the resulting structure is a reduced Heyting Algebra by giving

(6- n). Let F be any set of assignments, V any finite set:of Discourse Referents.

Define: Intv(F) := {fE Assv I \ g_f gE F).

Suppose 6=(V,F) and '=(W,G). We. show:

Consider p=(X,H). We find-:'

pAa<_'t WcXuV and Hr)FcG

W\VcX and Hc(FCuG)

Note that if W\VcX, then H=Intx(H)=IntW\ (H);_also note that IntW\v is monoto-

nic (w-.r.-t. c) -and idempotent. We find:

pA6<ti W\VcX and Hdntw\V(F uG) --
-=

p<_(v\ 1ntW\V-(F G).-

Note that Int V(FcuG)={hE AssW\v I `df-h (fEF fE G) } _

=

<-*
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Thus we consider the reduced residuation lattice:

=C := (M-states,v,n, .;l,

6.2.--1 Special Elements: Given a 'set W of Discourse Referents, we define
1 (O,O), Note that we use '1 in a non-standard way, since it is not the bottom

w.r.t. our ordering! T
6

:= ±->d, 16 := _LAG.

It is easily seen that if 6=(V,F), then T :=(V,AssV), 1o:=(V,O), 1:=1 Note

that T=1=T1. We have e.g.:

16<6<T 6,

7,
CF

AT
T TaAT -* LT(T(L 6-3T )-=T66

_ 0-4Tti

We write 6 for {(Y--*1).

6.2.2 Fact: 6 has the DPP iff T6<_(av-6

Proof: "Left'to the reader.

We turn to

6.2.3 'Excursion on the connection with DRT: The elements of U are ,our semantic

counterparts of DRS's. The relationship with semantic counterparts a la Zeevat is as follows. The

objects we get as interpretations of predicate logical formulas (if an appropriate dynamical

implication is added) have the form (T 6j), i.o.w. ((V,AssV),(W,G)), where VcW. These specific

objects can also be written: (V,G,W). The DRS meanings in Zeevat's sense are in fact objects of

the form (W\V,G). So Zeevat just represents the discourse referents that are newly introduced ( =

bound and active variables), but not the active variables that are imported free variables). This

difference leads toa slightly different logic.

6.2.4 Sample meanings: Let a suitable a first order model with domain D be
given. We represent meanings as certain update functions. on M-states, viz as

elements of We exhibit some representations of meanings. We confuse a

variable v with ({v},0). So v=1v.

ll3vll := (T,T
v

) ("a" as in
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I I-tvll (T
V

, T) -.("he/she/it" = and "the" ), .

IIP(v,w)ll (TvAW'({v,w};'{fEAss(V,w) I (f(v),f(w))E`IIPII}) r

(where llPll is some binary-relatio ron D associated to°P-iri the given`model).

We compute the meaning of By P(v,w). Let F:={fe Ass(v,w} I (f(v),f(w))E IIPII }.

IIBv.P(v,w)ll = (T,Tv) (Tvnw'({v,w},F))

(T A(Tv->T vnw), T_VA({ V,w-),F)

(T w({ v,w 1,F)).

This means that the meaning of. Bv.P(v,w) presupposes that w° has a value and

'produces' _avaluefor -v:

-6.2.5 Restriction: Can we-define'Pardom('P) in our framework? -Yes. Let

_a=(t',B) and-let- (3=(ti',ti).=°PJdoni(T4O) _1(G'AZ',GAi') Note that
(ti',ti)-('jT) (ti',ti'AI'A(TX-T))-=.(ti',ti').

Also:

(L',L')'(6',6) _ (ti'A(cY -c ),t AcY) = (6'Ati',6Ati').

So the pair representing'Prdom(Tp) is (Note that we only used S-
idenpotency.)

6.2.6 Conditions: The function -1) with cD:=1 can be viewed as 'producing the

domain of 6. An update function F on M-states is a condition if it, doesn't change

the domains of its inputs, i.o.w. FoD=D rdom(F).: Clearly D_ itself-isa_ condition,

since it is idempotent and everywhere defined.-

In U( 2-S) D can be represented by S:=(T,±). So (x is a conditionsi

a condition if -(6',6).(T,1_)= i.e.-

(e'A(6-T-).,6A1) = (6',6-A1) = (6',6'A1)_=

in other words (YD=6'D_

Note that in our sample meanings above 11B_vII is a-state and Iltvll and IIP(v,w)Il are

conditions:

6.2.4 Discussion"'
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i) I don't think the present approach is completely. satisfactory. For one thing it

has the consequence that if a variable v that is already active- is existentially

quantified, then the quantifier is ignored. E.g. IIP(v).3v.Q(v)11=11P(v).Q(v)II.

Thus the present treatment gives the existential quantifier the meaning: introdu-

ce as new if not already present, otherwise ignore. A second objection is the

presence of the ill understood virtual referents due to the absence in general of

the DPP. Still I think it is worthwile to pursue the present approach a bit, since

it is the simplest approach known to existential quantification, that gets the

presuppositional aspect right: For another aproach see e.g.Vermeulen[91b] or

my forthcoming Meanings in Time.

ii) We do not go into the treatement of validity and dynamic implication here (see

also section 1.6). As far as I can see to do this reasonably one-should extend the

algebraic framework. E.g. van Benthem suggests to define validity using the

precondition operator 0.0(6',(Y) gives the weakest precondition for getting truth

(rather than definedness) after applying We have 6<_0(6 ;We can
proceed to define validity in the style; of.Groenendijk" & Stokhof as

6.3 The algebra of relations 91e1
Let R elD := where D is some non-empty set.
3(DXD) is the set of binary relations on D and ID is the identity relation or i.o.w.

the diagonal. The residuations- are given by:

u(R-S)v Vw (wRu wSv)

. -11(S<-R)v :a taw (vRw uSw).`

In this structure the states are precisely the tests: subsets of the diagonal. Relation

Composition is idempotent on the states. Thus U(ie1D)=U(C25etD), where CSetD

is the residuation lattice and

Since the states are tests, I think the ordering on TerD is wrong for doing Dynamic

Semantics. It is an open problem .to- find an ordering. on -(a suitable subset of)

$(DXD) that does what we want.

.6.;4 r_. Simple Stacking Cells: The monoid of Simple Stacking Cells (SSC's)
is simply the free monoid on two generators ( and ), satisfying the equation Q=1,.

(In this monoid we follow the usual convention of notationally suppressing .)

SSC's are in a sense the integers of the well known bracket test-,,,
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An application of SSC`s is to be found sn my forthcoming paper-gleanings in Ti)ice:-

We will show that SSC's can be viewed as integers under apresupposition=Before

-proceeding to the formal development, let me=first sketch =thebasic intuition.

Consider a clerk in charge of a store of items. At certain times either a number of

items`isdemanded=ofa number of items is delivered. Whenever more items are

-asked for than are in' store, the- clerk's firm :'will ga bankrupt: " We assume - that

delivery may -not be postponed.' Now -consider "a sequence= of demands and

-deliveries. The effect of such-:a=sequence can be -well described by two numbers:

first the minimal number that has to be in store for the factory =not to go=bankrupt in

-theprocess. Secondly the sum of the deliveries minus the sum of the demands. The

two numbers, say in and n, together give us an' update function for numbers. s of

items in store: if m<_s then the result of updating is s+n, the result is undefined

otherwise. Note that we use 'undefined` to-model:bankruptcy.

If we equate more in°=store with more informed, then-it-becomes clear -that--the

order on the integers needed to-model the clerk example is the converse of the usual

ordering. This leads us to consider the reduced residuation lattice 3 _
=(Z-' 'n;rnak- +;0;- =) as-our-initial structure:=,The-states of 3 are"-the= s 1, i.e °the

s>_0, i.o.w. precisely the non-negative integers. u(3) is precisely the appropriate

structure to model the process-of. deliveries an-demands.--

Note that if we would allow the clerk to postpone_ giving out items that are asked for

untill sufficiently many items are in store- the appropriate objects to describe the

process would-be simply the-integers..°

To return to our original way of describing, the SSC's every string of brackets can

=be.-rewritten using the conversion [O F--* empty- string] to a-.string )..:)(..:. of first

m right brackets and then k left brackets. The corresponding representative.in;U.(3)

will be (n,k-n).

Since 8 satisfies S-injectivity, the operations of U(3) take-the-particularly, simple

form given in section 4.1.

6.5 A clerk - with, several kinds of items::.. What happens if the, clerk of
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example 6.4 watches over a store of different kinds of items, say apples, pears,

bananas, etc.? The obvious idea is to-model the. store as a multi. et_of.kinds.- A

multiset can be represented as a function from the possible kinds to the natural

numbers N. We could allow that there is an infinity of possible kinds. Since we are

only interested in finite. multisets we. stipulate that the representing functions, are

almost everywhere 0. We are thus lead to the following idea.

Let K be the (possibly) infinite set of the possible kinds that may be-in. store. For

any reduced residuation -lattice we-define ain up(K,%) to be the reduced residua-

tion lattice of the functions of finite support from. K to W ..A function has finite

support if its value is 1 almost everywhere. The operations of ain_Fup(K,2) are

the =pointwise induced ones. Note, that if K is infinite and if a is non-trivial, then

a-in0oup(K,%) has no bottom., It is easily seen that this construction preserves

properties like etc.

We now model our clerk's work-by. As soon as of any
kind more is asked than is in store the firm will go bankrupt. An alternative
modelling We leave it to the reader

to trace the similarities and differences- between these solutions.

As a specific un-clerklike example of our clerk, consider the strictly positive numbers; The

inverse- divisibility ordering on the strictly positive rationals O+ is defined ^as- follows:

m/n <_ i/j :t= ixn divides mxj (m1n,i,je-N/.{0})

Note that if we assume that m and n, resp. i and j have no common divisors this simplifies to:

v u m/n _< i/j divides m and n divides J.

Let P be the set of primes. Consider say, It is easy to

see that ((U+,<_,x) is isomorphic to (where the <_ of the last structure is derived from v). So

(Q+,5,x) can be extended (uniquely) to a reduced` residuation lattice. Implication is division here.

becomes a kind of presuppositional version of the non=negative rationals: Note

that the 0 of this last structure is like the usual 0 of the rationals.

6.5.1 Question: Can one make a presuppositional version of all the rationals with both

operations + and x, -which has a 'reasonable' stricture?

An alternative representation of'Ahe- update functions-
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In this section we try to increase the analogy of our update functions to the integers.

Again fix a reduced- residuation'algebra W satisfying )

It could be felt as a defect that we didn't really give a construction of actions from

states, but of actions from actions. Thus it fails the analogy with the construction of

the integers from- the natural numbers: An alternative representation of the update

functions goes some way to remedy this defect, but not in all cases the full way .

Consider ' I f a,,A for (a',A)E U: Note that (in- the presence of `S2)(a,,A) is fully

detemined by a' and a'-A. Thus we can represent our update functions also by-pairs-

of states.- [a',a], where a'<_1 and for, some A_ Let V be the set of these
pairs. Below`we-will describe U(PS)' in terms-of these alternative pairs-on`the

assumption of SMP.'

We transform our earlier results to-the new=fot init:

[a',a]<[b',b] b'<a' and

U:!4 and (b',<--a')-a<b

[a',a]v[b',b] =

[a',a]A[b',b] _ _

[a',a]-[b',b] [a'A(b'eA),(a'A(b'F-A))AB]-.

_ [((b'--A)rE-a')'a',.((b'E-A)1E-a')a''AB]

[(b'1E-a)a',(b'1E-a)a-B]

_ [-(b'1E-_a)a',(a1F-b')b'B]

_ [(b'1F-a)a',(a1E-b')b]

-_ [b',b]e- [a',a]_ [b',b'®(b' a')n.(b'->(bE-A)))]

= [b',b'(b'-a(a'n(bE-A))]

[b',b'(b'-((bE-A)1e-a')a')]

_ [b',b'(b'-*((b1E-a)'a')]
[a' a]-[b' hl _ [b'A h'A4!(b'A_h)1

[(b'lE-a')a,_(b'1E-a' 'a(_(b'1 -a')a-fib)] if b'<a,
_ -0 otherwise.
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So we find:

[a

[a',a]v[b',b]

[a',a] A [b',b]

:a b'<_a' and (b'1-a)a<b--
T

_

[a',a]-[b',b], _

.[b',b]E-[a',a] _ ; °

[a',a]-*[b',b], :_ [(b'1 if b<a!

:-= 0 otherwise.

Note that in case SZX satisfies S-idempotency, our new representation. collapses to

our. earlier one since

The new way of representing is not really a construction from actions from states,

since (i) V is still generally dependent on all of and (ii) in our. formulations

unrelativized pre-implications still occur in an essential way. In case W is
idempotent a simple inspection shows that the dependency disappears. This leads

us to the following list of problems.

7.1 Open problems
i) Under what conditions, can the dependence of l1(%). on the full pre-implications

of A be eliminated?

Consider a reduced residuation algebra C5 with the property that 1=T. Let's say

that SZ if is isomorphic tot -

ii) What Vs,B are possible? Are there nice properties characterizing possible Vo?

iii) What is the structure of the Vsg with c?

It is easy to see that VT is isomorphic to Vu().a

7.2 The alternative representation of SC Cs: It is easy to see that VB is

{ [a',a] J a',aE I I) . A simple computation- gives simplified relations and operations

on

[a',a]<[b',b] b':-<a' and (b'1E-a').a<b

[a',a]v[b',b] _

[a',a]A[b',b] _

[a',a] _-
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a',a]-5[b',b1 _ b]if b'<_a, = 0 otherwise.

1, i.e the reducedThese operations on the representing pairs are fully in terms o_8 r

residuation -algebra (N,min max-+,0,--,-- (where is cut:off substfacti-

on). So Cam-( satisfies the -ideal'of being-con9tructible-in=a-wayzanu, oguous-t Tthe

construction of Z. More information on in the appendix

7.3 Negative" Strings?: A gather obvious idea is to go and use our framework to create

negative strings. However it turns out that the relevant analogue of W., is not a reduced =reFsiduation

`algebra but just a:modeh.of process algebra,_sincepre implication is lacking. Thus this problem

escapes our present°framework. Y hope to report on-this puzzle in alater publication.

8 Append-ix subalgebras af= Cam,

In-this appendix we collect some data on the SSC's.

It is instructive to write out the representation of =section 7- of SSC's in purely

numerical terms. Thus an SS-Ca is either 0 or T or a ,pair, [prtopa,pusha]-. We

specify the relations and operations on the pairs.

aSR a popa<_popp and push RSpusha+(popR=popa)

av(3 = [max(Pop.(,,PopR),min(pusha+(popR-popa),pushR+(popa--popR))]

[m-in(popa,popR),min(popa,popR)±max(pusha: popa,pushR-popR)]-

a' = [PoPa±(PoPR=pushy),PushR+(Pu-sha-PoP[3)]-°

[pushy+(popR-p:opa), push] if pop.SpopR, = 0 otherwise..,

Some well known algebras are subalgebras of .C5C2(;.for=all= operations, with .he

exception of one of the implications.

The algebra $op is given. by O,T and the pairs of the form [pop,Q]. A-simple
computation shows:

a<R PoPa<_PoPR

.-avR [max(Pop.(X,PoPR);O]-

_ _[min(popajpopR),O]

[PoPa+POPR,O]

[popR,poPa]

a--4R = [popR-popa, O]° if pop.!_popR, = 0 otherwise.
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The true internal post-implication of $op is the maximum in sop below P<--cc (=

[popp,pop(j ). We have:

[p,O] < [popR,popa] p+popa<_popp _-

So (x-40 is the maximum of the elements of 3o below-(3E---c (The treatment of- 0,

and T is. as is to be expected.) The resulting algebra is the +,max, residuation lattice..

If we rename O=:1 and identify [n,O] with n, the ordering of this algebra looks as

follows: T. -is, addition,: where 1 +a=a+ 1,=1 and= for a# 1
T +a=a+ T = T .. Finally both residuations are given by: T-.* a= T , a--- L = T ,

-if a<(3, and m=n=m-n if n<m:. Good- alternative notations for -1 and- T

here would have been =o,and=

Next consider the algebra 3u_Fb consisting -of the elements 0 and [O,p]. We have:

a!0 push<_pusha

avi3 = [O,min(push(X,pushR)]

anP = [O,max(push(x,push)]
[O,pushp+pusha]

0<-a = [O,pushR=pushes]

a-4(3 =[push,, push'p1._

Clearly is just I (With the proper-internal pre-implication, viz. -41 and'

the proper treatement of 0.) the resulting algebra is the +,min residuation lattice or

the tropical residuation lattice. If we identify [O,n] ,with n, this- looks as- follows.

The ordering rs :1:..:2,1,0 is addition. -The residuations-= are-- both cut off

substraction= on the natural numbers and a=1=O, 1= n=1. (An alternative
notation for been-.-)

Finally consider 3ero the subalgebra given by 0, T and the pairs [z,z] (or (z,0)).

We have.

a<_ i3 za<z3

av(3 = [max(z(X,zp),max(z(x,zp)] = (max(z(,,z0),0)

an(3 [min (min(za,zR),O) - -

(0 =.[max(za,zp),max(za,zp)] _ -(max(za,zp),O)

P<-a = [zp,max(za,zR)] = (z(3,za,-zp) -

a-3R = [zp, zR] = (zP,0) if za<zD, = 0 otherwise.
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Note that [z,z]<_[u,v] z<_u andLv<_u.so.a-* is the maximal element in Bert:

below (3v(-a. =So identifying [z,z] with z the ordering of -our, algebra- is-

1,0, 1,..., T. is max on flu{ T }, but Finally both residuations

are equal and are as described by where x(a<_P):=0 if

otherwise.
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