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Abstract=

At first sight, the argument which F.P. Ramsey gave for (the infinite case of) his famous
theorem from 1927, is hopelessly unconstructive. If suitably reformulated, the theorem
is true intuitionistically as well as classically: we offer a proof which should convince
both the classical and the intuitionistic reader.

1. Introduction
1.1 In. 1927, F P. Ramsey proved, the following theorem (_cf: Ramsey 1928):
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For -every binary relation R on N there exists. an.infinite subset A of N which-
is R-homogeneous, i.e. such that
either Vm E AVn E A[m < n----4R(-m,-n)] or Vm E- AVn E A[m <-n---> --7R(m, n)].

(Note that we. write "R(m, n)" for "(m, n: E R".)

What is the constructive content of this theorem?
This question may be treated in different ways.
Some kind of an, answer, has been given by E.R.Specker (cf. Specker 1.971)- and also by
C.G. Jockusch (cf. Jockusch-1972).- They- exhibited recursive- binary relations R on N,
such that there is no recursive infinite R-homogeneous subset of N, and thereby showed

Ramsey's. theorem to- be -false in that particular: branch of constructive mathematics
which one calls recursive mathematics (cf. Bridges and, Richman:-1987, or Troelstra and
van Dalen 1988, for a survey of possible positions within constructive mathematics).
One may be surprised that classical logic is not generally avoided in recursion theory.
It does not seem proper to -use nonconstructive arguments when- treating .algorithmic
objects.
We study Ramsey's theorem from an intuitionistic point of,' view, and accordingly take
seriously the: "either... or..." which-occurs in its above = formulation The theorem does
not stand this reading.- The followingone-dimensional:case and easy consequence of the
theorem, which sometimes goes by the name of pigeonhole principle, already fails to be
true.

For every-subset R of N there exists an infinite subset A of N such that
,,either..-_ m. E A[m_E- R] -.,,,-.or _,Vm E_A[m,V R]:.

A. suitable Brouwerian counterexample refutes this principle:

Let ,P : N -> {O, 1- -,9} be the decimal development of the real number 7r.
Consider R := {n E N [ 3e <.nVi < 99[p(e+i) = 9]}. Whoever claims that this set
R is (intuitionistically) infinite, implies, probably recklessly, that there exists an
unbroken sequence of 99 9's in the decimal development of i; whoever claims that
N\R is infinite, implies, probably recklessly, that there is no such sequence.

Observe that the set R constructed in this example is recursive, and that from a classical
point of view, -eithera R itself or -its complement is recursive and infinite. There -do- exist
classical recursion-theoretic counterexamples to the pigeonhole principle, i.e. subsets
R of N such that neither R`-hot its complement contains an infinite =recursive subset.
Such sets must- be no recursive and are called^bi imyrcune subsets of N. It is interesting

Ramsey's
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to note-that C.G. Jockusch first studied bi-immune subsets - of=N and then found his
recursive counterexample -to Ramseys theorem.-.-,-
We will see _in Section .3 of this paper, that the pigeonhole principle plays a key role in
some classical proofs of Ramsey's theorem. We will see in Section 8 of this paper that
the construction of a recursive counterexample to Ramsey's theorem is related to the
construction of a bi-immune subset of N.

1.2 Whenever atheorem from classical mathematics proves to be false intuitionisticall
one may try, pondering the classical arguments and, while preserving its classical mean-
ing, reformulating the theorem in many different ways, to find intuitionistically valid
versions of it.
We did so for Ramsey's theorem. The -Intuit ionistic Ramsey Theorem that we present
in Section 6 of this paper is a negationless statement of intuitionistic analysis, classically,
equivalent to Ramsey's theorem itself. In the proof of this theorem we obey the laws of
intuitionistic logic, but we use no more than one intuitionistic axiom, viz. the principle
of induction on monotone bars. As this principle is not, like, the famous, continuity
principles, -contrary to classical assumptions, but admits of a not too difficult classical
justification, the proof is acceptable classically as well as intuitionis"tiically.
Before -proving the Intuitionistic Ramsey Theorem, we first establish, in Section 5 of
this paper, a similar Intuitionistic Pigeonhole Principle.

1.3 The paper is organized as follows. In Section 2 we recapitulate the principles of
intuitionistic analysis, and we arrange some notations. In Section 3 we formulate a
classical proof of Ramsey_- s_theorem..In Section 4 we develop an intuitionistic argument
from this classical proof. In Section we study the (infinite) pigeonhole principle. In
Section 6 we treat the intuitionistic RRamsey Theorem. In Section 7 we generalize our
theorem from binary to- ternary, and further to n-ary relations on N. In Section 8 we
discuss= the recursion-theoretic counterexamples mentioned in 1.1 from an intuitionistic
point. of view. .In Section 9 we show how, a recent result -of- Thierry Coquand's easily
follows from our main theorem. Section 10 contains some concluding remarks.

2.,- Intuitionistic analysis

2.1.Our_ discussion concerns. the- set N of natural numbers and the-set, H of functions
from =N to N. -We_use rn, n, p,_q., ....as variables over the set N and as variables
over the set A(.
We use---intuitionistic logic, as we Jnterprety connectives .and- quantifiers constructively.
This means, in. particulars that a proof of a disjunction A V B should contain either a

5
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proof of A or a proof of B (and: we arejable_ to-- decide: which one), and that. a proof of
an existential statement 3x[A(x)] should contain an effective method to find an object
x-with the property A(x),.

2.2 We introduce an axiom of countable choice:

AC0,o: For every binary relation C on N:
If `dm3n[C(m, n)], then 3atlm[C(m, a(m))].

We accept this axiom, as, in our view, an element a of Ar may be constructed step-by-
step, first a(0), then a(1), and so on. We feel no obligation to describe a in finitely
many words. Observe that C need not be a decidable relation on N, therefore it is not
possible, in general, to define a by:
for all m E N: a(m) is the least n E N such that C(m, n).
We will not use in our main argument the stronger intuitionistic -axiom of countable
choice AC0,1, or any continuity principle.

2.3 N* ='U Nn is the set of all finite sequences of natural numbers. ' A finite sequence
- nEN

a = (a(0), a(1), ... , a(n-1)) maybe thought of as a function from the set {0,1, ... , n-1}
to N. ( ) is the empty sequence, the only sequence of length 0. -

* : N* x N* 77+_N* is the concatenation function, .i.e.: for all a, b E N*, a * b denotes the
finite sequence which results- from putting b behind a. -

2.4 We introduce the principle of induction on monotone bars:

BIM : Let P, Q be subsets of N* such that

(i) Va E N*`dm[P((t) -- P(a * (m))] (P is monotone)

-(ii) Va2n[P((a(0), a bar in .AV)

(iii) Va E N*[P(a) --* Q(a)] (P C Q) and

(iv) Va E N*[Vn[Q(a * (n))]--+ Q(a)] (Q is inductive).

Then:-Q(( )).

(We write "P(a)" for "a E P" -and similarly in similar cases.)
This principle,, which seems to be implicit in Brouwer's argument for his bar theorem
was --made an axiom of intuitionistic analysis by S.C. Kleene.°`
On this much-discussed axiom, the reader may consult Kleene and Vesley 1965 or. Troel-

-stra and van Dalen 1988.

increasing sequences of natural numbers, ;
2.5 S :_ {a E N* I Vn[n+l < length(a) --> a(n) < a(n+l]} is the set of all finite strictly
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S :=f a E N I Vn[a(n) <. a(n+1)]}- is the set Lof all strictly increasing functions from N
to N..

In elementary intuitionistic analysis, the following principle
BIM itself.
BIM : Let P, Q- be subsets of S such that-

(i) Va E S[P(a) -* bm[S(a * (m)) - P(a * (m))]]

(ii) Va E S3n[P((a(0), a(1), ..., a(n-1)))]
(iii) Va E S[P(a)= -'- Q(a)]

(iv) Va E S[dn-[S(a * (n))° Q(a"* (n))] Q(a)].

Then: Q(( ))

3. A classical proof of Ramsey's theorem

is an easy consequence of

Let R be a binary relation on N. We sketch a classical argument, by which one obtains
an infinite R-homogeneous subset of N.

3.1 One defines; for each finite sequence a (a(0), a(1), .. a(n-1)) of natural numbers:
a is R-h-vmeogeneous-if-a is strictly increasing and
for all m,-p, q-< n such that m < p and in <q: R(a(m), a(p)) R(a(m), a(q)).
Observe that every finite sequence of length < 2 is R-homeogeneous.

One uses the following fact:-

For all a E N*, andi,jkENsuch that i<j<k_.
If a,* (i).,.a * (j) and a * (k) are all three R-homeogeneous, then at least one of the three
sequences a * (i, j_),.,a *:(i, k) and a ,.* (j, k) is R-homeogeneous.

(Proof of this fact: let a = (a(0), a(1) ... a(n-1)) and suppose:-a* (i), a-* (j) and a* (k)
are` R-homeogeneous, and a * (1, j) is not R-homeogeneous.
Then:` -(R(a(n_-- ), a(i)) R(a(n=Y), a(j)).
Therefore either R.(a(n--1)-, a(i)) HR(a(n-1, a(k)) or
R(a(a(')) `-'R(a(n-1), a(k)).,

i.e. either a * (i, k) is R-homeogeneous, or a * (j, k) is R-homeogeneous.)

3.3 -One defines, for each finite sequence a= (a(0),,.._a(n=1)) of natural=numbers:_
a is safe for R := Vp3q[p < q A a * (q) is R-homeogeneous], i.e.: there are infinitely
many immediate extensions of a- which- are- R-homeogeneous.
Hence each finite sequence a E N*, which is safe for R, is also R-homeogeneous.

and

-+ -+

= ,

f-a

fact:

+-+
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3.4 One makes the following important remark:
For each a E - S: "'If a -is safe for R, then 3q[a * (q) is safe for R]

(Proof: Let a- E S be safe for R. Then A : {q E N I a * (q) is R-homeogeneous} is an
infinite- set of natural numbers. We distinguish two cases.
Case (i): Vp E Avq E A[p < q -; a * (p, q) is R-homeogeneous];
then Vq E A[a * (q) is safe for R].
Case (ii): 3p E AlIq E A[p < q A a * (p, q) is not R-homeogeneous]. Let po, qo be
members of A such that po < qo and a * (po, qo) is not R-homeogeneous. -.Then- (cf. 3.2),
for each k E A such that qo < k: either a * (po, k) is R-homeogeneous, or a * (qo, k) is
R-homeogeneous; therefore: either the set {k E A I a * (po, k) is R-homeogeneous} is
infinite, or the set {k E A I a * (qo, k) is R-homeogeneous} is infinite, i.e.: either a * (po)
is safe for R or a * (qo) is safe for R.)

3.5 The empty sequence () is of course safe for R.
Using remark 3.4, one builds an infinite strictly increasing sequence a E S such that
`dn[(a(0), a(1), ... , a-(n-1)) is safe for R].
One then observes: `dn[(a(0), a(1), .... a(n-1)) is R-homeogeneous]
Finally, one considers the two sets Bo := {a(n)ln E NIR(a(n),a(n+l))} and
Bi := {a(n)In E NJ--R(a(n),a(n+l))} and one concludes: these two sets are R-
homogeneous, and at least one of them is infinite.

4. A first attempt to make sense of the classical proof

4.1 From now on, we reason intuit-ionistically. First, we translate the classical argument
from section 3 into intuitionistic language, using double negations, as in the G6del-
Gentzen translation of classical arithmetic into intuitionistic arithmetic. This approach
to Ramsey's theorem is due to the second,- author. In later sections, we will see other
ways of understanding the classical argument.
In sections and 3.5, one -applied the following classical truth:

For all subsets A, B of N:
If A is infinite and B C A, then either B is infinite or A\B is infinite.

We saw in 1.1 that this so-called pigeonhole principle is intuitionistically false.
There is, however, a weak version of the principle which is intuitionistically provable.

4.2 Reasoning with negative statements is an art with its own peculiarities. We mention
two of them.

,
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Firstly, it occurs,. when we are busy -proving a negative statement;, that we reinforce our
assumptions, leaving out some double negation and. replacing an assumption P" -by
"P". We may do so, as, =in. intui-tionistic logic, - -P---+ -iQ follows from P In
the sequel, we` will indicate such reinforcements by the, words "Suppose even more".
Secondly, we may, again when we are aiming for a negative conclusion, use some state-
ments of the form "P V -,P" as an extra assumption. (This is a special case of the first
procedure, as -i-i(P V --P) is an intuitionistic truth). We then may continue the proof
by distinction of cases.:, - "Case (i): Suppose .P-..._, Case (ii): Suppose -P...". In the
sequel, whenever we apply this device, we use the words: "Distinguish two cases".

4.3 We define, for each subset A of N:

A is weakly infinite Vp- ,3q[p < q A q c A]

4.4 Lemma: For all subsets A, B of N:
If A is weakly infinite and B C A,
then (B is weakly infinite V A\B is weakly infinite).

Proof: Suppose B C A C N and: A is weakly infinite, and B is not weakly infinite.
Then: -3pdq[p < q - q V B]
Suppose even more: 3pdq[p < q - q B]. Calculate po E N such that
Vq[po<q -> q¢B].
A is weakly infinite, therefore Vp-i-3q[q > p A q > po A q E A] and:
Vp--3q[q > p A q E A A q V B], i.e. A\B is weakly infinite.

4.5 We define, for each binary relation R and N- and each finite sequence
a = (a(0), a(1), ... , a(n-1)) of natural numbers:

a is weakly safe for R := Vp-- 3q[p < q n a *_(q) is R-homeogeneous].

4.6 Lemma: For all binary relations R on N, for all a E N*:
If a is weakly safe for R, then `---3q[a * (q) is weakly safe for R].

Proof: Suppose a is weakly safe for R.
Define A:= {q E N I a * (q), is R-homeogeneous}.
Then A is weakly infinite.
Observe that our goal is a negative conclusion, and distinguish two cases:
Case (i): Vp E AVq E A[p < q -> -,-,(a * (p, q) is R-homeogeneous)].
Then: Vp E A[a * (p) is weakly safe for R]. -

Case (ii), -Vp E AV-q- E-A[p <-q,.--+ -,-_(a * (p q} is R-homeogeneous)],

7
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i.e. --3p, E A3q E A[p < q n -(a * (p, q) is R-homeogeneous)]. Suppose evenmore, and
let po,.go be such that po < qo and a * (po), a *-(qo) are R-homeogeneous, and a * (po, qo)
is not R-homeogeneous., Then, for each k-E A such that q0 < k:

(po, k) is Rzhomeogeneous V a * (qo, k) is R-homeogeneous). (This follows by
the argument given in 3.2). Using Lemma 4.4, we conclude:
--1({k E A I a * (po, k)- is -R-homeogeneous} is weakly infinite V

{k E A I a * (qo1 k) is R-homeogeneous} is weakly infinite) i.e.
(po) is weakly safe for R. V a,* (qo) is weakly safe for R)

therefore: -,3p[a * (p) is weakly safe for R]

In view of a later application, viz. Lemma 4.9, we rephrase Lemma 4.6.

4.7 Corollary: For all binary relations R on N, for all a E N*:
If Vq[a * (q) is not weakly safe for R], then a is not weakly safe for R.

Proof. Obvious.

4.8 The difficulty now is that we do not see how to iterate Lemma 4.6 countably many
times. (This is -done.-in -the- classical proof, cf. -3.5). The following- conclusion, let us call
it (*), is surely out of reach: E-: . -

(*) For all binary relations R on N:
3a E S`dn[(a(0), a(1), ... , a(n-1)) is R-homeogeneous].

Assume (*°). Given a subset A of N we may apply (*) to the binary relation R on N
which is defined by: VmVn[R(m, n)' <-a: A(n)].

Thus, (*) is seen to imply:

(**) , For every subset A of N: 3a E SVn[A(a(O)) H A(a(n))].

(**) is refuted by the Brouwerian example mentioned in the introduction, 1.1. One is
tempted to try the following weakening of (*):

For all binary relations R on N:
-,-,3a_E SVn[(a(0), a(1),,.. , a(n-1)) is R-homeogeneous].

or its corollary:

For every subset A of N: -,-3a E SVn[A(a(0)) A(a(n))].

8'
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In Section 8..6.2, however,- we -will see, by a metamathematical -argument, that, these
conclusions cannot, be- obtained from the usual axioms of intuitionistic analysis.
In view of these impossibilities, were happy with the following lemma, first established
by the second author:

4.9 Lemma: For all binary relations R on N:
-Va E S3n[(a(0), a(1), .... a(n-1)) is not R-homeogeneous].

Proof. Let R be a binary -relation on N such that:
Va E-S3n[(a(0), a(1), . . . , a(n-1)) is not R-homeogeneous]
We will use the principle of induction on monotone bars, BIM. (Cf. 2.5).
We define subsets P and Q of S as follows. For each a E S:
P(a) := ais not R-homeogeneous; and Q(a) := a is not weakly safe for R.
Observe that P is a monotone bar in S, that P C Q, and that, according to Corollary
4.7, Q is inductive.
Using BIM, we conclude: Q(( )), i.e.:- the empty sequence O is'not weakly safe for R.
But: () is weakly safe for R, as Vq[(q) is R-homeogeneous]. Contradiction.
0

4.10 Lemma 4.9 "says that, for every binary relation R onN -the-assumption that the
range of every strictly increasing sequence of natural numbers is, in a strong sense, not
R-homeogeneous, leads to a contradiction. In this very weak sense, the classical theorem
that there exists an infinite R-homeogeneous subset- of N, is true. -
In 6.2, we will establish a similar weak version of Ramsey's theorem itself, i.e. the
theorem that, for every binary relation R on N, there exists an infinite R-homogeneous
subset'of=
To obtain this result,-we need one further step which we discuss in the next section.

5.Almost full subsets of N

5.1 Containing as many double negations as it does; -Lemma 4.4 is not a very welcome
-substitute for the classical pigeonhole principle. In this section, we want to approximate
the principle by a lemma arrd a` theorem; viz: -5.2 and 5.4, which, having a more positive
appearance, are less like ghosts from the lost classical paradise.

5.2 Lemma: For all subsets A of N:
If Vy E S3n (7(n))], then 3-Y E SVn[A.(7(n))],

Proof-... We use ACo,o, the axiom of countable choice introduced in 2.2.
Let A be a .-subset of N such that- V-y E S3n[A(ry(n))].

N.
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Then dm3n[n > m A, A(n)]-. (In order to-- see this, one considers, for each m E N, the
function y E S defined by `dn[y(n) = m+n+l]).
Applying AC0,0 we find a E A such that Vm[a(m) > m n A(a(m))].
Define y .E .,V by: _-y(0) a(0) and Vn[-y(n+l) = a(-y(n))]-.
Then y E S and Vn[A(y(n))]. -

5.3 Considering, Lemma 5.2, one might cherish some hopes for the following version of
Ramsey's Theorem:

,For all binary relations R on N:
If Vy_ E S3m3n[m < n n R(y(m), y(n))],
then 3y E SVmVn[m < n -+ R(y(m)., y(n))].

Such hopes are idle, as we show be an example, due to Mervyn Jansen.
Let p : N --+ {0, 1, . . . , 9} be the decimal development of the number ir,,
let A:= E N ( 3t < n`di < 99[p(+i) = 9]} and
let R {(m, n) E N2 I A(m) H A(n)}.
We claim that by E S3m2n[m G n A R(y(m), y(n))}. _

(Let y E S and consider y(1). Either: ,A(y(1)), and therefore: R(y(0), y(1)), or:
A(-y(1)), and therefore: R(-y(1), y(2))).
Suppose now: -y -E S and VmVn[m < n -* R(y(m), y(n))]. Either A(-y(0)) and
`dn.[A(y(n))]; a reckless conclusion, or -iA(y(0)) and Vn[-,A(y(n))], again a reckless
conclusion.

5.4 Theorem: (Intuitionistic Pigeonhole Principle):
For all subsets A, B of N:
IfV-y E S3n[A(y(n))] and Vy E S3n[B(y(n))],
then Vy E S3n[A(y(n)) A B(y(n))]

First proof: (UsingACe,o).
Let A, B be subsets of N which fulfil the requirements of the theorem.
Let y E S. Observe: db E S3n[A(7 o b(n))].
Apply lemma 5.2 and construct b E S such that Vn[A-(=y o b(n))].
Calculate no such that B(y o S(no)), -let p := b(no) and observe: A(y(p)) A B(y(p)).

Second proof: (Using`BIM).:: 01

Let A, B -be subsets of N. which- fulfil, the -requirements -of the theorem.-
=Define a subset P of the set S of -st-r-ictly= increasing finite sequences by
For all a =- (a(0), a(1),_..: a(n-1)) E S:

to

=

0

0

10



P(a) := 3i < n3j < n[i < j A A(a(i))A B(a(j))].
We claim that P is a monotone bar in S.
(Proof of this claim: Let y E S. Calculate io E N such that A(-y(io)). Define b E S by:
Vn[S(n) = -y(io+n)]. Calculate -ko' such that B(S(ko))'. Let jo := -io+ko and observe:
io < jo and A(y(io)) A B(ry(jo)). End of proof of claim).
Define a subset Q of the set S of strictly increasing sequences of natural numbers by:
For all a E S: Q(a) `dry E S3n[P(a * (-y(n)))].
Observe that P C Q.
We claim that Q is inductive, i.e.: Va E S[Vq[S(a * (q)) -+ Q(a * (q))] -- Q(a)].
(Proof of this claim: let a E S be such that Vq[S(a * (q)) -+ Q(a * (q))]. Let y E S.
Calculate no := /cp[S(a * (y(p)))].
Remark: Q(a * (y(no))), and calculate n' such that P(a * ('y(no), y(ni))),
observe: either P(a * (y(no))) or P(a *-(y(ni))) or A.(-y(no)) A B(-y(ni)).
Remark: Q(a * (y(ni))), and calculate n2 such that P(a * (y(ni),ry(n2))),
observe: either P(a * (y(ni))-) or P(a * (y(n2))) or A(y(ni)) A B(y(n2)).
We conclude: P(a* (y(no)))V P(a* (y(ni)))V P(a-*.(,y(n2_))), and: 3n E N[P(a* (y(n)))].
Therefore: Vy E S2n[P(a * (y(n)))], i.e.: Q(a). `End of proof of claim.)
Using BIM (cf. 2.5), we conclude Q(( )), i.e.: Vy E S3n[P((y(n)))],
therefore Vy E S3n[A(y(n)) A B(y(n))].
0

5.5 We define, for each subset A of N:

A is almost full :=N7 E S3n[A(7(n). }

Observe that, .for each subset A of N: if 3nVm[m > n-+A(m)], then `dy E S3n[A(y(n))].
Intuitionistically, the converse ;:is not .true: let p : N -+ {0, 1, ... , 9} be the decimal
development of 7r and consider

,A:= In E N -?Vi < 99[p(n±i) = 9] V 3t < nVi < 99[p(t+i) = 9]}

(Observe that A is a decidable subset of N, i.e.: Vn[n E A V -,(n E A)] and
VmVn[(m V A A n V A)'--* m = n], i.e.: N\A has at most one element.
Therefore: Vy E S[A(y(0)) V A(y(1))]. -

Whoever claims: 3ndm[m °> n -- A(m)], declares himself able to decide:
3m[-,A(m)] V Vm[A(m)], and is probably reckless.
(This example is related to the one given in section 1 of Veldman 1982).)
It is evident from theorem 5.4 ,t=hat the class of all almost full subsets of N is a filter: N
itself is of course almost full;` for all subsets A, B' of N: if A is almost= full and A C B,
then B is almost full, and:

11
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if both A and B are almost full, then A fl B is almost full.

-Observe that -Theorem 5.4 .is classically equivalent to the- pigeonhole -principle which
says that for every subset ,A of N, either A or its .complement is infinite. Theorem 5.4
implies this, principle,: as, -for any subset A of N, if neither A. nor its complement have
an infinite subset, both N\A and A are. _almost full, .which is contradictory, according to
Theorem 5.4. Theorem 5.4_ is implied by this principle, as,, for all subsets A, B of N, if
both A and B are almost full, every infinite -subset- of N contains an infinite subset of
A and therefore a member of An-H.

6. The intuitionistic Ramsey theorem

We start with an application of the Intuitionistic Pigeonhole Principle.

6.1 Lemma: For all binary relations R, T on N:
If Va E S3m3n[m < n n R(a(m), a(n))] and Va E S3m3n[m < n n T (a(m), a(n))],
then Va E S3m3n3p[m < n n m < p h R(a(m), a(n)) -n "T (a(m),, a(p))]

Proof: Let R, T be binary relations on N which fulfil the -requirements, of the theorem.
Let a E S. Define subsets Aa, B,,, of N- by:
A, := {m E N 13n[m < n A- R(a(m), a(n))]} and
Ba := {m E N 3n[m < n A T (a(m), a(n))]}.
Observe that both Aa and B,, are almost full subsets of N. -

(b,-=E S3m3n[m < n n R(a o-,Q(m),ao 0(n))], therefore: _V, E S3m[Aa(/(m))].)
Using theorem- 5.4, we conclude:- A- n B, is almost full, in particular:- .

3m[Aa(m)-A-Bc(m)], i.e.:
3m3n3p[m < n n m< p A R(a(m), a(n)) A T(a(m), a(p))].

6.2 Corollary:. For :all binary relations. R on .N:

-VaES3m3n3p3q[m < n n R(a(m), a(n)) A p < q A -R(a(p), a(q))]

Proof: Let R be a binary relation on.-N, such that
Va E S3m3n3p3q[m < n n R(a(m), a(n)) A p< q n-iR(a(p), a(q))].
Applying lemma 6.1,- we find:
Va E S3m3n3p[m < n A m< p A R(a(m),a(n)) A-iR(a(m), a(p))].
Therefore Va E. S3n[(a(0), a(1), -, - a(n=1)) is not R=homeogeneous]: .

This :leads to a contradiction, according to Lemma 4.9.
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Corollary 6.2 is the result we announced in 4.10. The second author, when he first
proved Corollary 6.2 for decidable binary relations, called it the intuitionistic Ramsey
theorem, as it is equivalent to Ramsey's theorem when one reads it classically. We now
prefer to reserve this name for the stronger theorem 6.5.
In the proof of this stronger theorem, we -apply the so-called finite Ramsey theorem,
which we, state here as another lemma. In most classical proofs of the infinite Ramsey
theorem, one does not use the finite Ramsey theorem., One even goes the other way
around, proving the finite Ramsey theorem from the infinite one by a so-called com-
pactness argument, (cf. Graham, Rothschild and Spencer, 1980, esp. pp.: 13-17). (In
Section 9 we will reconstruct this compactness, argument intuitionistically, using the
fan theorem.) Ramsey himself however, gave the proof of the infinite theorem only to
prepare the reader for the finite theorem, which was the one he needed.

6.3 Lemma (Finite Ramsey theorem):
For all natural numbers n, k there exists s-a natural number N such that for
every function g from {0,1, ... , N=1} x {0,1,...,N-l} to {0,1, ... , k-1}
there exists a subset A of {0, 1, ... , N-1} of at least n elements which is
g-homogeneous, i.e.: such that for all p, q, r, s E A such that p < q and
r < s: g(p, q) = g(r, s).

We do not give the proof. Ramsey himself, indicating how, given the numbers n, k, the
number N may -be- calculated, already argued constructively.
In the: sequel, we frequently follow the set theoretic convention of identifying a natural
number n with the set of its predecessors {0, 1, ... , n-1}.

64 Lemma:; For all binary- relations R, T on N., .
If Va E S3m3n[m < n n R(a(m), a(n))]
and Va E S3m3n[m < n A T (a(m), a(n))],
then 3m3n[m < n A R(m, n) A T(m, n)].

Proof: Let R, T be binary relations on N which fulfil the requirements of the lemma.
We define a subset P of the set S of strictly -increasing finite sequences of natural
numbers: for each a =`(a(0), a(1)-, .:. , a(n-1)) E S:

P(a) -: 3i < ri3j < n3k < n[i < j A i < k A R(a(i), a(j )) A T(a(i), a(k))]

Observe that, in consequence. of Lemma 6.1, -P j s a monotone--bar- in`.S,. We define a
proposition QED, as follows: QED := 3m3n[m < n n R(m, n) A T(m, n)]
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We also define .a subset Q of the-set S of strictly increasing finite sequences of natural
numbers: for each a E .S: Q(a) V-y E. S3n[P(a,* (y(n)));V QED]
Observe that P C Q.- - : _

We claim that. Q is inductive, i.e.: Va E =S[dq[S(a * (q)) --> Q(a * (q))] - Q(a)]

Proof of this claim.
Let a = (a(0), a(1), ... , a(n-1)) .be such that Vq[S(a * (q)) -> Q(a * (q))]. Using lemma
6.3, the finite Ramsey-theorem, we calculate N'E N such that, for each function g from_
N x N to n there exists i, j, k < N such that i < j < k and g(i, j) = g(i-, k) = g(j, k).
Now let y ES. Calculate no-:= pp[S(a * (y(p)) )]. As Q(a * (y(no)) ), we calculate n1 E N
such that P(a*(y(no), y(nl)))VQED. As Q(a*(y(no))) and Q(a*(y(n1))), we calculate,
using theorem 5.4, the Intuitionistic Pigeonhole Principle, n2 E N, such that both
P(a*(y(no),-y(n2)))VQED and P(a*(y(n1),y(n2)))VQED. As Vi.< 3[Q(a*(y(ni)))],
we calculate, using theorem 5.4, n3 E N such that
Vi < 3[P(a * (y(ni), y(n3)))) V QED]. We continue this procedure for N steps. In the
end, we have defined natural numbers no, nl,..: , nN-1 such that:
Vi < NVj < N[i < j -> (P(a * (y(nj), y(ni)) V QED)].
We distinguish two cases:
Case (i): QED
Case (ii): Vi < NVj < N[i < -> P(a * (y(nj),'y(ni)))]
We .define, for each i, j < N such that, i G j::_ a=,i := a * ;(y(nt ), y(ni ))
We build,- in finitely- many steps, three functions, f,g, h, from N2 to n+2 such that, for
all i, j < N such that i < j: j(i, j) < g(i, j) and f(i, j) < h(i, j) and
R-(ai,j (f ai, j (g(i, J')) )- and- T (ai,j (f (i, j )), ai, j (h(i,i))) . We distinguish three
subcases:
Case- (ii)a- 3i < N3N[i A g(i,j) = h(i, j)]
Let i, j < N be such numbers. Let s := ai, j (f (i, j )) and t := ai, j (g(i, j )) .

Observe: R((s, t)) n T ((s-, t) ), therefore: QED.
Case (ii)b: 3i < N3j < N[i < j n (g(i, j ).. < n V h(i, j) < n)]. Let i, j < N be such
numbers.
We distinguish two cases: _ - - -a

- g(i, j) = n+1 or h(i, j) = n+1. Then: P(a * (y(n j)))
- g(i, j) <.n and h(i, j)<. n.- Then P(a

In both cases: 3p[P(a *. (y(p)))]
Case (ii)c: Vi < NYj- < N[i < j -+_{g(i,j); h( ,3)-} = In,
Then Vi < NVj < N[i. <g -* Ef (i, j) n].

In. view of our choice. of N, let i, j,. k < N be such that i < j < k and f (i,, j) _ , f (i, k)

f(j,k)._
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Now, let s := a-(f(i',.7)), t := 7(ni),-.u ;= 7(n1) and v :='Y(nk)

Observe: (R(s, t) V R(s, u)) A (R(s, t) V R(s, v)) A (R(s, u) V R(s, v)).
Spelling this out, we find two sequences from { (s, t), (s, u), (s, t)} that belong to R.
In a similar way, we find two sequences from { (s, t), (s, u), (s., v) } that belong to T.
Combining,twe-findasequence. from {(s, t), (s, u), (s, v)} that belongs to Rfl T.
We conclude: 3p[P(a * (p)))] and QED.
In all cases, we have: 3p[P(.a * (y(p))) V QED]. -
This ends the proof of our-claim, that Q is inductive.

Using the principle 'of induction ion monotone bars, BIM (cf: 2.5). we conclude: Q(( ) ),
i.e.:- dry E S3n[P((y(n))) V QED], therefore QED,
i.e.: 3m3n[m < n - A R(m, n) AlT(r`n,:n)].

6.5 Ramsey Theorem):
For all `binary relations R, T 'on N:
If `da E S3m3n[m < n n R(a(m) 'a(n)]
and Va E S3m3n[m < n n T (a(m), a(n))],
then `da E S3m3n[m < n n R(a(m),a(n)) A T (a(m), a(n))].

Proof: Let R, T be binary relations' on- N which fulfil the .requirements of the theorem.
Let a E S. Define binary relations Ra, Ta on N by:
for all m, n E N: R,,(rn_, n):=.. R(a(m), a(n)) and Ta(m, n) = T (a(m), a(n))..
Observe that VP E S3m3n[m < n A Ra`(/(m>(n:))]-and
V# E S3m3n[m < n-;-A (n.))].. Use lemma 6.4 and conclude:
3m3n[m < n A R(a(m), a(n)) A T (a(m), a(n))].

6.6 Let R be a binary relation on N. We define

R is almost full := Va E S3m3n[m < n A R(a(m), a(n))].

Theorem 6.5 says that the class of all almost full binary relations on N is a filter. Observe
that Theorem ,6.5 is classically equivalent to Ramsey's theorem. It implies Ramsey's
theorem, as, for any binary relation- R. on N, if there is no R-homogeneous subset of N,
both R and its -complement are almost full, which is contradictory, according to theorem
6.5. It is implied by Ramsey's theorem as, for all binary relations R, T on N, if both R
and T are almost full, every infinite subset A of N contains an infinite subset B such

15
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that bm E BVn. E B [m < ri. -> R(m, n)], and there are m, n -E B such =that m < n, -and
T(m, n).. -

7. Generalization of the Intuitionistic Ramsey Theorem

7.1 We consider finite- sequences of natural numbers as functions a whose domain,
Dom (a), is a natural number n = {0, 1, ... , n-1}.
For each b = (b(0) ,"b(1), ... b(rn-1)) E N* and each a = (a(0), a(1), ... , a(n-1)) E N*
we define b-o=a E N*-by:--Dom (boa)- = {k-E N°]`-k < n -n Vi < k[a(i) <m]} and
dk e--Dom. (b o a)[b o a(k)= b(a(k))]:
b o a is called the composition of b and a.
For each a E-.A and each= a = (a(0), .. a(n-1)) E N.*- we may form the finite sequence
a o--a= = (a(a(0)),.a(a(1)), ..., a(a(n-1))). The finite sequence a o a is called the
composition- of =a-and a. - ° _ - _ -

For each k E: N I Sk .-will denote the set -of strictly- increasing finite =sequences of natural
numbers of length k (equivalently, with _k as domain).

7.2 Let k E N and let R be a k-ary relation on N.
We define

R is almost full Va E S3a E Sk [R(a o a)]

7.3 Theorem (Generalized Ramsey Theorem):
For each k E N, k > 0: If R and T are almost full k-ary relations on N,
then R fl T is an almost full k-ary relation, on N.

Proof: The proof is by induction.
The cases k = 1, k = 2 have been treated in Theorems 5.4 and 6.5 respectively.
Assume that k E N and that the theorem has been proved for the cases 1, ... , k.
We sketch the proof for the case k+1. The_ proof is in three steps. Let R, T be almost
full k+1-ary relations on N. Without loss of generality, we may assume that both R
and T -axe subsets of Sk+l .

Step one -(cf. Lemma 6.1)
Define k=try relations R- and- T- on N by--
for all a e Nk: R-(a) :=-3n[R(a*-(n.)-)]-and: T-(Q)-:= 3n[T(a * (n))]
Observe that R- and 'T are- almost- full.

Using the induction hypothesis we conclude that R- f1 T- is almost full, in particular:
3a E Sk[R (a) A T (a)]..

16-
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We generalize this result as follows: let -^y E S and define k-ary- relations RY and T. on
N by: for all a E Nk: Ry (a) := 3n[R(y o (a * (n)))] and:
T,y (a) := 3n [T (y o (a * (n)))]

Again, Ry and Try, and therefore: Ry f T- are almost full,
in particular: 3a E (a) A T.(a)]..

Step two (cf. Lemma 6.4):
Define a -subset P of N* by:
for all a E N*: P(a) := 3b E Sk3m3n[R(a o (b * (m))) A T (a o (b * (n)))]
In Step one, we have seen: P is a monotone bar in S. -

We define a proposition QED by: QED := 3a E Sk+1 [R(a) A T(a)]
We define a subset Q of N* by:
For all a E N* :_ Q(a) _:== V-1 _E ,S3n[P(a *. (ry(n))) VQED]

Observe that P C Q.
Arguing very much. like we did in the proof of Lemma 6.4,, we. may -establish, applying
once more the finite Ramsey theorem Lemma-6.3), that, -Q .is inductive.
Using BIM; the principle of induction=on monotone bars (cf. -2:5), we conclude:- Q((
and therefore: QED, i.e.:' 3a .E_=Sk+l'[R(a) A T(a)].,___

Step three (cf. Theorem 6.5):
Let y E S and consider the subsets R.y and T. of Sk+1 defined by:
for all a E Sk+1 : R.y(a) := R.(-y o a) and T.y(a) ::=T(y o a)
Observe that R.y and Ty are almost full k+1-ary relations on N. Using the result of step
two, we conclude: -3a E Sk+l [R.y.(a) _n .T7(a)], i.e : 3a E Sk+1 [R(y oa) A T(y o a)].
Therefore: V,y E S3a E= Sk+l.[R(y o a)-,,-A T(y o a)], i.e. R n T is almost full.
0

8. Some remarks on the recursion-theoretic,-counterexamples

In this section, we examine the construction, due to C.G. Jockusch (cf. Jockusch 1972),
of a recursive binary- relation- R- on- N such that every infinite recursive subset W of
N contains -numbers m,-, n_such that -m- <. n and R(m, n) and. numbers- p, q such that
p < q and -R(p, q). (The earlier counterexample to- Ramsey's theorem found by E.R.
Specker (cf. Specker 1971) is a bit more involved, as it is based on the existence of two
recursively enumerable sets of incomparable degrees of unsolvability.)
We will see that this construction is closely related to the construction of a 02-subset
A of N such that every infinite recursive subset W of N is not a -subset of A and not
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a= subset of N\A. (A. subset. A of N with the latter .property is sometimes called a
bi-immune set.)
We -want to explore the intuitionistic meaning of these constructions. Moreover, we will
draw some information from them concerning the formal strength of our axioms.
In doing, so, we reinforce =a remark by the second author, that the double negation of
the classical Ramsey theorem, i.e. the statement that, for all binary relations R on N
--,3a E S[VmVn[m < -n -* R(a(m), a(n))] V VmVn[m < n -- ,R(a(m), a(n))]]
is not derivable in any of the usual formalizations of intuitionistic analysis.

8.1 The question as to the existence- and complexity of bi-immune subsets of N is
connected with the following more general problem:

Given some sequence Vo, Vi, V2i of subsets of N, find subsets A, B of N such
that A fl B = 0 arid: `dn[Vn, is infinite --+ (Vn f1 A 54 0 A V. n B # 0)]

Classically, one easily forms such sets A,- B by going through the sequence<v0, V1,V2, -,

disregarding the finite sets among them, and choosing from each infinite set two elements
which are both different from every element chosen from one of the earlier mentioned
sets. One lets A consist of the first members of all pairs thus found, and B of the second
members: Intuitionistically, -the main difficulty with this procedure is that we cannot
decide in general if a given set is infinite or not. In some special cases, however, this
difficulty is absent.

8.2 Recall from 7.1, that, for each n E N, Sn is the:set of all strictly increasing finite
sequences=of.natural numbers of -length n. We call a subset X of N finite if and only if
there exist n.E-N and a E Sn such that X = {a(0), a(l),..., a(n-1)}.
We also define, for each subset X of N and :each n.-E -N:

#X > n (X has at least n elements) := 3a E SnV j < n[a(j) E X].

Observe that, for each finite subset X of N and each n E N, we.- may decide
#X > n V -'(#X > n).

8.3 Lemma: There exists a functional F which assigns to each function f from N
to the set of finite subsets of N a one-to-one sequence a = F(f) E JV
such that: Vn[#f (n),>,2n+2 -> (a(2n) E f (n) A a(2n+1) E f (n))].

Proof: Let f = f(0); f(1), f(2) . be a sequence-of 'finite subsets of N. We define
a = F(f) by recursion:
for each= n-E N:

18



if #f(n) > 2n+2, then a(2n) := µp=-E f(n)[Vj- < 2n[p a(j)]}
a(2n+1).:= µp-E f--{n)[Vj-< 2n+1[p. -a(j)]]I
and, if -, (# f (n) > 2n+2), then a(2n) µp E N[Vj <= 2n[ a(j )]] and
a(2n+1) := µp E-N[Vj < 2n+ 1[p j4 a(7)]]

"

Note that, if -(#f (0) >.2), then a(Q)'= 0 and a(1) = 1.
o _ -

8.4 We call a subset V of N enumerable if and only" if there exists a sequence Vo, V1, V2, .. .
of finite subsets of N such that V° = l f Vm. In the following, we restrict attention to

mEN
-recursively enumerable subsets of N.
We know from recursion theory that there exists a (recursive) universal double-sequence
(Wn,m)n,mEN of finite subsets of-N such that VnVm[Wn,m C Wn,m+1] and such that, if
we define, for each n E N, Wn `=U Wn,m then- Wo, W1 , W2 i-..:'is a complete list of

mEN
the recursively enumerable subsets of N.
We use such a universal, double-sequence in the statement and the proof of the next
theorem.

8.5 Theorem:
(i) There exist recursive binary relations R, T on N such that:

(i)a R f1 T = O _ ,

(i)b Vn[#Wn > 2n+2 --+ 3mVq-> m3r "E Wn3s E Wn[R(r, q) A T(s, q)}]`
(i)c Vn[#Wn > 2n+2'-+ -,-3r E Wn3s E 'Wn3mVq'> -m[R(r, q) A T(s, q)]]
(i)d Vp--3m[Vq > m[R(p, q)] V Vq > m[T(p, q)]]

(ii) There exist E2-subsets A, B- of N such that:
(ii)a`AnB=(
(i )b Vn[#Wn > 2n+2' -_> - ,3r E-Wfz3s'-E Wn[r E A A s E B]]`
(ii)c- VP[-»(p E A V p E B)] -

Proof:
Let (Wn,m)n,mEN be the universal double sequence that we mentioned in 8.4.
Define, for each m E N, a -sequence fm of finite subsets of N by:
for all,n E N fm(n) := Wn,m.
Let F be the- functional defined in the proof of Lemma 8.3. Define, for each m E N:
am F(fm)-
Define binary relations R, T on N by:
R {(am(2n), m) l m, n E N} and T := {(am(2n+1),
We claim that R, T fulfil the requirements.

Proof of this claim:

)I E N}
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(i)a ;According to Lemma 8.3, each a,n -is injective, therefore: R n T = Ql.
(i)b Assume n E N and #Wn > 2n+2. Calculate m E N such that #Wn,m > 2n+2.

Observe that, for each q > m, 2n+2, and -therefore: aq(2n) E W,,, and
aq(2n+l) E Wn and R(aq(2n), q) and T(aq(2n + 1), q).

(i)c -Assume n -E N and -#Wn > 2n+2.
We have to prove a negative conclusion, viz.:.

Wn3s E Wn3mVq >. m[R(r, q) -A T(s, q)]
Therefore, as we saw in Section 4.2, we assume without risk:
Vj C n{#Wj- > 2j+2 V >-2j:+2) ] -_-

Calculate p E N such-- that Vj; < n[-#Wj >-2j+2 -i #W;,p > 2j+2].
Calculate t E N such that Vi < nVx E Wj,p[x < t].
We make another harmless assumption: Vx < tVj < n[x E Wj V =-,(x E Wj)].
Calculate rn E N such that: Vx < tVj < n[x E Wj -. -x- E Wj,,,,]. Observe that,
for each j < n, if Wj has at least 2j+2 elements, then the- first 2j+2 elements
of Wj belong to Wj,,n already. From the proof of Lemma 8.3 and the fact that
Vj < 2n + 2Vq-> m{Wj,,,t-C -Wj,q] we conclude:
Vj < 2n-+2Vq->- m[aq(?)"= am(j)]
We define e-r := an (2n) and s := a,;(2n+1). Observe: Vq >=m[R(r, q) A T(s, q)].

(i)d Let P E N. The "set {x E N x > p} is recursively enumerable and, being so, it
2 i .. .: Calculate n E N such thatoccurs in the sequence Wo, W1, W2,..'

W = {x E N I x > p}. As in (i)c, we are striving for a negative conclusion.
Strengthening our assumptions and reasoning as in the proof of (i)c, we find m E N
such that, for all j < n, if -Wj has at least 2j+2 elements; thin the first 2j+2
elements of Wj belong to Wj,m already. _

-
"

Observe that p is the first element of the infinite set Wn and also the first element
of Wn,,,-. Therefore, we may calculate i < 2n+2 such that p = a,n(i).
Observe: Vq > m[ay(i) = am(i)]
Either i is even, and Vq> rn[R(p, q)], or'i is odd and Vq > m[T(p, q)].

End of proof of claim.,

Define subsets A, B of N`by:'
A := {p E -N I ]rynV-q "> rn[R(P; q)]} and B :=,{p E-N I- 3mVq->_=-m[T(p, q)]}

(ii)a,b,c follow straightforwardly from (i)a,c,d. -

One easily sees that R;T -a-re= recursive -and A, B are E2.
0

8.6 We may -draw some metamathematical conclusions from Theorem 8.5. Let EL be
the formal system for intuitionistic analysis which is explained in Troelstra and van
Dalen 1988.
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Let CT be Church's thesis- in the following form:-

`da3eVn3z[T(e, n, z) A U(z) = a(n)].

(T is the- recursive -subset of N3_; introduced by- S.C: Kleene, U is a total recursive
function from N to N, the so-called result-extracting function.)
Let CTo be Church's thesis in the following schematic form:

For each arithmetically definable binary relation R on N:
If Vm3n[R(m, n)], then 3eVm3z[T(e, m, z) A R(m, U(z))].

8.6.1 Observe .that in EL+CT, Theorem 8.5_(i) plainly contradicts the Intuitionistic
Ramsey Theorem 6.5. (Observe that, in EL+CT, Theorem 8.5(i) says that there exist
almost full binary relations R, T on N such- that R fl T = 0.) Therefore: EL+CT+BIM
is inconsistent.
This is a wellknown fact, first shown by S.C. Kleene,_ who in Kleene 1952 gave an
example of a recursive subtree T of the binary tree {0,1}*, which has arbitrarily long
finite branches, but- is such that we may calculate, for each recursive infinite branch, an
initial part that does not belong to T.
Remark that, as EL+CT is consistent, it is impossible to prove the Intuitionistic Ram-
sey Theorem 6.5 in EL.

8.6.2 Let A, B be subsets of N which have the properties mentioned in theorem 8.5(ii).
We claim that, in EL+CTo, the assumption 3a E SVn[A(a(n)) H A(a(O))] leads to a
contradiction.
(Proof of this claim:,, Assume: a E S and Vn[A(a(n)) H A(a(0))]. With a view to, our
negative goal we distinguish two cases.
Case (i): A(a(O)). Then Vn[A(a(n))], therefore Vm3n > m[A(n)].
Applying CTo, we find a total recursive function f from N to N such that
Vm[f(m) > m n A(f(m))]
Determine e E N such that WQ =If (m) I mEN}.
Observe: #We > 2e+2 and bin E We[A(n)], in contradiction with 8.5(ii)a,b.
Case (ii): -,A(a(0)). Reasoning as in case (i), we find e E N such that #We > 2e+2
and Vn E We [-,A(n)], again in contradiction- with_ 8.5(ii)b.
End of proof of claim.)
It follows from Kreisel and -Trgelstra 1-970 that the- system EL+BIM_+CTo inconsistent.
Therefore, we are unable to _prove, in- this system= - _ - -

-i-3a E SVn[A(a(O)) H A(a(n))].
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CTo may be consistently -added to much stronger systems for intuitionistic analysis,
for instance the system FIM of Kleene and Vesley 1965. In no such
mentioned statement is provable.

8.6.3 Let us consider the following form of Markov's principle.

MP: For every arithmetically definable subset A of N:-
-If Vn[A(n) V -A(n)] and -t- n[A(n)], then 3n[A(n)].

We- claim that, in EL+CTo+MP one may prove:

For every arithmetically definable subset A of N:
If Vn[A(n) V -iA(n)], then - - a E SVn[A(a(0)) A(a(

(Proof of this claim: Assume: Vn[A(n) V -,A(n)].

system the above-

According to Lemma 4.4: - (A is weakly infinite V N\A is weakly infinite). As we
have to prove a negative conclusion, we distinguish two cases:
Case (i): A is weakly infinite, i.e.: Vp-,-,3q[p < q A A(q)].

Using MP, we= conclude: Vp3q[p < q n, A(q)].
Using CTo:, we find a recursive function f from N to N- such that--
VP E N[p < f(p) A A(f(p))]
Define a G S by: a(O) = f(0) and for all n-E N: a(n+l)= f(a(n)):
Then: Vn[A(a(O)) H A(a(n))]
Case (ii): N\A is weakly- infinite,: is: treated in a. similar way.
End of proof of claim.
As EL+CTo+MP is consistent, c.' Luckhardt 1977,we conclude: We-cannot prove
in EL that there exist decidable subsets A, B of N with the properties mentioned in
theorem 8.5(ii). Neither can we do so from any set of axioms to which CTo+MP may
be added consistently, as, for instance, the system FIM of Kleene and Vesley 1965.

8.7 We conclude this section `with- a remark on the intuitionistic continuity principle.
The following strong version of the pigeonhole principle and, a fortiori, the corresponding
strong version of Ramsey's theorem, are intuitionistically unprovable:

(*) VQ E 2N3a-E SVn[Q(a(0)) = ,3(a(n))]

This is clear from the example given in the introduction. It is possible to derive a
contradiction from (*) by the following weak principle of continuity:

CP: =For all subsets A -of V x N:
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If V#3n[A(fl, n)],- then-b'Q3m3nV y[-^ym = ,Qm - A(-y, n)]

(ym denotes the finite sequence (y(0),7(1), .. ,'Y(m-1)))

Our claim is that EL+(*)+CP is inconsistent.

(Sketch of the proof. Suppose (*) and CP.
`Observe: `d E 2N3n3a E S[a(O) = n n dm[s(a(m)) = ,(n)]]. Let 0 E 2N be such
that Vp[0(p) = 0]. Calculate p, n E N such that
V-y E 2N [ 7 = p - 3a E S[a(O) = n n `dm[y(a(m)) = 'Y(n)]]
Let N be the maximum of the numbers p, n+1 and consider , = ON * 1 (1 E 2N is such
that dp E N[1(p) = 1)).
This application of CP exemplifies a well-known technique in intuitionistic analysis:
-weak counterexamples may be used, together with CP, to obtain proofs of inconsistency.

9. An application

9.1 We will show how a recent result of Thierry _Coquand's (cf. Coquand 1991) may be
derived from the Intuitionistic Ramsey Theorem. We became aware of- this result after
the other sections of this paper had been completed. We first extend definition 7.2.

9.2. Let R be- a subset of the set S of finite strictly increasing sequences of natural
numbers. We define

---R is almost full := `da E S3a E S[R(a o a)].

(We drop the restriction -that all sequences in -R are' of the same length.)
If we consider R in the obvious way as a set of finite sets of natural numbers, then R is
almost full if and only if every infinite set of natural numbers has a subset that belongs
to R.

An important example of an almost full subset of S is the following:

RPH:={aESIa (). and length (a) > a(0)} .

The letters PH refer to Paris and Harrington 1977.

9.3. Let R be a subset of S.
Let k E- N and let 6 be a function from Sk to {0, 1.}.
We define a subset Ra of R:

R6 :=' {a E_R I Vb E Sk [b(k-- 1)- < _ length(a) --+,E(a o b) = S((a(0), ..:-, a(k -1))]} .

If we consider S as a colouring of the k-element-subsets of- N, -then Ra is the set of
6-monochromatic members of R.
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94. Theorem- (Th Coquand):
For every subset R of S, for every k E N, for every b : Sk -> 10, 1} :
If R is almost full; then Ra is almost =full.:

Proof: Let R be an almost full subset of S, and let b Sk -> {O,ml}.
Let a E S.
Let QED be the proposition: 3a E S[R6(a o a)].
Let y E S. Determine a E S such that R(a o -y o a).
We may decide: either-R6(a o y o a) and therefore: QED, or 3b E Sk [b(a o y o a o b) = 0].
Therefore: bay E- S3a E Sk [b(a o y o a) = 0 V QED ] and, similarly:
V-)ES34ESk[b(a-oyoa)=1 V QED]'.
Apply Theorem 7.3 and conclude QED.
0

9.5 In order to derive A -z-useful corollary from Theorem 9.4, we need a well-known
principle of intuitionistic analysis, the fan theorem. The version of this theorem that
we =use (*27.9 in Kleene and VesleVz 1965; p.76, or FAN(T) -hr ilen-

a corollary of the principle induction on monotone bars, (cf.- 2.4)-.

Let -C be intuitionistic- Cantor space, i.e. the binary fan, the -set- of all functions from N
to {0, 1}

9=.5.1-FT (fan theorem):
Yet Q be -a subset of the set of binary finite sequences that
`da E C3n[Q((a(0), ..:: a(n 1)))]
Then -E Can < N[Q((a(0), .. , a(n 1)))]

9.5.2 Corollary:
Let R be an almost full subset of S, and let k E N.

- - = Then Va E S3NVb : Sk-=;-{0.;1}3a E=S[R6((a(0), ... -, a(N = 1)) -o a)].

Proof: =By enumerating Sk, we may identify C with the set of all functions- from Sk: to
{0,1}.
Now apply 9.4 and 9,5.1. -

4

0° ==r 1

.Observe that Corollary 9.5.2 is an intuitionistic version of the compactness argument; by
.which-in Paris and .Harrington -1:977 asharpened version of the. finitary. Ramsey theorem
is-proved-(-In -order to: obtain -the desired; conclusion, specialize a, in the second line of
9.5.2- to sequences of the form +p))
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9.6 Thierry,Coquand- observed that from Theorem 9.4, an important case of Theorem
7.3 may be derived, as follows:
Let k E N -and- suppose--that R, T are'decid-able al nost-full"subsets of rSk - - -

Let Q`: = {a E S b E `S[R(a o b)] A Elb E-- S[T(a olb)]}. Let S Sk be the
characteristic function of T.
Observe that Q is almost full, and that for all a E S, if Q6(a), then 3b E S[R(a o b) A
T(a o b)].]

As, by Theorem 9.4, Q6 is almost full, also R fl T is almost full.
In the above argument, it suffices to assume that T is a decidable subset of S.
In Coquand 1991 another constructive version of Ramsey's theorem is -stated and proved
that avoids the application of the intuitionistic principle of bar induction.

10. Concluding remarks

10.1 As far as we know, the first one" who studied Ramsey's theorem from an intuition-
istic point of view, was Mervyn Jansen who in Nijmegen, in 1974, wrote a Master's
Thesis on the subject, under the guidance of Johan J. de Iongh.
He found the example mentioned in 5.3 and, formulating an-`admit-tedly unpleasant ad
hoc condition, he proved, using the principle of bar induction, that every binary relation
R on N which satisfies this condition, has the property mentioned in the conclusion of
6.2, i.e.: it is impossible that both 'R and its complement are almost full.
The second author, who did not know about the earlier attempt by Mervyn Jansen,
obtained= -a stronger result, which he announced in the first-, "Stelling",' added to his-
dissertation Bezem 1986: -he proved for every decidable binary relation R on N that not
both R and (N x N)\R are almost full. This result sparked off the research which led to
the present paper. The first author studied the second author's proof and found "Theo-
rems 6.5, 7.3 and 5.4. The negationless wording of these theorems owes something to a
question posed by John Burgess: in a letter from 1983, he had asked for a constructive
argument establishing VaVQ3m2n[m-< nAa(m) <&(n) Adi(m) r#(n)]. (We challenge
the reader to find the elementary proof of this special case of theorem 6.5).
In Section 4 of this paper, one -finds a paraphrase of the original ,argument of the second
author: Lemma 4.6, Corollary 4.7, and "a slight weakening of both Lemma 6.1 and
Corollary 6.2 are due to him.
Section 8 of this paper. elaborates another observation of the second author, to the effect
that from consistency results about Church's--Thesis CTo, one may obtain unprovability
results concerning versions of -Ramsey's' theorem.

The application of the intuitionistic Ramsey theorem in Section 9 is due to the first

25=

: -> 10, 11



author, who also wrote the :final- version, of the paper..

10.2 Further generalizations of the intuitionistic Ramsey Theorem, such as an analogue
to the classical clopen Ramsey Theorem (cf. _ Frai' se 1986), are_possible. We hope to
treat them in a sequel to the present paper.
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