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0 Introduction

Among the different interpretability logics corresponding to (classes of) arthmetical

theories, the interpretability logic of Itp+EXP (to which we will refer as ILeXp), takes a

special place. Though we have no explicit axiomatization for ILeXp, we do have a

complete description of the theory. Visser shows, in [VIS], that relative interpretability

over ID p+EXP can be characterized in terms of cut-free provability. From his
observation that Lob's logic is the provability logic for cut-free provability in IAp+EXP

it follows that there is an embedding of ILexp in Lob's logic. Thus, validity of ILeXp-

principles can be decided using the characterization and finite Kripke models for L. The

characterization result and the arithmetical completenesss of Lob's logic completely

reduces the problem of determining ILeXp to a purely modal question.

It can be easily verified that ILP S ILexp. After Visser established the arithmetical

completeness of ILP for finitely axiomatizable theories extending ILp+SUPEREXP it

was thought, ID p+EXP being finitely axiomatizable, that ILP might be the
interpretability logic of this theory as well. However, Visser and de Jongh found a

principle that is valid in ILexp and not derivable from ILP [VIS, appendix].

In this paper we discuss a subsystem of ILeXp which is an extension of ILP with X and

E. Unlike the usual axioms of interpretability logic, X and E are rather axiom schemata

than proper axioms, in two ways. First, they indicate infinite lists of axioms E1, E2, ...

and X1, X2, ... Secondly, the axioms E and Xn are formulated using two kinds of
variables: the usual propositional variables, which may be substituted for by arbitrary

formulae in the language of interpretability logic, and special variables for which only

formulae of special classes may be substituted. It will be shown that the system ILPXE

is not finitely axiomatizable. Concerning the question whether ILPXE equals I]LeXp or is

a proper subsystem of it, we do not have conclusive arguments.

We employ the following notational conventions :

, , 0 , L , 7, bind equally strong; A, V, bind equally strong; - , H , bind

equally strong;

binds stronger than D ; D binds stronger than A ; A binds stronger than - .

I would like to thank Albert Visser, Marc Jumelet, Dick de Jongh and Johan van
Benthem for helpful discussions and suggestions.
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1 Relevant facts

1.1 Lob's logic and IAO+EXP

Lob's logic L is arithmetically sound & complete w.r.t all theories T with the following

properties: (i) T has a 11- provability predicate, (ii) T extends ILO+EXP, (iii) T does

not prove Provn(1) for any n. So, for such T we have

L F- A iff for all arithmetic interpretations * which translate with provability from

T, IAO+EXP F- A*.

Visser observes, in [VIS], that the same holds if we let arithmetic interpretations

translate the with cut free provability from T:

The transformation of an ordinary T-proof into a cut free proof from T is a
superexponential process. That is, if x is the original proof, then the result of the cut

elimination process will be bounded by itexp(Ixi,Q(x)), where Ixi is the binary length of

x, and Q (x) is the cut rank of x.

We will write T for ordinary provability from T and AT for cut free provability from

T. Let Cp and be sentences in the language of S.

So in general IA O+EXP will not prove TCp --) ATtp, but does prove ATCp ---) TCP.

"Clearly we have ILO+EXP F- CP ISO+EXP F- A Ttp (Necesitation).

L1: The usual Y--completeness argument yields ID O+EXP F- L TCp ---) TDTtP
However, inspection of this argument shows that the cuts in the proof of OTCp can be

eleminated in ILp+EXP, so ILp+EXP F- ATCP ---) LITL TP holds.

L2: From IA O+EXP F- C] T (Cp - I.P) -4 ( T CP -) T LP) and IA O+EXP F- L T Cp

-j TCp, we get ILO+EXP F-AT(Cp --) 4J) - (OTCP - TPJ). Here the cut
formula in the proof of Lp is standard, so the cut elimination necessary to get 11Tyi

from T qi is only multi-exponential. Hence ID p+EXP F- 0 T( -p -- LP) --) (A T CP

-)ATgJ)-
L3: ILO+EXP has diagonalization, so with Ll and L2, also Lob's axiom is true for

AT: Iop+EXP F-AT(AT(P -4 Cp) -, ATOP,

1.2 The Friedman-Visser characterization

In the following,

A D B will stand for ILp+EXP+A interpretes ILp+EXP+B;
AA for AIOO+ExpA; VA for --I d -+A;

A for ILO+EXPA; 0 A for -1 -A.

2
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In [VIS], Visser gives the following Friedman-style characterization of relative
interpretability over IDp+EXP:

Theorem 1.2.1 ILp+EXP I- A D B H A (V A -) V B

Corollary 1.2.2
(a) ILp+EXP F- A AAA;
(b) IL p+EXP F- AA - A.

This theorem, combined with the the fact that L is the provability logic of cut free

provability in IEp+EXP, gives us a complete characterization of the interpretability

logic of ILp+EXP.

We define a translation t which translates formulae of D) into formulae of L(L)

according to the Visser-Friedman characterization, as follows:

Definition 1.2.3
T t=T and t=1
pt=p, for all propositional variables p;

(Ely )t=0/cpt;
(cpDLP )t=L(Vcpt_3Dot).

Trivially, we have the following lemma:

Lemma 1.2.4 For all cp E L( , D ), ILexp F- tp iff LA F- cp t.

This lemma suggests the following semantics for the interpretability logic of ILp+EXP:

Definition 1.2.5 An ILexp Kripke model M is a quadruple (W,R,b, IF- ), where
(W,R,b) is a finite Kripke model for L, i.e. W is a finite set, R is a transitive irreflexive

binary relation on W, b E W and for all x E W, if x#b then bRx, and IF- is a forcing

relation on (W,R,b) with accessability relations for and D defined as follows:

x IF- A D B iff b'y,z (xRyRz A z IF- A 3 v (yRv A v II- B));

x IF- A iff v y,z (xRyRz - z IF- A ).

It will be claer that the ILexp Kripke models provide us with semantics for whichILexp

is sound and complete. Also, by arithmetical completeness of L for cut free provability

3
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in ILO+EXP, once we have an axiomatization A for ILexp that is sound and complete

with respect to these semantics, we have arithmetical completeness of A.

An immediate consequence of this is:

Corollary 1.2.6 ILp+EXP J A -> DA.
Proof Consider the following Kripke model M=(W,R, IF) :

W={b,x,y},

R={ <b,x><b,y><x,y> }

t II- p iff t=y.
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2 ILP and ILexp

2.1 ILP S ILexp

Using the Friedman-Visser characterization one can easily see that all theorems of ILP

are theorems of ILexp.

Theorem 2.1.2 ILexp I- ILP.

Proof We will show that LA F- (ILP)t, where t is the translation defined in Definition

1.2.3. By the Friedman-Visser characterization,the theorem immediately follows from

this. First we will show that the translation of Lob's axiom is a theorem of LA.
Consider A) --j A))t, i.e. AA(AAAt _ At) - AAAt.
Reason in LA :

A (AA At - At) - A (A At -* At) (since A At -4 AA At);
A (A A At At) - A At ( by Lob's axiom), so

AA(AAAt -j At) - AA At (by necessitation).
Next we show that the persistency axiom is a theorem of LA. Consider

(AD B -.) (AD B))t =A(VAt --> VBt) - AAA(17 At -)VBt).
Apply L2 twice to A(VAt OtB).
We leave checking of other axioms and rules to the reader.

2.2 Conservativity of ILexp over ILP

In this paragraph, we will give a modal proof of the conservativity of ILexp over ILP

for formulae in and show that ILeXp is conservative over ILP for a restricted,

and semantically defined, class of formulae of D ). In order to do the latter, we

introduce a Friedman style semantics for which ILP is sound and complete. (See

paragraph 3.4 for some negative results on conservativity of

Definition 2.2.1 A structured Friedman frame F is a quadruple (W,R,N,b), where

W is a finite set (the worlds of F), R is a transitive, irreflexive relation on W, N is a

5
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subset of W, b is a world in W such that Vx(x E W A x:;&b --j bRx) (so b is the unique

root of F).

If X E N we will also write N(x), and say that x is a normal world, if x 'IN we say that

x is a structural world, and write S (x) or x E S.

Definition 2.2.2 A structured Friedman model M is given by a structured Friedman

frame F together with a forcing relation IF- which is only defined on normal worlds and

which satisfies

iff VyES V z E N (xRyRz ---> zIF- A);

x IF-ADB iff Vy E S VzEN (xRyRz A zlF- A -* 2tEN (yRt A t11- B)).

Definition 2.2.3
(a) A world x of a structured Friedman frame F is said to be in level n (n>_0) if

n = max { k : 2 y0,...,yk E W (yo=b & yk=x & yiRyi+1 for 0<i<k } .

(So, x is in level n if x is maximally n R-steps away from -b.)

(b) A structured Friedman frame F is levelled if

1) Vx E W (N(x) iff x is in an even level), and

2) All blind worlds of F are in an even level.

(c) A levelled Friedman model M is a Friedman model M on a levelled structured

Friedman frame.

Lemma 2.2.4 ILP is sound and complete with respect to levelled Friedman models.

Proof Cf. [KA].

Lemma 2.2.5 For all ( E L ( ), ILexp F- tp iff ILP F- Y.

Proof The lemma immediately follows from the arithmetical completeness theorems

for L, ILP, and ILexp. The following is a semantical proof of the left to right part of this

statement.

Let tp E L( ), and ILP,I1 Y. Let M=(W,R,N,b, IF-) be a levelled Friedman counter

model for Y, in which b IF- -1 Y. From M we will construct, in two stages, an ILexp

conter model to Y. First we construct an ILexp frame F'=(W',R',b) from (W,R,N,b),

then we will define a forcing relation IF' on F, using IF- .

First stage. W' will consist of all worlds x in W such that N(x) plus, for all such x,

except b, a copy of x, called xp. R' will be defined as follows: xR'y iff (xRy V x=yp

V 2z (xRz A y= zp)). See the figure below:
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F F'

Note that the following hold for worlds x,y,z in W':

(a) If N(x) and N(y), then xR'y iff xRy;

(b) Each world x has one immediate R'-predecessor, and if N(x), then this immediate

predecessor is xp;

(c) If N(x) and xR'yR'z, then (i) if N(z), then xRRz; (ii) if z=vp, then xRRv;

(d) If xpR'yR'z, and N(z), then xRRz and xR'Rz;

(e) If xpR'yR'z, and z=vp, then xRRv and xR'R'v.

The forcing relation IF' will be defined as follows:

x IF-'p iff N(x) and x IF- p or x=yp and y il- p.

Claim For all cp and all worlds x in Wf1N\(b}, xIF- (p xll-'tp
xp IF-'y; and b lF- tp H b IF-'Y.

It is easily seen that the claim holds for all blind worlds, and for all propositional

variables. Suppose it holds for all successors of a world x.

Suppose x IF- Y. Let y,z be worlds of W', such that xR'yR'z. Then either N(z) or

z=vp. If N(z), then by (c), xRRz, so zlF- cp, so, by supposition, zli-'(p; if z=vp, then

by (c), xRRv, so vIF- [p, so by supposition, vplF-'tp. So xIl-'D Y.

Suppose xIF-' Y. Let y,z be worlds of W, such that xRyRz, and N(z). Then there is

a world y' in W', such that xR'y'R'z. Then z IF-' Cp , so z IF- Y. So x Il- p y.

Suppose x11-'E3 Y. Let y,z be worlds of W', such that xpR'yR'z. Now either N(z),

so, by (d), xR'R'z, so z II- 'tp ; or z=vp, so, by (c), xR'R'v, so v IF- so by
supposition z IF- ' [p . So xp 1P O Y.

Suppose xp IF- ' Y. xpR'x, so x IF- ' [p .

This shows that the claim holds, and concludes the proof.

M

7
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Definition 2.2.6 We define for formulae Cp in D ) the /D -depth D(Cp) as
follows:

(i) D(p) = 0 for all propositional variables p;

(ii) D( Cp)= D(Cp)+1 for all Cp;

(iii) D (Cp D qi )= max(D(Cp ),D (tp ))+ 1 for all Cp and LP;

(iv) D(1 tp)=D((p);

(v) D((p A 41) = D(Cp V tN) = max(D(Cp),D(4J)).

The following lemma shows that ILexp is conservative over ILP for a certain
(semantically characterized) class of formulae.

Lemma 2.2.7 If Cp is a formula of D) such that there is a levelled Friedman

model M in which the maximum of the levels is smaller than or equal to 4 and in which

b JI Cp , then lLexp IF Cp

Proof Let Cp be a formula of D) for which there is a levelled Friedman counter

model M=(W,R,N,b, IF- ), in which b IF- - Y, and the maximum of the levels of M is

<4.

We can transform M into a Friedman model for ILeXp by defining a new forcing relation

IF-' on (W,R,b) as follows:

a) if x is a normal world of (W,R,s,b), then x II-'p iff x IF- p;

b) if x is a structural world of level 1, then x IF-'p for all p (or x IF-' l p for all p, or ...);

c) if x is a structural world of level 3, then :

choose one particular y of level 4, henceforth referred to as y(x), such that xRy(x),

and

let x IF-'p iff y(x) IF- p, for all p.

We will show that 11--'has the following properties:

1) for all normal worlds x in levels 2 and 4 of (W,R,s,b), x 11-'(p iff x II- Y, for all Cp .

2) for all structural worlds x in level 3 of (W,R,s,b), x IF-'Y iff y(x) IF- (p, for all (P.

We will first show (1) and (2) and then use these to show that the following holds:

3) bIF-'Cp iff b IF- Cp, for all Cp.

(1) Because the worlds of level 4 are blind and (according to condion a above) the

'-forcing relation for propositional variables equals IF- for propositional variables on

worlds of level 4, it is clear that , for all x of level 4, x IF- Cp iff x I[-'Y.

As for worlds x of level 2, '-forcing of a formula Cp is completely determined by

'-forcing of propositional variables in such x itself and'-forcing on the worlds of level

4 which are accessible form x. By definition, the '-forcing of propositional variables in

8



a world x of level 2 is equal to II-, and we already know that y II-- Cp iff y IF ' (p for all

worlds y of level 4.

(2) is proved by induction on (p. Let x be a world of level 3.

We have defined I[-' on x exactly so that, for propositional variables p, x IF- 'p iff

y(x) II- P.

(IH) Suppose x I[-'y iff y(x) IF- tp and x IF-' ip iff y(x) IF- Lp.

Then

(--I) x IF' l tp iff y(x) IF l tp, by IH;
(A) Suppose x IF-'Y A LP . Then x IF- 'y a n d x IF- ' Lp , so, by IH, y(x) IF- tp and

y(x) IF tp .

Suppose y(x) IF cp A LP. Then, again by IH, x IF-' (p A q j.

(D) This case is immediately true by the fact that all worlds of level 3 and 4 force all

formulae of the form cp D LP.

3) Again, this is proved by induction on [p . By a, b IF- 'p iff b IF- p, for all

propositional variables p. (IH) Suppose b IF- ' cp iff b IF- cp and b IF- ' ip iff b IF- 4j. The

cases -1 and A are trivial , so we only treat the case >.

Suppose b IF 'tp D L y. Let bRtRz and z II-- Cp and z of level 2. Then by (1), z IF 'tp , so

there must be a y such that tRx and x IF-' qj. If x is of level 2 or 4, then by (1), x IF- LP. If

x is of level 3, then we can apply (2), and find that y(x) IF' ip . Again by (1), y(x) IF q j,

and tRy(x). Sob IF (p D .

For the converse, suppose b IF tp D . Let bRtRz and z IF-' cp . If z is of level 3, then

there is y(z) with zRy(z) and y(z) IF (p, so we can find, by supposition, an x in level 2

or 4 such that tRx and t IF q j, so by (1), t IF-' ip . The case in which z is of level 2 or 4 is

again an easy application of (1). This completes the proof of statement (3).

Thus we found an ILexp model M'= (W,R,b, IF') such that bJF'tp.

This completes the proof of Lemma 2.2.7.

9



3 The axiom schema E

ILP is not all there is to ILeXp. De Jongh and Visser [VIS] first discovered a sentence

showing that ILexp strictly extends ILP. We will show that at least two different axiom

schemata, which are mutually independent over ILP, are valid in ILeXp. This section is

devoted to the treatment of the axiom schema E. In Section 4, the schema X will be

treated and the relative independency of E and X over ILP.

3.1 1- and 11-formulae

We define two classes of formulae in the language

Definition 3.1.1 The class of formulae of D) is defined as follows:

(i) T and 1 are in 1;
(ii) for all tp and q j, tp D ip is in Y-;

(iii) for all tp , then tp is in Y;

(iv) if tp and ip are in Y-, the so are tp V LP, cp A I

(v) no other formulae are in in Y.

In the following, we will consider all formulae which are equivalent to a formula of the

1-class, as belonging to this class.

The class of fl-formulae consists of formulae which are equivalent to a negation of a

Y-formula:

Definition 3.1.2 The class of H -formulae of D) is defined as follows:

(i) T and 1 are in II;

(ii) for all tp and q j, (( D Lp) is in

(iii for all tp, then O cp is in TI;

(iv) if tp and ip are in IT, then so are tp V q j, tp A i

(v) no other formulae are in in H.

The following lemma sums up the characteristics of the behaviour of Y- and the II-
formulae in Kripke models for ILeXp and Veltman models for ILP.

Lemma 3.1.3 Let P be a II-formula and S a Y_-formula, x be a world of a Kripke
model for ILeXp. The following hold:

(i) x II- P Vy (dz (xRz -+ yRz) -+ ylI- z) (jump-over of II-formulae);

(ii) xl- P Vy (yRx -4 yIP z) (downwards preservation of II-formulae);

10

;

--1

;

=4

=



(iii) x Il- S = Vy (Vz(yRz - xRz) -4 y IF- S) (jump-over of 1-formulae);

(iv) x IF- S Vy (xRy - y IF S) (upwards preservation of 1-formulae).

In ILP Veltman models, we have the following:

(v) x II- S = Vy (Vu,z (yRu - (xRu A (uSz A xRz - yRz))) - y Il- S;
(vi) x IF P = bay (V u,z (xRu - (yRu A (uSz A yRz - xRz))) - y IF- P.

Proof The proofs (by easy induction on P and S) of (i), (iii), (v), and (vi), are left to

the reader. By transitivity of R, (i) implies (ii), and (iii) implies (iv) .

E

Throughout Section 3, P1,...,Pn will be fl-formulae and S will be some Y-formula.

3.2. The axiom schema E

Definition 3.2.1 En is the following axiom schema:

(OA A A D P1 A ... A A D Pn A S) D (E1-1A A P1 A ... A Pn A S).

We will refer to En as E if we do not want to specify the index n.

In this paragraph we will prove the following theorem:

Theorem 3.2.2 ILexp I- E.

We will give two proofs of this theorem. The first one semantic (Lemma 3.2.4), the

second syntactic (Lemma 3.2.6). In the first proof, we use a distance function on ILexp

frames, defined below, which gives, for each pair of worlds, the maximal number of

worlds lying in between. We use xRoy to express that either x=y or xRy.

Definition 3.2.3 dF is a partial function on pairs of worlds in a Kripke frame F,
defined by

dF(x,y)=sup { 1+dF(z,y): xRzRy } if xRw;

dF(x,y)=is undefined otherwise.

Lemma 3.2.4 E is valid on all ILexp frames.

Proof Let F=(W,R,b) be a finite Kripke frame with irreflexive, transitive acessibility

relation R, let M be (F, II- ). We will show that all instances of E are forced in all

worlds of M. We consider the following instance of E:

(OA A ADP1 A ... A ADPn A S) D A P1 A ... A Pn A S).

Let x be a world of M, and suppose there are t, y such that xRtRy and

11



y IF <>A A ADP1 A ... A ADPn A S. (1)

We will show that there exists a y' such that tRy' and

y' IF AAP1A ... APnAS.
As y IF <>A we know there are worlds w', z', such that

yRw'Rz' and z' IF A. (2)

From the properties of the frame F it follows that there are w,z satisfying (2) such that

dF(w,z)=1 and dF(y,z)=max{dF(y,z'): ZIP A). It follows that

w IF '-1 A. (3)

But y IF ADP 1 A ... A A> Pn, yRwRz and z IF A; so there must be ui (for 1 <_i
<_n), such that wRui and uilF Pi for 1<_i<_k. By downwards preservation of the Pi we

get

wIF P1A ... APn. (4)

By (1) and upwards preservation of S we get

w IF S. (5)

Combining (3) - (5) we find that w is the y' we were looking for.

By the soundness of ILexp frames for ILeXp, Lemma 3.2.5 implies that all instances of

E are theorems of ILexp. Next we will give a syntactic proof of this fact, by showing

that the t-translation of every instance of E is derivable in Lo. We will use the
following properties of translated .- and II-formulae in LA:

Lemma 3.2.5 For all S in I and all P in [I,
(a) Lo F- St --) AS t;

(b) La I- OPt - Pt.

Proof Because every II-formula is the negation of a 1-formula, (b) immediately
follows from (a), by contraposition. To prove (a), note that Lo proves the following:

T - A T;

( (p )t _ A ( (P )t, for all (p ;
((p t Lp)t _ A ((p t qj)t, for all (p and Lp.

Now assume that Lo proves (p t -> A (p t and tN t . A qj t. Then Lo proves
((p A ip )t -- A ( (p A )t and ((p V )t - A ( (p V tp )t . This concludes the proof.

Lemma 3.2.6
LAP A[V[DDAt A A(DAt_ VP1t) A ...A A(VA- OPnt) A St]

12
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V[AD-1 At A P1t A...A Pnt A StII.

Proof Reason in Lo. First, note that contraposition of Lob's axiom for B implies

V B- 0 (B A A B). Substitution of DAt for B yields

VVAt-+O(DAt A A0 -'At).
Suppose

V VAt A L(VAt-4 VP1t) A ... A A(VA--4 VPnt) A St.

Then

V VAt A L((VAt-+ (VP1t A ... A VPnt)) A St).

Using (1), we then have

V(VAt A AA-1 At) A A ((V At -) (V P 1 t A ...A VPnt)) A St).

This implies

0(00 At A VP1t A ... A VPnt A St),
which, by Lemma 3.2.6, yields

0(00 At A P 1 t A ... A Pnt A St),
Thus,

V VAt A L(VAt_ VP1t) A ...A A(VA_, VPnt) A St
-9 V (AL At A Plt A ... A Pnt A St)

Using necessitation, this yields

V[VVAt A 0(VAt-4 VP1t) A ...A A(DA_ VPnt) A Std
- V V (AA At A Plt A ... A Pnt A St),

which, by L2, gives

V[VVAt A 0(VAt_9 VPIt) A ...A L(VA---)VPnt) A St]
-+ V (D D At A P 1 t A ... A Pnt A St),

Now use necessitation to conclude the proof.

3.3 Some facts about E

In this paragraph we show that El is derivable in ILP (Lemma 3.3.1), E2 is not
derivable in ILP (Lemma 3.3.2), for n<m, ILPEn .F Em (Lemma 3.3.3). The latter

implies that ILPE cannot be finitely axiomatized.

Lemma 3.3.1 ILP F- (OA A A> PI A S) D ( A A PI A S).
Proof Reason in ILP:

A

A A A)) A

(1)

(2)

(3)

13
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By contraposition on (2),

OA -4 ((OA A -IA) (3)

OA AADPi -)
((OA A A ADP1) V O(OA A 1A) A ADP1) (4)

Use P and J4, to get

OA A ADP1 - A OP1) V A OP1)) (5)

This gives

OA A A D ((O(0 -1 A A PI) V OO(0 1A A Pi)) (6)

So we get, by E1-completeness,

OA AADP1--3, (7)

Application of gives

(OA A A D A PI) (8)

Application of L5 and transitivity of P yields

(OA A A D PI) D ( 1 A A P1). (8)

It is a simple application of L2 to the reasoning above, to get

(OA A A D A S) A PI A S).
M

Lemma 3.3.2.
ILP)z(OAAADOBAADOCA D) D A OC n

an A B C

D (E] -1 A A OB A OC A D):
Let F= (W,R,S) with

W= (x,y,z,s,t,u,v }

R as follows: xRy, yRz, yRs,yRt, sRu,tRv

S the smallest reflexive extension of R containing zSs, zSt.

Define a forcing relation II- on F such that

z II- A, and A is forced only there,

u II- B, and B is forced only there,

v IF- C, and C is forced only there,

y If- D.

See the figure below.
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fig 3.3.2

Then y IP OA A AD OB A AD OC ADD.
Now y is the only world in the model which forces OB A OC and is S-accessible
from y. But as y IF- OA, it does not force 0 --A.

Lemma 3.3.3 For n<m, ILPEn K Em.
Proof Note that ILPEm+1 }- Em. So the general case n<m can be reduced to
showing, for each n, that ILPEn+i 1F En. We will only show the case n=2. For other

n, essentially the same trick can be used.

We define an ILP Veltman frame F=<W,R,S> such that Flh E2 and FJ} E3.

W={b, v, z, u0, ul, u2, wO, wl, w2, t0, tl, t2}
Let R be the smallest transitive irreflexive relation on W containing

bRv, vRz,

vRui for all i,

uiRwi for all i,

bRti for all i,

t0Rw0, tORw1, t1Rw1, t1Rw2, t2Rw2, t2Rw0,

Let S be the smallest reflective extension of R such that also

zSui for all i,

vSti for all i.

15



Fig 3.3.3

We show that F k E2:

Let If- be a forcing relation on F.

Note the following: If ILP F- P H T, then ILP F- (O A A A L P A A L Q A S) l

(E] -1 A A PA Q AS) H (OA A ALQ A S) L ( A A Q A S). The left part
of this equivalence is as we saw in Lemma 3.3. 1, already provable in ILP. So we need

not consider instances of E2 for which ILP I- (P H T) V (Q H T). If ILP F- P " 1,

then ILPI-(OA A ADP A ALQ A S) L (0 -1 A A PA Q AS) H T. So we
need not consider instances of E2 for which ILPI- (PH 1) V (QH 1). So we assume

ILP.I1 (P +-* T) V (QH T) V (P +---> .L) V (Q-*.).

Suppose x and y are such that xRy and y IF- O A A A L P A ALQ A S.

Then xIF- O OA, so x must be either b or v. Because yll- OA A A L P, there must be

ana such that yRa and a IF- P; and because of the assumptions about P, there must be a b

such that aRb. Clearly, x must be b and y must be v.

So we have

vIF- OAAALPAALQA S. (1)

Note that the frame F has, by Lemma 3.1.3(vi), the following propertie:

if (p is P or Q, then ui IF- (p ti IF- (p A ti-1(mod 3) IF- (p (O<_i<_2) . (2)

We will show that there is a d such that vSd and dIP - A A PA Q A S.
From the same observations which led us to (1) it follows that A cannot be forced in

either of the wi. This implies that

1 A is forced in z, in all of the ui, and in all of the ti. (3)

However, A must be forced in z or in one of the ui.

If A is forced in one of the ui, then for this i, by (1), ui IF- P A Q. By (3),
ui IF 1 A. Also, S is forced in v and, being a Z-formula, upwards preserved, so
ui IF- S. Then ui is the d we were looking for.

16
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If A is not forced in one of the ui, then A is forced in z. By (1), we will then find

both P and Q in worlds f and g such that zSf and zSg. Note that f and g cannot be equal

to z. So f is ui for an i<-3, and g is uj for a j<_2. Now by (2),

if {i,j} S {0,1}, then toll-PAQ,

if {i,j } S t l,21, then t1 IF- PA Q,

if {i,j}S {2,1}, then t211-PAQ.

As v IF- S, ti IF- S for all i, by (3), ti IF- A for all i.

So in this case, one of the ti is the d we were looking for.

This shows that FP= E2.

Next we show that

{xEW : xIFA} = {z};

{xEW : xIl-B} = {wo};

{xEW : X11- C) = {w1};

{xEW : x11-D} _ {w2}.

We will show that

blh(OA A AD 0B A AP 0C A AD OD) D A OB A OC A
01)).
vIl- OAAADOBAADOCAADOD;
OB A OC A OD is only forced in v and b (of which b is not accessible from v);

vJl LJ 1 A.

(1) - (3) show that there is nod such that vSd and dV 0 1 A A 0B A 0C A OD,
This shows that that FA-E3.

17
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3.4 On rules in ILexp

In [RIJ] it is shown that IL, ILP, and ILM have the following property:

Let ILS be either of these three theories, then

ILS I- A D B iff ILS F- A - (B V OB).
ILexp does not have this property. The following countermodel M = (W,R,b, II-) shows

this:

W={ x,y,z,u,v,s,t,r,p 1;

R={ <x,y>, <y,z>, <y,u>, <u,s>, <s,r>, <y,v>, <v,t>, <t,p> };

z II- A, z IF B, z II- C.

In M, which is an ILexp model,

xl- (OAAA>OBAA>OC)E>
Also, x II- OA A AD OB A AD OC.
But clearly, x 1f A OB A OC) V 0 (0 -1 A A OB A OC).

We do however have the following:

For A,B in D )

ILexp F- A> B iff LA H At --> (Bt V VBt).

The right to left implication is trivial.

The converse is proved semantically, by a trick known as 'Smorynski's trick'. Assume

that Lo F At ---) (Bt V VBt). Then by modal completeness there is a Kripke model

M in which the bottem node b forces '1 (At -* (Bt V VBt)), so b forces At A -1 Bt A

A-Bt.
From this model M we can construct a Kripke model N in which the bottem node does

not force A> B: Add two worlds to the frame of M, say x and y, and take for the

accessibility relation of N the smallest irreflexive transitive extension R' of R U
{ <x,y>, <y,b> }. Let, in N x and y force all (or some, or ...) propositional variables,

and let for all p and for all worlds z in N other that x and y, z IF- N p iff z IF- MP.

Clearly then x F N A> B.

Consider the following rule S:

S P(OA A A A C) H(OA A BA
S E Y.

Lemma 3.4.1 a) ILP is closed under S; b) ILeXp is closed under S.

Proof a) Suppose ILP,h (O A A B A S) D ( - A A C A S). Then there is an ILP
Veltman model M=(W,R,S,b, R-), such that bJh (O A A B A S) D ( A A C A S).

So there is a world y for which bRy and y II- OA A B A S, and for all z such that ySz

18
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and xRz, z II- OA V 1 C V S. By cutting out the part of the model which is not above

y or between b and y, we get a countermodel to (0A A B) D ( '-l A A C):

OAV --IC OAV-ICV-1s

fig. 3.4.1

Let the model M=(W',R,S',b,I1') be defined as follows:
W'= {tE W : t=b V t=y V bRtRy V yRt}; R'=Rn (W'xW'); S'=S fl (W'xW'); tlf-'p

iff t II- p, for all t E W' and all propositional variables p.

Then Vt (y=t V yR't - (tIPY H tll- tp)). So yIF' OA A B A S. Consider a world
z such that yS'z and bR'z. Such a z must be either y itself or yRz. So z II- ' O A V 1 C

V - S.
As y IF- S and S is preserved upwards, z IP '0 AV 1 C.

Sob.Uz'(OA A A C).
b) Can be proved in the same manner as (a) was proved.

Let the schema E- be defined as follows:

(OA A ADP1 n ... A ADPn) D A P1 A ... A Pn).

Lemma 3.4.1 tells us that, in approaching ILexp, we can either consider ILPE or
consider ILPE- plus the rule S - both logics are part of ILexp. Clearly, ILPE- plus the

rule Sproves all axioms of ILPE; we do not know whether ILPE is closed under S.
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3.5 More on conservativity

Definition 3.5.1 We define for formulae (p in L -depth 11)(Y ) as

follows:

(i) ID(p) = 0 for all propositional variables p;

(ii) D(Y) for all Y;

(iii) ID([p L tp) = max { ID([p),ID(tp) I+ 1 for all cp and tp ;

(iv) ID(-' [p) = ID(tp);
(v) ID((pAip)=ID(tpVtp)=max{ID(cp),ID(yJ)}.

Consider the schema K, where, like in E, the Pi are 11-formulae:

OOA A ALPI A ... A A>Pn -> 0(0 -1A A P1 A ... APn).

Lemma 3.5.2 (a) ILexp P K; (b) ILP I- K1; (c) ILP,IZ K.

Proof
(a)ILPPOOA A ALP1 A ... A ALPn

- 0(0A A ALPI A ... A ALPn).
Application of J4 to En shows that ILexp b K.

(b) Left to the reader.

(c)ILP,K OOaA aLOp A aLOq -- 0 Op A Oq).
A countermodel is M=(F, V ), where F is the frame in the proof of Lemma 3.3.2, and

II- is defined as follows:

3 I- a and a is only forced there;

6 II- p and p is only forced there;

7 1I- q and q is only forced there;

Clearly 111-00a A a> Op A aL Oq A (Op A Oq ---) Oa).
N

Lemma 3.5.2 shows that (1) ILeXp is not conservative over ILP with regard to formulae

cp for which ID(Y)<_l; and that (2) 1LeXp is not conservative over ILP with regard to

formulae cp for which D((p)<_2.
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4 The axiom schema X

4.1. The axiom schema X

Definition 4.1.1 Xn,k is the following axiom schema:

(P1A...A Pn)D (0 -1 A - D1) A ... A (P1A...A Pn)D (0 -1 A -4 Dk)
---> (OAA S)D(ADP1A ... AADPn --> D1A ... ADkAS).

where P1,...,Pn, D1, ...,Dk are fl-formulae, and S is a Y--formula.

In its basic form, the schema X was found by Marc Jumelet.

In this section we will always suppose that P1,...,Pn, D1,...,Dk are TI-formulae, and

that S is a 1-formula.

Lemma 4.1.2 ILexp P Xn,k, for all n, k.

Proof Suppose we have a finite ILexp Kripke model M=(W,R,b, IF-), such that

blh(P1A...A A - D1)} A ... A (P1A...A A -- Dk)
--- (OAA S)D (ADP1A ... AADPn---> DIA ... ADkAS)

for some P1, P2, D1, D2 in II and S in L.

So,
blF-(P1A...A Pn)D (0 -1 A - D1) A ... A (P1A...A Pn)D (0 --1 A - DO (2)

and there are worlds x and y such that

bRxRy, (3a)

yIF- OA A S, (3b)

Vz {xRz --) zII-APP1 A ... A ADPn A (`1D1V...V -' DnV --1 S). (3G)

In particular, from (3b&c), y IF- D1 V ... V -' D. Suppose, without loss of generality,

that

yIF- -'D1. Note that, because D1 is a II-formula, --'D1 is upwards preserved, i.e.

Vt (yRt - tIF- -1 D1} (4)

By properties of W and R, there must be a world w such that yRw or y=w, w IF- O A,
and V t { wRt -) t IF- -1 Al. Let t and z witness this, i.e.,

wRtRz, (5a)

z IF- A, (5b)

t IF- A. (5c)

By (3c), there must be ul,...,un, such that

tRui and ui IF Pi for 1 <_i<_n. (6)
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From (6) and the fact that the Pi are downwards preserved, we get

tl1-P1A...A Pn.
By (2) and (7), there must be v1,...,Vn, such that

wRvi and vi IF- -1 A -j Di for 1 <_i<_n.

By (4), vile -ID1, for 1<_i<_n, so v1 1F- OA, which contradicts (5c).

This completes the proof.

(7)

(8)

The following corollarium says that if we consider Xn,l we can drop the condition that

D1 is a II-formula.

Corallarium 4.1.3
ILexp F- (P 1 A ... A Pn) D ( -1 A B)

--> (OA A S )D (A> P1 A ... A ADPn ---) B A S)
Proof The proof goes along the same lines as the proof of Lemma 4.1.2. In this case

however, because we do not get a disjunction in (3c), we do not need upward
preservativion of the different disjuncts. Instead, we can simply remark that `dz { xRz

---> z IF A D P1 A ... A A D Pn A B 1, then proceed along (5), (6) and (7) and find

that there must be v1,...,Vn, such that wRvi and vi IF OA V B for 1<_i<_n. By our

remark, vi 11- B, for 1<_i<_n, but also vi R- A by (5c), for 1<_iSn. Contradiction.

Lemma 4.1.4 ILP I- X 1,k for k? 1.

Proof Suppose M=(W,R,N,b, IF) is a levelled Friedman counter model to an instance

A --) D1) A ... A PD ( --1 A - (1)

and b.IF(OA A S ) D (AD P - D1 A ... A Dk A S). (2)

By (2), there exist y, x such that bRyRx, N(x), and
xVFOA A S andVz (N(z) A yRz ---> zIF ADP A (-1 D1 V ... V Dk V --IS).
In particular,

xIF ADPandxlF --ID1 V ... V -lDk. (3)

Suppose xIF -'D1. (4)

By finiteness of W, there is an x' such that N(x) and x'=x or xRRx' and x' IF A

and there are u, v, such that N(v), x'RuRv and vlF A. Also, x' -1 D1. By (3), there

is a w such that N(w), uRw and wIFP. By (1), there must be a t such that N(t) and uRt

and tIF OA V D1. On the other hand for such a t we find that by our choice of x', tIP

A, and by (4) and upward preservation of D 1, t IF D 1. Contradiction.
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Remark that also in this case, if k=1 we can drop the condition that D is a I1-formula.

So we find

Corollarium 4.1.5 For every 11-formula P,
A-+ B AS).

Proof Like the proofs of Lemma 4.1.4 and Corollarium 4.1.3.

Lemma 4.1.6

(a) (P1A...A -*T) A ... A (P1A...A A -+ Dk)
-* ( O A S ( A > ... A T A ... A

is in fact an instance of Xn,k-1;

(b) (P1A...A A -* D1) A ... A (P1A...A A -* Dk)
( O A S ( A > A D 1 A

is in fact an instance of Xn-1,k;

(c) ( P A - D1) A ... A ( P I A -* Dk)
-* (OA A S) D (A> 1 A ... A ADPn -* D1 A ... A D k A S)

is equivalent to T (already in IL).

(d) (P1A...A D1) A ... A (P1A...A A - 1)
( A > A >

is already provable in ILP.

Proof
(a) follows from (tp-*T)HT and TAtpHtp.
(b) follows immediately from tp A T H tp and A D T H T;

(c) follows from A D 1 H -1 A and (p D tp;

(d) by reasoning on ILP Veltman or Friedman models.

Lemma 4.1.7 ILPXn,kA Xn+l,k, for n_1,k?1.

Proof We show how to prove this lemma for the case n=2, k=1. The example
generalizes to other cases. Consider an ILP Veltman frame F=<W,R,S>, with W, R

and S as follows:

W={b, x, z, ul, u2, u3, wl, w2, w3, t1, t2, t3).
R is the smallest transitive irreflexive relation on W containing

bRx, xRz,

vRui for all i,

uiRwi for all i,

bRti for all i,
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t1Rw1, t1Rw2, t2Rw2, t2Rw3, t3Rw3, t3Rw1,

Let S be the smallest reflexive extension of R such that also zSui for all i.

See the figure below.

To see that Fl= X2,k, note that for 0<_i52, Fn {b,x,z,ui,ui+l,wi,wi+i,ti} is isomorfic to

the frame in the proof of Lemma 4.1.5.

Let II- be the following forcing relation on F: wi IF- pi, and pi is forced nowhere else, for

0_<i52, and q is only forced in z. Then O po n O p 1 n O p2 is only forced in x, and

xI- Oq, so (OpoA Opt A Opt) D (L7 -1 q-* Os) is forced in every world. Also,
qD Opo n qD Op1 A qD 0P2 is forced in every world. But everywhere s is

is forced. So

b.lh(Op0AOp1AOp2)f>(E]Os) -
Oqf (qf Opo n qD Opl A qf> Opt -* Os).

So FXX3,1

Lemma 4.1.8 ILPXn,k` Xn,k+l.
Proof We show that the lemma holds for n=2, k=1.

Consider the following Veltman frame F=(W,R,S) for ILP:

W={ 1, 2,3,4,5,6,7,8 );

R is the smallest transitive extension on W of

{ 1R2, 1R8, 2R3, 2R4, 2R5, 4R6, 5R7, 8R6, 8R7 };

S is the smallest transitive, reflexive extension of RU { 8S2, 3S4, 3S5).

Let M=(F, V), with I- defined as follows:

x IF a iff x=3; x II- p iff x=6; x IF- q iff x=7; t is nowhere forced. See the figure:

--1
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We will show that Fk X2,1, and

M ,e- (Op A Oq) D (Oa V Odi) A (Op A Oq) D (Oa V Ode)
- Oa >(a> Op A aDOq -9 Odi A Od2).

The only worlds in which O q A Or is forced are 2 and 8. But 211- O a, and 2S2 and

2S8 so 1 II- (Op A Oq) D (Oa V Odi) A (Op A Oq) D (Oa V Od2).
Every world of M forces a D O g A a D 0 r, whereas O d 1 A 0 d2 is nowhere
forced. So none of the worlds forces a> Op A a> O q -- O d 1 A O d2, while
211- Op. So 111 0a D (at Op A aD Oq ---) Odi A 0 d2). Thus,

1IF(Op A Oq)D (Oa V Odi) A (Op A Oq)D (Oa V Ode)
- Oa D (a> Op A aD Oq -9 0d1 A Od2).

So F,k X2,2.

Let tp be an instance of X2,1, i.e. tp is

( P 1 P 2 ) ( 0 A A

Because none of the worlds among 3, 4, 5, 6, 7, 8 can force O O A, any of them
forces Y. Suppose that 2111 tp, i.e.

211-(P1 A P2) D ( A --3, D), (1)

and there is a world x such that

2Rx and x IF- O A, (2)

by (xSy A 2Ry -> yIF-ADP1 A ADP2 A --I D). (3)

Then x must be 4 or 5. Suppose x=4. Then, by (2), 6Ik A, by (3), 6 IF- P 1 A P2. By

(1), 6IF- -1 A -> D, but by (3) and because 6 is blind, 611- -1 A A -1 D. So x
cannot be 4. By the same considerations, x cannot be 5. So 2IF-

Suppose that 111 Y, i.e.

1 11- (P1 A P2) D ( 1 A -3 D), (4)

and there is a world x such that

1Rx and xll- OA, (5)

Vy (xSy A lRy -9 yIF-ADP1 A ADP2 A -1 D). (6)

25

-1 A --4 D) -> A D).

--1

tp.



Like above, x cannot be 4 or 5, so 411- -1 A and 5 IF A. (7)

Suppose 411- A. Then, by (6) and downwards preservation of P1 and P2, 4 IF P1 A P2.

By jump over, 8 IF P1 A P2. Then by (4), we must find O AV D in either 8, or 7, or

6. By (7), all of those force -1 A. By (7), 7 and 8 force -1 D, so also 811- -1 D. So

4.11 A. By reasons of symmetry, 5112 A.

Suppose 31F A and 4 11- A A -1 A and 5 II- -1 A A -1 A. Then by (6) and
jumpover, 8 11- P1 A P2, which, like above leads to a contradiction.

So x can not be 2. Suppose x=8. Then, by (1), either 611- A or (the symmetrical case)

7 IF A. If 61F A, then by (6), 6 IF P1 A P2. Then, by (4), 6 11- 1 A - D. But by
(6), 611- -1 D.

So 1 IF- (P.

In the next two lemmata it is shown show that the schemata X and E are independent

over ILP.

Lemma 4.1.9 ILPX,IZ E.
Proof Consider the following Veltman frame F = (W,R,S), (see the figure below)

with

W={ 1,2,3,4,5,6,7,8 };

R is the smallest transitive extension on W of

{IR2, 1R8, 2R3, 2R4, 2R5, 4R6, 5R7, 8R6, 8R7};

S is the smallest transitive, reflexive extension of R U { 3S4, 3S5 1.

Let M = (F, IF-) be a model on F with x IF p iff x=3, x IF- q iff x=6, x IF r iff x=7.

M is a countermodel for E: In M, 21F Op A p D Oq A p D Or; p A Oq A Or
is only forced in 8, but we do not have 2S8.

Thus WK (Op A pD Oq A O r ) A Oq A Or).

r
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F k X: We consider an instance of Xn,k,

(P1A...A Pn)D (D --I A --) D1) A ... A (P1A...A Pn) > ( A ---> DO
W A D 1 A

with W a 1-formula.

Let IF- be a forcing relation on F.

To show that Xn,k is forced in every world x of M=(F, IF- ), we treat three different

cases:

(a) If x>2, then x II- A, so x IF- Xn,k.

(b) x=2. Suppose

2l1-(P1A...A A --* D1) A ... A (PIA...A Pn)>(E] --I A - Dk)
(1)

and2JL(<AA W)>((A>PIA ... AA>Pn)--> D1 A ... ADkAW).
Then either 41F- 0A A W and (2)

Vz (4Sz --- zIF-A>P1 A ... A A>Pn A (-ID1 V ... V -1 Dk V -1 W), (3)

or (2) and (3) are true for 5. We treat the case in which they hold for 4. From (2)

6IF- A A S, so from (3),

611-P1A...A Pn A (-IDl V ... V --IDk ). (4)

Now either 6Jh P 1 A ... A Pn in which case we have a contradiction, or 6 IF- Pi A... A Pn

in which case we get, by (1) 6IF- (O A V D1) A ... A (O A V Dn). The latter implies

611-Dl A ... A Dn, which contradicts (4).

(c) x=1. Suppose

1 1 1 - - A --3 D1) A ... A ( P 1 A -- DO
(5)

andlJI(OAA W)>(A>P1A ... AA>Pn --* D1A ... ADkAW) (6)

and

adz>1(zJlz(PIA...A Pn) > ( - - 1 -- > D1) A ...

A (PIA...A A -* Dk)
V zIF- (OAA W)>(A>P1A ... AA>Pn-9 DIA ... ADkAW).

We distinguish two different cases:

(cl) 21F-(DA A W) and (7)

Vz (2Sz -- zIF-A>PI A ... A A>Pn A (-1DI V ... V -1 Dk V -1 W) (8)

and

(c2) (7) and (8) hold for 8.

c2: Then 61F- A A W, so by (8), 61F- PI A ... A Pn, so by (5), 61F- D I A ... A Dk, which

contradicts (8); or the same holds for 7.

c 1: Again, there are two possibilities. Either 6IF- A and 41F- `1 A ( or the same holds for 7

and 5, which is, by symmetry, the same case), but this contradicts our supposition. Or
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3 IF A, or 4IF A A -1 A and 5 IF -1 A (or, alternatively, 4 and 5 are interchanged

here, which is essentially the same case).

Suppose 4IF A A A and 5 IF -1 A. Then by (8), and downward preservation of

fl-formulae, 4IF PI A ... A Pn. Then by (5) and the fact that if 4Sz then z IF -1 A, and

by downwards preservation of D 1,...Dk, 4IF D 1 A ... A Dk. Also, by (7), 4 IF S. But this

contradicts (8).

Suppose that 3 IF A, and that both 4 and 5 force -1 A A -1 A. Then by (8) and the

jumpover of P1,...,Pn, we find that 8IF P1 A ... A Pn. So, by (5), we find ul.... uk
among { 6,7,8 1, such that ui IF A - Di, for 1 From the supposition we know

that any of the worlds 6, 7, and 8 force A, so that uilF Di. By jumpover and
downward preservation we find that 21F D1 A ... A Dn. Also 21F W. But this contradicts

(8).

19

Lemma 4.1.10 ILPE..F Xn,k for n>_2.

Proof Consider the following 1 LP Veltman frame F=(W,R,S):

W={ 1,2,3,4,5,6,7,8 };

R is the smallest transitive extension on W of

{ 1R2, 1R8, 2R3, 2R4, 2R5, 4R6, 5R7, 8R6, 8R7 };

S is the smallest transitive, reflexive extension of RU {2S8, 8S2, 3S4, 3S5}.

Let M=(F, IF ), with IF defined as follows:

x IF p iff x=3; x IF q iff x=6; x IF r iff x=7; t is nowhere forced.

The only worlds in which Oq A Or is forced are 2 and 8. But 21F Op, so 21F-0 -1p

---) O t, and we have 2S2 and 852. So l IF (O q A Or) D ( -'p -4 O t).
Every world of M forces p D 0q A p D Or, whereas O t is forced nowhere. So none

of the worlds forces pD O q A p D O r -4 Ot, while 2IF O p. So

1JF Op> (pD Oq A pD Or - Ot). Thus,
1Jl (Oq A Or)D ( --1 p - Ot) -4 Op> (pp 0q A pD Or -3 Ot).

r
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Let M=(F, IF ), for some forcing relation 1= on F. We show that M k E.

Being blind worlds, 3, 6 and 7 force E. 4 and 5 force E because 6 and 7 do not force

OA.
Suppose 2Rx and x IF OA A A D P1 A... A A D Pn. As 3 does not force O A, x cannot

be 3. So x is 4 (or, the symmetrical case, which is treated similarly, x is 5). Then
6IF- 1AAP1A...APn. So 21F-E.
Suppose lRx and x II- OA A A D P1 A ... A A D Pn. We distinguish four cases.

Case 1: x is 2 and 6IF- A (or, the symmetical case, 7IF- A). Then again we find
6IF AAP1A...APn.
Case 2: x is 2 and 41F- A A -+ A and 5 IF -1 A (or 4 and 5 are interchanged). Then

we find, by our supposition, that 4IF- P1 A ... A Pn. This implies, by jumping over, 8 IF

P1 A... A Pn. Also by jumping over, 8 IF -1 A. (Use 2S8.)

Case 3: x is 2 and 3 IF A and 4 and 5 force - A A -1 A. Then we find some of the Pi

in 4, the others in 5. Jumping them over, we must find 8IF- P1 A ... A Pn. Also by

jumping over, 8 IF A.

Case 4: x is 8. Then we find A in 6 ( or 7), so 61F P1 A ... A Pn. Being blind,
6IF- -A. (Use 8S6.)
This completes the proof.

Lemma 4.1.11 ILPEXn,kK Xn+1,k, for n>_1, k>- 1.

Proof We will show that the lemma holds for n=2, k=1. Let W, R, S, be as in the
proof Lemma 4.1.7. Let F'=(W',R',S') be defined by W'=WU {y}, R' is the transitive

closure of RU { bRy, yRwp,yRw 1, yRw2), S' is the reflexive transitive closure of
SU {xSy, ySx}. See the figure below.

po

wO

p1

W1

p2

w2

Reason along the lines of the proofs of Lemma 4.1.7 and 4.1.10 to see that
F' k ILPEX2,k. A forcing relation defined exactly like the forcing relation in the proof of

29
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Lemma 4.1.7 yields a model M on F such that

M,k (0 po A 0 p 1 A 0 P2) > ( -1 q--COs) -
Oq (q> Opo AqL Opl A q Op2 ---) Os).
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