Towards the Interpretability Logic of $I \Delta_{0}+E X P$

Marianne B. Kalsbeek

Logic Group
Preprint Series
No. 61
January 1991

Department of Philosophy University of Utrecht Heidelberglaan 2 3584 CS Utrecht The Netherlands

Towards the Interpretability Logic of $I \Delta_{0}+$ EXP

Marianne B. Kalsbeek
University of Utrecht, Department of Pilosophy, Heidelberglaan 2, 3584CS Utrecht
The Netherlands

Abstract:
We provide principles for the Interpretability Logic of $\mathrm{I} \Delta_{0}+$ EXP.

MSC-1980 classification 03B 15/03F30
Key words and phrases: Provability Logic, Interpretability, Fragments of Arithmetic

0 Introduction

Among the different interpretability logics corresponding to (classes of) arthmetical theories, the interpretability logic of $I \Delta_{0}+E X P$ (to which we will refer as $\mathrm{IL}_{\text {exp }}$), takes a special place. Though we have no explicit axiomatization for $\mathrm{IL}_{\text {exp }}$, we do have a complete description of the theory. Visser shows, in [VIS], that relative interpretability over I $\triangle_{0}+$ EXP can be characterized in terms of cut-free provability. From his observation that Löb's logic is the provability logic for cut-free provability in $\mathrm{I} \Delta_{0}+\mathrm{EXP}$ it follows that there is an embedding of $\mathrm{IL}_{\exp }$ in Löb's logic. Thus, validity of $\mathrm{IL}_{\exp ^{-}}$ principles can be decided using the characterization and finite Kripke models for L. The characterization result and the arithmetical completenesss of Löb's logic completely reduces the problem of determining $\mathrm{IL}_{\mathrm{exp}}$ to a purely modal question.
It can be easily verified that $\mathrm{ILP} \subseteq \mathrm{IL}_{\text {exp }}$. After Visser established the arithmetical completeness of ILP for finitely axiomatizable theories extending I $\triangle_{0}+$ SUPEREXP it was thought, $I \triangle_{0}+$ EXP being finitely axiomatizable, that ILP might be the interpretability logic of this theory as well. However, Visser and de Jongh found a principle that is valid in $I_{\text {exp }}$ and not derivable from ILP [VIS, appendix].
In this paper we discuss a subsystem of $\mathrm{IL}_{\text {exp }}$ which is an extension of ILP with X and E. Unlike the usual axioms of interpretability logic, X and E are rather axiom schemata than proper axioms, in two ways. First, they indicate infinite lists of axioms $\mathrm{E}_{1}, \mathrm{E}_{2}, \ldots$ and $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots$ Secondly, the axioms E_{n} and X_{n} are formulated using two kinds of variables: the usual propositional variables, which may be substituted for by arbitrary formulae in the language of interpretability logic, and special variables for which only formulae of special classes may be substituted. It will be shown that the system ILPXE is not finitely axiomatizable. Concerning the question whether ILPXE equals $\mathrm{IL}_{\mathrm{exp}}$ or is a proper subsystem of it, we do not have conclusive arguments.

We employ the following notational conventions :
$\neg, \square, \diamond, \Delta, \nabla$, bind equally strong; \wedge, \vee, bind equally strong; $\rightarrow, \leftrightarrow$, bind equally strong;
\square binds stronger than $\triangleright ; \triangleright$ binds stronger than $\wedge ; \wedge$ binds stronger than \rightarrow.

I would like to thank Albert Visser, Marc Jumelet, Dick de Jongh and Johan van Benthem for helpful discussions and suggestions.

1 Relevant facts

1.1 Löb's logic and $I \Delta_{0}+$ EXP

Löb's logic L is arithmetically sound \& complete w.r.t all theories T with the following properties: (i) T has a $\Sigma_{1^{-}}$provability predicate, (ii) T extends $\mathrm{I} \Delta_{0}+\mathrm{EXP}$, (iii) T does not prove $\operatorname{Prov}^{n}(\perp)$ for any n. So, for such T we have
$L \vdash$ A iff for all arithmetic interpretations * which translate \square with provability from $\mathrm{T}, \mathrm{I} \triangle_{0}+\mathrm{EXP} \vdash \mathrm{A}^{*}$.
Visser observes, in [VIS], that the same holds if we let arithmetic interpretations * translate the \square with cut free provability from T :
The transformation of an ordinary T-proof into a cut free proof from T is a superexponential process. That is, if x is the original proof, then the result of the cut elimination process will be bounded by itexp($|x|, \varrho(x))$, where $|x|$ is the binary length of x, and $\varrho(x)$ is the cut rank of x.
We will write \square_{T} for ordinary provability from T and Δ_{T} for cut free provability from T. Let φ and ψ be sentences in the language of S.

So in general $\mathrm{I} \Delta_{0}+$ EXP will not prove $\square_{\mathrm{T}} \varphi \rightarrow \Delta_{\mathrm{T}} \varphi$, but does prove $\Delta_{\mathrm{T}} \varphi \rightarrow \square_{\mathrm{T}} \varphi$. Clearly we have $\mathrm{I} \Delta_{0}+\mathrm{EXP} \vdash \varphi \Longrightarrow \mathrm{I} \Delta_{0}+\mathrm{EXP} \vdash \Delta_{\mathrm{T}} \varphi$ (Necesitation).
L1: The usual \sum-completeness argument yields $\mathrm{I} \Delta_{0}+\mathrm{EXP} \vdash \Delta_{\mathrm{T}} \varphi \rightarrow \square_{\mathrm{T}} \Delta_{\mathrm{T}} \varphi$. However, inspection of this argument shows that the cuts in the proof of $\Delta_{T} \varphi$ can be eleminated in $I \Delta_{0}+E X P$, so $I \Delta_{0}+E X P \vdash \Delta_{T} \varphi \rightarrow \Delta_{T} \Delta_{T} \varphi$ holds.
L2: From I $\Delta_{0}+\mathrm{EXP} \vdash \square_{\mathrm{T}}(\varphi \rightarrow \Psi) \rightarrow\left(\square_{\mathrm{T}} \varphi \rightarrow \square_{\mathrm{T}} \Psi\right)$ and $\mathrm{I} \Delta_{0}+\mathrm{EXP} \vdash \Delta_{\mathrm{T}} \varphi$ $\rightarrow \square_{\mathrm{T}} \varphi$, we get $\mathrm{I} \Delta_{0}+\mathrm{EXP} \vdash \Delta_{\mathrm{T}}(\varphi \rightarrow \psi) \rightarrow\left(\Delta_{\mathrm{T}} \varphi \rightarrow \square_{\mathrm{T}} \psi\right)$. Here the cut formula in the proof of ψ is standard, so the cut elimination necessary to get $\Delta_{T} \psi$ from $\square_{T} \Psi$ is only multi-exponential. Hence $I \Delta_{0}+E X P \vdash \Delta_{T}(\varphi \rightarrow \psi) \rightarrow\left(\Delta_{T} \varphi\right.$ $\left.\rightarrow \Delta_{\mathrm{T}} \Psi\right)$.
L3: $\mathrm{I} \Delta_{0}+\mathrm{EXP}$ has diagonalization, so with L1 and L2, also Löb's axiom is true for $\Delta_{\mathrm{T}}: \mathrm{I} \Delta_{0}+\mathrm{EXP} \vdash \Delta_{\mathrm{T}}\left(\Delta_{\mathrm{T}} \varphi \rightarrow \varphi\right) \rightarrow \Delta_{\mathrm{T}} \varphi$.

1.2 The Friedman-Visser characterization

In the following,
$\mathrm{A} \triangleright \mathrm{B}$ will stand for $\mathrm{I} \triangle_{0}+\mathrm{EXP}+\mathrm{A}$ interpretes $\mathrm{I} \triangle_{0}+\mathrm{EXP}+\mathrm{B}$;
$\triangle \mathrm{A}$ for $\triangle_{\mathrm{I} \Delta_{0}+\mathrm{EXP}} \mathrm{A} ; \nabla \mathrm{A}$ for $\neg \triangle \neg \mathrm{A}$;
$\square \mathrm{A}$ for $\square_{I \Delta_{0}+\mathrm{EXPA}} ; \diamond \mathrm{A}$ for $\neg \square \neg \mathrm{A}$.

In [VIS], Visser gives the following Friedman-style characterization of relative interpretability over $\mathrm{I} \Delta_{0}+\mathrm{EXP}$:

Theorem 1.2.1 $\mathrm{I} \triangle_{0}+\mathrm{EXP} \vdash \mathrm{A} \triangleright \mathrm{B} \leftrightarrow \Delta(\nabla \mathrm{A} \rightarrow \nabla \mathrm{B})$.

Corollary 1.2.2

(a) $\mathrm{I} \Delta_{0}+\mathrm{EXP} \vdash \square \mathrm{A} \leftrightarrow \Delta \Delta \mathrm{A}$;
(b) $\mathrm{I} \triangle_{0}+\mathrm{EXP} \vdash \triangle \mathrm{A} \rightarrow \square \mathrm{A}$.

This theorem, combined with the the fact that L is the provability logic of cut free provability in $\mathrm{I} \Delta_{0}+\mathrm{EXP}$, gives us a complete characterization of the interpretability logic of $\mathrm{I} \triangle_{0}+\mathrm{EXP}$.
We define a translation t which translates formulae of $L(\square, \triangleright)$ into formulae of $L(\triangle)$ according to the Visser-Friedman characterization, as follows:

Definition 1.2.3

$\mathrm{T}^{\mathrm{t}}=\mathrm{T}$ and $\perp^{\mathrm{t}}=\perp$;
$\mathrm{p}^{\mathrm{t}}=\mathrm{p}$, for all propositional variables p ;
$(\square \varphi) \mathbf{t}=\Delta \Delta \varphi^{\mathrm{t}}$;
$(\varphi \triangleright \Psi) \mathrm{t}=\Delta\left(\nabla \varphi{ }^{\mathrm{t}} \rightarrow \nabla \psi^{\mathrm{t}}\right)$.

Trivially, we have the following lemma:

Lemma 1.2.4 For all $\varphi \in L(\square, \triangleright), \Pi_{\exp } \vdash \varphi$ iff $L \Delta \vdash \varphi^{t}$.

This lemma suggests the following semantics for the interpretability logic of $\mathrm{I} \Delta_{0}+\mathrm{EXP}$:

Definition 1.2.5 An $I L_{\text {exp }}$ Kripke model M is a quadruple ($\mathrm{W}, \mathrm{R}, \mathrm{b}, \Vdash$), where ($\mathrm{W}, \mathrm{R}, \mathrm{b}$) is a finite Kripke model for L , i.e. W is a finite set, R is a transitive irreflexive binary relation on $W, b \in W$ and for all $x \in W$, if $x \neq b$ then $b R x$, and \Vdash is a forcing relation on (W,R,b) with accessability relations for \square and \triangleright defined as follows:
$\mathrm{x} \Vdash \mathrm{A} \triangleright \mathrm{B}$ iff $\forall \mathrm{y}, \mathrm{z}(\mathrm{xRyRz} \wedge \mathrm{z} \Vdash \mathrm{A} \rightarrow \exists \mathrm{v}(\mathrm{yRv} \wedge \mathrm{v} \Vdash \mathrm{B})$;
$\mathrm{x} \| \square \mathrm{A}$ iff $\forall \mathrm{y}, \mathrm{z}(\mathrm{xRyRz} \rightarrow \mathrm{z} \Vdash \mathrm{A})$.

It will be claer that the $I_{\exp }$ Kripke models provide us with semantics for whichIL ${ }_{\exp }$ is sound and complete. Also, by arithmetical completeness of L for cut free provability
in $\mathrm{I} \Delta_{0}+\mathrm{EXP}$, once we have an axiomatization A for $\mathrm{IL}_{\text {exp }}$ that is sound and complete with respect to these semantics, we have arithmetical completeness of A.

An immediate consequence of this is:

Corollary 1.2.6 $\mathrm{I} \Delta_{0}+\mathrm{EXP} \nvdash \square \mathrm{A} \rightarrow \triangle \mathrm{A}$.
Proof Consider the following Kripke model $\mathrm{M}=(\mathrm{W}, \mathrm{R}, \stackrel{I}{ }$) :
$W=\{b, x, y\}$,
$\mathrm{R}=\{\langle\mathrm{b}, \mathrm{x}\rangle\langle\mathrm{b}, \mathrm{y}\rangle\langle\mathrm{x}, \mathrm{y}\rangle\}$
$t \mid \vdash p$ iff $t=y$.
区

2 ILP and IL $_{\text {exp }}$

2.1 $\mathrm{ILP} \subseteq \mathrm{IL}_{\mathbf{e x p}}$

Using the Friedman-Visser characterization one can easily see that all theorems of ILP are theorems of $\mathrm{IL}_{\text {exp }}$.

Theorem 2.1.2 IL $_{\text {exp }} \vdash$ ILP.

Proof We will show that $\mathrm{L}_{\Delta} \vdash$ (ILP) ${ }^{\mathrm{t}}$, where ${ }^{\mathrm{t}}$ is the translation defined in Definition 1.2.3. By the Friedman-Visser characterization, the theorem immediately follows from this. First we will show that the translation of Löb's axiom is a theorem of L_{Δ}. Consider $(\square(\square \mathrm{A} \rightarrow \mathrm{A}) \rightarrow \square \mathrm{A}))^{\mathrm{t}}$, i.e. $\Delta \Delta\left(\Delta \Delta \mathrm{A}^{\mathrm{t}} \rightarrow \mathrm{A}^{\mathrm{t}}\right) \rightarrow \Delta \Delta \mathrm{A}^{\mathrm{t}}$.

Reason in L_{Δ} :
$\Delta\left(\Delta \Delta \mathrm{A}^{\mathrm{t}} \rightarrow \mathrm{A}^{\mathrm{t}}\right) \rightarrow \Delta\left(\Delta \mathrm{A}^{\mathrm{t}} \rightarrow \mathrm{A}^{\mathrm{t}}\right)\left(\right.$ since $\left.\Delta \mathrm{A}^{\mathrm{t}} \rightarrow \Delta \Delta \mathrm{A}^{\mathrm{t}}\right) ;$
$\Delta\left(\Delta \Delta \mathrm{A}^{\mathrm{t}} \rightarrow \mathrm{A}^{\mathrm{t}}\right) \rightarrow \Delta \mathrm{A}^{\mathrm{t}}($ by Löb's axiom $)$, so
$\Delta \Delta\left(\Delta \Delta \mathrm{A}^{\mathrm{t}} \rightarrow \mathrm{A}^{\mathrm{t}}\right) \rightarrow \Delta \Delta \mathrm{A}^{\mathrm{t}}$ (by necessitation).
Next we show that the persistency axiom is a theorem of $\mathrm{L} \Delta$. Consider
$(\mathrm{A} \triangleright \mathrm{B} \rightarrow \square(\mathrm{A} \triangleright \mathrm{B}))^{\mathrm{t}}=\Delta\left(\nabla \mathrm{A}^{\mathrm{t}} \rightarrow \nabla \mathrm{B}^{\mathrm{t}}\right) \rightarrow \Delta \Delta \Delta\left(\nabla \mathrm{A}^{\mathrm{t}} \rightarrow \nabla \mathrm{B}^{\mathrm{t}}\right)$.
Apply L 2 twice to $\Delta\left(\nabla \mathrm{A}^{\mathrm{t}} \rightarrow \nabla^{\mathrm{t}} \mathrm{B}\right)$.
We leave checking of other axioms and rules to the reader.

2.2 Conservativity of IL $_{\text {exp }}$ over ILP

In this paragraph, we will give a modal proof of the conservativity of $\mathrm{IL}_{\text {exp }}$ over ILP for formulae in $L(\square)$, and show that $I_{\exp }$ is conservative over ILP for a restricted, and semantically defined, class of formulae of $L(\square, \triangleright)$. In order to do the latter, we introduce a Friedman style semantics for which ILP is sound and complete. (See paragraph 3.4 for some negative results on conservativity of $\mathrm{IL}_{\text {exp. }}$.)

Definition 2.2.1 A structured Friedman frame F is a quadruple (W,R,N,b), where W is a finite set (the worlds of F), R is a transitive, irreflexive relation on W, N is a
subset of W, b is a world in W such that $\forall \mathrm{x}(\mathrm{x} \in \mathrm{W} \wedge \mathrm{x} \neq \mathrm{b} \rightarrow \mathrm{bRx})$ (so b is the unique root of F).
If $x \in N$ we will also write $N(x)$, and say that x is a normal world, if $x \notin N$ we say that x is a structural world, and write $S(x)$ or $x \in S$.

Definition 2.2.2 A structured Friedman model M is given by a structured Friedman frame F together with a forcing relation \mathbb{F} which is only defined on normal worlds and which satisfies

```
x|}\squareA\mathrm{ iff }\forally\inS \forallz\inN(xRyRz -> z| A)
x|ADB iff }\forally\inS\forallz\inN(xRyRz\wedge z|A->\existst\inN(yRt ^t|B))
```


Definition 2.2.3

(a) A world x of a structured Friedman frame F is said to be in level $n(\mathrm{n} \geq 0)$ if $\mathrm{n}=\max \left\{\mathrm{k}: \exists \mathrm{y}_{0}, \ldots, \mathrm{y}_{\mathrm{k}} \in \mathrm{W}\left(\mathrm{y}_{0}=\mathrm{b} \& \mathrm{y}_{\mathrm{k}}=\mathrm{x} \& \mathrm{y}_{\mathrm{i}} R \mathrm{y}_{\mathrm{i}+1}\right.\right.$ for $\left.0 \leq \mathrm{i}<\mathrm{k}\right\}$.
(So, x is in level n if x is maximally n R-steps away from b.)
(b) A structured Friedman frame F is levelled if

1) $\forall x \in W(N(x)$ iff x is in an even level), and
2) All blind worlds of F are in an even level.
(c) A levelled Friedman model M is a Friedman model M on a levelled structured Friedman frame.

Lemma 2.2.4 ILP is sound and complete with respect to levelled Friedman models. Proof Cf. [KA].

Lemma 2.2.5 For all $\varphi \in L(\square), \mathrm{IL}_{\exp } \vdash \varphi$ iff $\operatorname{ILP} \vdash \varphi$.
Proof The lemma immediately follows from the arithmetical completeness theorems for L, ILP, and IL $_{\text {exp. }}$. The following is a semantical proof of the left to right part of this statement.
Let $\varphi \in L(\square)$, and $\operatorname{ILP} \not \subset \varphi$. Let $\mathrm{M}=(\mathrm{W}, \mathrm{R}, \mathrm{N}, \mathrm{b}, \Vdash)$ be a levelled Friedman counter model for φ, in which $b \Vdash \neg \upharpoonleft$. From M we will construct, in two stages, an $\mathrm{IL}_{\text {exp }}$ conter model to φ. First we construct an $\mathrm{IL}_{\text {exp }}$ frame $\mathrm{F}^{\prime}=\left(\mathrm{W}^{\prime}, \mathrm{R}^{\prime}, \mathrm{b}\right)$ from (W,R,N,b), then we will define a forcing relation \Vdash^{\prime} on F^{\prime}, using \mathbb{F}.
First stage. W^{\prime} will consist of all worlds x in W such that $N(x)$ plus, for all such x, except b, a copy of x, called x_{p}. R' will be defined as follows: $x R$ 'y iff ($x R y \vee x=y_{p}$ $\left.\vee \exists z\left(x R z \wedge y=z_{p}\right)\right)$. See the figure below:

Note that the following hold for worlds $\mathrm{x}, \mathrm{y}, \mathrm{z}$ in W^{\prime} :
(a) If $N(x)$ and $N(y)$, then $x R ' y$ iff $x R y$;
(b) Each world x has one immediate R^{\prime}-predecessor, and if $\mathrm{N}(\mathrm{x})$, then this immediate predecessor is x_{p};
(c) If $N(x)$ and $x R^{\prime} y R^{\prime} z$, then (i) if $N(z)$, then $x R R z$; (ii) if $z=v_{p}$, then $x R R v$;
(d) If $x_{p} R^{\prime} y R^{\prime} z$, and $N(z)$, then $x R R z$ and $x R^{\prime} R^{\prime} z$;
(e) If $x_{p} R{ }^{\prime} y R^{\prime} z$, and $z=v_{p}$, then $x R R v$ and $x R$ 'R'v.

The forcing relation \Vdash^{\prime} ' will be defined as follows: $x \|-p$ iff $N(x)$ and $x \| p$ or $x=y p$ and $y \| p$.

Claim For all $\varphi \in L(\square)$, and all worlds x in $W \cap N \backslash\{b\}, x \Vdash \varphi \leftrightarrow x \Vdash ' \varphi \leftrightarrow$ $\mathrm{x}_{\mathrm{p}} \Vdash^{\prime} \varphi$; and $\mathrm{b} \Vdash \varphi \leftrightarrow \mathrm{b} \Vdash^{\prime} \varphi$.
It is easily seen that the claim holds for all blind worlds, and for all propositional variables. Suppose it holds for all successors of a world x.
Suppose $x \Vdash \square \varphi$. Let y, z be worlds of W^{\prime}, such that $x R^{\prime} y R^{\prime} z$. Then either $N(z)$ or $z=v_{p}$. If $N(z)$, then by (c), $x R R z$, so $z \| \varphi$, so, by supposition, $z \|{ }^{\prime} \varphi$; if $z=v_{p}$, then by (c), $x R R v$, so $v \Vdash \varphi$, so by supposition, $v_{p} \Vdash{ }^{\prime} \varphi$. So $x \Vdash{ }^{\prime} \square \varphi$.
Suppose $x \mathbb{F}^{\prime} \square \varphi$. Let y, z be worlds of W, such that $x R y R z$, and $N(z)$. Then there is a world y^{\prime} in W^{\prime}, such that $x R$ 'y'R'z. Then $z \Vdash{ }^{\prime} \varphi$, so $z \Vdash \varphi$. So $x \Vdash \square \varphi$.
Suppose $x \Vdash{ }^{\prime} \square \varphi$. Let y, z be worlds of W^{\prime}, such that $x_{p} R^{\prime} y R$ ' z. Now either $N(z)$, so, by (d), xR'R'z, so $z \Vdash^{\prime} \varphi$; or $z=v_{p}$, so, by (c), xR'R'v, so $v \Vdash{ }^{\prime} \varphi$, so by supposition $z \Vdash{ }^{\prime} \varphi$. So $x_{p} \Vdash^{\prime} \square \varphi$.
Suppose $x_{p} \Vdash{ }^{\prime} \square \varphi \cdot x_{p} R$ ' x, so $x \Vdash ' \square \varphi$.
This shows that the claim holds, and concludes the proof.

Definition 2.2.6 We define for formulae φ in $L(\square, \triangleright)$ the \square / \triangleright-depth $\mathrm{D}(\varphi)$ as follows:
(i) $\mathrm{D}(\mathrm{p})=0$ for all propositional variables p ;
(ii) $\mathrm{D}(\square \varphi)=\mathrm{D}(\varphi)+1$ for all φ;
(iii) $\mathrm{D}(\varphi \triangleright \Psi)=\max (\mathrm{D}(\varphi), \mathrm{D}(\psi))+1$ for all φ and ψ;
(iv) $\mathrm{D}(\neg \varphi)=\mathrm{D}(\varphi)$;
(v) $\mathrm{D}(\varphi \wedge \Psi)=\mathrm{D}(\varphi \vee \Psi)=\max (\mathrm{D}(\varphi), \mathrm{D}(\Psi))$.

The following lemma shows that $\mathrm{IL}_{\text {exp }}$ is conservative over ILP for a certain (semantically characterized) class of formulae.

Lemma 2.2.7 If φ is a formula of $L(\square, \triangleright)$ such that there is a levelled Friedman model M in which the maximum of the levels is smaller than or equal to 4 and in which $\mathrm{b} \nVdash \varphi$, then $\mathrm{IL}_{\exp } K \varphi$.
Proof Let φ be a formula of $L(\square, \triangleright)$ for which there is a levelled Friedman counter model $\mathrm{M}=(\mathrm{W}, \mathrm{R}, \mathrm{N}, \mathrm{b}, \|)$, in which $\mathrm{b} \Vdash \neg \varphi$, and the maximum of the levels of M is ≤ 4.
We can transform M into a Friedman model for $\mathrm{IL}_{\text {exp }}$ by defining a new forcing relation \mathbb{I}^{-}on (W,R,b) as follows:
a) if x is a normal world of ($\mathrm{W}, \mathrm{R}, \mathrm{s}, \mathrm{b}$), then $\mathrm{x} \Vdash^{\prime} \mathrm{p}$ iff $\mathrm{x} \Vdash \mathrm{p}$;
b) if x is a structural world of level 1 , then $\mathrm{x} \Vdash$ ' p for all p (or $\mathrm{x} \Vdash^{\prime} \neg \mathrm{p}$ for all p, or \ldots);
c) if x is a structural world of level 3, then :
choose one particular y of level 4 , henceforth referred to as $y(x)$, such that $x \operatorname{Ry}(x)$, and
let $x \Vdash^{\prime} p$ iff $y(x) \Vdash p$, for all p.

We will show that \mathbb{F}^{\prime} has the following properties:

1) for all normal worlds x in levels 2 and 4 of (W,R,s,b), $x \Vdash{ }^{\prime} \varphi$ iff $x \Vdash \varphi$, for all φ.
2) for all structural worlds x in level 3 of (W,R,s,b), $x \Vdash \vdash^{\prime} \varphi$ iff $y(x) \Vdash \varphi$, for all φ.

We will first show (1) and (2) and then use these to show that the following holds:
3) $b \Vdash{ }^{\prime} \varphi$ iff $b \Vdash \varphi$, for all φ.
(1) Because the worlds of level 4 are blind and (according to condion a above) the '-forcing relation for propositional variables equals \Vdash for propositional variables on worlds of level 4, it is clear that, for all x of level $4, x \Vdash \varphi$ iff $x \Vdash ' \varphi$.
As for worlds x of level 2 , '-forcing of a formula φ is completely determined by '-forcing of propositional variables in such x itself and '-forcing on the worlds of level 4 which are accessible form x . By definition, the '-forcing of propositional variables in
a world x of level 2 is equal to \Vdash, and we already know that $y \Vdash \varphi$ iff $y \Vdash{ }^{\prime} \varphi$ for all worlds y of level 4.
(2) is proved by induction on φ. Let x be a world of level 3.

We have defined \Vdash^{\prime} on x exactly so that, for propositional variables $p, x \Vdash^{\prime} p$ iff $\mathrm{y}(\mathrm{x}) \Vdash$ p.
(IH) Suppose $x \Vdash^{\prime} \varphi$ iff $y(x) \Vdash \varphi \varphi$ and $x \Vdash^{\prime} \Psi$ iff $y(x) \Vdash \Psi$.
Then
($ᄀ) \quad x \Vdash^{\prime} \neg \varphi$ iff $y(x) \Vdash \neg \varphi$, by $I H$;
(\wedge) Suppose $x \Vdash^{\prime} \varphi \wedge \psi$. Then $x \Vdash{ }^{\prime} \varphi$ and $x \Vdash^{\prime} \Psi$, so, by $I H, y(x) \Vdash \varphi$ and $y(x) \Vdash \psi$.
Suppose $y(x) \Vdash \varphi \wedge \Psi$. Then, again by $I H, x \Vdash ' \varphi \wedge \psi$.
$(D) \quad$ This case is immediately true by the fact that all worlds of level 3 and 4 force all formulae of the form $\varphi \triangleright \Psi$.
3) Again, this is proved by induction on φ. By a, $b \Vdash$ ' p iff $b \Vdash p$, for all propositional variables p. (IH) Suppose $b \Vdash{ }^{\prime} \varphi$ iff $b \Vdash \varphi$ and $b \Vdash{ }^{\prime} \Psi$ iff $b \Vdash \psi$. The cases \neg and \wedge are trivial, so we only treat the case \triangleright.
Suppose $b \Vdash{ }^{\prime} \varphi \triangleright \psi$. Let $b R t R z$ and $z \Vdash \varphi$ and z of level 2 . Then by (1), $z \Vdash{ }^{\prime} \varphi$, so there must be a y such that $t R x$ and $x \Vdash{ }^{\prime} \psi$. If x is of level 2 or 4 , then by (1), $x \Vdash \psi$. If x is of level 3, then we can apply (2), and find that $y(x) \Vdash ' \Psi$. Again by (1), $y(x) \Vdash \psi$, and $t \operatorname{Ry}(x)$. So bll $\varphi \triangleright \psi$.
For the converse, suppose $b \Vdash \varphi \triangleright \Psi$. Let $b R t R z$ and $z \Vdash$ ' φ. If z is of level 3, then there is $y(z)$ with $z R y(z)$ and $y(z) \Vdash \varphi$, so we can find, by supposition, an x in level 2 or 4 such that tRx and $\mathrm{tl} \Psi$, so by (1), $\mathrm{tl} \mathbb{F}^{\prime} \Psi$. The case in which z is of level 2 or 4 is again an easy application of (1). This completes the proof of statement (3).

Thus we found an $\mathrm{IL}_{\exp }$ model $\mathrm{M}^{\prime}=\left(\mathrm{W}, \mathrm{R}, \mathrm{b}, \mathbb{F}^{\prime}\right)$ such that $\mathrm{b} \Vdash^{\prime} \varphi$.
This completes the proof of Lemma 2.2.7.
『

3 The axiom schema \mathbf{E}

ILP is not all there is to $\mathbb{I}_{\exp }$. De Jongh and Visser [VIS] first discovered a sentence showing that IL $_{\exp }$ strictly extends ILP. We will show that at least two different axiom schemata, which are mutually independent over ILP, are valid in IL $_{\text {exp }}$. This section is devoted to the treatment of the axiom schema E. In Section 4, the schema X will be treated and the relative independency of E and X over ILP.

3.1Σ - and Π-formulae

We define two classes of formulae in the language $L(\square, \triangleright)$:

Definition 3.1.1 The class of \sum-formulae of $L(\square, \triangleright)$ is defined as follows:
(i) T and \perp are in Σ;
(ii) for all φ and $\psi, \varphi \triangleright \psi$ is in Σ;
(iii) for all φ, then $\square \varphi$ is in Σ;
(iv) if φ and ψ are in Σ, the so are $\varphi \vee \psi, \varphi \wedge \psi$;
(v) no other formulae are in in Σ.

In the following, we will consider all formulae which are equivalent to a formula of the \sum-class, as belonging to this class.
The class of Π-formulae consists of formulae which are equivalent to a negation of a \sum-formula:

Definition 3.1.2 The class of Π-formulae of $L(\square, \triangleright)$ is defined as follows:
(i) T and \perp are in Π;
(ii) for all φ and $\Psi, \neg(\varphi \triangleright \Psi)$ is in Σ;
(iii for all φ, then $\diamond \varphi$ is in Π;
(iv) if φ and Ψ are in Π, then so are $\varphi \vee \Psi, \varphi \wedge \psi$;
(v) no other formulae are in in Π.

The following lemma sums up the characteristics of the behaviour of \sum - and the Π formulae in Kripke models for $\mathrm{IL}_{\text {exp }}$ and Veltman models for ILP.

Lemma 3.1.3 Let P be a Π-formula and S a \sum-formula, x be a world of a Kripke model for $\mathrm{IL}_{\text {exp }}$. The following hold:
(i) $\mathrm{x} \Vdash \mathrm{P} \Rightarrow \forall \mathrm{y}(\forall \mathrm{z}(\mathrm{xRz} \rightarrow \mathrm{yRz}) \rightarrow \mathrm{y} \Vdash \mathrm{z})$ (jump-over of Π-formulae);
(ii) $\mathrm{x} \Vdash \mathrm{P} \Rightarrow \forall \mathrm{y}(\mathrm{yRx} \rightarrow \mathrm{y} \Vdash \mathrm{z})$ (downwards preservation of Π-formulae);
(iii) $\mathrm{x} \Vdash \mathrm{S} \Longrightarrow \forall \mathrm{y}(\forall \mathrm{z}(\mathrm{yRz} \rightarrow \mathrm{xRz}) \rightarrow \mathrm{y} \Vdash \mathrm{S})$ (jump-over of \sum-formulae);
(iv) $\mathrm{x} \Vdash \mathrm{S} \Rightarrow \forall \mathrm{y}$ ($\mathrm{xRy} \rightarrow \mathrm{y} \Vdash \mathrm{S}$) (upwards preservation of \sum-formulae).

In ILP Veltman models, we have the following:
(v) $\mathrm{x} \Vdash \mathrm{S} \Rightarrow \forall \mathrm{y}(\forall \mathrm{u}, \mathrm{z}(\mathrm{yRu} \rightarrow(\mathrm{xRu} \wedge(\mathrm{uSz} \wedge \mathrm{xRz} \rightarrow \mathrm{yRz}))) \rightarrow \mathrm{y} \Vdash \mathrm{S}$;
(vi) $\mathrm{x} \Vdash \mathrm{P} \Rightarrow \forall \mathrm{y}(\forall \mathrm{u}, \mathrm{z}(\mathrm{xRu} \rightarrow(\mathrm{yRu} \wedge(\mathrm{uSz} \wedge \mathrm{yRz} \rightarrow \mathrm{xRz}))) \rightarrow \mathrm{y} \Vdash \mathrm{P}$.

Proof The proofs (by easy induction on P and S) of (i), (iii), (v), and (vi), are left to the reader. By transitivity of R, (i) implies (ii), and (iii) implies (iv) .

区

Throughout Section 3, $\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{n}}$ will be Π-formulae and S will be some \sum-formula.

3.2. The axiom schema E

Definition 3.2.1 E_{n} is the following axiom schema:
$\left(\diamond A \wedge A \triangleright P_{1} \wedge \ldots \wedge A D P_{n} \wedge S\right) \triangleright\left(\square \neg A \wedge P_{1} \wedge \ldots \wedge P_{n} \wedge S\right)$.
We will refer to E_{n} as E if we do not want to specify the index n.
In this paragraph we will prove the following theorem:

Theorem 3.2.2 $\mathrm{IL}_{\mathrm{exp}} \vdash \mathrm{E}$.

We will give two proofs of this theorem. The first one semantic (Lemma 3.2.4), the second syntactic (Lemma 3.2.6). In the first proof, we use a distance function on $\mathrm{IL}_{\mathrm{exp}}$ frames, defined below, which gives, for each pair of worlds, the maximal number of worlds lying in between. We use $x R_{0} y$ to express that either $x=y$ or $x R y$.

Definition 3.2.3 d_{F} is a partial function on pairs of worlds in a Kripke frame F , defined by
$\mathrm{d}_{\mathrm{F}}(\mathrm{x}, \mathrm{y})=\sup \left\{1+\mathrm{d}_{\mathrm{F}}(\mathrm{z}, \mathrm{y}): \mathrm{xRzRy}\right\}$ if xRw ;
$\mathrm{d}_{\mathrm{F}}(\mathrm{x}, \mathrm{y})=$ is undefined otherwise.

Lemma 3.2.4 E is valid on all $\mathrm{IL}_{\text {exp }}$ frames.
Proof Let $\mathrm{F}=(\mathrm{W}, \mathrm{R}, \mathrm{b})$ be a finite Kripke frame with irreflexive, transitive acessibility relation R, let M be (F, \Vdash). We will show that all instances of E are forced in all worlds of M . We consider the following instance of E :
$\left(\diamond \mathrm{A} \wedge \mathrm{A} \triangleright \mathrm{P}_{1} \wedge \ldots \wedge \mathrm{AD} \mathrm{P}_{\mathrm{n}} \wedge \mathrm{S}\right) \triangleright\left(\square \neg \mathrm{A} \wedge \mathrm{P}_{1} \wedge \ldots \wedge \mathrm{P}_{\mathrm{n}} \wedge \mathrm{S}\right)$.
Let x be a world of M, and suppose there are t, y such that $x R t R y$ and
$y \Vdash \diamond A \wedge A D P_{1} \wedge \ldots \wedge A D P_{n} \wedge S$.
We will show that there exists a y^{\prime} such that tRy' and
$y^{\prime} \Vdash \square \neg A \wedge P_{1} \wedge \ldots \wedge P_{n} \wedge S$.
As y $\Vdash \diamond$ A we know there are worlds w^{\prime}, z^{\prime}, such that
yRw'Rz' and $z^{\prime} l \mid$ A.
From the properties of the frame F it follows that there are w, z satisfying (2) such that $\mathrm{d}_{\mathrm{F}}(\mathrm{w}, \mathrm{z})=1$ and $\mathrm{d}_{\mathrm{F}}(\mathrm{y}, \mathrm{z})=\max \left\{\mathrm{d}_{\mathrm{F}}\left(\mathrm{y}, \mathrm{z}^{\prime}\right): \mathrm{z}^{\prime} \|-\mathrm{A}\right\}$. It follows that $w \Vdash \square \neg A$.
But $y \Vdash A \triangleright P_{1} \wedge \ldots \wedge A \triangleright P_{n}, y R w R z$ and $z \Vdash A$; so there must be u_{i} (for $1 \leq i$ $\leq n$), such that $w R u_{i}$ and $u_{i} \Vdash P_{i}$ for $1 \leq i \leq k$. By downwards preservation of the P_{i} we get
$w \Vdash P_{1} \wedge \ldots \wedge P_{n}$.
By (1) and upwards preservation of S we get
$w \| S$.
Combining (3) - (5) we find that w is the y^{\prime} we were looking for.

By the soundness of $\mathrm{IL}_{\text {exp }}$ frames for $\mathrm{IL}_{\text {exp }}$, Lemma 3.2.5 implies that all instances of E are theorems of $\mathrm{IL}_{\text {exp. }}$. Next we will give a syntactic proof of this fact, by showing that the ${ }^{\mathrm{t}}$-translation of every instance of E is derivable in L_{Δ}. We will use the following properties of translated Σ - and Π-formulae in L_{Δ} :

Lemma 3.2.5 For all S in \sum and all P in Π,
(a) $\mathrm{L}_{\Delta} \vdash \mathrm{St}^{t} \rightarrow \Delta \mathrm{St}^{\mathrm{t}}$;
(b) $\mathrm{L}_{\Delta} \vdash \nabla \mathrm{P}^{\mathrm{t}} \rightarrow \mathrm{Pt}$.

Proof Because every Π-formula is the negation of a \sum-formula, (b) immediately follows from (a), by contraposition. To prove (a), note that L_{Δ} proves the following:
$T \rightarrow \Delta T ;$
$\perp \rightarrow \Delta \perp$;
$(\square \varphi)^{\mathrm{t}} \rightarrow \Delta(\square \varphi)^{\mathrm{t}}$, for all φ;
$(\varphi \triangleright \psi)^{\mathrm{t}} \rightarrow \Delta(\varphi \triangleright \psi)^{\mathrm{t}}$, for all φ and ψ.
Now assume that L_{Δ} proves $\varphi^{t} \rightarrow \Delta \varphi^{t}$ and $\psi^{t} \rightarrow \Delta \psi^{t}$. Then L_{Δ} proves $(\varphi \wedge \psi)^{\mathrm{t}} \rightarrow \Delta(\varphi \wedge \Psi)^{\mathrm{t}}$ and $(\varphi \vee \psi)^{\mathrm{t}} \rightarrow \Delta(\varphi \vee \Psi)^{\mathrm{t}}$. This concludes the proof.

Lemma 3.2.6
$\mathrm{L}_{\Delta} \vdash \Delta\left[\nabla\left[\nabla \nabla \mathrm{A}^{\mathrm{t}} \wedge \Delta\left(\nabla \mathrm{A}^{\mathrm{t}} \rightarrow \nabla \mathrm{P}_{1} \mathrm{t}\right) \wedge \ldots \wedge \Delta\left(\nabla \mathrm{A} \rightarrow \nabla \mathrm{P}_{\mathrm{n}}{ }^{\mathrm{t}}\right) \wedge \mathrm{S}^{\mathrm{t}}\right] \rightarrow\right.$

$$
\left.\nabla\left[\Delta \Delta \neg A^{t} \wedge P_{1}{ }^{\mathrm{t}} \wedge \ldots \wedge \mathrm{P}_{\mathrm{n}}{ }^{\mathrm{t}} \wedge \mathrm{~S}^{\mathrm{t}}\right]\right] .
$$

Proof Reason in L_{Δ}. First, note that contraposition of Löb's axiom for $\neg \mathrm{B}$ implies $\nabla \mathrm{B} \rightarrow \nabla(\mathrm{B} \wedge \Delta \neg \mathrm{B})$. Substitution of $\nabla \mathrm{A}^{\mathrm{t}}$ for B yields
$\nabla \nabla \mathrm{A}^{\mathrm{t}} \rightarrow \nabla\left(\nabla \mathrm{A}^{\mathrm{t}} \wedge \Delta \Delta \neg^{\mathrm{t}}\right)$.
Suppose
$\nabla \nabla \mathrm{A}^{\mathrm{t}} \wedge \Delta\left(\nabla \mathrm{A}^{\mathrm{t}} \rightarrow \nabla \mathrm{P}_{1}{ }^{\mathrm{t}}\right) \wedge \ldots \wedge \Delta\left(\nabla \mathrm{A} \rightarrow \nabla \mathrm{P}_{\mathrm{n}} \mathrm{t}\right) \wedge \mathrm{S}^{\mathrm{t}}$.
Then
$\nabla \nabla \mathrm{A}^{\mathrm{t}} \wedge \Delta\left(\left(\nabla \mathrm{A}^{\mathrm{t}} \rightarrow\left(\nabla \mathrm{P}_{1}^{\mathrm{t}} \wedge \ldots \wedge \nabla \mathrm{P}_{\mathrm{n}}^{\mathrm{t}}\right)\right) \wedge \mathrm{St}^{\mathrm{t}}\right)$.
Using (1), we then have

$$
\nabla\left(\nabla \mathrm{A}^{\mathrm{t}} \wedge \Delta \Delta \neg^{\mathrm{t}}\right) \wedge \Delta\left(\left(\nabla \mathrm{A}^{\mathrm{t}} \rightarrow\left(\nabla \mathrm{P}_{1} \mathrm{t} \wedge \ldots \wedge \nabla \mathrm{P}_{\mathrm{n}}^{\mathrm{t}}\right)\right) \wedge \mathrm{St}\right)
$$

This implies

$$
\nabla\left(\Delta \Delta \neg \mathrm{A}^{\mathrm{t}} \wedge \nabla \mathrm{P}_{1}^{\mathrm{t}} \wedge \ldots \wedge \nabla \mathrm{P}_{\mathrm{n}}^{\mathrm{t}} \wedge \mathrm{~S}^{\mathrm{t}}\right)
$$

which, by Lemma 3.2.6, yields

$$
\begin{equation*}
\nabla\left(\Delta \Delta \neg \mathrm{A}^{\mathrm{t}} \wedge \mathrm{P}_{1}^{\mathrm{t}} \wedge \ldots \wedge \mathrm{P}_{\mathrm{n}}^{\mathrm{t}} \wedge \mathrm{St}\right) \tag{3}
\end{equation*}
$$

Thus,
$\nabla \nabla \mathrm{A}^{\mathrm{t}} \wedge \Delta\left(\nabla \mathrm{A}^{\mathrm{t}} \rightarrow \nabla \mathrm{P}_{1}{ }^{\mathrm{t}}\right) \wedge \ldots \wedge \Delta\left(\nabla \mathrm{A} \rightarrow \nabla \mathrm{P}_{\mathrm{n}}{ }^{\mathrm{t}}\right) \wedge \mathrm{S}^{\mathrm{t}}$
$\rightarrow \nabla\left(\Delta \Delta \neg A^{t} \wedge P_{1}{ }^{\mathrm{t}} \wedge \ldots \wedge \mathrm{P}_{\mathrm{n}}{ }^{\mathrm{t}} \wedge \mathrm{St}\right)$
Using necessitation, this yields
$\nabla\left[\nabla \nabla \mathrm{A}^{\mathrm{t}} \wedge \Delta\left(\nabla \mathrm{A}^{\mathrm{t}} \rightarrow \nabla \mathrm{P}_{1}{ }^{\mathrm{t}}\right) \wedge \ldots \wedge \Delta\left(\nabla \mathrm{A} \rightarrow \nabla \mathrm{P}_{\mathrm{n}} \mathrm{t}\right) \wedge \mathrm{S}^{\mathrm{t}}\right]$
$\rightarrow \nabla \nabla\left(\Delta \Delta \neg \mathrm{A}^{\mathrm{t}} \wedge \mathrm{P}_{1}^{\mathrm{t}} \wedge \ldots \wedge \mathrm{P}_{\mathrm{n}}^{\mathrm{t}} \wedge \mathrm{S}^{\mathrm{t}}\right)$,
which, by L2, gives

$$
\begin{aligned}
& \nabla\left[\nabla \nabla \mathrm{A}^{\mathrm{t}} \wedge \Delta\left(\nabla \mathrm{~A}^{\mathrm{t}} \rightarrow \nabla \mathrm{P}_{1}{ }^{\mathrm{t}}\right) \wedge \ldots \wedge \Delta\left(\nabla \mathrm{A} \rightarrow \nabla \mathrm{P}_{\mathrm{n}}^{\mathrm{t}}\right) \wedge \mathrm{S}^{\mathrm{t}}\right] \\
& \quad \rightarrow \nabla\left(\Delta \Delta \neg \mathrm{A}^{\mathrm{t}} \wedge \mathrm{P}_{1}^{\mathrm{t}} \wedge \ldots \wedge \mathrm{P}_{\mathrm{n}}^{\mathrm{t}} \wedge \mathrm{~S}^{\mathrm{t}}\right),
\end{aligned}
$$

Now use necessitation to conclude the proof.

3.3 Some facts about E

In this paragraph we show that E_{1} is derivable in ILP (Lemma 3.3.1), E_{2} is not derivable in ILP (Lemma 3.3.2), for $n<m, \operatorname{ILPE}_{\mathrm{n}} \npreceq \mathrm{E}_{\mathrm{m}}$ (Lemma 3.3.3). The latter implies that ILPE cannot be finitely axiomatized.

Lemma 3.3.1 ILP $\vdash\left(\diamond A \wedge A \triangleright P_{1} \wedge S\right) \triangleright\left(\square \neg A \wedge P_{1} \wedge S\right)$.
Proof Reason in ILP:

$$
\begin{align*}
& \square(\square \square \neg \mathrm{A} \rightarrow \square \neg \mathrm{~A}) \rightarrow \square \square \neg \mathrm{A} \tag{1}\\
& ((\square \square \neg \mathrm{~A} \rightarrow \square \neg \mathrm{~A}) \wedge \square(\square \square \neg \mathrm{A} \rightarrow \square \neg \mathrm{~A})) \rightarrow \square \neg \mathrm{A} \tag{2}
\end{align*}
$$

By contraposition on (2),
$\diamond \mathrm{A} \rightarrow((\diamond \mathrm{A} \wedge \square \square \neg \mathrm{A}) \vee \diamond(\diamond \mathrm{A} \wedge \square \square \neg \mathrm{A}))$
$\diamond A \wedge A D P_{1} \rightarrow$
$\left(\left(\diamond \mathrm{A} \wedge \square \square \neg \mathrm{A} \wedge \mathrm{AD} \mathrm{P}_{1}\right) \vee \diamond(\diamond \mathrm{A} \wedge \square \square \neg \mathrm{A}) \wedge \mathrm{AD} \mathrm{P}_{1}\right)$
Use P and J 4 , to get
$\diamond A \wedge A D P_{1} \rightarrow\left(\left(\square \square \neg A \wedge \diamond \mathrm{P}_{1}\right) \vee \diamond\left(\square \square \neg \mathrm{A} \wedge \diamond \mathrm{P}_{1}\right)\right)$
This gives
$\diamond A \wedge A \triangleright P_{1} \rightarrow\left(\left(\diamond\left(\square \neg \mathrm{~A} \wedge \mathrm{P}_{1}\right) \vee \diamond \diamond\left(\square \neg \mathrm{A} \wedge \mathrm{P}_{1}\right)\right)\right.$
So we get, by Σ_{1}-completeness, $\diamond A \wedge A \triangleright P_{1} \rightarrow \diamond\left(\square \neg A \wedge P_{1}\right)$
Application of $L 1$ gives
$\left(\diamond A \wedge A D P_{1}\right) \triangleright \diamond\left(\square \neg A \wedge P_{1}\right)$
Application of $L 5$ and transitivity of \triangleright yields $\left(\diamond A \wedge A D P_{1}\right) \triangleright\left(\square \neg A \wedge P_{1}\right)$.
It is a simple application of $L 2$ to the reasoning above, to get
$\left(\diamond A \wedge A \triangleright P_{1} \wedge S\right) \triangleright\left(\square \neg A \wedge P_{1} \wedge S\right)$.
区

Lemma 3.3.2.

$\operatorname{ILP} \nVdash(\diamond \mathrm{A} \wedge \mathrm{A} \triangleright \diamond \mathrm{B} \wedge \mathrm{A} \triangleright \diamond \mathrm{C} \wedge \square \mathrm{D}) \triangleright(\square \neg \mathrm{A} \wedge \diamond \mathrm{B} \wedge \diamond \mathrm{C} \wedge \square \mathrm{D})$.
Proof The following is an ILP countermodel for $(\diamond A \wedge A D \diamond B \wedge A D \diamond C \wedge$ $\square D) \triangleright(\square \neg A \wedge \diamond B \wedge \diamond C \wedge \square D):$
Let $\mathrm{F}=(\mathrm{W}, \mathrm{R}, \mathrm{S})$ with
$\mathrm{W}=\{\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{s}, \mathrm{t}, \mathrm{u}, \mathrm{v}\}$
R as follows: $x R y, y R z, y R s, y R t, s R u, t R v$
S the smallest reflexive extension of R containing $\mathrm{zSs}, \mathrm{zSt}$.
Define a forcing relation \Vdash on F such that
$z \| A$, and A is forced only there,
$u \Vdash B$, and B is forced only there,
$v \Vdash C$, and C is forced only there,
$\mathrm{y} \Vdash \square \mathrm{D}$.
See the figure below.

fig 3.3.2

Then y $\Vdash \diamond \mathrm{A} \wedge \mathrm{A} \triangleright \diamond \mathrm{B} \wedge \mathrm{A} \triangleright \diamond \mathrm{C} \wedge \square \mathrm{D}$.
Now y is the only world in the model which forces $\diamond B \wedge \diamond C$ and is S-accessible from y. But as y $\Vdash \diamond A$, it does not force $\square \neg A$.

Lemma 3.3.3 For $n<m$, ILPE $_{n} \nVdash \mathrm{E}_{\mathrm{m}}$.
Proof Note that $\operatorname{ILPE}_{\mathrm{m}+1} \vdash \mathrm{E}_{\mathrm{m}}$. So the general case $\mathrm{n}<\mathrm{m}$ can be reduced to showing, for each n, that $\operatorname{LLPE}_{n+1} \not \not K E_{n}$. We will only show the case $n=2$. For other n , essentially the same trick can be used.
We define an ILP Veltman frame $F=\langle W, R, S\rangle$ such that $F \Vdash E_{2}$ and $F \nVdash E_{3}$.
$\mathrm{W}=\left\{\mathrm{b}, \mathrm{v}, \mathrm{z}, \mathrm{u}_{0}, \mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{w}_{0}, \mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{t}_{0}, \mathrm{t}_{1}, \mathrm{t}_{2}\right\}$
Let R be the smallest transitive irreflexive relation on W containing
bRv, vRz,
$v R u_{i}$ for all i,
$u_{i} R w_{i}$ for all i,
$b R t_{i}$ for all i,
$\mathrm{t}_{0} R \mathrm{w}_{0}, \mathrm{t}_{0} R \mathrm{w}_{1}, \mathrm{t}_{1} R \mathrm{w}_{1}, \mathrm{t}_{1} R \mathrm{w}_{2}, \mathrm{t}_{2} R \mathrm{w}_{2}, \mathrm{t}_{2} R \mathrm{w}_{0}$,
Let S be the smallest reflective extension of R such that also
$\mathrm{zSu}_{\mathrm{i}}$ for all i ,
$\mathrm{vSt}_{\mathrm{i}}$ for all i .

Fig 3．3．3

We show that $\mathrm{F}=\mathrm{E}_{2}$ ：
Let \Vdash be a forcing relation on F ．
Note the following：If ILPトP $\leftrightarrow T$ ，then ILPト $(\diamond A \wedge A D P \wedge A D Q \wedge S) \triangleright$ $(\square \neg \mathrm{A} \wedge \mathrm{P} \wedge \mathrm{Q} \wedge \mathrm{S}) \leftrightarrow(\diamond \mathrm{A} \wedge \mathrm{A} \triangleright \mathrm{Q} \wedge \mathrm{S}) \triangleright(\square \neg \mathrm{A} \wedge \mathrm{Q} \wedge \mathrm{S})$ ．The left part of this equivalence is as we saw in Lemma 3．3．1，already provable in ILP．So we need not consider instances of E_{2} for which ILPト $(P \leftrightarrow T) \vee(Q \leftrightarrow T)$ ．If ILPトP $\leftrightarrow \perp$ ， then $\operatorname{ILP} \vdash(\diamond \mathrm{A} \wedge \mathrm{A} \triangleright \mathrm{P} \wedge \mathrm{A} \triangleright \mathrm{Q} \wedge \mathrm{S}) \triangleright(\square \neg \mathrm{A} \wedge \mathrm{P} \wedge \mathrm{Q} \wedge \mathrm{S}) \leftrightarrow \mathrm{T}$ ．So we need not consider instances of E_{2} for which ILPト $(\mathrm{P} \leftrightarrow \perp) \vee(\mathrm{Q} \leftrightarrow \perp)$ ．So we assume $\operatorname{ILP} \neq(\mathrm{P} \leftrightarrow \mathrm{T}) \vee(\mathrm{Q} \leftrightarrow \mathrm{T}) \vee(\mathrm{P} \leftrightarrow \perp) \vee(\mathrm{Q} \leftrightarrow \perp)$.
Suppose x and y are such that $x \mathrm{R} y$ and $y \Vdash \diamond \mathrm{~A} \wedge \mathrm{ADP} \wedge \mathrm{AD} \mathrm{Q} \wedge \mathrm{S}$ ．
Then $x \Vdash \diamond \diamond A$ ，so x must be either b or v．Because $y \Vdash \diamond A \wedge A \triangleright P$ ，there must be an a such that $y \mathrm{R} a$ and $a \Vdash \mathrm{P}$ ；and because of the assumptions about P ，there must be a b such that $a \mathrm{R} b$ ．Clearly，x must be b and y must be v ．
So we have

$$
\begin{equation*}
\mathrm{v} \Vdash \diamond \mathrm{~A} \wedge \mathrm{~A} \triangleright \mathrm{P} \wedge \mathrm{~A} \triangleright \mathrm{Q} \wedge \mathrm{~S} \tag{1}
\end{equation*}
$$

Note that the frame F has，by Lemma 3．1．3（vi），the following propertie：
if φ is P or Q ，then $u_{i} \Vdash \varphi \Longrightarrow t_{i} \Vdash \varphi \wedge t_{i-1(\bmod 3)} \Vdash \varphi(0 \leq i \leq 2)$.
We will show that there is a d such that $\mathrm{vS} d$ and $d \Vdash \square \neg \mathrm{~A} \wedge \mathrm{P} \wedge \mathrm{Q} \wedge \mathrm{S}$ ．
From the same observations which led us to（1）it follows that A cannot be forced in either of the w_{i} ．This implies that
$\square \neg A$ is forced in z ，in all of the u_{i} ，and in all of the t_{i} ．
However，A must be forced in z or in one of the u_{i} ．
If A is forced in one of the u_{i} ，then for this i ，by（1），$u_{i} \Vdash P \wedge Q$ ．By（3）， $\mathrm{u}_{\mathrm{i}} \Vdash \square \neg$ A．Also， S is forced in v and，being a \sum－formula，upwards preserved，so $\mathrm{u}_{\mathrm{i}} \Vdash$ S．Then u_{i} is the d we were looking for．

If A is not forced in one of the u_{i}, then A is forced in z. By (1), we will then find both P and Q in worlds f and g such that $\mathrm{zS} f$ and $\mathrm{zS} g$. Note that f and g cannot be equal to z . So f is u_{i} for an $\mathrm{i} \leq 3$, and g is u_{j} for a $\mathrm{j} \leq 2$. Now by (2), if $\{i, j\} \subseteq\{0,1\}$, then $t_{0} \Vdash P \wedge Q$, if $\{i, j\} \subseteq\{1,2\}$, then $t_{1} \Vdash P \wedge Q$, if $\{i, j\} \subseteq\{2,1\}$, then $t_{2} \Vdash P \wedge Q$.
As $v \Vdash S, t_{i} \Vdash S$ for all i, by (3), $t_{i} \Vdash \square \neg$ A for all i.
So in this case, one of the t_{i} is the d we were looking for.
This shows that $\mathrm{F}=\mathrm{E}_{2}$.

Next we show that $F \nVdash E_{3}$:
$\{x \in W: x \Vdash A\}=\{z\} ;$
$\{x \in W: x \Vdash B\}=\left\{w_{0}\right\} ;$
$\{x \in W: x \| C\}=\left\{w_{1}\right\} ;$
$\{x \in W: x \| D\}=\left\{w_{2}\right\}$.
We will show that
$\mathrm{b} \nVdash(\diamond \mathrm{A} \wedge \mathrm{A} \triangleright \diamond \mathrm{B} \wedge \mathrm{AD} \diamond \mathrm{C} \wedge \mathrm{A} \triangleright \diamond \mathrm{D}) \triangleright(\square \neg \mathrm{A} \wedge \diamond \mathrm{B} \wedge \diamond \mathrm{C} \wedge$ \diamond D)
$v \| \diamond A \wedge A \triangleright \diamond B \wedge A D \diamond C \wedge A D \diamond D ;$
$\diamond B \wedge \diamond C \wedge \diamond D$ is only forced in v and b (of which b is not accessible from v);
$\mathrm{v} \nVdash \square \neg$ A.
(1) - (3) show that there is no d such that $\mathrm{vS} d$ and $d \Vdash \square \neg \mathrm{~A} \wedge \diamond \mathrm{~B} \wedge \diamond \mathrm{C} \wedge \diamond \mathrm{D}$. This shows that that $\mathrm{F} \nVdash \mathrm{E}_{3}$.

区

3.4 On rules in $\mathrm{IL}_{\mathrm{exp}}$

In [RIJ] it is shown that IL, ILP, and ILM have the following property:
Let ILS be either of these three theories, then
ILS $\vdash \mathrm{A} \triangleright \mathrm{B}$ iff $\mathrm{LLS} \vdash \mathrm{A} \rightarrow(\mathrm{B} \vee \diamond \mathrm{B})$.
$\mathrm{IL}_{\text {exp }}$ does not have this property. The following countermodel $\mathrm{M}=(\mathrm{W}, \mathrm{R}, \mathrm{b}, \stackrel{H}{ })$ shows this:

$$
\begin{aligned}
& \mathrm{W}=\{\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{u}, \mathrm{v}, \mathrm{~s}, \mathrm{t}, \mathrm{r}, \mathrm{p}\} \\
& \mathrm{R}=\{\langle\mathrm{x}, \mathrm{y}\rangle,\langle\mathrm{y}, \mathrm{z}\rangle,\langle\mathrm{y}, \mathrm{u}\rangle,\langle\mathrm{u}, \mathrm{~s}\rangle,\langle\mathrm{s}, \mathrm{r}\rangle,\langle\mathrm{y}, \mathrm{v}\rangle,\langle\mathrm{v}, \mathrm{t}\rangle,\langle\mathrm{t}, \mathrm{p}\rangle\} ; \\
& \mathrm{z} \Vdash \mathrm{~A}, \mathrm{z} \Vdash \mathrm{~B}, \mathrm{z} \Vdash \mathrm{C} .
\end{aligned}
$$

In M , which is an $\mathrm{IL}_{\text {exp }}$ model,
$\mathrm{x} \Vdash(\diamond \mathrm{A} \wedge \mathrm{A} \triangleright \diamond \mathrm{B} \wedge \mathrm{A} \triangleright \diamond \mathrm{C}) \triangleright(\square \neg \mathrm{A} \wedge \diamond \mathrm{B} \wedge \diamond \mathrm{C})$.
Also, $x \Vdash \diamond A \wedge A D \diamond B \wedge A D \diamond C$.
But clearly, $x \nVdash(\square \neg A \wedge \diamond B \wedge \diamond C) \vee \diamond(\square \neg A \wedge \diamond B \wedge \diamond C)$.

We do however have the following:
For A,B in $L(\square, \triangleright)$
$\mathrm{IL}_{\exp } \vdash \mathrm{A} \triangleright \mathrm{B}$ iff $\mathrm{L}_{\Delta} \vdash \mathrm{A}^{\mathrm{t}} \rightarrow\left(\mathrm{B}^{\mathrm{t}} \vee \nabla \mathrm{B}^{\mathrm{t}}\right)$.
The right to left implication is trivial.
The converse is proved semantically, by a trick known as 'Smorynski's trick'. Assume that $L_{\Delta} \nVdash \mathrm{A}^{\mathrm{t}} \rightarrow\left(\mathrm{B}^{\mathrm{t}} \vee \nabla \mathrm{B}^{\mathrm{t}}\right)$. Then by modal completeness there is a Kripke model M in which the bottem node b forces $\neg\left(\mathrm{A}^{\mathrm{t}} \rightarrow\left(\mathrm{B}^{\mathrm{t}} \vee \nabla \mathrm{B}^{\mathrm{t}}\right)\right.$), so b forces $\mathrm{A}^{\mathrm{t}} \wedge \neg \mathrm{B}^{\mathrm{t}} \wedge$ $\Delta \neg B^{t}$.
From this model M we can construct a Kripke model N in which the bottem node does not force $A \triangleright B$: Add two worlds to the frame of M, say x and y, and take for the accessibility relation of N the smallest irreflexive transitive extension R^{\prime} of R U $\{\langle x, y\rangle,\langle y, b\rangle\}$. Let, in $N x$ and y force all (or some, or ...) propositional variables, and let for all p and for all worlds z in N other that x and $y, z \Vdash_{N} p$ iff $z \Vdash_{M} p$.

Consider the following rule S :
$S \vdash(\diamond \mathrm{~A} \wedge \mathrm{~B}) \triangleright(\square \neg \mathrm{A} \wedge \mathrm{C}) \Rightarrow \vdash(\diamond \mathrm{A} \wedge \mathrm{B} \wedge \mathrm{S}) \triangleright(\square \neg \mathrm{A} \wedge \mathrm{C} \wedge \mathrm{S})$,
for $\mathrm{S} \in \sum$.

Lemma 3.4.1 a) ILP is closed under S; b) $\mathrm{IL}_{\text {exp }}$ is closed under S.
Proof a) Suppose $\operatorname{ILP} \nVdash(\diamond A \wedge B \wedge S) \triangleright(\square \neg A \wedge C \wedge S)$. Then there is an ILP Veltman model $M=(W, R, S, b, \Vdash)$, such that $b \nVdash(\diamond A \wedge B \wedge S) \triangleright(\square \neg A \wedge C \wedge S)$.
So there is a world y for which bRy and $y \Vdash \diamond A \wedge B \wedge S$, and for all z such that $y S z$
and $\mathrm{xRz}, \mathrm{z} l \triangleright>\mathrm{A} \vee \neg \mathrm{C} \vee \neg \mathrm{S}$. By cutting out the part of the model which is not above y or between b and y, we get a countermodel to $(\diamond A \wedge B) D(\square \neg A \wedge C)$:

fig. 3.4.1
Let the model $\mathrm{M}=\left(\mathrm{W}^{\prime}, \mathrm{R}^{\prime}, \mathrm{S}^{\prime}, \mathrm{b}, \Vdash^{\prime}\right)$ be defined as follows:
$W^{\prime}=\{t \in W: t=b \vee t=y \vee b R t R y \vee y R t\} ; R^{\prime}=R \cap\left(W^{\prime} x W^{\prime}\right) ; S^{\prime}=S \cap\left(W^{\prime} x W^{\prime}\right) ; t \Vdash^{\prime} p$ iff $t l \mid p$, for all $t \in W^{\prime}$ and all propositional variables p.
Then $\forall t\left(y=t \vee y R ' t \rightarrow\left(t \Vdash^{\prime} \varphi \leftrightarrow t \Vdash \varphi\right)\right.$. So $y \Vdash^{\prime} \diamond A \wedge B \wedge S$. Consider a world z such that $y S^{\prime} z$ and $b R ' z$. Such a z must be either y itself or $y R z$. So $z \Vdash{ }^{\prime} \diamond A \vee \neg C$ $\vee \neg$ S.
As y \Vdash S and S is preserved upwards, $z \Vdash{ }^{\prime} \diamond A \vee \neg C$.
So $b \not K^{\prime}(\diamond A \wedge B \wedge) \triangleright(\square \neg A \wedge C)$.
b) Can be proved in the same manner as (a) was proved.

Let the schema E^{-}be defined as follows:
$\left(\diamond \mathrm{A} \wedge \mathrm{A} \triangleright \mathrm{P}_{1} \wedge \ldots \wedge \mathrm{AD} \mathrm{P}_{\mathrm{n}}\right) \triangleright\left(\square \neg \mathrm{A} \wedge \mathrm{P}_{1} \wedge \ldots \wedge \mathrm{P}_{\mathrm{n}}\right)$.
Lemma 3.4.1 tells us that, in approaching ILexp, we can either consider ILPE or consider ILPE- plus the rule S - both logics are part of IL $_{\text {exp. }}$. Clearly, ILPE- plus the rule S proves all axioms of ILPE; we do not know whether ILPE is closed under \mathcal{S}.

3.5 More on conservativity

Definition 3.5.1 We define for formulae φ in $L(\square, \triangleright)$ the \triangleright-depth $\operatorname{ID}(\varphi)$ as follows:
(i) $\operatorname{ID}(\mathrm{p})=0$ for all propositional variables p ;
(ii) $\operatorname{ID}(\square \varphi)=\mathrm{D}(\varphi)$ for all φ;
(iii) $\operatorname{ID}(\varphi \triangleright \psi)=\max \{\operatorname{ID}(\varphi), \operatorname{ID}(\Psi)\}+1$ for all φ and ψ;
(iv) $\operatorname{ID}(\neg \varphi)=\operatorname{ID}(\varphi)$;
(v) $\operatorname{ID}(\varphi \wedge \psi)=\operatorname{ID}(\varphi \vee \psi)=\max \{\operatorname{ID}(\varphi), \operatorname{ID}(\psi)\}$.

Consider the schema K, where, like in E, the P_{i} are Π-formulae: $\diamond \diamond A \wedge A D P_{1} \wedge \ldots \wedge A D P_{n} \rightarrow \diamond\left(\square \neg A \wedge P_{1} \wedge \ldots \wedge P_{n}\right)$.

Lemma 3.5.2 (a) $\mathrm{IL}_{\mathrm{exp}} \vdash \mathrm{K}$; (b) ILPト K_{1}; (c) ILP $\not \subset \mathrm{K}$.
Proof
(a) $\operatorname{ILP} \vdash \diamond \diamond A \wedge A D P_{1} \wedge \ldots \wedge A D P_{n}$ $\rightarrow \diamond\left(\diamond A \wedge A \triangleright P_{1} \wedge \ldots \wedge A \triangleright P_{n}\right)$.
Application of J 4 to E_{n} shows that $\mathrm{IL}_{\exp } \vdash \mathrm{K}$.
(b) Left to the reader.
(c) ILP $\nless \diamond \diamond \mathrm{a} \wedge \mathrm{a} \triangleright \diamond \mathrm{p} \wedge \mathrm{a} \triangleright \diamond \mathrm{q} \rightarrow \diamond$ ($\square \neg \mathrm{a} \wedge \diamond \mathrm{p} \wedge \diamond \mathrm{q})$.

A countermodel is $\mathrm{M}=(\mathrm{F}, \stackrel{F}{ })$, where F is the frame in the proof of Lemma 3.3.2, and \Vdash is defined as follows:
$3 \Vdash$ a and a is only forced there;
$6 \Vdash p$ and p is only forced there;
$7 \Vdash q$ and q is only forced there;
Clearly $1 \Vdash \diamond \diamond a \wedge a \triangleright \diamond p \wedge a \triangleright \diamond q \wedge \square(\diamond p \wedge \diamond q \rightarrow \diamond a)$.

Lemma 3.5.2 shows that (1) $\mathrm{IL}_{\exp }$ is not conservative over ILP with regard to formulae φ for which $\operatorname{ID}(\varphi) \leq 1$; and that (2) $\mathrm{IL}_{\mathrm{exp}}$ is not conservative over ILP with regard to formulae φ for which $D(\varphi) \leq 2$.

4 The axiom schema X

4.1. The axiom schema X

Definition 4.1.1 $X_{n, k}$ is the following axiom schema:

$$
\begin{aligned}
\left(P_{1} \wedge \ldots\right. & \left.\wedge P_{n}\right) \triangleright\left(\square \neg A \rightarrow D_{1}\right) \wedge \ldots \wedge\left(P_{1} \wedge \ldots \wedge P_{n}\right) \triangleright\left(\square \neg A \rightarrow D_{k}\right) \\
& \rightarrow(\diamond A \wedge S) \triangleright\left(A D P_{1} \wedge \ldots \wedge A \triangleright P_{n} \rightarrow D_{1} \wedge \ldots \wedge D_{k} \wedge S\right) .
\end{aligned}
$$

where $P_{1}, \ldots, P_{n}, D_{1}, \ldots, D_{k}$ are Π-formulae, and S is a \sum-formula.

In its basic form, the schema X was found by Marc Jumelet.
In this section we will always suppose that $\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{n}}, \mathrm{D}_{1}, \ldots, \mathrm{D}_{\mathrm{k}}$ are Π-formulae, and that S is a \sum-formula.

Lemma 4.1.2 $\mathrm{IL}_{\text {exp }} \vdash \mathrm{X}_{\mathrm{n}, \mathrm{k}}$, for all n , k .
Proof Suppose we have a finite $\mathrm{L}_{\exp }$ Kripke model $\mathrm{M}=(\mathrm{W}, \mathrm{R}, \mathrm{b}, \|-)$, such that $\left.\mathrm{b} \nVdash\left(\mathrm{P}_{1} \wedge \ldots \wedge \mathrm{P}_{\mathrm{n}}\right) \triangleright\left(\square \neg \mathrm{A} \rightarrow \mathrm{D}_{1}\right)\right\} \wedge \ldots \wedge\left(\mathrm{P}_{1} \wedge \ldots \wedge \mathrm{P}_{\mathrm{n}}\right) \triangleright\left(\square \neg \mathrm{A} \rightarrow \mathrm{D}_{\mathrm{k}}\right)$ $\rightarrow(\diamond A \wedge S) \triangleright\left(A \triangleright P_{1} \wedge \ldots \wedge A \triangleright P_{n} \rightarrow D_{1} \wedge \ldots \wedge D_{k} \wedge S\right)$
for some $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{D}_{1}, \mathrm{D}_{2}$ in Π and S in \sum.
So,
$\mathrm{b} \Vdash\left(\mathrm{P}_{1} \wedge \ldots \wedge \mathrm{P}_{\mathrm{n}}\right) \triangleright\left(\square \neg \mathrm{A} \rightarrow \mathrm{D}_{1}\right) \wedge \ldots \wedge\left(\mathrm{P}_{1} \wedge \ldots \wedge \mathrm{P}_{\mathrm{n}}\right) \triangleright\left(\square \neg \mathrm{A} \rightarrow \mathrm{D}_{\mathrm{k}}\right)$
and there are worlds x and y such that
bRxRy,
$y \| \diamond A \wedge S$,
$\forall z\left\{x R z \rightarrow z \mathbb{A} \mid>P_{1} \wedge \ldots \wedge A \triangleright P_{n} \wedge\left(\neg D_{1} \vee \ldots \vee \neg D_{n} \vee \neg S\right)\right.$.
In particular, from ($3 \mathrm{~b} \& \mathrm{c}$), $\mathrm{y} \Vdash \neg \mathrm{D}_{1} \vee \ldots \vee \neg \mathrm{D}_{\mathrm{n}}$. Suppose, without loss of generality, that
$\mathrm{y} \Vdash \neg \mathrm{D}_{1}$. Note that, because D_{1} is a Π-formula, $\neg \mathrm{D}_{1}$ is upwards preserved, i.e.
$\forall \mathrm{t}\left\{\mathrm{yRt} \rightarrow \mathrm{tl} \mathrm{ID}_{1}\right\}$

By properties of W and R , there must be a world w such that yRw or $\mathrm{y}=\mathrm{w}, \mathrm{w} \Vdash \diamond \mathrm{A}$, and $\forall \mathrm{t}\{\mathrm{wRt} \rightarrow \mathrm{t} \Vdash \square \neg \mathrm{A}\}$. Let t and z witness this, i.e., wRtRz,
zll-A,
$\mathrm{t} \mathbb{V}^{\square}$ ロ A .

By (3c), there must be u_{1}, \ldots, u_{n}, such that $t R u_{i}$ and $u_{i} \Vdash P_{i}$ for $1 \leq i \leq n$.

From（6）and the fact that the P_{i} are downwards preserved，we get $t \Vdash P_{1} \wedge \ldots \wedge P_{n}$ ．
By（2）and（7），there must be v_{1}, \ldots, v_{n} ，such that $w R v_{i}$ and $v_{i} \Vdash \square \neg A \rightarrow D_{i}$ for $1 \leq i \leq n$ ．
By（4）， $\mathrm{v}_{\mathrm{i}} \Vdash \neg \mathrm{D}_{1}$ ，for $1 \leq \mathrm{i} \leq \mathrm{n}$ ，so $\mathrm{v}_{1} \Vdash \diamond$ A，which contradicts（5c）．
This completes the proof．

The following corollarium says that if we consider $X_{n, 1}$ we can drop the condition that D_{1} is a Π－formula．

Corallarium 4．1．3
 $\mathrm{LL}_{\mathrm{exp}} \vdash\left(\mathrm{P}_{1} \wedge \ldots \wedge \mathrm{P}_{\mathrm{n}}\right) \triangleright(\square \neg \mathrm{A} \rightarrow \mathrm{B})$
 $\rightarrow(\diamond A \wedge S) \triangleright\left(A \triangleright P_{1} \wedge \ldots \wedge A \triangleright P_{n} \rightarrow B \wedge S\right)$

Proof The proof goes along the same lines as the proof of Lemma 4．1．2．In this case however，because we do not get a disjunction in（3c），we do not need upward preservativion of the different disjuncts．Instead，we can simply remark that $\forall \mathrm{z}\{\mathrm{xRz}$ $\left.\rightarrow \mathrm{z} \Vdash \mathrm{A} \triangleright \mathrm{P}_{1} \wedge \ldots \wedge \mathrm{~A} \perp \mathrm{P}_{\mathrm{n}} \wedge \neg \mathrm{B}\right\}$ ，then proceed along（5），（6）and（7）and find that there must be v_{1}, \ldots, v_{n} ，such that $w R v_{i}$ and $v_{i} \Vdash \diamond A \vee B$ for $1 \leq i \leq n$ ．By our remark， $\mathrm{v}_{\mathrm{i}} \| \neg \mathrm{B}$ ，for $1 \leq \mathrm{i} \leq \mathrm{n}$ ，but also $\mathrm{v}_{\mathrm{i}} \Vdash \square \square \neg \mathrm{A}$ by（ 5 c ），for $1 \leq i \leq \mathrm{n}$ ．Contradiction．

区

Lemma 4．1．4 ILPト $\mathrm{X}_{1, \mathrm{k}}$ for $\mathrm{k} \geq 1$ ．
Proof Suppose $\mathrm{M}=(\mathrm{W}, \mathrm{R}, \mathrm{N}, \mathrm{b}, \mathbb{I})$ is a levelled Friedman counter model to an instance
of $X_{1, k}$ ，say（w．l．o．g．）b $\Vdash P D\left(\square \neg A \rightarrow D_{1}\right) \wedge \ldots \wedge P \triangleright\left(\square \neg A \rightarrow D_{k}\right)$
and $b \nVdash(\diamond A \wedge S) \triangleright\left(A \triangleright P \rightarrow D_{1} \wedge \ldots \wedge D_{k} \wedge S\right)$ ．
By（2），there exist y ，x such that $b R y R x, N(x)$ ，and
$\mathrm{x} \Vdash \diamond \mathrm{A} \wedge \mathrm{S}$ and $\forall \mathrm{z}\left(\mathrm{N}(\mathrm{z}) \wedge \mathrm{yRz} \rightarrow \mathrm{z} \Vdash \mathrm{A} \triangleright \mathrm{P} \wedge\left(\neg \mathrm{D}_{1} \vee \ldots \vee \neg \mathrm{D}_{\mathrm{k}} \vee \neg \mathrm{S}\right)\right.$ ．
In particular，
$x \Vdash A \triangleright P$ and $x \Vdash \neg D_{1} \vee \ldots \vee \neg D_{k}$ ．
Suppose $x \|)_{1}$ ．
By finiteness of W ，there is an x^{\prime} such that $N(x)$ and $x^{\prime}=x$ or $x R R x^{\prime}$ and $x^{\prime} \| \square \square \neg A$ and there are u, v ，such that $N(v), x^{\prime} R u R v$ and $v \Vdash A$ ．Also，$x^{\prime} \Vdash \neg D_{1}$ ．By（3），there is a w such that $N(w)$ ，uRw and wllP．By（1），there must be a t such that $N(t)$ and $u R t$ and $t \Vdash \diamond A \vee D_{1}$ ．On the other hand for such a t we find that by our choice of $x^{\prime}, t \Vdash$ $\square \neg \mathrm{A}$ ，and by（4）and upward preservation of $\neg \mathrm{D}_{1}, \mathrm{tl} \neg_{\mathrm{D}}$ ．Contradiction．

Remark that also in this case，if $\mathrm{k}=1$ we can drop the condition that D is a Π－formula． So we find

Corollarium 4．1．5 For every Π－formula P ， ILPトPD $(\square \neg A \rightarrow B) \rightarrow(\diamond A \wedge S) \triangleright(A \triangleright P \rightarrow B \wedge S)$ ．
Proof Like the proofs of Lemma 4．1．4 and Corollarium 4．1．3．

Lemma 4．1．6

（a）$\quad\left(\mathrm{P}_{1} \wedge \ldots \wedge \mathrm{P}_{\mathrm{n}}\right) \triangleright(\square \neg \mathrm{A} \rightarrow \mathrm{T}) \wedge \ldots \wedge\left(\mathrm{P}_{1} \wedge \ldots \wedge \mathrm{P}_{\mathrm{n}}\right) \triangleright\left(\square \neg \mathrm{A} \rightarrow \mathrm{D}_{\mathrm{k}}\right)$

$$
\rightarrow(\diamond A \wedge S) \triangleright\left(A \triangleright P_{1} \wedge \ldots \wedge A \triangleright P_{n} \rightarrow T \wedge \ldots \wedge D_{k} \wedge S\right)
$$

is in fact an instance of $X_{n, k-1}$ ；
（b）$\left(\mathrm{P}_{1} \wedge \ldots \wedge \mathrm{~T}\right) \triangleright\left(\square \neg \mathrm{A} \rightarrow \mathrm{D}_{1}\right) \wedge \ldots \wedge\left(\mathrm{P}_{1} \wedge \ldots \wedge \mathrm{P}_{\mathrm{n}}\right) \triangleright\left(\square \neg \mathrm{A} \rightarrow \mathrm{D}_{\mathrm{k}}\right)$
$\rightarrow(\diamond A \wedge S) \triangleright\left(A \triangleright T \wedge \ldots \wedge A \triangleright P_{n} \rightarrow D_{1} \wedge \ldots \wedge D_{k} \wedge S\right)$
is in fact an instance of $X_{n-1, k}$ ；
（c）$\left(\mathrm{P}_{1} \wedge \ldots \wedge \perp\right) \triangleright\left(\square \neg \mathrm{A} \rightarrow \mathrm{D}_{1}\right) \wedge \ldots \wedge\left(\mathrm{P}_{1} \wedge \ldots \wedge \mathrm{P}_{\mathrm{n}}\right) \triangleright\left(\square \neg \mathrm{A} \rightarrow \mathrm{D}_{\mathrm{k}}\right)$

$$
\rightarrow(\diamond A \wedge S) \triangleright\left(A \triangleright \perp \wedge \ldots \wedge A \triangleright P_{n} \rightarrow D_{1} \wedge \ldots \wedge D_{k} \wedge S\right)
$$

is equivalent to T（already in IL）．
（d）$\left(\mathrm{P}_{1} \wedge \ldots \wedge \mathrm{P}_{\mathrm{n}}\right) \triangleright\left(\square \neg \mathrm{A} \rightarrow \mathrm{D}_{1}\right) \wedge \ldots \wedge\left(\mathrm{P}_{1} \wedge \ldots \wedge \mathrm{P}_{\mathrm{n}}\right) \triangleright(\square \neg \mathrm{A} \rightarrow \perp)$

$$
\rightarrow(\diamond A \wedge S) \triangleright\left(A \triangleright P_{1} \wedge \ldots \wedge A \triangleright P_{n} \rightarrow \perp \wedge \ldots \wedge D_{k} \wedge S\right)
$$

is already provable in ILP．

Proof

（a）follows from $(\varphi \rightarrow T) \leftrightarrow T$ and $T \wedge \varphi \leftrightarrow \varphi$ ．
（b）follows immediately from $\varphi \wedge T \leftrightarrow \varphi$ and $A \triangleright T \leftrightarrow T$ ；
（c）follows from $\mathrm{A} \triangleright \perp \leftrightarrow \square \neg \mathrm{A}$ and $\varphi \triangleright \varphi$ ；
（d）by reasoning on ILP Veltman or Friedman models．

Lemma 4．1．7 $\operatorname{ILPX}_{n, \mathrm{k}} \npreceq \mathrm{X}_{\mathrm{n}+1, \mathrm{k}}$ ，for $\mathrm{n} \geq 1, \mathrm{k} \geq 1$ ．
Proof We show how to prove this lemma for the case $n=2, k=1$ ．The example generalizes to other cases．Consider an ILP Veltman frame $F=\langle W, R, S\rangle$ ，with W, R and S as follows：
$W=\left\{b, x, z, u_{1}, u_{2}, u_{3}, w_{1}, w_{2}, w_{3}, t_{1}, t_{2}, t_{3}\right\}$.
R is the smallest transitive irreflexive relation on W containing
$b R x, x R z$ ，
$v R u_{i}$ for all i ，
$u_{i} R w_{i}$ for all i ，
$b R t_{i}$ for all i ，

$$
\mathrm{t}_{1} R w_{1}, \mathrm{t}_{1} R w_{2}, \mathrm{t}_{2} R w_{2}, \mathrm{t}_{2} R w_{3}, \mathrm{t}_{3} R w_{3}, \mathrm{t}_{3} R w_{1}
$$

Let S be the smallest reflexive extension of R such that also $\mathrm{zSu}_{\mathrm{i}}$ for all i.
See the figure below.

To see that $\mathrm{F}=\mathrm{X}_{2, \mathrm{k}}$, note that for $0 \leq i \leq 2, \mathrm{~F} \cap\left\{\mathrm{~b}, \mathrm{x}, \mathrm{z}, \mathrm{u}_{\mathrm{i}}, \mathrm{u}_{\mathrm{i}+1}, \mathrm{w}_{\mathrm{i}}, \mathrm{w}_{\mathrm{i}+1}, \mathrm{t}_{\mathrm{i}}\right\}$ is isomorfic to the frame in the proof of Lemma 4.1.5.

Let \Vdash be the following forcing relation on F : $\mathrm{w}_{\mathrm{i}} \| \mathrm{p}_{\mathrm{i}}$, and p_{i} is forced nowhere else, for $0 \leq i \leq 2$, and q is only forced in z. Then $\diamond p_{0} \wedge \diamond p_{1} \wedge \diamond p_{2}$ is only forced in x, and $\mathrm{xI} \nabla \mathrm{q}_{\text {, so }}\left(\diamond \mathrm{p}_{0} \wedge \diamond \mathrm{p}_{1} \wedge \diamond \mathrm{p}_{2}\right) \triangleright(\square \neg \mathrm{q} \rightarrow \diamond \mathrm{s})$ is forced in every world. Also, $\mathrm{q} \triangleright \diamond_{\mathrm{p}_{0}} \wedge \mathrm{q} \triangleright \diamond_{\mathrm{p}_{1}} \wedge \mathrm{q} \triangleright \diamond_{\mathrm{p}_{2}}$ is forced in every world. But everywhere $\square \neg \mathrm{s}$ is is forced. So

$$
\begin{aligned}
& \mathrm{b} \nVdash\left(\diamond \mathrm{p}_{0} \wedge \diamond \mathrm{p}_{1} \wedge \diamond \mathrm{p}_{2}\right) \triangleright(\square \neg \mathrm{q} \rightarrow \diamond \mathrm{~s}) \rightarrow \\
& \diamond \mathrm{q} \triangleright\left(\mathrm{q} \triangleright \diamond \mathrm{p}_{0} \wedge \mathrm{q} \triangleright \diamond \mathrm{p}_{1} \wedge \mathrm{q} \triangleright \diamond \mathrm{p}_{2} \rightarrow \diamond \mathrm{~s}\right) .
\end{aligned}
$$

So $F \nVdash X_{3,1}$.

Lemma 4.1.8 $\operatorname{ILPX}_{\mathrm{n}, \mathrm{k}} \nVdash \mathrm{X}_{\mathrm{n}, \mathrm{k}+1}$.
Proof We show that the lemma holds for $n=2, k=1$.
Consider the following Veltman frame $\mathrm{F}=(\mathrm{W}, \mathrm{R}, \mathrm{S})$ for ILP:
$\mathrm{W}=\{1,2,3,4,5,6,7,8\}$;
R is the smallest transitive extension on W of \{1R2, 1R8, 2R3, 2R4, 2R5, 4R6, 5R7, 8R6, 8R7\};
S is the smallest transitive, reflexive extension of $R \cup\{8 S 2,3 S 4,3 S 5\}$.
Let $M=(F, \Vdash)$, with \Vdash defined as follows:
$\mathrm{x} \Vdash \mathrm{a}$ iff $\mathrm{x}=3 ; \mathrm{x} \Vdash \mathrm{p}$ iff $\mathrm{x}=6 ; \mathrm{x} \Vdash \mathrm{q}$ iff $\mathrm{x}=7$; t is nowhere forced. See the figure:

We will show that $\mathrm{F} \vDash \mathrm{X}_{2,1}$, and
$\mathrm{M} \not \models(\diamond \mathrm{p} \wedge \diamond \mathrm{q}) \triangleright\left(\diamond \mathrm{a} \vee \diamond \mathrm{d}_{1}\right) \wedge(\diamond \mathrm{p} \wedge \diamond \mathrm{q}) \triangleright\left(\diamond \mathrm{a} \vee \diamond \mathrm{d}_{2}\right)$ $\rightarrow \diamond a \triangleright\left(a \triangleright \diamond p \wedge a \triangleright \diamond q \rightarrow \diamond d_{1} \wedge \diamond d_{2}\right)$.
The only worlds in which $\diamond q \wedge \diamond_{\mathrm{r}}$ is forced are 2 and 8 . But $2 \Vdash \diamond$, and 2 S 2 and 2 S8 so $1 \Vdash(\diamond$ p $\wedge \diamond q) \triangleright\left(\diamond a \vee \diamond d_{1}\right) \wedge(\diamond p \wedge \diamond q) \triangleright\left(\diamond a \vee \diamond d_{2}\right)$.
Every world of M forces $a \triangleright \diamond q \wedge$ a $\triangleright \diamond r$, whereas $\diamond d_{1} \wedge \diamond d_{2}$ is nowhere forced. So none of the worlds forces $a \triangleright \diamond p \wedge a \triangleright \diamond q \rightarrow \diamond d_{1} \wedge \diamond d_{2}$, while $2 \mathbb{V}$ p. So $1 \nVdash \diamond \mathrm{a} \triangleright\left(\mathrm{a} \triangleright \diamond \mathrm{p} \wedge \mathrm{a} \triangleright \diamond \mathrm{q} \rightarrow \diamond \mathrm{d}_{1} \wedge \diamond \mathrm{~d}_{2}\right)$. Thus,
$1 \nVdash(\diamond \mathrm{p} \wedge \diamond \mathrm{q}) \triangleright\left(\diamond \mathrm{a} \vee \diamond \mathrm{d}_{1}\right) \wedge(\diamond \mathrm{p} \wedge \diamond \mathrm{q}) \triangleright\left(\diamond \mathrm{a} \vee \diamond \mathrm{d}_{2}\right)$

$$
\rightarrow \diamond \mathrm{a} \triangleright\left(\mathrm{a} \triangleright \diamond \mathrm{p} \wedge \mathrm{a} \triangleright \diamond \mathrm{q} \rightarrow \diamond \mathrm{~d}_{1} \wedge \diamond \mathrm{~d}_{2}\right)
$$

So $\mathrm{F} \nVdash \mathrm{X}_{2,2}$.

Let φ be an instance of $X_{2,1}$, i.e. φ is

$$
\left(\mathrm{P}_{1} \wedge \mathrm{P}_{2}\right) \triangleright(\square \neg \mathrm{A} \rightarrow \mathrm{D}) \rightarrow(\diamond \mathrm{A}) \triangleright\left(\mathrm{A} \triangleright \mathrm{P}_{1} \wedge \mathrm{~A} \triangleright \mathrm{P}_{2} \rightarrow \mathrm{D}\right)
$$

Because none of the worlds among $3,4,5,6,7,8$ can force $\diamond \diamond A$, any of them forces φ. Suppose that $2 \nVdash \varphi$, i.e.
$2 \Vdash\left(\mathrm{P}_{1} \wedge \mathrm{P}_{2}\right) \triangleright(\square \neg \mathrm{A} \rightarrow \mathrm{D})$,
and there is a world x such that
$2 R x$ and $x \Vdash \diamond A$,
$\forall y\left(x S y \wedge 2 R y \rightarrow y \Vdash A D P_{1} \wedge A D P_{2} \wedge \neg D\right)$.
Then x must be 4 or 5 . Suppose $x=4$. Then, by (2), $6 \Vdash A$, by (3), $6 \Vdash P_{1} \wedge P_{2}$. By (1), $6 \Vdash \square \neg A \rightarrow D$, but by (3) and because 6 is blind, $6 \Vdash \square \neg A \wedge \neg D$. So x cannot be 4 . By the same considerations, x cannot be 5 . So $2 \Vdash \varphi$.
Suppose that $1 \nVdash \varphi$, i.e.
$1 \Vdash\left(\mathrm{P}_{1} \wedge \mathrm{P}_{2}\right) \triangleright(\square \neg \mathrm{A} \rightarrow \mathrm{D})$,
and there is a world x such that
1 Rx and $\mathrm{x} \| \diamond \mathrm{A}$,
$\forall \mathrm{y}\left(\mathrm{xSy} \wedge 1 \mathrm{Ry} \rightarrow \mathrm{y} \Vdash \mathrm{AD} \mathrm{P}_{1} \wedge \mathrm{AD} \mathrm{P}_{2} \wedge \neg \mathrm{D}\right)$.

Like above, x cannot be 4 or 5 , so $4 \Vdash \square \neg A$ and $5 \Vdash \square \neg A$.
Suppose $4 \Vdash A$. Then, by (6) and downwards preservation of P_{1} and $P_{2}, 4 \Vdash P_{1} \wedge P_{2}$. By jump over, $8 \Vdash P_{1} \wedge P_{2}$. Then by (4), we must find $\diamond A \vee D$ in either 8 , or 7 , or 6. By (7), all of those force $\square \neg$ A. By (7), 7 and 8 force $\neg \mathrm{D}$, so also $8 \Vdash \neg$ D. So $4 \nVdash \mathrm{~A}$. By reasons of symmetry, $5 \nVdash \mathrm{~A}$.
Suppose $3 \Vdash$ A and $4 \Vdash \neg \mathrm{~A} \wedge \square \neg \mathrm{~A}$ and $5 \Vdash \neg \mathrm{~A} \wedge \square \neg \mathrm{~A}$. Then by (6) and jumpover, $8 \| \mathrm{P}_{1} \wedge \mathrm{P}_{2}$, which, like above leads to a contradiction.
So x can not be 2 . Suppose $\mathrm{x}=8$. Then, by (1), either $6 \|-\mathrm{A}$ or (the symmetrical case) $7 \Vdash$ A. If $6 \Vdash$ A, then by (6), $6 \Vdash P_{1} \wedge P_{2}$. Then, by (4), $6 \Vdash \square \neg A \rightarrow$ D. But by (6), $6 \Vdash \neg D$ 。

So $1 \Vdash \varphi$.
区

In the next two lemmata it is shown show that the schemata X and E are independent over ILP.

Lemma 4.1.9 ILPX \nVdash E.
Proof Consider the following Veltman frame $\mathrm{F}=(\mathrm{W}, \mathrm{R}, \mathrm{S})$, (see the figure below) with
$\mathrm{W}=\{1,2,3,4,5,6,7,8\} ;$
R is the smallest transitive extension on W of \{1R2, 1R8, 2R3, 2R4, 2R5, 4R6, 5R7, 8R6, 8R7\};
S is the smallest transitive, reflexive extension of $R \cup\{3 S 4,3 S 5\}$.

M is a countermodel for E : In $\mathrm{M}, 2 \Vdash \diamond \mathrm{p} \wedge \mathrm{p} \triangleright \diamond \mathrm{q} \wedge \mathrm{p} \triangleright \diamond \mathrm{r} ; \square \neg \mathrm{p} \wedge \diamond \mathrm{q} \wedge \diamond \mathrm{r}$ is only forced in 8 , but we do not have $2 S 8$.
Thus $b \nVdash(\diamond \mathrm{p} \wedge \mathrm{p} \triangleright \diamond \mathrm{q} \wedge \mathrm{p} \triangleright \diamond \mathrm{r}) \triangleright(\square \neg \mathrm{p} \wedge \diamond \mathrm{q} \wedge \diamond \mathrm{r})$.

$\mathrm{F}=\mathrm{X}$: We consider an instance of $\mathrm{X}_{\mathrm{n}, \mathrm{k}}$,

$$
\begin{aligned}
\left(P_{1} \wedge \ldots\right. & \left.\wedge P_{n}\right) \triangleright\left(\square \neg A \rightarrow D_{1}\right) \wedge \ldots \wedge\left(P_{1} \wedge \ldots \wedge P_{n}\right) \triangleright\left(\square \neg A \rightarrow D_{k}\right) \\
& \rightarrow(\diamond A \wedge W) \triangleright\left(A \triangleright P_{1} \wedge \ldots \wedge A \triangleright P_{n} \rightarrow D_{1} \wedge \ldots \wedge D_{k} \wedge W\right.
\end{aligned}
$$

with W a \sum-formula.
Let \mathbb{F} be a forcing relation on F.
To show that $\mathrm{X}_{\mathrm{n}, \mathrm{k}}$ is forced in every world x of $\mathrm{M}=(\mathrm{F}, \stackrel{\vdash}{ })$, we treat three different cases:
(a) If $x>2$, then $x \Vdash \square \square \neg A$, so $x \Vdash X_{n, k}$.
(b) $x=2$. Suppose
$2 \Vdash\left(\mathrm{P}_{1} \wedge \ldots \wedge \mathrm{P}_{\mathrm{n}}\right) \triangleright\left(\square \neg \mathrm{A} \rightarrow \mathrm{D}_{1}\right) \wedge \ldots \wedge\left(\mathrm{P}_{1} \wedge \ldots \wedge \mathrm{P}_{\mathrm{n}}\right) \triangleright\left(\square \neg \mathrm{A} \rightarrow \mathrm{D}_{\mathrm{k}}\right)$
and $2 \nVdash(\diamond A \wedge W) \triangleright\left(\left(A D P_{1} \wedge \ldots \wedge A \triangleright P_{n}\right) \rightarrow D_{1} \wedge \ldots \wedge D_{k} \wedge W\right)$. Then either $4 \Vdash \diamond A \wedge W$ and

$$
\begin{equation*}
\forall \mathrm{z}\left(4 \mathrm{Sz} \rightarrow \mathrm{z} \Vdash \mathrm{~A} \triangleright \mathrm{P}_{1} \wedge \ldots \wedge \mathrm{~A} \triangleright \mathrm{P}_{\mathrm{n}} \wedge\left(\neg \mathrm{D}_{1} \vee \ldots \vee \neg \mathrm{D}_{\mathrm{k}} \vee \neg \mathrm{~W}\right)\right. \tag{2}
\end{equation*}
$$

or (2) and (3) are true for 5 . We treat the case in which they hold for 4 . From (2)
$6 \|-A \wedge S$, so from (3),
$6 \Vdash P_{1} \wedge \ldots \wedge P_{n} \wedge\left(\neg D_{1} \vee \ldots \vee \neg D_{k}\right)$.
Now either $6 \nVdash P_{1} \wedge \ldots \wedge P_{n}$ in which case we have a contradiction, or $6 \Vdash P_{1} \wedge \ldots \wedge P_{n}$ in which case we get, by (1) $6 \Vdash\left(\diamond A \vee D_{1}\right) \wedge \ldots \wedge\left(\diamond A \vee D_{n}\right)$. The latter implies $6 \Vdash D_{1} \wedge \ldots \wedge D_{n}$, which contradicts (4).
(c) $x=1$. Suppose
$1 \Vdash\left(P_{1} \wedge \ldots \wedge P_{n}\right) \triangleright\left(\square \neg A \rightarrow D_{1}\right) \wedge \ldots \wedge\left(P_{1} \wedge \ldots \wedge P_{n}\right) \triangleright\left(\square \neg A \rightarrow D_{k}\right)$
and $1 \nVdash(\diamond A \wedge W) \triangleright\left(A \triangleright P_{1} \wedge \ldots \wedge A D P_{n} \rightarrow D_{1} \wedge \ldots \wedge D_{k} \wedge W\right)$
and

$$
\begin{aligned}
& \forall \mathrm{z}>1\left(\mathrm{zK} \nmid \mathrm{P}_{1} \wedge \ldots \wedge \mathrm{P}_{\mathrm{n}}\right) \triangleright\left(\square \neg \mathrm{A} \rightarrow \mathrm{D}_{1}\right) \wedge \ldots \\
& \quad \wedge\left(\mathrm{P}_{1} \wedge \ldots \wedge \mathrm{P}_{\mathrm{n}}\right) \triangleright\left(\square \neg \mathrm{A} \rightarrow \mathrm{D}_{\mathrm{k}}\right) \\
& \quad \vee \mathrm{zl}(\diamond \mathrm{~A} \wedge \mathrm{~W}) \triangleright\left(\mathrm{AD} \triangleright \mathrm{P}_{1} \wedge \ldots \wedge \mathrm{~A} \triangleright \mathrm{P}_{\mathrm{n}} \rightarrow \mathrm{D}_{1} \wedge \ldots \wedge \mathrm{D}_{\mathrm{k}} \wedge W\right) .
\end{aligned}
$$

We distinguish two different cases:
(c1) $\quad 2 \Vdash(\diamond \mathrm{~A} \wedge \mathrm{~W})$ and
$\forall \mathrm{z}\left(2 \mathrm{Sz} \rightarrow \mathrm{z} \Vdash \mathrm{A} \triangleright \mathrm{P}_{1} \wedge \ldots \wedge A \triangleright \mathrm{P}_{\mathrm{n}} \wedge\left(\neg \mathrm{D}_{1} \vee \ldots \vee \neg \mathrm{D}_{\mathrm{k}} \vee \neg \mathrm{W}\right)\right.$
and
(c2) (7) and (8) hold for 8.
c2: Then $6 \Vdash \mathrm{~A} \wedge \mathrm{~W}$, so by (8), $6 \Vdash \mathrm{P}_{1} \wedge \ldots \wedge \mathrm{P}_{\mathrm{n}}$, so by (5), $6 \Vdash \mathrm{D}_{1} \wedge \ldots \wedge \mathrm{D}_{\mathrm{k}}$, which contradicts (8); or the same holds for 7 .
c1: Again, there are two possibilities. Either $6 \|-$ A and $4 \| \neg$ A (or the same holds for 7 and 5 , which is, by symmetry, the same case), but this contradicts our supposition. Or
$3 \Vdash \mathrm{~A}$, or $4 \Vdash \mathrm{~A} \wedge \square \neg \mathrm{~A}$ and $5 \Vdash \square \neg \mathrm{~A}$ (or, alternatively, 4 and 5 are interchanged here, which is essentially the same case).
Suppose $4 \Vdash \mathrm{~A} \wedge \square \neg \mathrm{~A}$ and $5 \Vdash \square \neg \mathrm{~A}$. Then by (8), and downward preservation of Π-formulae, $4 \Vdash P_{1} \wedge \ldots \wedge P_{n}$. Then by (5) and the fact that if $4 S z$ then $z \Vdash \square \neg A$, and by downwards preservation of $D_{1}, \ldots D_{k}, 4 \Vdash D_{1} \wedge \ldots \wedge D_{k}$. Also, by (7), $4 \Vdash$ S. But this contradicts (8).
Suppose that $3 \Vdash$ A, and that both 4 and 5 force $\neg \mathrm{A} \wedge \square \neg$ A. Then by (8) and the jumpover of P_{1}, \ldots, P_{n}, we find that $8 \Vdash P_{1} \wedge \ldots \wedge P_{n}$. So, by (5), we find $u_{1}, \ldots u_{k}$ among $\{6,7,8\}$, such that $u_{i} \Vdash \square \neg A \rightarrow D_{i}$, for $1 \leq i \leq k$. From the supposition we know that any of the worlds 6,7 , and 8 force $\square \neg$ A, so that $u_{i} \Vdash D_{i}$. By jumpover and downward preservation we find that $2 \Vdash D_{1} \wedge \ldots \wedge D_{n}$. Also $2 \Vdash W$. But this contradicts (8).

Lemma 4.1.10 $\operatorname{ILPE} \nVdash X_{n, k}$ for $n \geq 2$.
Proof Consider the following ILP Veltman frame $\mathrm{F}=(\mathrm{W}, \mathrm{R}, \mathrm{S})$:
$\mathrm{W}=\{1,2,3,4,5,6,7,8\}$;
R is the smallest transitive extension on W of \{1R2, 1R8, 2R3, 2R4, 2R5, 4R6, 5R7, 8R6, 8R7\};
S is the smallest transitive, reflexive extension of $\mathrm{R} \cup\{2 \mathrm{~S} 8,8 \mathrm{~S} 2,3 \mathrm{~S} 4,3 \mathrm{~S} 5\}$.
Let $M=(F, \Vdash)$, with \Vdash defined as follows:
$\mathrm{x} \Vdash \mathrm{p}$ iff $\mathrm{x}=3 ; \mathrm{x} \Vdash \mathrm{q}$ iff $\mathrm{x}=6 ; \mathrm{x} \Vdash r$ iff $\mathrm{x}=7$; t is nowhere forced.
The only worlds in which $\diamond \mathrm{q} \wedge \diamond \mathrm{r}$ is forced are 2 and 8 . But $2 \Vdash \diamond$ p, so $2 \Vdash \square \neg \mathrm{p}$ $\rightarrow \diamond t$, and we have $2 S 2$ and $8 S 2$. So $1 \Vdash(\diamond q \wedge \diamond r) \triangleright(\square \neg p \rightarrow \diamond t)$.
Every world of M forces $p \triangleright \nabla_{q} \wedge p \triangleright \diamond_{r}$, whereas \diamond_{t} is forced nowhere. So none of the worlds forces $p \triangleright \diamond \mathrm{q} \wedge \mathrm{p} \triangleright \diamond \mathrm{r} \rightarrow \diamond \mathrm{t}$, while $2 \Vdash \diamond \mathrm{p}$. So $1 \nVdash \diamond p \triangleright(p \triangleright \diamond q \wedge p \triangleright \diamond r \rightarrow \diamond t)$. Thus,
$1 \nVdash(\diamond q \wedge \diamond r) \triangleright(\square \neg p \rightarrow \diamond t) \rightarrow \diamond p \triangleright\left(p \triangleright \nabla_{q} \wedge p \triangleright \rho_{r} \rightarrow \diamond t\right)$.

Let $M=(F, \|)$ ，for some forcing relation F on F ．We show that $M \vDash E$ ．
Being blind worlds，3， 6 and 7 force E． 4 and 5 force E because 6 and 7 do not force $\diamond A$ ．
Suppose $2 R x$ and $x \Vdash \diamond A \wedge A \triangleright P_{1} \wedge \ldots \wedge A \triangleright P_{n}$ ．As 3 does not force $\diamond A$ ，x cannot be 3．So x is 4 （or，the symmetrical case，which is treated similarly， x is 5 ）．Then $6 \Vdash \square \neg A \wedge P_{1} \wedge \ldots \wedge P_{n}$ ．So $2 \Vdash E$ ．
Suppose $1 R x$ and $x \Vdash \diamond A \wedge A \triangleright P_{1} \wedge \ldots \wedge A \triangleright P_{n}$ ．We distinguish four cases．
Case1： x is 2 and $6 \Vdash \mathrm{~A}$（or，the symmetical case， $7 \Vdash \mathrm{~A}$ ）．Then again we find $6 \Vdash \square \neg A \wedge P_{1} \wedge \ldots \wedge P_{n}$ ．
Case 2： x is 2 and $4 \Vdash \mathrm{~A} \wedge \square \neg \mathrm{~A}$ and $5 \Vdash \square \neg \mathrm{~A}$（or 4 and 5 are interchanged）．Then we find，by our supposition，that $4 \Vdash P_{1} \wedge \ldots \wedge P_{n}$ ．This implies，by jumping over， $8 \Vdash$ $\mathrm{P}_{1} \wedge \ldots \wedge \mathrm{P}_{\mathrm{n}}$ ．Also by jumping over，8ルロᄀA．（Use 2S8．）
Case 3： x is 2 and $3 \Vdash \mathrm{~A}$ and 4 and 5 force $\neg \mathrm{A} \wedge \square \neg \mathrm{A}$ ．Then we find some of the P_{i} in 4 ，the others in 5 ．Jumping them over，we must find $8 \Vdash P_{1} \wedge \ldots \wedge P_{n}$ ．Also by jumping over， $8 \Vdash \square \neg$ A．
Case 4：x is 8 ．Then we find A in 6 （or 7 ），so $6 \Vdash P_{1} \wedge \ldots \wedge P_{n}$ ．Being blind， 6トロ \neg A．（Use 8S6．）
This completes the proof．

Lemma 4．1．11 $\operatorname{ILPEX}_{\mathrm{n}, \mathrm{k}} \nVdash \mathrm{X}_{\mathrm{n}+1, \mathrm{k}}$ ，for $\mathrm{n} \geq 1, \mathrm{k} \geq 1$ ．
Proof We will show that the lemma holds for $n=2, k=1$ ．Let W, R, S ，be as in the proof Lemma 4．1．7．Let $F^{\prime}=\left(W^{\prime}, R^{\prime}, S^{\prime}\right)$ be defined by $W^{\prime}=W \cup\{y\}, R^{\prime}$ is the transitive closure of $R \cup\left\{b R y, y R w_{0}, y R w_{1}, y R w_{2}\right\}, S^{\prime}$ is the reflexive transitive closure of $S \cup\{x S y, y S x\}$ ．See the figure below．

Reason along the lines of the proofs of Lemma 4．1．7 and 4．1．10 to see that $\mathrm{F}^{\prime} \vDash \operatorname{ILPEX}_{2, \mathrm{k}}$ ．A forcing relation defined exactly like the forcing relation in the proof of

Lemma 4.1.7 yields a model M on F^{\prime} such that $\mathrm{M} \nVdash\left(\diamond_{\mathrm{p}_{0}} \wedge \diamond \mathrm{p}_{1} \wedge \diamond_{\mathrm{p}_{2}}\right) \triangleright(\square \neg \mathrm{q} \rightarrow \diamond \mathrm{s}) \rightarrow$

$$
\diamond q \triangleright\left(q \triangleright \rho_{0} \wedge q \triangleright \nabla_{p_{1}} \wedge q \triangleright \nabla_{p_{2}} \rightarrow \diamond s\right) .
$$

References

[KA] Kalsbeek, M.B., manuscript.
[RIJ] de Rijke, M., Some Chapters on Interpretability Logic, ITLI Prepublication Series X-90-2 (1990), Amsterdam.
[VIS] Visser, A., Interpretability Logic, in: Petkov,P.P., ed., 1990, Mathematical Logic, Plenum Press, New York, 175-208 (also: Logic Group Preprint Series No. 40 (1988), Dept. of Philosophy, University of Utrecht).

Logic Group Preprint Series
Department of Philosophy, University of Utrecht
Heidelberglaan 2, 3584 CS Utrecht
The Netherlands

1 C.P.J. Koymans, J.L.M. Vrancken, Extending Process Algebra with the empty process, September 1985
2 J.A. Bergstra, A process creation mechanism in Process Algebra, September 1985
3 J.A. Bergstra, Put and get, primitives for synchronous unreliable message passing, October 1985
4 A. Visser, Evaluation, provably deductive equivalence in Heyting's arithmetic of substitution instances of propositional formulas, November 1985
5 G.R. Renardel de Lavalette, Interpolation in a fragment of intuitionistic propositional logic, January 1986
6 C.P.J. Koymans, J.C. Mulder, A modular approach to protocol verification using Process Algebra, April 1986
7 D. van Dalen, F.J. de Vries, Intuitionistic free abelian groups, April 1986
8 F. Voorbraak, A simplification of the completeness proofs for Guaspari and Solovay's R, May 1986
9 H.B.M. Jonkers, C.P.J. Koymans \& G.R. Renardel de Lavalette, A semantic framework for the COLD-family of languages, May 1986
10 G.R. Renardel de Lavalette, Strictheidsanalyse, May 1986
11 A. Visser, Kunnen wij elke machine verslaan? Beschouwingen rondom Lucas' argument, July 1986
12 E.C.W. Krabbe, Naess's dichotomy of tenability and relevance, June 1986
13 H. van Ditmarsch, Abstractie in wiskunde, expertsystemen en argumentatie, Augustus 1986
14 A. Visser, Peano's Smart Children, a provability logical study of systems with built-in consistency, October 1986
15 G.R. Renardel de Lavalette, Interpolation in natural fragments of intuitionistic propositional logic, October 1986
16 J.A. Bergstra, Module Algebra for relational specifications, November 1986
17 F.P.J.M. Voorbraak, Tensed Intuitionistic Logic, January 1987
18 J.A. Bergstra, J. Tiuryn, Process Algebra semantics for queues, January 1987
19 F.J. de Vries, A functional program for the fast Fourier transform, March 1987
20 A. Visser, A course in bimodal provability logic, May 1987
21 F.P.J.M. Voorbraak, The logic of actual obligation, an alternative approach to deontic logic, May 1987
22 E.C.W. Krabbe, Creative reasoning in formal discussion, June 1987
23 F.J. de Vries, A functional program for Gaussian elimination, September 1987
24 G.R. Renardel de Lavalette, Interpolation in fragments of intuitionistic propositional logic, October 1987 (revised version of no. 15)
25 F.J. de Vries, Applications of constructive logic to sheaf constructions in toposes, October 1987
26 F.P.J.M. Voorbraak, Redeneren met onzekerheid in expertsystemen, November 1987
27 P.H. Rodenburg, D.J. Hoekzema, Specification of the fast Fourier transform algorithm as a term rewriting system, December 1987
28 D. van Dalen, The war of the frogs and the mice, or the crisis of the Mathematische Annalen, December 1987

29 A. Visser, Preliminary Notes on Interpretability Logic, January 1988
30 D.J. Hoekzema, P.H. Rodenburg, Gauß elimination as a term rewriting system, January 1988
31 C. Smoryński, Hilbert's Programme, January 1988
32 G.R. Renardel de Lavalette, Modularisation, Parameterisation, Interpolation, January 1988
33 G.R. Renardel de Lavalette, Strictness analysis for POLYREC, a language with polymorphic and recursive types, March 1988
34 A. Visser, A Descending Hierarchy of Reflection Principles, April 1988
35 F.P.J.M. Voorbraak, A computationally efficient approximation of Dempster-Shafer theory, April 1988
36 C. Smoryński, Arithmetic Analogues of McAloon's Unique Rosser Sentences, April 1988
37 P.H. Rodenburg, F.J. van der Linden, Manufacturing a cartesian closed category with exactly two objects, May 1988
38 P.H. Rodenburg, J.L.M.Vrancken, Parallel object-oriented term rewriting : The Booleans, July 1988
39 D. de Jongh, L. Hendriks, G.R. Renardel de Lavalette, Computations in fragments of intuitionistic propositional logic, July 1988
40 A. Visser, Interpretability Logic, September 1988
41 M. Doorman, The existence property in the presence of function symbols, October 1988
42 F. Voorbraak, On the justification of Dempster's rule of combination, December 1988
43 A. Visser, An inside view of EXP, or: The closed fragment of the provability logic of $I \Delta_{0}+\Omega_{1}$, February 1989
44 D.H.J. de Jongh \& A. Visser, Explicit Fixed Points in Interpretability Logic, March 1989
45 S. van Denneheuvel \& G.R. Renardel de Lavalette, Normalisation of database expressions involving calculations, March 1989
46 M.F.J. Drossaers, A Perceptron Network Theorem Prover for the Propositional Calculus, July 1989
47 A. Visser, The Formalization of Interpretability, August 1989
48 J.L.M. Vrancken, Parallel Object Oriented Term Rewriting : a first implementation in Pool2, September 1989
49 G.R. Renardel de Lavalette, Choice in applicative theories, September 1989
50 C.P.J. Koymans \& G.R. Renardel de Lavalette, Inductive definitions in COLD-K, September 1989
51 F. Voorbraak, Conditionals, probability, and belief revision (preliminary version), October 1989
52 A. Visser, On the Σ_{1}^{0}-Conservativity of Σ_{l}^{0}-Completeness, October 1989
53 G.R. Renardel de Lavalette, Counterexamples in applicative theories with choice, January 1990
54 D. van Dalen, L.E.J. Brouwer. Wiskundige en Mysticus, June 1990
55 F. Voorbraak, The logic of objective knowledge and rational belief, September 1990
56 J.L.M. Vrancken, Reflections on Parallel and Functional Languages, September 1990
57 A. Visser, An inside view of EXP, or: The closed fragment of the provability logic of $I \Delta_{0}+\Omega_{1}$, revised version with new appendices, October 1990
58 S. van Denneheuvel, K. Kwast, G.R. Renardel de Lavalette, E. Spaan, Query optimization using rewrite rules, October 1990
59 G.R. Renardel de Lavalette, Strictness analysis via abstract interpretation for recursively defined types, October 1990
60 C.F.M. Vermeulen, Sequence Semantics for Dynamic Predicate Logic, January 1991
61 M.B. Kalsbeek, Towards the Interpretability Logic of I $\Delta_{0}+E X P$, January 1991.

